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The concept of cracking refers to the tendency of a fluid distribution to “split,” once it abandons the
equilibrium. In this manuscript we develop a general formalism to describe the occurrence of cracking
within a dissipative fluid distribution, in comoving coordinates. The role of dissipative processes in the
occurrence of cracking is brought out. Next, we relate the occurrence of cracking with the concept of
complexity for self-gravitating objects defined in Herrera [Phys. Rev. D 97, 044010 (2018)], Herrera et al.
[Phys. Rev. D 98, 104059 (2018)], and Herrera et al. [Eur. Phys. J. C 80, 631 (2020)]. More specifically we
relate the occurrence of cracking with the condition of the vanishing of the scalar function intended to
measure the complexity of the fluid distribution (the complexity factor). We also relate the occurrence of
cracking with the specific mode of leaving the equilibrium. Thus, we prove that leaving the equilibrium in
either the homologous (H) or the quasihomologous regime (QH) prevents the occurrence of cracking.
Also, it is shown that imposing the condition of vanishing complexity factor alone (independently of the
mode of leaving the equilibrium) prevents the occurrence of cracking in the nondissipative geodesic case,
and in the nondissipative isotropic case. These results bring out further the relevance of the complexity
factor and its related definition of complexity in the study of self-gravitating systems.
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I. INTRODUCTION

This work deals with the interplay between the concepts
of cracking [1] and complexity [2–4] of a fluid distribution
in the presence of dissipative processes. These two con-
cepts have been shown to be relevant in the study of self-
gravitating systems. Besides, dissipative processes are
expected to be present during many phases of the stellar
evolution.
The concept of cracking is associated with the tendency

of a fluid distribution to “split,” once it abandons the
equilibrium as a consequence of perturbations. Thus we say
that, once the system has abandoned the equilibrium, there
is a cracking, whenever its inner part tends to collapse
whereas its outer part tends to expand. The cracking takes
place at the surface separating the two regions. When the
inner part tends to expand and the outer one tends to
collapse we say that there is an overturning.
In order to avoid some misunderstandings often found in

the literature,we find it useful to stress the following remarks:
(i) The concepts of stability and cracking are different,

although they are often confused.

(ii) The term stability refers to the capacity of a given fluid
distribution to return to equilibrium once it has been
removed from it. The fact that the speeds of sound are
not superluminal does not assure in any way the
stability of the object, it only ensures causality.

(iii) The cracking only implies the tendency of the system
to “split” immediately after leaving the equilibrium,
where “immediately” means on a timescale smaller
than the hydrostatic timescale, and the thermal relax-
ation time. Whatever happens next, whether the
system enters into a dynamic regime, or returns to
equilibrium, is independent of the concept of crack-
ing. Of course the occurrence of cracking will affect
the future of the fluid configuration in either case.

(iv) In order to check the occurrence (or not) of cracking
one must take the system out of its state of equilib-
rium. For doing that one submits the system to
fluctuations. In the original paper of cracking [1]
these fluctuations were assumed to be generic (of an
“unspecified” nature). The specific case of fluctua-
tions associated with compression of the fluid has
been considered in [5]. In this latter case, the con-
fusion between cracking and stability may appear due
to the fact that the adiabatic index is related to the
speed of sound and the stability.
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In other words:
(i) In a system which is stable, i.e., a system that, once

removed from equilibrium, comes back to it in a
timescale of the order of hydrostatic time, cracking
may occur or not; or

(ii) After the occurrence of cracking the system may
return to equilibrium (the system is stable) or enters
into a dynamic regime (the system is unstable).

It is worth mentioning, with respect to the physical
relevance of cracking, that cracking might be invoked as the
possible origin of quakes in neutron stars [6–8]. In fact,
large scale crust cracking in neutron stars and their
relevance in the occurrence of glitches and bursts of x
rays and gamma rays have been considered in detail in [9].
The notion of complexity of a given fluid distribution

involves two different problems. On the one hand the
complexity of the structure of the fluid, which is described
by the complexity factor. On the other hand, when dealing
with systems in the dynamic regime we still need to
describe the complexity of its pattern of evolution. The
complexity factor is a scalar function (for non–spherical
distributions complexity may be described by more than
one scalar [10]) intended to measure the degree of complex-
ity of the structure of a self–gravitating fluid distribution.
This concept has received a great deal of attention in recent
years. The origin of such an interest being the conviction
that a variable measuring complexity should be suitable to
describe essential aspects of the system. Regarding the
complexity of the pattern of evolution, we need to know
what is the simplest mode of evolution. In [3,4] two
different patterns of evolution were considered as the
“simplest” ones, namely: the homologous (H) and the
quasi–homologous regime (QH).
Finally, we know that dissipation due to the emission of

massless particles (photons and/or neutrinos) is a character-
istic process in the evolution of massive stars.
In fact, it seems that the only plausible mechanism to

