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The ringdown (RD) phase of gravitational waves is of prime interest for testing general relativity (GR).
The modeling of the linear quasinormal modes (QNMs) within the Kerr spectrum—or with agnostic
parametrized deviations to that GR spectrum—has become ordinary; however, specific attention has
recently emerged to calibrate the effects of nonlinear perturbations for the predominant quadrupolar
l ¼ 2, m ¼ 2 mode. In this paper, we test the performance of a few nonlinear toy models and of the
nonlinear inspiral-merger-ringdown (IMR) model IMRPhenomD for faithfully representing the RD
regime and we compare them with the results obtained using linear solutions as sums of QNM tones.
Using several quasicircular, nonprecessing numerical waveforms, we fit the dominant l ¼ 2, m ¼ 2

mode of the strain, and we assess the results in terms of both the Bayes factor and the inferred posterior
distributions for the mass and spin of the final black hole. We find that the nonlinear models can be
comparable or preferred over the linear QNM-only solutions when the analysis is performed from the
peak of the strain, especially at high signal-to-noise ratios consistent with third-generation observatories.
Since the calibration of the tones’ relative amplitudes and phases in high-overtone models to the
progenitor parameters is still missing, or even not achievable, we consider the use of nonlinear models to
be more pertinent for performing confident tests of general relativity based on the RD regime starting
from early times.
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I. INTRODUCTION

Gravitational waves (GWs) provide an excellent arena to
study gravity on its strongest regime. Since the break-
through observation of the first event GW150914 [1],
the GW field itself has experienced an unprecedented
growth, as a result of the early-on unexpected but nowadays
confirmed high number of GW events observed. Currently,
the number of confirmed GW events from compact binary
mergers has risen significantly, summing up to about 90 in
the last completed observing run (O3) [2–7] of the LIGO-
Virgo-KAGRA (LVK) Collaboration [8–10]. While these

observations have already allowed us to set extraordinary
constraints on the general theory of gravity (see, e.g.,
[11–14]), the near-future prospects are even more prom-
ising, with about 200 new events anticipated by the end of
the current LVK O4 run [15]. The number of observed
binary black hole (BBH) mergers is dominating the LVK
event catalog. A typical BBH GW event is described by
three different regimes; the inspiral, the merger, and the
ringdown (RD). For the optimized search and characteri-
zation of the signals, the IMR gravitational wave-
form templates are used. IMR models are calibrated to
numerical relativity (NR) solutions and provide us with the
most accurate representation of the full waveform. For
BBH mergers, current IMR waveform approximants are
normally split into three different families: the IMRPhenom
[16], SEOBNR [17], TEOB [18] and NRSurrogates (for a
detailed description of the models see [19–22] and the
references therein).
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The study of the RD regime has drawn some attention in
the last recent years. The RD describes the post-merger
phase, in which the final, perturbed BH relaxes rapidly
towards its stationary Kerr configuration, a phase which
is associated with a characteristic late train of radiation
[23–27]. Linear perturbation theory provides a simple
description of this late radiation regime in the form of a
countably infinite sum of damped sinusoids. Each damped
sinusoid—or mode (lmn)—is at most described by four
parameters, namely its frequency, damping time, amplitude
and phase. The family of frequencies and damping times is
known as the quasinormal-mode (QNM) spectrum [23–25]
and, by virtue of the BH no-hair theorem, is uniquely
determined by the final BH mass and spin [28–30]. The set
of amplitudes and phases is determined by the progenitor
parameters and the initial orbital conditions [31–37]. The
BH no-hair theorem is tested through two common
scenarios: namely, by performing an inspiral-merger-
ringdown (IMR) consistency test [38] and through BH
spectroscopy [39]. BH spectroscopy typically targets the
independent estimation of the spectrum of at least two
separate RD modes although GR deviations can be also
measured with a single mode if one considers information
from the progenitor BHs [13,14,40]. So far, several works
from different groups dispute the successful/unsuccessful
multiple-mode testing of the theorem with the loud-RD
events GW150914 [13,41–50] and GW190521 [13,51–55].
In coming years, robust testing of the no-hair theorem [56]
through BH spectroscopy may be achieved with loud
events at LVK design sensitivity (see [57,58]) and become
more precise at the LIGO A# sensitivity [59], reaching even
the percent accuracy with third-generation gravitational
wave interferometers such as the Einstein Telescope (ET)
[60], Cosmic Explorer (CE) [61] and LISA [62], thanks
to the expected and promising gain in signal-to-noise
ratios (SNRs).
One of the major debates among the BH ringdown

community pertains to the suitability of linear pertur-
bation theory for describing the whole RD regime
[41–43,45,63–69]. On the one hand, some previous works
advocate that the results of linear perturbation theory can be
applied from the peak of the gravitational strain onwards,
which implies that the nonlinear effects observed
at the merger regime become quickly irrelevant [66,70].
This is assessed by fitting to NR data the RD models with
a large number of QNM tones—typically N ¼ 7 over-
tones in addition to the fundamental mode—to obtain an
accurate recovery of the BH parameters, while fixing its
QNM spectrum to GR. On the other hand, such claims
have been disputed by other works by observing that a
high instability of high-overtone models can arise due to
(i) a likely overfitting of the data and (ii) neglecting the
yet unmodeled nonlinear contributions on the dominant
lm ¼ 22 mode [64,67,71,72]. In particular, even the
linear-order contributions arising from the branch

cut,1 such as the prompt response or the late tail effects
[75–77], are neglected by ringdown models solely based on
QNMs. Moreover, [68,78] have found clear evidences of
quadratic contributions in higher harmonics of the RD
(specifically, quadratic contributions to the lm ¼ 44 mode
sourced by the first-order 22-mode perturbations), which
provide more accurate and more stable models than the
linear models for these modes. Separately, similar con-
clusions are obtained by studying the shear at the horizon in
head-on BH collisions [72,79]. Unfortunately, an analo-
gous but conclusive analysis for the quadrupolar and
dominant 22 mode in quasicircular mergers is still absent.
In this work we have tested the performance of linear and

nonlinear RD models, by fitting the post-peak regime of
NR waveforms from the SXS and the (associated) Ext-CCE
NR catalogs [80]. The SXS NR waveforms are extracted at
finite radii and then extrapolated to future null infinity. The
Ext-CCE waveforms use the Cauchy characteristic extrac-
tion procedure, thus reducing significantly the gauge
dependence of the waveforms obtained at null infinity.
We consider the following RDmodels to fit the data: (i) and
(ii) two RD models described by linear perturbation theory
with a variable number of tones, with or without degrees of
freedom allowing for restricted deviations from the GR
QNM spectrum; (iii) the RD sector of the nonlinear
IMRPhenomD model; and (iv) a nonlinear RD toy model
that uses the linear solution but modifies it slightly to add a
nonlinear qualitative behavior at early times. Those models
are described in Sec. II. In Sec. III and Sec. IV we introduce
the Bayesian framework and other statistical tools used to
perform parameter inference and to assess the physical
reliability of the models. In Sec. V, we perform Bayesian
parameter inference on a set of zero-noise-realization NR
signal injections for each of the models described in Sec. II.
Finally we conclude about the accuracy and suitability of
each model at describing the RD regime in Sec. VI.

II. RD MODELS

A. QNM overtone models

At late enough times, the RD regime can be modeled via
the Teukolsky equation [81], which describes linear per-
turbations off a Kerr background spacetime, and hence tells
us how GWs propagate as s ¼ −2 gravitational perturba-
tions. This equation is typically solved by applying out-
going boundary conditions at null infinity and infalling
boundary conditions at the BH horizon. The Teukolsky
equation then becomes an eigenvalue problem whose

