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We investigate the gravitational Aharonov-Bohm effect by placing a quantum system in free fall around
a gravitating body, e.g., a satellite orbiting the Earth. Since the system is in free fall, by the equivalence
principle, the quantum system is local in flat, gravity free space-time—it is screened from the gravitational
field. For a slightly elliptical orbit, the gravitational potential will change with time. This leads to the energy
levels of the quantum system developing sidebands which is the signature for this version of the Aharonov-
Bohm effect. This contrasts with the normal signature of the Aharonov-Bohm effect of shifting of
interference fringes.
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I. INTRODUCTION

The original proposal for the Aharonov-Bohm (AB)
effect [1] focused on the scalar and vector potentials of the
electromagnetic interaction. In particular, the seminal paper
of Aharonov and Bohm [1] focused mostly on the AB effect
connected with the vector potential and magnetic field
(vector-magnetic AB effect) rather than the scalar potential
and electric field (scalar-electric AB effect). The original
experimental setup for the scalar potential-electric field AB
effect involved switching the potential on and off as the
electric charges entered and exited metal tubes. These tubes
acted as Faraday shells to shield the charges from the
electric field but not from the electric scalar potential. Since
the experimental setup for the vector-magnetic AB effect is
much easier to realize, there are many experimental tests of
the vector-magnetic AB effect, beginning with the first
experiments by Chambers [2], to the definitive, loophole-
free experiments in the mid 1980s [3] and through to the
present. In contrast, the best test of the scalar-electric AB
effect [4] is not as clean, since it measures both scalar-
electric and vector-magnetic effects together, and the
charges are not completely shielded from electric fields.
In Ref. [5] an alternative probe of the scalar-electric AB

was proposed. In the standard, scalar-electric setup, charges

are sent along different paths which have a potential
difference between them (but with the charges at all times
shielded from the electric fields). The observational sig-
nature of the scalar-electric AB effect is a shift in the
quantum interference pattern of charges. In contrast, the
proposal of Ref. [5] placed a quantum system (rubidium
atoms) inside a Faraday cage with a time varying scalar
potential, ΦeðtÞ. [In [5], VðtÞ was used for the scalar
potential.] The observational signature highlighted in [5] is
the development of energy sidebands in the spectrum of the
quantum system. Therefore, in this alternative approach,
one has a shifting of energy levels as compared to a shifting
of interference fringes of the standard setup.
We will now apply the analysis of [5] to the gravitational

AB effect. By gravitational AB effect we mean the scalar-
gravitational AB effect which depends on the Newtonian
scalar potential. In contrast the vector-gravitational AB
effect depends on the gravitational vector potential (which
leads to the Lense-Thirring field). This vector-gravitational
AB effect was discussed in [6]. There has been a recent
experimental verification of the scalar-gravitational AB
effect [7] which follows the standard procedure: split a
matter beam into two paths, with one path experiencing a
different gravitational potential compared to the other, and
then observe a shift in the interference pattern when the
beams are recombined. Here we apply the setup for the
scalar-electric AB effect given in [5], to the gravitational
AB effect giving a cleaner confirmation of this effect. It is
cleaner in the sense that the quantum system is in free fall
and thus screened from the gravitational forces via the
equivalence principle.
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For the scalar-electric AB effect, the phase picked up by
an electric charge is

φeðtÞ ¼
e
ℏ

Z
t

0

Φeðt0Þdt0; ð1Þ

whereΦeðt0Þ is the time-dependent electric scalar potential.
The subscript e stands for electromagnetic interaction. The
gravitational version of (1) is

φgðtÞ ¼
m
ℏ

Z
t

0

Φgðt0Þdt0: ð2Þ

The electric charge, e, has been replaced by gravitational
“charge,” m (mass), and the electric potential has been
replaced by the gravitational potential, Φg.
For the scalar-electric case the quantum system was

placed inside a Faraday cage with a sinusoidal varying
potential,ΦeðtÞ ¼ V0 cosðΩtÞ. This setup will not work for
the gravitational case, for several reasons, as we will
discuss in the next two paragraphs. For the gravitational
AB effect we will instead place our quantum system in a
satellite in an almost circular, low Earth orbit.

