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We explore the new physics phenomena of gravidynamics governed by the inhomogeneous spin gauge
symmetry based on the gravitational quantum field theory. Such a gravidynamics enables us to derive the
generalized Einstein equation and an equation beyond it. To simplify the analyses, we linearize the dynamic
equations of gravitational interaction by keeping terms up to the leading order in the dual gravigauge field.
We then apply the linearized dynamic equations into two particular gravitational phenomena. First, we
consider the linearized equations in the absence of source fields, which is shown to have five physical
propagating polarizations as gravitational waves, i.e., two tensor modes, two vector modes, and one scalar,
instead of two tensor polarizations in the general relativity. Second, we examine the Newtonian limit in
which the gravitational fields and the matter source distribution are weak and static. By deriving the
associated Poisson equation, we obtain the exact relation of the fundamental interaction coupling in the
gravidynamics with the experimentally measured Newtonian constant. We also make use of nonrelativistic
objects and relativistic photons to probe the Newtonian field configurations. In particular, the experiments
from the gravitational deflection of light rays and the Shapiro time delay can place stringent constraints on
the linearized gravidynamics in the gravitational quantum field theory.
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I. INTRODUCTION

Among the fundamental interactions, the gravitation is
the weakest and the most mysterious. The standard theory
of gravitation at present is Einstein’s general relativity
(GR) [1,2], in which the gravity is described by the
Riemannian geometry of curved spacetime. Since its birth
in 1915, the GR has withstood all the astrophysical and
cosmological tests, which include four classical ones:
(i) the gravitational redshift of photons [3–5]; (ii) the
deflection of light [6–9]; (iii) the perihelion advance of
Mercury [10]; and (iv) the time delay of light [11,12] (for a

recent review on the classical tests of GR, see, e.g., Ref. [13]
and references therein). The discovery of the binary pulsar
B1913þ 16 by Hulse and Taylor in 1974 [14] has verified
the GR by providing the first evidence of the existence of
gravitational radiation [15,16]. In 2015, the first direct
observation by advanced LIGO observatories of the gravi-
tational wave (GW) signal emitted from themerger of binary
black holes [17,18] has provided a further support to the GR.
On the other hand, the electromagnetic, weak, and strong

interactions are all described by quantum field theories
(QFTs) based on the gauge principle [19]. Thus, it is
tempting to write down the gravity in terms of the gauge
language, and numerous efforts were explored in early
studies (for review articles see, e.g., Refs. [20–22]). Most
gravity gauge theories were formulated based on
Riemannian geometry on curved spacetime or Poincaré
group in coordinate spacetime rather than in a Hilbert space
of fields. Recently, a gauge theory of gravity has been
constructed in the framework of gravitational quantum field
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theory (GQFT) [23] and unified with the standard model to
build the hyperunified field theory (see Ref. [24] for the
latest review of the GQFT and the hyperunified field theory
as well as the references therein). It has been shown that the
gravitational force and the spin gauge force are governed by
the inhomogeneous spin gauge symmetry WSð1; 3Þ ¼
SPð1; 3Þ ⋊ W1;3, in which the spin gauge field correspond-
ing to the spin gauge symmetry SPð1; 3Þ is introduced to
characterize the spin gauge interaction and the gravigauge
field, while the translationlike We-spin gauge symmetry
W1;3 in a Hilbert space of spinor fields emerges to describe
the gravitational force. A biframe spacetime appears to
reveal the nature of spacetime in which the globally flat
Minkowski spacetime plays the role of the base spacetime
while the locally flat gravigauge spacetime acts as a fiber. As
a result, the gravitational dynamics is described in terms of
the gravigauge and spin gauge fields. Phenomenologically,
there have already been many studies in the framework of
GQFT [24], including discussions on inflation [25], dark
matter, and particle physics.
Note that the gravitational dynamics in the GQFT is

highly nonlinear [23,24], which makes its application
rather difficult. However, when the gravitational effects
are weak, the gravitational dynamics becomes easy and
tractable, so that we can expand the equations of motion in
terms of perturbations at the linear level. In the present
work, we would like to explore the gravitational physics in
this linearized GQFT. We start by deriving the linearized
gravitational field equations, which are then applied to two
special situations. First, we shall consider the free gravi-
tational equations without any matter sources, aiming to
investigate how many and what physical polarizations are
contained in the propagating GWs. Next, we turn to the
Newtonian limit, in which the gravitational field and matter
sources are weak and static. By solving the linearized
equations, we can obtain the well-known Poisson equation
that governs the associated Newtonian potential. We will
also make use of both nonrelativistic and relativistic test
bodies to probe this Newtonian configuration. In particular,
when the probing particles are photons, we can constrain
the GQFTwith existing experiments, such as the deflection
of a light ray and the Shapiro time delay.
The paper is organized as follows. In Sec. II, we shall

derive the linearized gravitational equations of gravigauge
fields in the GQFT. We shall apply in Sec. III the obtained
equations to the free field case, and examine the physical
degrees contained in the propagating GWs. In Sec. IV, we
turn to the Newtonian limit, which is tested by the non-
relativistic test bodies and relativistic photons. Finally, we
conclude and comment in Sec. V.