1The QNMs of Kerr do not form a complete basis even at linear
order [73,74]. The time-domain Green’s function might be split
into three different terms, namely, the quasinormal mode sol-
ution, the branch cut and a high frequency response. In particular,
the prompt emission is originated from the branch cut solution
and it is expected to be important at times around the peak of the
emission (see [75] for a detailed review).
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solution is the countably infinite set of the complex QNMs
of the final (Kerr) BH. In a time evolution, these modes take
the form of exponentially damped sinusoids. Their complex
frequencies ωlmn ¼ wlmn − ι=τlmn, corresponding to poles
of the Green function [23–25], are solely determined by the
remnant BH’s massMf and spin af, in the absence of a BH
charge. Here, Re½ωlmn� ¼ wlmn are the so-called oscillation
frequencies and −Im½ωlmn� ¼ 1=τlmn are the damping rates
(inverse of the damping times). These modes are labeled
by three integers l, m, and n. Here l ¼ 2; 3;… and
m ¼ −l;−lþ 1;…; l − 1; l denote the two angular indices
of the spheroidal harmonics decomposition. The complex
strain at future null infinity h ¼ hþ − ih× (where hþ and h×
denote the two polarization components measured in the
detector frame) of the gravitational radiation is accordingly
written as

hðt; θ;ϕÞ ¼
X
l;m;n

hlmnðtÞ−2Ylmnðθ;ϕ; afÞ; ð1Þ

where −2Ylmnðθ;ϕ; afÞ are the spin-weighted spheroidal
harmonics of spin weight s ¼ −2, which depend upon the
polar angle θ, the azimuthal angle ϕ, and the final spin af.
The third index, n ¼ 0; 1; 2;…, labels the tones, in order of
decreasing damping times τlmn for any given ðl; mÞ har-
monic. This convention sets the n ¼ 0 (fundamental) mode
as the dominant one at late times while the n ≥ 1 mode
(overtones) are shorter-lived. In addition, there are two
branches of QNMs for each ðl; mÞ harmonic, respectively
with positive and negative wlmn values [82]. The counter-
rotatingmodes, withwlmn < 0, are nevertheless, expected to
have very small relative amplitudes in the dominant har-
monics sourced by a quasicircular merger [32,83,84], and
we shall not consider them further in this paper.
Methods to calculate numerical values of QNM frequen-

cies are present in the literature [82,85–91] for various
situations, building upon Leaver’s continued fraction method
[23] or spectral decompositions [90,91]. In our work, we
mainly use the open-source qnm Python package [89] to
compute the required Kerr QNM frequencies as functions of
the remnant’s mass and spin. Alternative open-source
algorithms to compute the Kerr spectrum are also available
in [85,92–94].
In this work, we focus on the dominant ðl ¼ 2; m ¼ 2Þ

mode of the strain, h22ðtÞ, both in terms of the NR data we
are considering and of the models used to describe it. Note
that the mode we select from NR simulations is in fact the
ðl ¼ 2; m ¼ 2Þ mode in a spherical harmonics decomposi-
tion, meaning that it includes some contributions from higher
spheroidal harmonics (and the associated QNMs); in
aligned-spins cases like we consider, there is in particular
some mode mixing with the ðl ≥ 3; m ¼ 2Þ harmonic. Such
contributions are expected to be negligible at all times due to
the combination of much smaller amplitudes of these higher
modes and small mixing coefficients, so that the spherical

(2, 2) mode considered is a close approximation to the
spheroidal one [66,84,95]. They might nevertheless affect
analyses involving high overtones [64], as the small con-
tributions from the fundamental modes (n ¼ 0) of these
other harmonics—like the ðl ¼ m ¼ 2; n ¼ 0Þ dominant
mode—are much longer-lived than those overtones. Further-
more, such mode mixing contributions may be enhanced in
NR waveforms due to supertranslation caused by memory
effects, which can possibly be solved by fixing the BMS
frame [96]. We shall however leave such considerations for
future work, and neglect mode mixing into the (2, 2)
spherical mode of the NR strain in the present analyses.
The decomposition of h22ðtÞ into the ðl ¼ 2; m ¼ 2Þ

QNMs up to a given numberN ≥ 0 of overtones defines the
linear overtone model for the RD,

OMNðtÞ ¼
XN
n¼0

Ane−ιðt−trÞω22n ; ð2Þ

where tr is a reference time, usually chosen as a sufficiently
late point for the system to reside in the linear
regime [36,37,65,97–100], andAn ¼ Aneιφn is the complex
amplitude of the ðl ¼ 2; m ¼ 2; nÞ tone at t ¼ tr. These
N þ 1 complex amplitudes, plus the final dimensionless
mass and spin mf, af which parametrize the QNM
frequencies ω22nðmf; afÞ, define the 2N þ 4 real-valued
free parameters of the model. References [32,36] provide
separate models of the overtone amplitudes and phases,
calibrated to the progenitor parameters limited to N ¼ 1,
while an analogous calibration for N > 1 is still missing.2

This model provides a priori a good description of the
RD once sufficiently into the linear regime, and while
asymptotic late-time non-QNM linear tail contributions are
still negligible.3 This model has been argued to be
potentially applicable early on in the RD, up to the peak
of the strain’s amplitude [66], for a sufficiently large N. We
shall however also consider several alternative models
including nonlinear terms, which may better capture the
behavior of the strain close to merger.

2Reference [43] observes, by performing full Bayesian
inference on the event GW150914, that the overtone model
OM1 with the phase ϕ221 fixed to the NR calibrated value is
disfavoured in terms of the Bayes factor with respect to the OM1

model in which A221, ϕ221 are freely sampled, or not constrained
to the NR fit values. This discrepancy might be sourced by the
strong dependence of the value of the free phase ϕ221 on
the ringdown starting time, as is remarked in [33].

3Such a tail contribution,with a non-oscillatory power-lawdecay,
is indeed expected as an additional solution to the Teukolsky
equation since QNMs do not form a complete solution basis
[74–77,101]. Its amplitude is nevertheless small enough that this
term only appears at very late times and is typically not visible
within the post-merger time range of quasicircular NR simulations
such as the ones we consider [64,75]. Such tail effects have only
been observed very recently in eccentric mergers from NR, where
they were expected to be enhanced compared to quasicircular
cases [102].
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B. Phenomenological nonlinear toy models

The first model with deviations to the linearized GR sum
of QNMs that we consider, is based on the parametrized
QNMmodels popular in spectroscopic studies, which allow
for deviations of the QNMs to the Kerr spectrum. To avoid
the very large parameter space and reduce the possible
overfittings of models with multiple overtones that can each
independently deviate from GR, we consider the restricted
case where only the highest tone of the model is modified.
This defines the highest-tone perturbation models (HTPM),

HTPMNðtÞ≡OMN−1ðtÞ
þANe−ιðt−trÞw22Nð1þαNÞe−ðt−trÞ=ðτ22Nð1þβNÞÞ; ð3Þ

where αN and βN are respectively the oscillation-frequency
and damping-time perturbation parameters. Their values
measure the deviations of the highest included tone from
the Kerr spectrum, and the QNM solution fromGRwould be
recovered for αN ¼ βN ¼ 0. HTPM1 corresponds to themost
widely used QNM model in overtone-based spectroscopy
(e.g., [13,14,41,43,47]), including the 220 and 221 modes
with possible frequency and damping times deviations to the
Kerr values for the first overtone. HTPM≥2 is a restricted
extension of this model to higher numbers of overtones,
where only the last tone is allowed to deviate from the GR
spectrum. HTPM0 is also formally well-defined by the above
Eq. (3), but it has very limited interest due to the full
degeneracy between the free final mass and spin and the
deviation parameters on the complex frequency of the only
mode present (n ¼ 0), making it effectively an overparame-
trized version of OM0. We will accordingly not consider it in
our analyses. Note that HTPMN depends in total on 2N þ 6
real-valued free parameters (i.e., the same number as
OMNþ1): the final mass and spin ðMf; afÞ, the perturbation
parameters αN and βN , and the complex amplitudes of the
N þ 1 tones included.
The other phenomenological toy model considered in

this work amounts to a sum of QNMs with a nonlinear
transformation of the time coordinate. The time parameter
is shifted by an exponentially decaying term, so that the
model can exhibit this nonlinear modification at early times
close to merger (where it leads to a slower variation of the
phase and amplitude of the waveform), while asymptoti-
cally recovering the linear model at later times4 We define
the corresponding time coordinate transformation models
(TCTM) as follows:

TCTMNðtÞ≡ OMNðtþ Ae−t=τÞ; ð4Þ

where A and τ are two constant parameters to be deter-
mined. Like in the HTPM case above, TCTMN depends on
2N þ 6 real-valued free parameters: the final mass and
spin, A, τ, and the N þ 1 complex tone amplitudes.
We also considered several additional phenomenological

toy models, introduced in [106] for the description of the
decaying deformations of the final horizon formed in a
merger. These models corresponds to overtone models
modified e.g., by the addition of a non-oscillatory expo-
nential decaying component [under the form OMNðtÞ þ
B exp½−ðt − trÞ=τ̃�], or of a power-law decaying term
with or without oscillations [OMNðtÞ þ Cðt − t1Þ−γ
exp½ιωðt − trÞ�, or the same form with ω set to 0]. These
models are designed to recover the steep decay featured by
the deformations of the common horizon shortly after its
formation, in addition to the late-time QNM oscillations.
Hence, these models were not expected to be necessarily
alsowell-suited to the description of ringdownwaveforms at
null infinity, which rather have a slower change of amplitude
near the merger than further into the RD regime. Indeed, the
preliminary comparative tests of the various models dis-
cussed in this section (see below in Sec. III D) indicated a
poor performance for these additional models for the
description ofwaveform ringdowns, andwedid not consider
them further for the present work.