II. GRAVITATIONAL AB PHASE SHIFT

For the gravitational AB effect we will consider a
gravitational potential of the form

ΦgðtÞ ¼ −
GM
rðtÞ ð3Þ

where G is Newton’s constant,M is the mass of some large
body (e.g., the Earth) about which our quantum system will
orbit, and rðtÞ is the time-dependent distance between the
satellite and one focus of the orbit. Using (3) in (2), one
finds that the gravitational phase becomes

φgðtÞ ¼ −
m
ℏ

Z
t

0

GM
rðt0Þ dt

0; ð4Þ

while the radius as a function of the angle formula for a
closed orbit is simple and well known [i.e. rðθÞ ¼ r0

1−ϵ cos θ
with 0 ≤ ϵ < 1 being the eccentricity] the radius as a
function of time [i.e., rðtÞ] is not as simple or well known.
Because of this we will focus on almost circular orbits,
where the gravitational potential can be approximated as a
simple oscillatory term plus a constant.
This setup is different from the scalar-electric case where

ΦeðtÞ was varied by oscillating charges onto and off of a
Faraday shell, thus giving a time-dependent electric poten-
tial. In principle, such a method would work for the
gravitational case, since oscillating charges onto and off
of the shell would alsomean that onewould be oscillating the
“gravitational” charge (i.e., mass) onto and off of the shell.
However, the gravitational interaction is so weak, and the
amount of mass moved onto and off of the shell is so small,

that the effect would be much too small to observe. We can
counteract the smallness of the gravitational interaction, and
smallness of the masses oscillated onto the shell, by instead
using an astronomical, fixed mass M, and changing the
potential by varying the distance of the quantum systemwith
respect to themassM, i.e., letting the distance of the quantum
system from the central mass be time dependent rðtÞ.
As mentioned above we will consider almost circular,

low Earth orbits so that rðtÞ can be approximated as a
simple oscillatory term plus a constant. One might think
using a highly elliptical orbits is preferable, since the
change in gravitational potential between apogee and
perigee would be larger. However, such highly elliptical
orbits (e.g., Molniya orbits [8]) have significantly longer
periods and lower frequency, negating the advantage gained
by the larger change in the gravitational potential.
We now lay out the details of determining rðtÞ for

almost circular, low Earth orbits. The relevant parameter of
such orbits are as follows: (i) Perigee and apogee radius
from the center of the Earth are rp ¼ 6.800 × 106 m and
ra ¼ 6.810 × 106 m, respectively, which corresponds to a
perigee altitude of 400 km and apogee altitude of 410 km
given that the Earth’s radius is rE ≈ 6400 km. These radii
correspond roughly to those of the International Space
Station (ISS). (ii) The period of a satellite with this
apogee/perigee is about T ≈ 90 minutes or 5400 seconds,
giving an angular frequency ofΩ ¼ 2π

T ¼ 1.0 × 10−3 rad
sec (or

f ¼ 1.59 × 10−4 Hz). The radius of the orbit as a function
of time can be approximated as1

rðtÞ ¼ rp þ ra
2

þ rp − ra
2

cosðΩtÞ≡ Aþ B cosðΩtÞ: ð5Þ

Using the rp and ra values above, we find that the A and B
parameters defined in (5) become A ¼ 6.805 × 106 m and
B ¼ −5.000 × 103 m. Perigee occurs at t ¼ 0 and apogee
at t ¼ π=Ω. For the chosen ra and rp, A ≫ B so one can
approximate 1

rðtÞ ¼ 1
AþB cosðΩtÞ ≈

1
A ð1 − B

A cosðΩtÞÞ. With this

the gravitational potential in (3) becomes

ΦgðtÞ ≈ −
GM
A

�
1 −

B
A
cosðΩtÞ

�
: ð6Þ

Inserting this in (2) gives

φgðtÞ ¼ −
GmM
ℏA

Z
t

0

�
1 −

B
A
cosðΩt0Þ

�
dt0

¼ −
GmM
ℏA

tþGmMB
ℏΩA2

sinðΩtÞ

≡ −
GmM
ℏA

tþ α sinðΩtÞ ¼ −
GmM
ℏA

tþ φ0
gðtÞ: ð7Þ

1This treatment of nearly circular orbits is essentially that
found in Sec. 9.5 of Ref. [9].
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In the last line of (7) we have defined the dimensionless
frequency modulations depth of modulation parameter
α≡ GmMB