carry away the bulk of the binding energy of the collapsing
star, leading to a neutron star or black hole, is neutrino
emission [11].
We shall describe dissipation in the diffusion approxima-

tion, which applies whenever the energy flux of radiation (as
that of thermal conduction) is proportional to the gradient of
temperature. This assumption is in general very sensible,
since the mean free path of particles responsible for the
propagation of energy in stellar interiors is in general very
small as compared with the typical length of the object.
In many other circumstances, the mean free path of

particles transporting energy may be large enough as to
justify the free streaming approximation, however it is a
simple matter to include this regime of radiative transport,
just by redefining the energy-density and the radial pressure
(see below).
The purpose of this work is threefold. On the one hand,

since the treatment of cracking, so far, has been handled

using noncomoving coordinates, we want to present an
approach in comoving coordinates, which many authors
consider more suitable for treating numerical problems. In
our case, the motivation behind this endeavor is based on
the fact that the concept of complexity for dynamical
systems has been developed using comoving coordinates
[3,4]. It is worth mentioning that although the general idea
underlying the concept of cracking remains the same in
both frames, it is expressed through variables which are not
exactly equivalent.
Next, we want to extend the concept of cracking, as

defined in [1], to the dissipative case. More specifically we
want to find out what might be the role of dissipative
processes in the occurrence of cracking.
Finally, we want to relate the concept of cracking to the

concept of complexity (see Refs. [12,13] in relation with
this issue). In particular we want to know what constraints
on the occurrence of cracking may appear from the
vanishing complexity factor condition and/or from con-
ditions on the complexity of the pattern of evolution when
leaving the equilibrium. The motivation for such an
endeavor becomes intelligible if we notice that the appear-
ance of cracking in a given self-gravitating fluid distribu-
tion implies an increasing of complexity in the structure of
the fluid, as compared with the situation when cracking is
absent.
All the obtained results concerning the three issues

mentioned above are discussed in detail in the last section.
Let us start by introducing the notation, conventions, and

all the required equations.

II. BASIC EQUATIONS AND VARIABLES

In this section we shall deploy the relevant equations and
variables for describing a time dependent, dissipative,
spherically symmetric self-gravitating locally anisotropic
fluid. To avoid repeating calculations, the procedure to
obtain some equations is referred to previous works.

A. Einstein equations, physical variables,
kinematical variables

We consider spherically symmetric distributions of
collapsing fluid, which for the sake of completeness we
assume to be locally anisotropic, bounded by a spherical
surface Σ, and undergoing dissipation in the form of heat
flow (diffusion approximation).
The reason to consider anisotropic fluids is well justified

since local anisotropy of pressure may be caused by a large
variety of physical phenomena, of the kind we expect in
compact objects [14]. More so, as it has been recently
shown [15], physical processes expected to play a relevant
role in stellar evolution (e.g., dissipation) will always tend
to produce pressure anisotropy, even if the system is
initially assumed to be isotropic. Since any equilibrium
configuration is the final stage of a dynamic regime, there is
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no reason to think that the acquired anisotropy during this
dynamic process would disappear in the final equilibrium
state, and therefore the resulting configuration, even if
initially had isotropic pressure, should in principle exhibit
pressure anisotropy.
Choosing comoving coordinates, the general interior

metric can be written

ds2 ¼ −A2dt2 þ B2dr2 þ R2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where A, B, and R are functions of t and r and are assumed
positive. We number the coordinates x0 ¼ t, x1 ¼ r,
x2 ¼ θ, and x3 ¼ ϕ. Observe that A and B are dimension-
less, whereas R has the same dimension as r.
The energy-momentum tensor Tαβ of the fluid distribu-

tion has the form

Tαβ ¼ ðμþ P⊥ÞVαVβ þ P⊥gαβ þ ðPr − P⊥Þχαχβ
þ qαVβ þ Vαqβ; ð2Þ

where μ is the mass-energy density, Pr the radial pressure,
P⊥ the tangential pressure, qα the heat flux, Vα the four-
velocity of the fluid, and χα a unit four-vector along the
radial direction. These quantities satisfy

VαVα¼−1; Vαqα ¼ 0; χαχα ¼ 1; χαVα ¼ 0: ð3Þ

Or, in the equivalent (canonical) form

Tαβ ¼ μVαVβ þ Phαβ þ Παβ þ qðVαχβ þ χαVβÞ; ð4Þ

with

P ¼ Pr þ 2P⊥
3

; hαβ ¼ gαβ þ VαVβ;

Παβ ¼ Π
�
χαχβ −

1

3
hαβ

�
; Π ¼ Pr − P⊥;

where q is a function of t and r.
Since we are considering comoving observers, we have