C. IMR model

One can also use full inspiral-merger-ringdown wave-
form models to describe the GW ringdown, by selecting
only the post-merger part of these models. They are built
upon nonlinear ansatz, calibrated to NR waveforms, which
depend solely on the progenitors’ parameters. In general,
they will require fewer input parameters than the overtone
models, especially compared to those including a large
number of overtones Nmax. In this work, we use the
nonprecessing “IMRPhenomD” waveform model. This
model is calibrated to mass ratios up to q ¼ 1=18 and
initial effective spins up to 0.98 [107], and is well-sufficient
to cover the 22 mode of nonprecessing cases; the only
waveforms we consider in this work. Another advantage of
using IMRPhenomD for this study is that it has been
calibrated to a relatively small number of numerical wave-
forms, allowing us to easily pick a set of NR waveforms for
the present study that were not involved in that calibration.5

We generate the IMRPhenomD using the PyCBC [109]
time-domain approximant. We truncate the waveform at
t ¼ 0, aligning it with the peak of the strain for the 22

4Since the prompt response is expected to be higher close to the
peak of the emission, the TCTMmodel is designed to account for
this excess, although its fundamental form remains unknown. The
TCTM may as well be interpreted as phenomenologically ac-
counting for post-merger GWs from aBH of time-dependent mass
and spin due to the absorption of the infalling radiation [103–105].

5We have also tested two other waveform approximants for
comparison, namely IMRPhenomPv2 and SEOBNRv4, in the
case of analyses starting at the strain amplitude peak (t0 ¼ 0), and
found similar or better performances than IMRPhenomD. We
chose IMRPhenomD in part because of the fact that more state-
of-the-art approximants were usually calibrated to a much larger
number of NR waveforms [16,20,108], and thus potentially
exhibit artificial advantages in the model comparison.
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mode. This alignment corresponds to a frequency
fmin ∼ 170 Hz. We use a sampling rate δt ¼ 1=2048 s,
appropriate to resolve the high-frequency RD regime. We
select only the 22 mode. The inclination angle is fixed to
zero so that the complex strain is just hþ − ih× ¼
h22ðtÞ−2Y22ðθ;ϕÞ. Note that we are comparing the
IMRPhenomD model with NR waveforms, hence, we must
translate the IMR output to geometric units with
G ¼ c ¼ M ¼ 1, which implies that the final mass referred
in this work represents the fraction of energy radiated
Mf=M ¼ 1. With this setup, we are left with four free
parameters in the model: mass ratio, χz1, χ

z
2, and phase,

where χz1, χz2 denote the z component of the initial
dimensionless spin of the progenitor BHs. Finally, the
final massMf and final spin af are obtained from fits to NR
in terms of the progenitor parameters [110,111].

III. MODEL COMPARISON

A. Mismatch analyses

While the bulk of our analysis is based on a full
Monte Carlo sampling parameter estimation for each
model, we first performed a least-mean-squares fit-based
preliminary comparison and selection among the models at
hand. The modeling quality can be assessed in this case
using the mismatch M. This quantity commonly used in
GW astronomy to quantify the similarity between the
model and data [65,97,99] is defined as

M ¼ 1 −
hhNRjhmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhNRjhNRihhmjhmi

p ; ð5Þ

where we compare between our model for the strain 22
mode, hmðtÞ, and the corresponding numerical data,
hNRðtÞ, with

hfjgi ¼ Re
Z

tf

t0

f�ðtÞgðtÞdt: ð6Þ

The limits of the integral t0 and tf mark the fit starting and
ending time, respectively. M varies between 0 and 1, with
higher mismatches meaning that the model deviates more
from data. We can thus compare models by computing the
mismatch of each of them (with the best-fit parameter
values) to the data. A lower value of that mismatch is
associated with a more faithful modeling, without, at this
stage, accounting for possibly different numbers of free
parameters.

B. Bayesian framework

Apart from mismatches, another quantity of common use
for comparing the fitting performance of different GW
models is the Bayes factor. As opposed to the mismatch, the
Bayes factor directly quantifies the relative evidence in
favour of a model versus another given the data, and this

comparison already includes an implicit penalty cost for
additional parameters and potential overfitting, through the
prior and parameter space volume. It applies within a
Bayesian parameter inference framework for each model
M, where the posterior probability distribution of the
parameters θ⃗ associated with the model, given the data d
(here d ¼ hNR), is given by

pðθ⃗jd;MÞ ¼ pðθ⃗jMÞpðdjθ⃗;MÞ
pðdjMÞ : ð7Þ

Above, pðθ⃗jMÞ is the prior probability of the parameters
θ⃗, pðdjθ⃗;MÞ is the likelihood function which represents
the conditional probability of observing d given the
model M with parameters θ⃗, and Z ≡ pðdjMÞ ¼R
pðdjθ⃗;MÞpðθ⃗jMÞdθ⃗ is the evidence associated with

model M.
Two possible modelsMA andMB for the description of

a given dataset d can then be compared by computing their
relative Bayes factor, i.e., the ratio of evidence between
them,

BAB ¼ pðdjMAÞ
pðdjMBÞ

: ð8Þ

As per usual practice, and for convenience, we will be using
the logarithmic Bayes factor log10 BAB, as well as the
logarithmic evidence for any given model log10Z (the
difference of logarithmic evidences between two models
providing directly the logarithmic Bayes factor between
them). Note that we use the base 10 log here. BAB > 1
(log10BAB > 0) would support modelMA over modelMB,
and vice versa; although a significant claim of preference of
MA over MB would require log10BAB ≳ 1 [112].

C. Bias analyses

Typically, both the best-fit mismatch and Bayes factor
(with respect to a reference model) for each model are only
used to assess the fitting quality, without accounting for the
physical accuracy of the values obtained for the model
parameters. This accuracy can be measured separately via
the combined recovery bias ϵ on the final mass Mf and
dimensionless final spin af [67,97],

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Mfit

f −Mtrue
f

M

�2

þ ðafitf − atruef Þ2
s

; ð9Þ

where the final masses are normalized by the initial total
massM from the NR simulation. The true parametersMtrue

f

and atruef correspond to the values from the NR simulation,
that are estimated from the mass and spin quasilocal
definitions on the apparent horizon [67,80,113,114]. The
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uncertainties of these final mass and spin local estimates
from NR are typically in the order of 10−5 to 10−4 [67].

D. Preliminary tests

As a preliminary step to rapidly select relevant models
and assess general trends, we fitted various models, with a
range of numbers of tones, to the h22 ringdown strain mode
from the BBH:0305 binary BH simulation from the SXS
catalog [80]. The ringdown phase of the signal was selected
by starting the analysis at the peak of the corresponding
amplitude jh22j (which we use to define t ¼ 0), i.e., by
setting t0 ¼ 0; up to the end of the available data
(tf=M ∼ 150). For the sake of stability and efficiency of
the fits, we followed the same algorithm as in [67,92] to
obtain the best-fit parameters for each model. The two to
four parameters of a given model which are not tone
amplitudes and phases (that is, for instance, fMf; afg for
overtones models, and fMf; af; A; τg for the HTPM
models) are distributed on an adaptive grid. For each value
of those parameters on the grid, the best-fit value for the
remaining parameters of the model, i.e., the tone complex
amplitudes, on which the model depends linearly, is
obtained through the analytic minimization of the sum
of squared residuals for a linear model. The mismatch
between the corresponding best-fit waveform and the NR
waveform is computed for each grid point, and the optimal
value for the ‘nonlinear’ parameters on the grid such asMf

and af is then determined as the value minimizing the
mismatch. Note that minimizing over the mismatch or over
the sum of squared residuals, for any given set of
parameters, gives equivalent results in the limit of small
mismatches (or residuals).
In Fig. 1, we show the mismatchM (left panel) and final

mass/spin bias ϵ (right panel) of these best-fit solutions for
the OM and the alternative TCTM and HTPM models, at
various numbers of overtones. For each value of N ¼ 1…7
on the x axis, we show the results for the OMN , TCTMN−1,
and HTPMN−1 models (plus OM0 for N ¼ 0), for direct
comparison of models which have the same number
of free parameters, i.e., 2N þ 4. We also considered the
IMRPhenomD model, which has four parameters like the
OM0; we represent its mismatch and bias as a reference
magenta horizontal dashed line and shaded area on each
panel. The estimated numerical error on the mismatch and
bias parameter are also shown as dark gray horizontal lines
and shaded areas.
These comparison plots show that the TCTM (at any N)

and the HTPM (from HTPM1 onwards) provide a compa-
rable or (in most cases) better description in terms of
mismatch to the ringdown 22 mode of SXS:BBH:0305,
than the OMs for the same number of free parameters. On
the other hand, these two classes of models typically
recover more poorly the parameters of the final BH than
the corresponding overtone model, with the notable excep-
tion of TCTM1 and TCTM2 (compared to OM2;3); while