ℏΩA2 . It is the second sinusoidal term in (7) [i.e.,
the α sinðΩtÞ term] which leads to the AB phase, and we
have therefore split the phase φgðtÞ into a linear term in t
and a sinusoidal term. As we will see below, the term linear
in t can be packaged with the energy to give an overall shift
of the base energy of the atomic system. It is the sinusoidal
term φ0

gðtÞ which gives the gravitational AB phase. We
show this by solving the Schrödinger equation for a
quantum system (either atomic or nuclear) placed in the
gravitational potential ΦgðtÞ.
We carry out an analysis of the quantum system in the

presence of this time varying gravitational potential. Since
the quantum system is in free fall, it is effectively screened
from the gravitational field and forces, which are required
for AB effect experiments.
In the absence of the gravitational potential, ΦgðtÞ, we

assume that the quantum system has a known solution to the
time-independent Schrödinger [i.e., H0ΨiðxÞ¼EiΨiðxÞ]
where H0, Ψi, and Ei are the Hamiltonian, wave function,
and energy eigenvalues, respectively, of the quantum sys-
tem. The coordinate x is the relative (internal) coordinate for
the quantum system, i.e., the location of the electrons for an
atomic system or the location of nucleons for nuclear
systems. Placing the quantum system in the potential,
ΦgðtÞ, leads to the Hamiltonian H ¼ H0 þmΦgðtÞ, with
the new term being the time-dependent gravitational poten-
tial energy.
The solution to the Schrödinger equation for this time-

dependent gravitational Hamiltonian is found as in the
scalar-electric case [5]. The Schrödinger equation for H is

iℏ
∂ψ

∂t
¼ Hψ ¼ ðH0 þmΦgðtÞÞψ : ð8Þ

Now since we are in the frame of reference fixed with the
quantum system the kinetic energy part of H0 in (8) will be
modified due to transforming from an inertial frame [where
H0ΨiðxÞ ¼ EiΨiðxÞ holds] to an orbiting, noninertial
frame. The relationship between the velocities in the inertial
and orbiting frames is vin ¼ vorb þΩ × rðtÞ [9] with Ω ×
rðtÞ being the orbital velocity of the satellite, and rðtÞ being
the time-dependent position of the satellite. Because of the
time dependence of the coordinate rðtÞ this additional term,
Ω × rðtÞ, will also generate a phase factor through a shift in
the kinetic energy term in H0, which is in addition to the
phase factor that comes from the added potential term,
mΦgðtÞ, in (8). To estimate this additional phase shift due to
the change from the inertial to orbiting frame we use the
virial theorem which shows that the average of the kinetic
term associated with the orbital velocity, Ω × rðtÞ, will
have the opposite sign and be half the magnitude of the
potential term, i.e., hTΩi ¼ − 1

2
hVgi. Thus the phase factor

coming from the change to an orbiting frame will partially

cancel the phase factor coming from the time changing
gravitational potential. However, the overall phase factor
will still be of the same order of magnitude and for
simplicity we will focus on the phase factor coming from
only mΦgðtÞ.
To solve (8) we apply a separation-of-variables ansatz of

the form ψðx; tÞ ¼ XðxÞTðtÞ and substitute this into (8)
to give

iℏ
∂ψ

∂t
¼ iℏX

dT
dt

¼ ðH0 þmΦgÞXT
¼ TH0X þ XðmΦgÞT: ð9Þ

Dividing by XT and moving mΦgðtÞ to the left-hand side
gives

−mΦg þ iℏ
1

T
dT
dt

¼ 1

X
H0X: ð10Þ

This equation has the form fðtÞ ¼ gðxÞwhere fðtÞ is only a
function of t, and gðxÞ is only a function of x. The only
way that this can be true is if each function is equal to
a constant: fðtÞ ¼ gðxÞ ¼ E. This gives the separated
equations