II. GRAVITATIONAL EQUATIONS OF
GRAVIGAUGE FIELD AT THE LINEAR LEVEL

In this section, we linearize the gravitational equations of
gravigauge fields in the GQFT [23]. Our derivation begins

with the gauge-type formulation of the gravidynamics
given in Eq. (159) of Ref. [23],

∂νF̃
μν
a ¼ Jμa; ð1Þ

where the definition of F̃μν
a and various contributions to the

source Jμa are defined in Ref. [23]. Note that the basic
ingredient in the gravidynamics is the gravigauge field χaμ,
which can always be written as follows:

χaμ ≡ ηaμ þ
1

2
haμ; ð2Þ

where ηaμ is regarded as the background field while haμ is the
redefinition of the field variable χaμ. If we further require
that haμ is a weak perturbation, we can expand the dual
gravigauge field as χ̂μa ¼ ðηaμ þ 1

2
haμÞ−1 and the determinant

χ in terms of haμ. As a result, the field strength Fa
μν can be

reduced into

Fa
μν ¼ ∂μχ

a
ν − ∂νχ

a
μ ¼ ð∂μhaν − ∂νhaμÞ=2; ð3Þ

and the leading-order gravitational field equation in the
GQFT is given by

½□hρa − ∂
ρ
∂νhνa − ∂ν∂ahνρ þ ∂a∂

ρhþ δρað∂ν∂σhνσ −□hÞ�
þ γWð□hρa − ∂

ρ
∂νhνaÞ ¼ −16πGκJ

ρ
a; ð4Þ

where the γW-independent terms on the left-hand side
(LHS) are derived from the LHS of Eq. (1) while the

γW-dependent part from the term m2
GDνðχχ̄½μν�μ

0ν0

aa0 Fa0
μ0ν0 Þ is

contained in Jμa. Here γW ≡ γGðαG − αW=2Þ with γG and
αGðWÞ defined in Ref. [23]. The current J

ρ
a on the right-hand

side is composed of ordinary matter fields which source the
gravitational perturbation haμ. In Eq. (4) we have fixed the
gauge conditions for the local SPð1; 3Þ symmetry so that hμa
is a symmetric tensor with hμa ¼ hμa. We also have h≡ ημahaμ
and hμν ≡ ηaνημρh

ρ
a. However, the indices a and μ in Eq. (4)

do not possess any symmetry property, so that we can
decompose this equation into the symmetric and antisym-
metric parts as follows:

G̃μν ≡ 1

2
½□hμν − 2∂σ∂ðμhνÞσ þ ∂μ∂νhþ ημνð∂ρ∂σhρσ −□hÞ�

þ γW
2
½□hμν − ∂

σ
∂ðμhνÞσ� ¼ −8πGκTðμνÞ; ð5Þ

G̃½μν� ≡ −
γW
2
∂
σ
∂½μhν�σ ¼ −8πGκT ½μν�; ð6Þ

where G̃μν represents the generalized Einstein tensor and
the source terms are given by
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TðμνÞ ≡ ðημρηaν þ ηνρη
a
μÞJρa=2;

T ½μν� ≡ ðημρηaν − ηνρη
a
μÞJρa=2: ð7Þ

Equations (5) and (6) comprise the complete linearized
equations governing gravitational fields in the GQFT.