FIG. 1. In the left panel, we show the evolution with N ∈ f0;…; 7g of the mismatch M between the NR waveform and the best-fit
OMN , TCTMN−1 and HTPMN−1 models (discarding the over-parametrized model HTPM0). For a given N (along vertical lines on the
figure), these models have the same number (2N þ 4) of free parameters and can thus be directly compared. The NR ringdown
waveform considered here corresponds to the BBH:0305 simulation from the SXS catalog, selecting the 22 mode and starting at its
amplitude peak (t ¼ 0). In the right panel, the evolution withN ∈ f0;…; 7g of the bias parameter ϵ is presented for the same models. The
magenta dashed line and shaded area in each panel mark the optimal mismatch and bias obtained for the IMRPhenomD model, which
has four free parameters like the OM0 (N ¼ 0) model. The dark gray dashed line and shaded area at the bottom of each panel delimit the
mismatch and ϵ values that are lower than the estimated NR errors, i.e., the maximum of the mismatches max ðMres;MextrÞ and the total
discrepancy δϵr on the dimensionless radiated energy and angular momentum, obtained from comparing the two highest available
resolutions and from comparing the two best extrapolation orders for the 22 mode of the NR waveform (see Sec. III-B of [67]). Note that
the minimum grid resolution used for the recovery of Mf=M and af for the OM, HTPM and TCTM models was jδMfj=M; jδafj ¼
3.2 × 10−6 for both parameters, and hence has a negligible impact on the ϵ values obtained.
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like for the overtone models the bias does decrease in most
cases when more tones are included in the model. Finally,
the four-parameter IMRPhenom model provides a descrip-
tion of the NR data of a quality comparable to the eight-
parameter OM2 and HTPM1 models (and better than the
six-parameter TCTM0), with a much lower bias on the final
mass and spin. For this model, a good fitting quality could
be expected to some extent, thanks to its prior calibration to
other NR waveforms including times around the strain peak
(t ¼ 0). Notice, however, that the calibration of IMR
approximants is performed and tested as a full inspiral-
merger-ringdown model, with its accuracy tested as a
whole too. Therefore, the accuracy and performance of
the ringdown part alone, is not fully guaranteed a priori,
especially the good recovery of the final black hole
parameters that we find here.
The few other phenomenological RD models, not shown

here, that we considered in this preliminary study (e.g.,
adding a non-oscillatory damped power-law or exponential
term to a sum of QNM overtones) were typically perform-
ing much more poorly in both mismatch and bias than the
models shown, and are consequently not considered further
in this work.
We shall now focus on the models with low or moderate

numbers of parameters which showed comparable or better
performance than the first few overtone models, i.e.,
OM0…4, TCTM0…2, HTPM1;2, and IMRPhenomD, for a
more thorough comparison in a Bayesian inference
approach using nested sampling [115].

IV. PARAMETER ESTIMATION

For GW detectors, the frequency-domain likelihood
function under stationary Gaussian noise is defined from
the noise-weighted frequency-domain inner product ð·; ·Þ as
follows [116]:

pðdjθ⃗;MÞ ¼ exp

�
−
1

2
ðdðfÞ −mðθ⃗; fÞ; dðfÞ −mðθ⃗; fÞÞ

�
;

ð10Þ

where mðθ⃗; fÞ denotes the strain 22 mode from model M
with particular parameters θ⃗, evaluated at frequency f, and
d is the sum of the GW strain and the noise realization
[117] for the 22 mode. The inner product ð·; ·Þ itself is
defined from the one-sided power spectral density SnðfÞ of
the detector’s noise, as

ðx; yÞ ¼ 4 × Re
Z

∞

0

x�ðfÞyðfÞ
SnðfÞ

df: ð11Þ

In our case, the parameter estimation is performed on time-
domain data, with the NR ringdown 22-mode strain as our
data set dðtÞ, considered as being injected in a zero-noise
realization. We moreover consider here a flat noise

spectrum within the relevant frequency range, i.e.,
that the noise sensitivity curve can be approximated by
its value at the frequency of the (220) mode [86], SnðfÞ≈
Snðf220Þ ¼ cst. This assumption allows us to directly relate
this constant noise amplitude to the optimal ρ of the data,
with ρ2 ¼ ðdðfÞ; dðfÞÞ ¼ 2hdðtÞjdðtÞi=Snðf220Þ, and to
convert more generally, via Parseval’s theorem, the
noise-weighted frequency-domain inner product ð·; ·Þ of
Eq. (11) into the time-domain scalar product of Eq. (6),

ðxðfÞ; yðfÞÞ ¼ 2
hxðtÞjyðtÞi
Snðf220Þ

¼ ρ2
hxðtÞjyðtÞi
hdðtÞjdðtÞi : ð12Þ

The likelihood expression, Eq. (10), can thus be reex-
pressed in time domain as

pðdjθ⃗;MÞ ¼ exp

�
−ρ2

hdðtÞ −mðθ⃗; tÞjdðtÞ −mðθ⃗; tÞi
2hdðtÞjdðtÞi

�
:

ð13Þ

We can therefore directly set the optimal ρ in our parameter
estimations through the likelihood function, which for a
given data d is equivalent to setting the constant noise
amplitude within this approximation.
To perform parameter estimation and both obtain pos-

terior distributions and calculate the models’ Bayesian
evidences, we use the dynamical nested sampling method
from the dynesty Python package [118]. One particular
feature of thismethod is that it estimates the evidence and the
posterior simultaneously. Throughout our tests, we used
2000 live points and a stopping criterion of ΔðlnZÞ ¼ 0.1
for the nested samplings.

V. RESULTS

We start our initial inference analysis on the GW150914-
like simulation, SXS:BBH:0305, employing the parameter
estimation framework this waveform into white Gaussian
noise, simulating an event observed by third-generation
(3G) observatories with a signal-to-noise ratio of ρ ¼ 100.
SXS:BBH:0305 is consistent with a signal with masss-
ratio q ¼ m1=m2 ¼ 1.22, effective dimensionless spin
χeff ¼ ðχ1m1 þ χ2m2Þ=ðm1 þm2Þ ¼ 0.01. Our Bayesian
inference is performed using four RD models described
in Sec. II. Further details on the various prior choices for
each RD model and their impact on the obtained posterior
distributions are provided in Appendix A.

A. Bayes factor analysis for t0 = 0

We initiate our parameter estimation (PE) analysis at
t0 ¼ 0, i.e., consistent with the peak of the strain. We first
estimate the values of the evidenceZ for each of the models
considered here. The results of these runs are shown in
Table I. We can deduce from the results that the
IMRPhenomD model yields the highest value for
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log10Z, suggesting a better fit to the NR data compared to
the other models. Moreover, among the nonlinear models
examined in this study, the second and third highest-
ranking models in log evidence are the nonlinear TCTM
models. Specifically, the TCTM2 yields a log Bayes value
of log10B ∼ 3, indicating that it is approximately Oð103Þ
times larger than the log evidence for the overtone solutions
OM2 and OM3. Notably, the TCTM2 achieves this superior
performance while having the same number of parameters
as the latter. We also observe that, among the linear
solutions, the log10Z saturates at OM2 and it provides a
slightly lower value for OM3. We verified that the log10Z
value consistently decreases for OM4 and OM5 thus,
showing that the optimal performance of the OM models
occurs at OM2. This is compatible with the overtone-
models results of [64] and—in the complementary context
of deformations of the final horizon—of [72]. Finally, the
non-GR model HTPM1 provides similar log10Z as OM2.
To ensure the robustness of these results and rule out

potential influences from varying prior choices, we have
examined and confirmed that adjusting priors does not
qualitatively alter these findings. The results shown for
different prior choices is shown in Appendix A. Therefore,
and from the Bayes factors’ point of view, the nonlinear
models are preferred for the waveform SXS:BBH:0305.
In the fourth column of the same table, we show the

mass/spin recovery bias ϵ as defined in Eq. (9) for the ten
models considered. The true valuesMtrue

f , atruef are obtained
from the NR metadata files, while the Mfit

f , a
fit
f correspond

to the maximum likelihood values obtained after sampling
the likelihood distribution of Eq. (13). The biases on the
final mass and the final spin for the OM models improve