−mΦg þ iℏ
d lnT
dt

¼ E and H0X ¼ EX: ð11Þ

Setting X ¼ ΨiðxÞ and E ¼ Ei gives the time-independent
Schrödinger equation H0ΨiðxÞ ¼ EiΨiðxÞ, where Ψi and
Ei are the wave function and eigenenergy, respectively, for
the known eigenvalue problem of the unperturbed
Hamiltonian, H0. Integrating (11) over t gives

−m
Z

ΦgðtÞdtþ iℏ
Z

d lnTðtÞ
dt

dt ¼
Z

Eidt: ð12Þ

Carrying out the integration in (12) and solving for TðtÞ,
gives

TðtÞ ¼ exp

�
−
i
ℏ
Eit

�
exp

�
−
i
ℏ
m
Z

Φgdt

�

¼ exp

�
−
i
ℏ

�
Ei þ

GmM
A

�
t − iα sinΩt

�

¼ exp

�
−
i
ℏ

�
Ei þ

GmM
A

�
t − iφ0

gðtÞ
�
: ð13Þ

For an atomic system, m → me ¼ 9.11 × 10−31 kg which
is the electron mass. Using M ¼ 5.97 × 1024 kg for the
mass of the Earth, and inserting the values for B, A, and Ω
given around Eq. (5), we find αatomic ≈ −3.7 × 1011. For a
nuclear system, one has m → mN ¼ 1.67 × 10−27 kg.
Using the same values for M, A, B, and Ω, we find
αnuclear ≈ −6.8 × 1014.
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The result in (13) is similar to the scalar-electric AB
result from [5], in terms of the AB phase, φg, and the
parameter α. However, the term with GmM

A gives a constant
shift to the unperturbed energy Ei which was not present in
[5]. This term presents a constant shift in the energy, Ei, due
to the time-independent part of the gravitational potential.
In the scalar-electric AB case, we were able to set this
constant part of the electric potential equal to zero—
something not possible in the gravitational case. For the
atomic case with m ¼ 9.11 × 10−31 kg, this shift is GmM

A ≈
5.3 × 10−23 J ≈ 3.3 × 10−4 eV; for the nuclear case with
m ¼ 1.67 × 10−27 kg, this shift is GmM

A ≈ 9.8 × 10−20 J≈
0.6 eV. These constant shifts are small compared to the
usual atomic and nuclear energies of the unperturbed
system.
We put the above results together to obtain thewave func-

tion forH ¼ H0 þmΦgðtÞ. Multiplying XðxÞ ¼ ΨiðxÞ and
TðtÞ from (13) gives the wave function, ψ iðr; tÞ as

ψ iðr; tÞ ¼ ΨiðrÞ exp
�
−
iðEi þ GmM

A Þt
ℏ

− iφ0
gðtÞ

�
: ð14Þ

This new wave function is the original wave function with
an added AB phase factor exp ð−iφ0

gðtÞÞ. Using (13) gives
φ0
gðtÞ as

φ0
gðtÞ ¼

m
ℏ

Z
GMB
A2

cosðΩtÞdt ¼ α sinΩt; ð15Þ

Exponentiating φ0
gðtÞ from (15) and using the Jacobi-Anger

expansion gives

exp ð−iφ0
gðtÞÞ ¼ exp ð−iα sinΩtÞ

¼
X∞
n¼−∞

ð−1ÞnJnðαÞ exp ðinΩtÞ: ð16Þ

Inserting the result from (16) back into (14), the wave
function reads

ψ iðr;tÞ

¼ΨiðrÞ
X∞
n¼−∞

ð−1ÞnJnðαÞexpðinΩtÞexp
�
−
iðEiþGmM

A Þt
ℏ

�

¼ΨiðrÞ
X∞
n¼−∞

ð−1ÞnJnðαÞexp
�
−
iðEiþGmM

A −nℏΩÞt
ℏ

�
:

ð17Þ

Thus each energy level Ei will be split into a multiplet EðnÞ
i

with

EðnÞ
i ¼ Ei þ

GmM
A

� nℏΩ≡ Ẽi � nℏΩ; ð18Þ

where n is an integer, and EðnÞ
i are evenly spaced energy

levels, with an energy step ℏΩ. In the second equality, we
have absorbed the small, constant gravitational shift GmM

A

into Ei by defining Ẽi. This new energy spectrum, EðnÞ
i , is

of the form of the quasienergies discussed in [10]. If one
takes the results of Eqs. (17) and (18) at face value, this
would seem to imply a new spectrum with an infinite
number of new states labeled by the sideband index n.
However, from (17) one finds that the different contribu-
tions are weighed by the Bessel functions JnðαÞ. In Fig. 1,
we plot JnðαÞ for a wide range of α’s as a function of n. For
all values of α, one finds rapid oscillation for n < α. At
n≡ nmax ≈ jαj there is a sharp up shoot, and for n >
nmax ≈ αJnðαÞ exponentially decays to zero, so that states
beyond nmax do not contribute. Using the numerical values
for αatomic and αnuclear given below (13) gives nmax ≈
jαatomicj ≈ 3.7 × 1011 for atomic systems and nmax ≈
jαnuclearj ≈ 6.8 × 1014 for nuclear systems. Note that as α
increases, the values of the maximum weighting, JαðαÞ,
decrease, but the up shoot at the maximum is sharper and
larger, relative to weighting, JnðαÞ for n < nmax ≈ α.
The energy associated with the frequency, Ω, of the

nearly circular, low Earth orbits is ℏΩ ¼ 1.1 × 10−37 J ¼
6.6 × 10−19 eV. The split energy levels from (18) for
atomic systems is

EðnmaxÞ
i ¼ Ẽi � nmaxℏΩ ≈ Ẽi � 2.4 × 10−7 eV; ð19Þ

while for nuclear systems (18) gives

EðnmaxÞ
i ¼ Ẽi � nmaxℏΩ ≈ Ẽi � 4.5 × 10−4 eV: ð20Þ

Therefore, the experimental signature of the gravitational
AB effect is the observation of these sidebands
(�2.4 × 10−7 eV for atomic systems, or �4.5 × 10−4 eV
for nuclear systems).

FIG. 1. Weighting factor JnðαÞ versus n from (17) for various
α’s. Maximum JnðαÞ occurs for n ¼ nmax ≈ α. As α increases the
maximum weighting factor, JαðαÞ, decreases, but is sharper and
relatively larger compared to the lower side bands. A power law
fit of the maximum side band goes as n−2=3.
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In (19) and (20) we have only included the maximum
energy sidebands. This is based on Fig. 1 which shows that
the maximum sideband, with n ¼ nmax ≈ α, has a higher
weighting, JαðαÞ, relative to the weighting of the sidebands,
JnðαÞ, with n < nmax ≈ α.

III. EXPERIMENTAL SETUPS FOR THE
GRAVITATIONAL AB EFFECT

In order to observe the small shift in the energy side-
bands in (19) and (20), we need to ensure that the widths of
the transitions between the base energy level, Ẽi, are
smaller than these values. Our atomic or nuclear systems
need to have very narrow spectral lines—less than
∼10−7 eV and ∼10−4 eV for atomic and nuclear systems,
respectively. Also for both of the possible setups discussed
below—either atomic clocks or Mössbauer effect—one
needs to wait for some period of time (for example one
orbital period) to allow the system to come to its steady
state. The above theoretical analysis has been done under
the assumption that the quantum system used to probe the
gravitational AB effect has very long coherence times—as
is the case for the atomic clock system discussed next. In
future work we will analyze the case when the quantum
system have finite coherence times.