III. FREE FIELD EQUATIONS AND
PHYSICAL DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
TðμνÞ ¼ 0 and T ½μν� ¼ 0, paying attention to the question,
how many GW degrees of freedom (d.o.f.) are propagating
in this theory?
First of all, we follow the standard procedure in

Refs. [26–28] to decompose hμν into the following polari-
zation modes:

(i) Spin-2 tensor modes: ĥij

ĥit ¼ ĥtt ¼ 0; ĥii ¼ 0; ∂
iĥij ¼ 0: ð8Þ

(ii) Spin-1 vector modes: Si and Fi

htt ¼ 0; hit ¼ Si;

hij ¼ 2∂ðiFjÞ; ∂
iSi ¼ ∂

iFi ¼ 0: ð9Þ

(iii) Spin-0 scalar modes: ϕ, B, ψ , and E

htt ¼ −2ϕ; hit ¼ −∂iB;

hij ¼ −2ψδij þ 2∂i∂jE: ð10Þ

We can conveniently summarize these fields with the
following line element:

ds2¼ð1þ2ϕÞdt2−2ðSi−∂iBÞdxidt
− ½ĥij− ð1−2ψÞηijþ2∂ðiFjÞ þ2∂i∂jE�dxidxj; ð11Þ

with ηij ≡ −δij. Furthermore, one can prove that the field
equations in Eqs. (5) and (6) are invariant under the scalar-
type gauge transformation δhμν ¼ ∂μ∂νζ, which leads the
scalar fields ϕ, B, and E to transform as

ϕ→ϕþ∂
2
t ζ=2; B→Bþ∂tζ; E→E−ζ=2: ð12Þ

Therefore, we can define the following two gauge-invariant
variables:

Φ ¼ ϕ − ∂tB=2; A ¼ Bþ 2∂tE: ð13Þ

With the above polarization fields, the symmetric equa-
tion in Eq. (5) can give us the following independent
equations:

(i) ðt; tÞ component

2∂k∂kψ þ γW∂
k
∂kΦ ¼ 0; ð14Þ

(ii) four-dimensional trace

3□ψ ¼ ∂
i
∂iðψ þΦ − ∂tA=2Þ; ð15Þ

(iii) ðt; iÞ component

½∂k∂kðSi − ∂tFiÞ þ 4∂t∂iψ � þ ðγW=2Þ½□Si −□∂iA

þ ∂
k
∂kðSi − ∂tFiÞ þ 2∂i∂tðΦ− ψ þ ∂tA=2Þ� ¼ 0;

ð16Þ

(iv) ði; jÞ component

ð1þγWÞ□ĥijþγW□∂ðiFjÞ−ðγWþ2Þ∂t∂ði½S−∂tF�jÞ
þ2ηijðγWþ1Þ□ψ

þ2∂i∂j½ð1−γWÞψ−ΦþðγWþ1Þ∂tA=2�¼0: ð17Þ

It is clear that only the gauge-invariant fields appear in the
final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Equation (14)
implies the following constraint for ψ :

ψ ¼ −γWΦ=2; ð18Þ

which can easily be seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations

γW
2
□A ¼ ∂t

�
ð4 − γWÞψ þ γWΦþ γW

2
∂tA

�
; ð19Þ

□ψ ¼ ∂j∂
j

�
γW − 1

γW þ 1
ψ þΦ −

1

2
∂tA

�
; ð20Þ

by acting one and two spatial derivatives on Eqs. (16) and
(17), respectively. By solving Eqs. (15) and (18)–(20), we
can yield the equation of motion for Φ,

□Φ ¼ 0; ð21Þ

and the constraint for A,

∂tA ¼ −ðγW − 2ÞΦ: ð22Þ

We now turn to the vector sector containingFi and Si. By
taking into account Eqs. (18), (21), and (22), all terms
related to scalars are canceled out in Eqs. (16) and (17),
which results in the following reduced equations:
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□Si þ
ðγW þ 2Þ

γW
∂k∂

kðSi − ∂tFiÞ ¼ 0; ð23Þ

□Fj −
ðγW þ 2Þ

γW
∂tðSj − ∂tFjÞ ¼ 0; ð24Þ

where the second equality follows by taking a divergence ∂i
on Eq. (17). To fully shed light on the vector dynamics, we
also need to consider the antisymmetric gravitational
equations in Eq. (6), which can be written in terms of
component fields as the following:

(i) ðt; iÞ component

□Si − ∂
j
∂jðSi − ∂tFiÞ ¼ 0; ð25Þ

(ii) ði; jÞ component

□∂½iFj� þ ∂t∂½iðS − ∂tFÞj� ¼ 0; ð26Þ

where scalars are canceled out totally due to their dynam-
ics. By solving Eqs. (23)–(26), one can show for γW ≠ −1