gradually from OM0 to OM3, and it starts to degrade for
OM4 (consistently with the overtone-models analyses of
[64]). Notice that this last result slightly differs qualitatively
from the analysis we have done based on the value of the
evidence Z. This is expected since the computation of the
evidence provides an extra penalty factor to the increase of
the prior volume, which in this case is sourced by the large
number of free parameters of the high-N OM models.
Moreover, we find some mild disagreements between the
values of ϵ obtained in Fig. 1, with respect to the ones listed
in Table I, especially for the models with a high number of
overtones, leading to a different behavior for OM4. Figure 1
is obtained by nonlinear minimization to fit the NR data,
with the precision of ϵ fixed by the mass-spin grid
resolution. Therefore, data overfitting/underfitting may
happen with such prescription. On the contrary, the results
shown in Table I are obtained from sampling the whole
(2N þ 4)-dimensional likelihood distribution, which
involves a larger exploration of the parameter space.
This reduces the risk of overfitting the data and thus
provides a more statistically robust representation of the
recovery biases. The statistical uncertainties of ϵ, at the
SNR we consider here (ρ ¼ 100), will be better illustrated
in the next subsection.
Regarding the nonlinear models, we obtain a slightly

larger bias for the nonlinear IMRPhenomD model than for
OM3, ϵIMRPhenomD ≳ ϵOM3 , while the evidence Z for the
IMRPhenomD is much larger. The higher Bayesian evi-
dence for this particular model is due in part to its
calibration to a set of NR waveforms (which does not
include SXS:BBH:0305), which allows it to depend only
on the few parameters characterizing the progenitor BHs:
mass ratio, magnitudes of both aligned spins, orbital phase.
It was not, however, separately calibrated to the ringdown
phase, and the still rather good recovery of the final BH
parameters from the whole ringdown (starting at the t ¼ 0
amplitude peak) that we obtain was not fully ensured by
design. The best model in terms of ðMf; afÞ bias is the
other nonlinear model TCTM2, with ϵ ¼ 0.0045.

B. Mass and spin posterior distributions for t0 = 0

We study the marginalized posterior distribution of
remnant properties for each of the models considered in
this work. Notice here that the posterior distribution of
IMRPhenomD are originally q, χ1z, χ2z, which are para-
meters of the progenitor BHs. Thus, these are converted to
the final state parameters using NR fits to the final BH
state [109–111].
In Fig. 2, we show the final mass and final spin posterior

distributions for the models OM0−3 and IMRPhenomD (in
magenta). The “þ” symbols, represent the maximum
likelihood values for each of the models considered, and
that correspond to the values of ϵ shown in the fourth
column of Table I. Notice that the posterior distributions on
the final mass and the final spin are consistent with the true

TABLE I. The table contains log10 evidences, and remnant
properties recovery biases corresponding to the maximum-
likelihood values of the samplings, for the 11 models considered
here, for the GW150914-like simulation waveform SXS:
BBH:0305 from the SXS Collaboration. The sampling is per-
formed using the dynesty Python package. The number of free
parameters of each model is also given in the second column.
Noteworthy, we have found that at ρ ¼ 100 as we used here, the
value of ϵ is mildly subjected to finite-sampling uncertainties.

Model Parameters log10 Z ϵ

OM0 4 −188.435 0.311261
OM1 6 −31.9132 0.087670
OM2 8 −17.0332 0.027019
OM3 10 −17.1311 0.011475
OM4 12 −17.7541 0.032821
TCTM0 6 −33.2123 0.216384
TCTM1 8 −14.4255 0.024559
TCTM2 10 −14.2678 0.004472
HTPM1 8 −17.1984 0.236650
HTPM2 10 −17.3353 0.096609
IMRPhenomD 4 −9.57672 0.014981
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parameters for the models with OMn≥2, while it shows large
offsets for the models OMn¼0;1. Moreover, it is noteworthy
that the 90% credible contours increase slightly with the
overtone index, from n ¼ 0 to n ¼ 3. The broadening of
the posterior contours might be sourced by the observed
correlations among the tones (see the Appendix B of [65]),
which become especially relevant for tones with n≳ 1.
Therefore, the precision at which one can measure the final
mass and final spin for signals at ρ ¼ 100 using OMs
reaches a maximum for n ¼ 2 and it slightly degrades for
n > 2. Alternatively, notice that the IMRPhenomD model
provides (i) lower values for the bias ϵ than the best OM
solution, and (ii) tighter mass and spin contours than all the
other models considered. Therefore, we observe that the
IMRPhenomD model provides a more accurate description
of the signal from t0 ¼ 0 than the OM models, both if one
uses the Bayesian evidence as a ranking criterion, and from
testing the consistency of the posterior distributions with
respect to the true parameters.
In Fig. 3, we show the posterior distributions of the final

mass and the final spin for the models OM2, TCTM1,

HTPM1, and IMRPhenomD for the same waveform at
ρ ¼ 100. We compare the inferred posterior distributions of
the optimal linear model OM2 with all the other nonlinear
models. Notice that the 90% credible contours of the
nonlinear IMRPhenomD model still provide tighter con-
straints on the remnant parameters and a lower value for for
the bias ϵ. It is noteworthy that IMRPhenomD is charac-
terized by only four parameters, distinguishing itself from
all the other models under consideration, each of which
involves eight parameters. Another interesting observation
is that even though TCTM1 has better Bayes evidence
compared to the corresponding OM2 (i.e., having the same
number of parameters), both its posterior distributions and
its values for the ϵ are still compatible to each other.
Notably, the model exhibiting the least favorable perfor-
mance is HTPM1, displaying a significant bias (approx-
imately 0.2) in relation to the true values. This bias arises
from the model’s flexibility in deviating from GR and from
the mismodeling of the early time features by the GR-only
OM1 model, resulting in a looser and biased constraint on
the remnant mass and spin values. Significantly, the model
HTPM1 is presently employed for conducting GR tests in
the analysis of ongoing events observed by the LVK
Collaboration thus, the use of this model might be limited

FIG. 2. We show the comparison of final mass and spin
posterior distribution for the sampling of OM0−3 and IMRPhe-
nomD for waveform SXS:BBH:0305. Each contour represents a
90% credible region on the mass-spin 2D plane for given model.
The black dashed lines note the “true” final mass and spin. The
“þ” signs denote the maximum likelihood values for each of the
models considered. We assume the injection SNR ρ to be 100 for
all the cases, in order to see the clear comparison. Notice that the
2D marginalized distributions for OM2 and OM3 are practically
overlapping, thus showing no significant performance gain for
the OM3. Note that we observe a significant overlap between the
contours of OM3 and OM4. Since we also see in Table I no gain in
Bayesian evidence and recovery bias when including more than 3
overtones, OM4 is excluded for the clarity of this plot.

FIG. 3. We show the comparison of final mass and spin
posterior distribution for the sampling of OM2, TCTM1,
HTPM1, and IMRPhenomD for the NR waveform SXS:
BBH:0305. Each contour represents a 90% credible region on
the mass-spin 2D plane for a given model. The black dashed lines
note the “true” final mass and spin. The “þ” symbols represent
the maximum likelihood estimated for each of the models
considered in this work. We assume the injection SNR to be
100 for all the cases, in order to see the clear comparison.
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to low ρ scenarios, in which the statistical errors dominate
the systematic ones. To this aim, in Fig. 4 we have
quantified impact of the systematic errors with respect to
the statistical ones. In particular, we have estimated the
ratio between the systematic error ϵ and the statistical one
σ90%ϵ estimated at the 90% percentile, ϵ=σ90%ϵ , in terms of
the SNR ρ. Notice that the quantity ϵ=σ90%ϵ helps one
identify the SNR domain in which the systematic errors
dominate, rather than providing any ranking based on the
performance of the various models used in this work, since
low values of this ratio favor large statistical uncertainties
as much as low-systematic errors. We note that the
applicability of HPTM1 and OM1 appear to approach their
limit around RD ρ ≈ 30. At this point, the influence of
systematic errors begins to overtake the statistical uncer-
tainties in the inference of mass and spin values (combined
in the variable ϵ). Yet, the prevailing the statistical uncer-
tainty evident in present events, driven by the noise
sensitivity of observatories, notably outweighs the param-
eter biases identified in this study. However, as demon-
strated in our study, the accurate determination of the final
mass and spin would become predominantly influenced by
the systematic errors for the linear models currently used in
ringdown parameter estimations (for LVK events) HTPM1

and OM1, when confronted with the anticipated high-ρ
scenarios characteristic of third-generation observatories. A
much larger ρ > 120 is required for the simple nonlinear
models IMRPhenomD and TCTM1, which show enough
accuracy to address the 3G requirements at high ρ. An
analogous analysis for the waveform Ext-CCE:BBH:0002
is presented in Appendix B.