A. Atomic system: Atomic clocks

A potential setup to test for the gravitationally induced
sidebands from (19) would use atomic clocks. We propose
using the Atomic Clock Ensemble in Space (ACES) mission
[11], which will place optical/microwave frequency atomic
clocks on the ISS. We need to determine if atomic clocks
would be able to distinguish the sidebands of order 10−7 eV
as per (19). To this end we will use the two-sample variance
(or Allan deviation), σ2yðτÞ, and the related spectral density,
SyðfÞ. These twoquantities are described in detail in [12], but
briefly for SyðfÞ ¼ hαfα, where f is the frequency, and hα is
a measure of the noise level. For white noise, α ¼ 0 so
SyðfÞ ¼ h0, and σ2yðτÞ ¼ h0

2τ, where τ is the time interval of
the measurement. From [13] the ACES cesium clocks have
σy ¼ 1.1×10−13ffiffi

τ
p . Using this and the expression σ2yðτÞ ¼ h0

2τ, and
2

τ ∼ 1 sec, we find SyðfÞ ¼ h0 ∼ 2.42 × 10−26. The square
root of the spectral density gives ameasure of the accuracy to
which the frequency can be measured. For the numbers
above, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SyðfÞ=τ

p
∼ 1.56 × 10−13, and this should

be compared to Δf
f ¼ ΔE

Ẽi
, whereΔf andΔE are the frequency

and energy shift of the sidebands, respectively, and f and Ẽi
are the central frequency and energy, respectively. Using the

central frequency reference [13] gives f¼ Ẽi
h ¼9.19×109Hz,

and from (19) we have Δf ¼ ΔE
h ¼ 2.4×10−7 eV

4.14×10−15 eVHz−1 ∼
58 MHz. Thus Δf

f ∼6.31×10
−3. Comparing this with the

square root of the spectral density, we have Δf
f ∼

6.31 × 10−3 ≫ 1.56 × 10−13 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SyðfÞ=τ

p
. These sidebands

should be easily observable via the ACES.
One final point is that we need to take into account that

the weighting of the maximum sideband, JαðαÞ, decreases
as α increases, as shown in Fig. 1. For the atomic case with
α ∼ 1011 we find that JαðαÞ ∼ 10−4. This decrease in the
weighting of the maximum sideband will decrease the
expected signal, but as long as the signal to noise ratio
(SNR) is greater than 1, the sideband should be observable.

The measure of SNR is JαðαÞffiffiffiffiffiffiffiffiffiffiffi
SyðfÞ=τ

p . For the parameters

above,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SyðfÞ=τ

p
∼ 1.56 × 10−13 and JαðαÞ ∼ 10−4, we

have JαðαÞffiffiffiffiffiffiffiffiffiffiffi
SyðfÞ=τ

p ≈ 6.4 × 108 ≫ 1. Thus, even given the reduc-

tion due to the weighting, JαðαÞ, the sideband should be
observable.

B. Nuclear system: Mössbauer effect

Another way to test for the gravitationally induced
sidebands from (20) is the Mössbauer effect [14]. The
Mössbauer effect involves the emission and absorption of
gamma rays. The recoil due to the emission/absorption of
the gamma ray is taken up by the entire lattice of the
material, so that there is effectively no recoil. This makes
the emissions/absorption lines very narrow, approaching
the limit set by the uncertainty principle. For 57Fe with a
lifetime of τ ∼ 10−8 sec, and the emission of a 14.4 keV
photon, one has a width of ΔE ¼ ℏ

τ ≈ 10−8 eV. This is
much smaller than the shift of the sidebands of
∼� 10−4 eV, thus allowing one to observe the sidebands.
The experimental setup would be to have a Mössbauer

57Fe spectrometer inside a satellite that is in low Earth,
almost circular orbit, and look for the predicted sidebands.
The Mössbauer effect is ideally suited to observe fine
spectral details of this type. For example, in [15] the
Mössbauer effect was used to determine the hyperfine
structure of 57Fe which had splitting smaller than the
predicted �10−4 eV for the gravitational AB effect.
This proposed use of the Mössbauer effect can be

compared to the Pound-Rebka experiment [16]. In the
Pound-Rebka experiment, the very small redshift/blueshift
of photons rising/falling vertically in the Earth’s gravita-
tional field was measured using the Mössbauer effect. The
gamma-ray emitter/absorber used was 57Fe, and the emitter/
absorber was spatially separated by about 20 meters
vertically, so that as the photons rose/fell in going from
emitter to absorber, they would be gravitationally red/blue
shifted by a very small amount, which was detectable due
to the high precision of Mössbauer spectroscopy.