□Fi ¼ 0; ð27Þ

with the constraint

Si ¼ ∂tFi: ð28Þ

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

□ĥij ¼ 0; ð29Þ

which is the wave equation for the two massless tensor
d.o.f. as in the GR.
In summary, for a generic value of γW ≠ 0 or −1, we

have found five massless propagating GW d.o.f. in the
GQFT: two tensor modes ĥij, two vector modes Fi, and one
scalar Φ, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equations in
theGQFT to explore thegravitational fields in theNewtonian
limit. As is well-known, the Newtonian limit [29,30] is
the situation in which the gravitational field is static and
weak. Thus, in the following, all of the time derivatives in
the linearized gravitational field equations can be ignored.
Also, the matter is composed of dust and the configuration is
static, so that the only nonzero component of the energy-
momentum tensor is only Tð00Þ ¼ ρðxÞ, where the mass
density ρ is assumed to be a function of spatial coordinatesx.
The antisymmetric energy-momentum tensor T ½μν� vanishes

by assumption. Thus, the modified Einstein equations are
given by

G̃00 ¼ ∂i∂
ið2ψ þ βΦÞ ¼ −8πGκρðxÞ;

G̃0i ¼ −∂k∂k½ð1þ γWÞSi − γW∂iA=2�=2 ¼ 0;

G̃ij ¼ −ð1=2Þfð1þ γWÞ∂k∂kĥij þ γW∂k∂k∂ðiFjÞ

− 2∂i∂j½ðγW − 1Þψ þΦ�− 2ηij∂k∂
k½ð1− γWÞψ −Φ�g

¼ 0: ð30Þ

By solving these equations, the Newtonian potential Φ is
shown to obey the conventional Poisson equation

△Φ≡ −∂k∂kΦ ¼ 4πGNρðxÞ; ð31Þ

with the scalar ψ determined by

ψ ¼ Φ=ð1 − γWÞ; ð32Þ

while other fields ĥij, Si, Fi, and A all vanish identically,
where we have defined the measured Newtonian constant in
terms of the fundamental coupling Gκ [29,30] as follows:

GN ≡ 1 − γW
ð1 − γW=2Þð1þ γWÞ

Gκ: ð33Þ

One can probe this Newtonian field configuration with
either nonrelativistic test bodies or relativistic particles such
as photons. At the low-energy limit of the GQFT, all these
objects propagate along the geodesics described by

d2xρ

dτ2
þ Γρ

μν
dxμ

dτ
dxν

dτ
¼ 0; ð34Þ

where Γρ
μν is the usual Christoffel symbol defined with

respect to the effective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi=dτ ≪ dt=dτ, the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
¼ ∂

iΦðxÞ ¼ −∂iΦðxÞ; ð35Þ

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of its
mass, the test body would always experience the same
acceleration and propagate with the same trajectory in this
weak gravitational field configuration, which has been
well-tested by the experiments examining the weak equiv-
alence principle (WEP). Note that the best constraints on
the WEP are provided by the Eöt-Wash group [31,32] and
MICROSCOPE [33].
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On the other hand, the gravitational field profile in the
Newtonian limit can be detected by photons, which can
lead to the gravitational light deflection [6–9], the Shapiro
time delay [11,12], and the gravitational redshift [3–5] of
photon frequencies. Note that these phenomena provide
three of the most important tests of the GR in the history
(see, e.g., Refs. [13,30] for recent reviews and references
therein). In what follows, we shall compute the relevant
observables in the GQFT and use the current data to
constrain the parameter γW.
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
System, we shall work in the following effective metric:

ds2 ¼ ð1þ 2ΦÞdt2 − ð1 − 2ψÞδijdxidxj; ð36Þ

where all other gravitational component fields vanish in the
Newtonian limit according to previous discussions. Here
we have chosen the gauge with E ¼ 0, so that ϕ ¼ Φ,
where ΦðxÞ is the gauge-invariant Newtonian potential in
the Solar System represented by

Φ ¼ −GNM⊙=r; ð37Þ

with M⊙ denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented in
Refs. [30,34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle δθ and the Shapiro time
delay δtShapiro as follows:

δθ ≈ ð2þ γWÞðGNM⊙=bÞð1þ cos θ0Þ; ð38Þ

δtShapiro ≈ 2ð2þ γWÞGNM⊙ ln ð4rers=b2Þ; ð39Þ

where θ0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the solar barycentric
point to the line connecting the source and the Earth, and
reðsÞ is the radial distance of the Earth (source) from the
Sun. Comparing with the well-known formulas in the
parametrized post-Newtonian (PPN) formalism [13,30],
it is seen that γW is closely related to the PPN parameter
γ by γW ≈ γ − 1.
Recent tremendous developments in the very-long-base-

line radio interferometry (VLBI) and the radar time-delay
experiments enable us to put strong constraints on the