C. Dependence on the starting time t0
Usually, there is a trade-off in truncating the waveform at

different starting times. On the one hand, performing BH
spectroscopy at late times RD leads to large statistical
uncertainties due to the rapid decay of the SNR.6 On the
other hand, starting the spectroscopic analysis close to the
peak amplitude of the strain, results in a biased estimation
of the parameters. This bias stems from the absence of
modes in the OMs and potentially ignoring the nonlinear
effects [68,78,119].
Here, we vary the fit starting time by truncating the

waveform at different t0=M, and we analyze the results in
terms of the Bayes factor. We repeat the analysis for a set of
starting times t0=M ¼ −5;−2.5; 0; 2.5;…; 20, where neg-
ative t0=M include part of the waveform slightly before
merger. The runs have been performed for the models OM2,
OM3, TCTM1, HTPM1, and IMRPhenomD with reference
(t0 ¼ 0) SNR7 ρt0¼0 ¼ 100. In Fig. 5 we show the log10
Bayes factors for each model with respect to the OM3

model via Eq. (8). We have found that the two nonlinear
models considered in this work, IMRPhenomD and
TCTM1, provide positive log Bayes factors over OM3,
while the linear models OM2 and HTPM1 provide
negative log Bayes factors around the merger (for negative
and low positive t0=M values). In particular, the Bayes
evidence values we have obtained strongly support the
IMRPhenomD model over OMs at early starting times,
including before the waveform amplitude peak,8 and up to
t0=M ¼ 15. This suggests that the nonlinear perturbations
or even the prompt response effects could still dominate a
short time after the merger. However, OM2 consistently
exhibits a comparable performance compared to all other
models starting from t0 ¼ 15 onward, as the truncated
waveform transitions into the linear regime.

D. Can we observe the high-overtone amplitudes?

The confidence statistical observation of a tone solely
from the RD regime, requires that the inferred value of its
amplitude must be incompatible with zero, at least, within a

FIG. 4. The plot illustrates the ratio of the expected bias or
systematic error ϵ to its 90% credible interval statistical error σϵ
for each of the models examined in this study. The black dashed
line, denoted by ϵ=σϵ ≳ 1, signifies the point at which systematic
error begins to dominate over statistical error. Notably, the
models HTPM1 and OM1 cross this threshold at RD ρ ≈ 30, a
region that may soon be reachable by current observatories or
upcoming ones such as A#. The orange dashed line corresponds
to the RD ρ value of the first event, GW150914.

6The SNR ρ scales inversely with the parameter uncertainty σλ
as ρ ∼ 1=σλ. As a rule of thumb, ρðt0 ¼ 0Þ=ρðt0=M ¼ 10Þ ∼
e−1 ¼ 0.37, which implies that the posterior distributions on the
physical parameters at t0=M ¼ 10 are about e times larger than
the ones obtained at t0 ¼ 0.

7Note that the actual SNR also relies on the choice of fit
starting time t0. Truncating and fitting the waveform from the
peak can result in larger ρ compared to fitting with only the later
time of data. In order to make sure we consider the same event,
we fix ρ ¼ 100 at t0 ¼ 0 and let the other t0 ≠ 0 SNR ρ scaled
with respect to the truncated waveform length.

8We note that both nonlinear models considered are strongly
preferred over the linear ones (OM2, OM3, HTPM1) at times
slightly before the peak, t0=M ¼ −5;−2.5. This is not very
surprising for IMRPhenomD which is designed to consistently
model pre and post-merger phases, but it also holds, with lower
evidences, for the nonlinear TCTM1.
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given confidence level per tone amplitude Cn. Here, we use
the one-sided 90% confidence value C90%

n to assert the
confident observation9 of a tone at a given SNR ρ for the NR
waveform SXS:BBH:0305 [32]. In particular, we study the
dependence of the magnitude An=C90%

n for a set of SNRs
injections with a network SNR ρ∈ ½10; 100�, where An
provides the real-valued amplitude of the tones. An approxi-
mated observation of a tone would correspond to
An=C90%

n ∼ 1. To estimate C90%
n we use the framework

described in Sec. IV, where we also use the best fitting
values of the amplitudes and phases obtained at t0. In Fig. 6
we show the quantityAn=C90%

n in terms of the SNR ρ for two
of the OMs considered in this work; Nmax ¼ 2 (top panel)
and Nmax ¼ 3 (top panel). The dashed vertical orange line
corresponds to the post-peak SNR of GW150914 [41,43].
Notice that for each tone amplitude, the SNR required to
cross one is larger as the n index increases. This is because as
n increases the corresponding damping time of each tone τn
decreases, thus carrying out a lower per-tone ρ.
Specifically, ρn¼1ðA0=C90%

0 ¼ 1Þ > ρn¼1ðA1=C90%
1 ¼ 1Þ >

ρn¼2ðA2=C90%
2 ¼ 1Þ > ρn¼3ðA3=C90%

3 ¼ 1Þ. Moreover,
notice that ρ ∼ 30–A2=C90%

2 ¼ 1—is required for the full
and confident observation of the Nmax ¼ 2 model while
ρ ∼ 80–A3=C90%

3 ¼ 1–is expected if Nmax ¼ 3. A RD with
ρ ∼ 30might be observed in the LIGOA#while for ρ ∼ 80 is

expected to occur only for 3G observatories as ET and
CE [59,61]. However, a significant concern with the high-
order overtone models lies in the pronounced variation of
tone amplitude when altering the number of tones, denoted
as Nmax in the models [65,97]. For instance, the amplitude
ratio between the amplitudes obtained from the fits to the
NR data and for the Nmax ¼ 2, 3 models varies as
ANmax¼3
n =ANmax¼2

n ¼ f1.04; 1.50; 3g for the tones n ¼ 0, 1,
2, respectively, from the fits to the NR data. The substantial
variability, on the order of Oð2–3Þ, in the amplitude values
for tones n ¼ 1, 2 poses a challenge in determining whether
these values represent the system faithfully or are influenced
by other fitting systematics, such as the absence of tones or
the presence of nonlinearities. Conversely, the value of the
fundamental tone amplitude A0 remains almost constant
regardless the number of tones considered in this example.
These amplitude variation results are consistent with,
e.g., [64,67,120].

FIG. 5. We show the evolution of log10 B with respect to OM3

for 4 different models, OM2, TCTM1, HTPM1, and IMRPhe-
nomD (as well as the reference OM3 at log10 B ¼ 0 by con-
struction) at an assumed SNR ρ ¼ 100, for a range of starting
times −5 ≤ t0=M ≤ 20, including times slightly before the
amplitude peak (t0=M ¼ −5;−2.5).

FIG. 6. Ratio An=C90%
n of each tone’s best-fit amplitude An to

its 90% confidence interval, in terms of the simulated SNR for the
GW150914-like waveform SXS:BBH:0305. The top panel rep-
resents An=C90%

n for the OM2 i.e., with Nmax ¼ 2, and in the
bottom panel we show the same results but for Nmax ¼ 3. We take
as a reference for observability An=C90%

n ∼ 1. The vertical-orange
dashed line provides the post-peak SNR of GW150914, corre-
sponding to a starting time t0 ¼ 0.