2The averaging time, τ, is taken as 1 second just as an
illustration. A more realistic averaging time would be of the
order of the orbital period of τ ∼ 5400 sec, but increasing τ
increases the precision, thus τ ∼ 1 sec can be taken as a lower
limit.
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In the current paper, the proposed use of the Mössbauer
effect is a temporal version of the Pound-Rebka experi-
ment. Instead of having the emitter and absorber separated
spatially at different gravitational potentials, the emitter and
absorber will be placed very near each other, preferably
perpendicular to the gravitational field, since we want the
emission and absorption to occur at the same gravitational
potential spatially. However now the emitter and absorber
will be temporally separated, so as the satellite orbits, the
energy spectrum of the 57Fe nucleus should develop the
sidebands predicted in (20) which should be detectable
given the precision of the Mössbauer effect.
Using atomic clocks like those of the ACES system has

the advantages that this system should be operational in the
short term—one or two years [11]—and αatomic > αnuclear by
about 3 orders of magnitudewhichmeans that theweighting
for the maximum sideband will be larger in the atomic clock
system as compared to theMössbauer setup. TheMössbauer
setup has the advantage that the splitting of the sidebands is
larger by about 3 orders of magnitude compared to the
atomic clock setup. Both setups appear to be viable ways to
test for this version of the gravitational AB effect.

IV. CONCLUSIONS

In this work we propose a novel approach to testing the
gravitational AB effect, which is distinct from the detection
of the gravitational AB effect in [7]. The work by
Overstreet et al. used the standard experimental signature
for the gravitational AB effect: finding a relative phase shift
between two beams of particles (87Rb atoms) which were
split along different paths and passed through different
gravitational potentials. This observation of a phase shift is
also the usual way in which the electromagnetic AB effect
is observed. Here we propose placing a quantum system in
a time varying gravitational potential and looking for the
appearance of energy sidebands. This is the gravitational
version of the proposal in [5] to probe the scalar-electric
AB effect. Because of the weakness of the gravitational
interaction, in order to get energy sidebands large enough to
observe, we need the time variation of an astrophysical

large mass. This can be achieved by placing the quantum
system in a satellite in a low Earth, almost circular orbit.
The slight change in the gravitational potential between
apogee and perigee provides the change in gravitational
potential. Also, since the satellite is in free fall, this
effectively eliminates the gravitational field, locally, via
the equivalence principle.
Starting with (8), we carried out an analysis parallel to

the one used for the scalar-electric AB effect [5] but applied
it to the gravitational case. As in the scalar-electric case,
we found that the energy levels of the quantum system
developed energy sidebands as given in (19) and (20) for
atomic and nuclear systems, respectively. In the scalar-
electric case it was relatively easy to change the size of
the electric potential, V0, and the frequency of the changing
electric potential, Ω, over a wide range. In contrast, for the
gravitational case this was not possible since the variation
of the gravitational potential and the frequency are con-
trolled by the parameters of the satellite orbit, which has a
much more narrow range as compared to the scalar-electric
case. The one parameter which we could change in the
gravitational AB case is whether our quantum system is
atomic or nuclear leading to m being the electron mass or
nucleon mass, respectively.
The gravitational sidebands generated are much smaller

that in the scalar-electric case, as expected. For the atomic
case, the sides bands are ∼� 10−7 eV, and for the nuclear
case, the sides bands are ∼� 10−4 eV. Nevertheless, these
small shifts can be observed using precision spectroscopy
of atomic clocks in the optical/microwave frequency range
(e.g., like those of ACES) or the Mössbauer effect. In fact,
the ACES program [11] might be able to test this in the near
future.
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