GQFT. In particular, the VLBI observations of the deflec-
tion angles of lights from quasars and radio galaxies have
yielded γW ¼ ð−0.8� 1.2Þ × 10−4 at the 1σ CL [8,9],
while the most precise measurement of the Shapiro time
delay is provided by the Cassini spacecraft [12], which has
given the best limit to date on γW ¼ ð2.1� 2.3Þ × 10−5.
Finally, we would like to discuss the gravitational

redshift of photons [3–5] in the GQFT. Based on the
arguments given in Ref. [29], we can derive the ratio of the
photon frequencies ωðxÞ at different locations x1 and x2:

ωðx2Þ
ωðx1Þ

¼
�
1þ 2Φðx1Þ
1þ 2Φðx2Þ

�
1=2

≈ 1þΦðx1Þ −Φðx2Þ; ð40Þ

where we have expanded the expression for ΦðxÞ ≪ 1.
Note that the photon frequency modification only depends
on the Newtonian potential ΦðxÞ, without any reference to
ψ , so that the gravitational redshift effect in the GQFT
should be the same as in the GR.

V. CONCLUSION AND DISCUSSION

Understanding the nature of gravity and its quantization
is one of main goals in modern physics. Unlike Einstein’s
GR, which was based on the Riemann geometry, the
GQFT [23] has constructed the gravitational interaction
based on the gauge principle that has been well-tested by
three other fundamental interactions. In the present work,
we have explored the fundamental physics and phenom-
enology in the weak gravity limit of the GQFT, so that the
theory can be examined at the linear level of the perturba-
tion hμν. To realize this aim, we have derived the linearized
gravitational field equations in the GQFT. It is found that,
different from the usual diffeomorphism symmetry in the
GR, the gauge symmetry in this theory is reduced to a
scalar-type one parametrized by the infinitesimal gauge
parameter ζðxÞ. Moreover, the difference between the
GQFT and the GR at the linearized level can be para-
metrized by one single parameter γW.
After establishing this linearized theory, we then apply

this formalism to two special situations of important
physical interest. In the first application, we examine the
free linearized gravitational field equations in the absence
of any matter fields. In particular, we focus on one crucial
question: how many and what physical propagating GW
d.o.f. are contained in this theory? As a result, different
from the GR which includes only two massless tensor
modes, there are five physical polarizations: two tensor
modes, two vector modes, and one scalar mode, all of
which are massless.
In the second application, we turn to the Newtonian limit

in which the gravitational field is weak and the matter
source fields are static. By solving the obtained field
equations, we can obtain the conventional Poisson equation
that connects the Newtonian potential with the matter
density distribution. As a by-product, we have obtained

FIG. 1. The light ray deflection with the deflection angle δθ and
the Shapiro time delay δtShapiro caused by the Newtonian field of a
massive object, such as the Sun.

LINEAR DYNAMICS AND CLASSICAL TESTS OF THE … PHYS. REV. D 109, 064072 (2024)

064072-5



the exact relationship between the fundamental coupling
Gκ defined in the GQFT and the experimentally measured
Newtonian constant GN . We then make use of the non-
relativistic objects and photons to probe the yielded
gravitational field configuration. For a slowly moving
object, regardless of the value of its mass, it would always
experience the same acceleration and follow the same
trajectory in the gravitational field, which has been well-
tested by the experiments examining the WEP. Finally, we
consider the motion of a photon in this Newtonian back-
ground, and investigate three classical tests: (i) the deflec-
tion of light, (ii) the time delay of light, and (iii) the
gravitational redshift, It turns out that the GQFT gives
exactly the same prediction of the gravitational redshift
effect as in the GR, so that this kind of experiments cannot
be used to distinguish these two theories. On the other
hand, the light deflection and the Shapiro time delay do
predict differently in the GQFT than in the GR, due to the
dependence of the parameter γW. Thus, we can probe and
constrain the GQFT with the associated experiments. In
particular, the radar time-delay experiment carried out at
the Cassini spacecraft provided the most stringent bound
on γW ≲Oð10−5Þ.
Besides the phenomena investigated in the present work,

there are still many other aspects of the GQFT waiting for

us to explore. One classical test of the GR is provided by
the perihelion advance of Mercury [10], which requires the
calculation of the gravitational field configuration beyond
the linear level [30]. Furthermore, in the view of the
additional propagating GW polarizations, some important
questions are raised: How do the extra GWmodes couple to
matter fields? What are the corresponding coupling
strengths? Is it possible to observe these GW d.o.f. by
the ongoing and forthcoming GW observatories, such as
LIGO-Virgo-KAGRA [35–38], LISA [39], Taiji [40], and
TianQin [41]? We shall come back to these issues in the
near future.
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