9The posterior amplitudes, denoted as An and obtained from
running PE are typically constrained to be positive based on our
chosen priors. This imposes a stringent requirement on the lower
limit, specifically, that C90%

n must be greater than zero. In this
context, the one-sided C90%

n is determined by assuming a Gaussian
symmetry around the peak value, making it approximately
equivalent to the upper bound of the 90% confidence interval.
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E. Analysis on different NR waveforms

To assess the robustness of our findings, we conduct
parameter estimation using a distinct set of NR waveforms
sourced from the SXS catalog. These waveforms, namely,
SXS:BBH:0150, SXS:BBH:0300 and SXS:BBH:1221,
cover a spectrum of mass ratios spanning 1, 3, 8.5 and
effective spins of 0.2, 0, 0. We also append waveform Ext-
CCE:0002 from the Ext-CCE catalog to the list, with the
detailed discussion presented in Appendix B. Notice that
these waveforms, as well as SXS:BBH:0305 considered so
far, were not used to calibrate IMRPhenomD [107], thus are
not biasing our model comparison. In Table II we show the
log10 Bayes evidence and biases ϵ for a selected set of
models, i.e., IMRPhenomD, OM2, OM3, TCTM1 and
HTPM1 for all NR waveform truncated at a starting
time t0 ¼ 0.
We observe that IMRPhenomD consistently provides

Bayes factors of approximately ∼10 over OMs at ρ ¼ 100,
which denotes a clear preference for the nonlinear
IMRPhenomD model compared to linear RD models. In
addition, the nonlinear model TCTM1 emerges as the
second best solution based on the Bayes evidences, show-
ing a considerable advantage over the OMs. In particular,
notice that we do not observe significant differences on the
values of log10Z for the OM2 and OM3, indicating that
OM2 provides a sufficiently accurate solution at t0 ¼ 0,
consistent with the results observed for SXS:BBH:0305.
While the non-GR model HTPM1 offers log evidence
values similar to those of the OM models.
Regarding the bias analysis, we have found that the

IMRPhenomD model recovers the minimum value for ϵ,
for the waveforms SXS:BBH:0150, SXS:BBH:0300, and
SXS:BBH:1221. TCTM1 appears as the second best model
with comparable/better epsilon values comparing to the
OM2 and OM3. And HTPM1 generally performs the
poorest in recovering the true final parameters as expected,
which is similar as the case we have seen for SXS:
BBH:0305 analysis. Therefore, at ρ ¼ 100, for the five
different NR waveforms tested here, we consistently
observe the compelling preference for the nonlinear models
compared to the OM models and non-GR model.

VI. CONCLUSIONS

In thisworkwe have tested the performance of several RD
models by fitting them to the 22 mode of quasicircular,
nonprecessing NR waveforms. The models we have used to
fit the NR data are divided into four categories: (i) The
nonlinear RD regime of the IMRPhenomD approximant,
which has beenwidely used inGWdata analysis; (ii) the RD
model as described by linear QNMs, dubbed here as OM;
(iii) a family of nonlinearRD toymodels, theTCTMs,which
expand upon the linear models by including further quali-
tative nonlinear contributions; (iv) theHTPMmodels,which
are linear but allow for deviations of the QNM spectrum
from GR. Our results are obtained on NR waveforms of
different nature: four extracted at finite radii and extrapo-
lated to null infinity—labeled SXS:BBH:#—and one
extracted through the Cauchy characteristic procedure, thus,
with lower expected errors that the extrapolated ones, and
labeled as Ext-CCE:BBH:0002. We first analyze the per-
formance of the models at fitting the 22 mode of the
waveform SXS:BBH:0305, at a starting time t0=M ¼ 0
(corresponding to the peak of amplitude of the 22mode).We
obtain the minimum mismatch M and the bias ϵ on the
recovered physical parameters of the remnant BH for all the
models consideredand over a range of maximum number of
tones included in the models. We observe that the nonlinear
TCTMmodels provide in general a lower mismatch than the
overtone ones, even for Nmax ¼ 7, while the IMRPhenomD
post-peak model has a match to the data comparable to the
eight-parameter Nmax ¼ 2 OM model despite relying on
only four free parameters. Regarding the final mass and spin
recovery, we find that the nonlinear models IMRPhenomD
and TCTMs both show a similar accuracy to the OMs up to
Nmax ∼ 3, while the OM solution outperforms them at
Nmax ≳ 3. Next, we have also performed injections of the
NR waveform SXS:BBH:0305 in zero-realization white
Gaussian noise at SNR ρ ¼ 100 and at different starting
times t0=M∈ ½−5; 20�, simulating the expected SNRs of the
third-generation gravitational wave observatories such as
the Cosmic Explorer and Einstein Telescope. We first note
that the nonlinear model IMRPhenomD provides tighter
constraints on the final mass and spin parameters at t0 ¼ 0

TABLE II. The table contains (log10 Z, ϵ) calculated for models IMRPhenomD, OM2, OM3, TCTM1 and HTPM1, at ρ ¼ 100. They
are sampled using the dynesty Python package for five binary BH merger NR waveforms from both the main and Ext-CCE catalog in
SXS. The properties of the initial BH binary in each case, i.e., the mass ratio and the two dimensionless spins are also given. Notice here
that the OM2 always provides a similar/slightly better evidence than OM3, which is consistent with the results already obtained for SXS:
BBH:0305.

Catalog Waveform q χ1;z χ2;z IMRPhenomD OM2 OM3 TCTM1 HTPM1

Main BBH:0150 1 0.2 0.2 ð−8.215; 0.0080Þ ð−19.916; 0.0283Þ ð−22.449; 0.0095Þ ð−14.771; 0.0119Þ ð−19.314; 0.2059Þ
BBH:0305 1.221 0.33 −0.44 ð−9.558; 0.0150Þ ð−17.032; 0.0270Þ ð−17.121; 0.0115Þ ð−14.447; 0.0246Þ ð−17.208; 0.2367Þ
BBH:1221 3 0 0 ð−7.988; 0.0074Þ ð−16.652; 0.0494Þ ð−18.539; 0.0456Þ ð−15.071; 0.0503Þ ð−15.944; 0.2531Þ
BBH:0300 8.5 0 0 ð−6.207; 0.0092Þ ð−17.000; 0.1209Þ ð−18.583; 0.0851Þ ð−15.456; 0.0323Þ ð−15.647; 0.3011Þ

Ext-CCE BBH:0002 1 0.2 0.2 ð−44.57; 0.0238Þ ð−80.87; 0.0282Þ ð−81.44; 0.0238Þ ð−77.01; 0.0592Þ ð−79.67; 0.1880Þ

QIU, FORTEZA, and MOURIER PHYS. REV. D 109, 064075 (2024)

064075-12



than theOM, even forNmax ¼ 3. In particular,Nmax ¼ 2 and
3 provide compatible but broader mass and spin contours
with IMRPhenomD albeit with a significantly lower Bayes
evidence, while the Nmax ¼ 0, 1 OM models are more
biased, which is consistent with the results shown in [43].
Remarkably, there is currently no amplitude and phase
overtone model calibrated to the BBH progenitor masses
and spins forNmax > 1 [32,36,120],which contributes to the
broaderNmax ¼ 2, 3OMconstraints. If such amodelwere to
be developed, the additional uncertainty introduced by the
calibration process might be expected to further broaden the
amplitude and phase uncertainties, potentially compromis-
ing the accuracy compared to the IMRPhenomD model.
Moreover, we have computed the log10 Bayes factor of

the OM, HTPM, IMRPhenomD and TCTM models with
respect to OM3 (i.e., OM with Nmax ¼ 3). We have found
that in terms of the Bayes factor, at t0 ¼ 0, the
IMRPhenomD is the preferred model, the second best
ranked model being the TCTM1; log10 BIMRPhenomD

OM3
∼ 8 and

log10 BIMRPhenomD
TCTM1

∼ 5, showing a decisive (in the vocabu-
lary of [112]) evidence towards the IMRPhenomD model.
The preference for the nonlinear IMRPhenomD model
remains consistent until t0=M ∼ 15, at which point the
OM2 exhibits a comparable evidence. It is also important to
note that the nonlinear TCTM1 model consistently offers
superior fits to the data compared to the OM models at
negative/early starting times. However, as anticipated, this
difference also diminishes at late fitting starting times.
Next, we have estimated the SNR required for observing
confidently a tone amplitude for the OM models, with
Nmax ¼ 1, 2, 3. First, we have obtained that, at 90%
credible level, the ratio of bias to statistical uncertainty
ϵ=σ90%ϵ exceeds one for the models OM1 and HTPM1 when
ρ ∼ 30. This implies that analyses of the RD of upcoming
loud GWevents might be soon dominated by the systematic
errors if those models are used. For the nonlinear and the
OMn≥2 models, we show that the systematic errors remain
subdominant up to ρ ∼ 150. Additionally, we observe that
achieving a full observation and/or characterization of all
the amplitude parameters of the linear models OMn¼2;3

would require a SNR ρ ∼ 30, 80, respectively. However, the
strong variability of their amplitudes pose reasonable
doubts on the physical reliability of the models as com-
pared to the full nonlinear solutions, which simply depend
on the well-known progenitor parameters. Finally, we
carried out parameter estimation with the same set of
models on four additional waveforms from the SXS
catalog, including one example from its Ext-CCE exten-
sion. We observe again the compelling preference for the
nonlinear models compared to the OM and non-GR
(HTPM) models regarding the evidence as well as (in
the case of the IMRPhenomD model) the recovery bias,
showing the robustness of the trends observed in our more
detailed SXS:BBH:0305 analysis.

In summary, we have performed ringdown PE on five
independent quasicircular NR simulations (not part of the
calibration set of the IMR model considered) over a range
of mass ratios and aligned, anti-aligned or vanishing spins.
Our findings indicate that IMR-based nonlinear models
such as the IMRPhenomD model, yield higher Bayes
factors than the QNM-only models, especially in high-
SNR (ρ ≈ 100) scenarios. This implies a higher accuracy
than QNMmodels in fitting NR ringdown waveforms up to
early times. Moreover, the IMRPhenomD model results in
tighter posterior distributions for the black hole final mass
and spin. Additionally, we observe that the value of the
evidence of the OM models saturates at Nmax ¼ 2. The
decrease of the evidence at Nmax > 2 could be induced by
the expected nonlinearities affecting the early post-peak
phase which, at the same time, may be causing the observed
large instabilities on the amplitudes of the tones with n > 1
[64,65,67,121,122]. For our toy nonlinear model TCTM1,
we observe similar posterior distributions than for the OM
models, together with a better Bayes factor at early times—
intermediate between that of OM models and that of the
IMRPhenomD model. Tests with other NR calibrated
models as the IMRPhenomPv2 and SEOBNRv4 approx-
imants [20,123,124] provided the same qualitative results.
Hence, we conclude that the utilization of nonlinear

models and, especially, well-established IMR models
which are calibrated to the progenitor parameters, can be
more pertinent when inferring physical parameters from a
nonprecessing, quasicircular RD signal. This is particularly
relevant when the analysis commences at the peak of the
strain and is applicable to SNR ratios consistent with third-
generation observatories such as ET and CE. Further
investigation into other NR waveforms from different
catalogs, specifically focusing on precessing binaries, will
be performed elsewhere.
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APPENDIX A: ROBUSTNESS TESTS
OF PRIOR CHOICES

In parameter estimation, the choice of prior range is
always a crucial factor. In fact, even if the posterior
distributions are rather similar, the Bayes evidence can

still be different for different prior assumptions. As shown
in Table III, in our case, since we want to compare between
the IMRPhenomD and OMs, the priors already differ in the
first place that one is a IMR model that requires initial
properties of the binary, while the another is only a RD
model. For IMRPhenomD, the mass ratio of (1, 8) prior
range þð−0.99; 0.99Þ spins priors would lead to a different
prior range on the remnant mass after conversion. The new
prior range is ∼ð0.85; 1Þ for the final mass, which is much
different from the typical prior range we use for overtone
model, i.e., (0.5, 1.3).
To examine the robustness of our tests on different prior

assumptions, we also perform the same sampling for OM2

with two new different priors on particularly the final mass.
They are (0.7, 1.2) and (0.8, 1.1), respectively. In Fig. 7, the
two new priors are denoted as “Prior2” and “Prior3” with
the “Prior1” being (0.5, 1.3). In this plot, we show the
log10 B between IMRPhenomD and OM2 for three different
prior ranges and for five different waveforms. To examine
the robustness of the choice of prior ranges, we compare the
vertical three values in each column of the plot as they are
computed on samplings of the same waveform. We find
that the largest difference in the log10 Bayes evidence we
observe is in SXS:BBH:0305, which has a log10 B ∼ 1 for

TABLE III. The table provides an overview of the priors used
for all the models we consider in the paper. Note that we use a
log-flat prior for A in TCTM as its order of magnitude is not
known a priori; while all other parameters are uniformly
distributed. Note that we use different priors for the amplitudes
in different OM. The reasoning behind is that we observe broader,
more loosely constrained posteriors in the higher overtones’
amplitudes, hence the prior ranges need to be extended accord-
ingly. While for the remnant mass, a tighter choice of priors on
higher overtone models will rule out the local minimum and thus
represent a more physical analysis on OM.

Model Parameter Prior

OM0 Remnant mass (0.5, 1.3)
Remnant spin (0, 0.99)
Amplitudes (0, 2)
Phases (0, 2π)

OM1∼2 Remnant mass (0.5, 1.3)
Remnant spin (0, 0.99)
Amplitudes (0, 10)
Phases (0, 2π)

OM3∼4 Remnant mass (0.5, 1.1)
Remnant spin (0, 0.99)
Amplitudes (0, 10)
Phases (0, 2π)

TCTMn Remnant mass (0.5, 1.3)
Remnant spin (0, 0.99)
Amplitudes (0, 2)
Phases (0, 2π)
log10 A ð−5; 5Þ

τ (0, 100)

HTPMn Remnant mass (0.5, 1.3)
Remnant spin (0, 0.99)
Amplitudes (0, 2)
Phases (0, 2π)

α ð−0.5; 1Þ
β ð−0.5; 1Þ

IMRPhenomD Mass ratio (1,8)
Initial spin 1 ð−0.99; 0.99Þ
Initial spin 2 ð−0.99; 0.99Þ

Phases (0, 2π)

FIG. 7. We show the log10 B between IMRPhenomD and OM2

for 3 different prior ranges and for five different waveform. In this
plot, the “Prior1”, “Prior2”, “Prior3” are used to denote different
ranges for the final mass prior of, (0.5, 1.3), (0.7, 1.2), and (0.8,
1.1), respectively. To examine the robustness of the choice of
prior ranges, we compare the vertical three values in each column
of the plot as they are computed on samplings of different
waveform. Comparing the values within a column and for the
three columns of the plot, we do not observe significant
differences. This suggests that the choices made on the priors,
do not significantly influence the relative performance of the RD
models.
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one of the new prior sampling comparing to the typical
prior sampling. However, this change is rather little
compared to the absolute values of the Bayes factors,
which have log10 B > 7 for all the priors. Moreover, we
don’t see any clear trend in the improvement/reduction of
Bayes factors when the prior range shrinks, i.e.,
from “Prior1” to “Prior3”. Therefore, the difference we
observe are also possibly subject to the statistical errors of
the samplings. Not to mention in other tests, the difference
between the Bayes evidence are even smaller. Therefore,
we conclude that the prior choice of our test is robust.

APPENDIX B: POSTERIORS OF Ext-CCE
WAVEFORM

As another cross-check, we also present our bias analysis
for the Cauchy characteristic Ext-CCE waveform from the
additional SXS catalog particularly in terms of the mass/
spin posterior distribution comparison of different models.
The specific waveform we test is Ext-CCE:BBH:0002,
which has true final dimensionless mass and spin mf, af
given as [0.946, 0.746].

In Fig. 8, we show firstly the comparison of final mass
and spin posterior distribution for the sampling of OM0–3

and IMRPhenomD. In the main text, we see that the
posterior distributions improvement in successive OMs.
Similarly, we also see here that the posterior distributions
on the remnant mass and spin for OM improves signifi-
cantly from OM0 to OM1, but then converges at OM3. In
particular, the epsilons values estimated for OM2 and OM3

are comparable, as the maximum likelihood values for both
models almost overlap. The IMRPhenomD model here also
shows a comparable parameter estimation performance to
the OM2;3 models. IMRPhenomD gives a more faithful
recovery for the final mass, while it performs slightly worse
in terms of the final spin as we can see from the 1D
marginalized distribution. Therefore, the results obtained
for the Ext-CCE:BBH:0002 waveform is consistent with
the results obtained for SXS:BBH:0305 presented in the
main text.
In Fig. 9, we show then the comparison of final mass

and spin posterior distribution for the sampling of OM2,
TCTM1, HTPM1 and IMRPhenomD assuming ρ ¼ 100.
Again, this is test about different types of models. We can
see from the 90% credible contours that the nonlinear

FIG. 8. We show the comparison of final mass and spin
posterior distribution for the sampling of OM0–3 and IMRPhe-
nomD for waveform Ext-CCE:BBH:0002 as a cross check. Each
contour represents a 90% credible region on the mass-spin 2D
plane for given model. The black dashed lines note the “true”
final mass and spin. The “þ” symbols denote the maximum
likelihood values for each of the models considered. We assume
the injection ρ to be 100 for all the cases, in order to see the clear
comparison.

FIG. 9. We show the comparison of final mass and spin
posterior distribution for the sampling of OM2, TCTM1,
HTPM1 and IMRPhenomD for waveform Ext-CCE:BBH:0002.
Each contour represents a 90% credible region on the mass-
spin 2D plane for given model. The “þ” symbols denote the
maximum likelihood values for each of the models considered
here. The black dashed lines note the “true” final mass and
spin.
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IMRPhenomD model performs the best in both the
recovery accuracy and precision with only four free
parameters. While for all the other models we have eight
parameters. Unlike the conclusion in the main text, here
the other nonlinear model TCTM1 has much worse

posterior distributions comparing to the corresponding
OM2 (i.e., having the same number of parameters). The
model with the worst performance here is still HTPM1 as
it considers the deviation to GR, which leads then to a
looser/biased constraint on the remnant mass and spin.
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