Vα ¼ A−1δα0; qα ¼ qB−1δα1; χα ¼ B−1δα1: ð5Þ

It is worth noticing that both bulk and shear viscosity
could be easily introduced to the system through a
redefinition of the radial and tangential pressures, Pr and
P⊥. Also, dissipation in the free streaming approximation
could be introduced by redefining μ; Pr, and q.
The Einstein equations for (1) and (4) are explicitly

written in Appendix A.
The acceleration aα and the expansion Θ of the fluid are

given by

aα ¼ Vα;βVβ; Θ ¼ Vα
;α; ð6Þ

and its shear σαβ by

σαβ ¼ Vðα;βÞ þ aðαVβÞ −
1

3
Θhαβ; ð7Þ

from which we easily obtain

a1 ¼
A0

A
; a ¼

ffiffiffiffiffiffiffiffiffiffi
aαaα

p
¼ A0

AB
; ð8Þ

Θ ¼ 1

A

�
Ḃ
B
þ 2

Ṙ
R

�
; ð9Þ

σ11 ¼
2

3
B2σ; σ22 ¼

σ33
sin2 θ

¼ −
1

3
R2σ; ð10Þ

where

σαβσαβ ¼
2

3
σ2; ð11Þ

with

σ ¼ 1

A

�
Ḃ
B
−
Ṙ
R

�
; ð12Þ

where the prime stands for r differentiation and the dot
stands for differentiation with respect to t.
Next, the mass function mðt; rÞ introduced by Misner

and Sharp [16] reads

m ¼ R3

2
R23

23 ¼ R
2

��
Ṙ
A

�
2

−
�
R0

B

�
2

þ 1

�
; ð13Þ

and introducing the proper time derivative DT given by

DT ¼ 1

A
∂

∂t
; ð14Þ

we can define the velocity U of the collapsing fluid as the
variation of the areal radius with respect to proper time, i.e.,

U ¼ DTR; ð15Þ

where R defines the areal radius of a spherical surface
inside the fluid distribution (as measured from its area).
Then (13) can be rewritten as

E≡ R0

B
¼

�
1þ U2 −

2m
R

�
1=2

: ð16Þ

Using (16) we can express (A6) as

4πq ¼ E

�
1

3
DRðΘ − σÞ − σ

R

�
; ð17Þ
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where DR denotes the proper radial derivative,

DR ¼ 1

R0
∂

∂r
: ð18Þ

Using (A2)–(A4) with (18) we obtain from (13)

DRm ¼ 4π

�
μþ q

U
E

�
R2; ð19Þ

which implies

m ¼ 4π

Z
r

0

�
μþ q

U
E

�
R2R0dr; ð20Þ

satisfying the regular condition mðt; 0Þ ¼ 0.
Integrating (20) we find

3m
R3

¼ 4πμ −
4π

R3

Z
r

0

R3

�
DRμ − 3q

U
RE

�
R0dr: ð21Þ

B. The complexity factor and the Weyl tensor

As we have already mentioned, in the dynamic case the
definition of a quantity measuring the complexity of the
system poses two additional problems with respect to
the static case.
On the one hand, the definition of the complexity of the

structure of the fluid, which in this case also involves
dissipative variables, and on the other hand the problem of
defining the complexity of the pattern of evolution of the
system.
For the static fluid distribution it was assumed in [2] that

the scalar function YTF, appearing in the orthogonal
splitting of the Riemann tensor, and named complexity
factor, is an appropriate measure of the complexity of the
fluid, and therefore was identified as the complexity factor.
As in [3], we shall assume in the dynamic case that YTF

still measures the complexity of the system in what
corresponds to the structure of the object.
In order to provide the necessary mathematical expres-

sions for defining YTF, let us start by finding the expression
for the Weyl tensor.
In the spherically symmetric case the Weyl tensor (Cρ

αβμ)
is defined by its “electric” part Eγν alone, since its
“magnetic” part vanishes, with

Eαβ ¼ CαμβνVμVν; ð22Þ

where the electric part of the Weyl tensor may also be
written as

Eαβ ¼ E
�
χαχβ −

1

3
hαβ

�
; ð23Þ

with

E ¼ 1

2A2

�
R̈
R
−
B̈
B
−
�
Ṙ
R
−
Ḃ
B

��
Ȧ
A
þ Ṙ
R

��

þ 1

2B2

�
A00

A
−
R00

R
þ
�
B0

B
þ R0

R

��
R0

R
−
A0

A

��

−
1

2R2
: ð24Þ

Then, it can be shown that (see Ref. [3] for details)

YTF ¼ E − 4πΠ: ð25Þ

Next, using (A2), (A4), and (A5) with (13) and (24) we
obtain

3m
R3

¼ 4πðμ − ΠÞ − E; ð26Þ

which combined with (21) and (25) produces

YTF ¼ −8πΠþ 4π

R3

Z
r

0

R3

�
DRμ − 3q

U
RE

�
R0dr: ð27Þ

Thus the scalar YTF may be expressed through the Weyl
tensor and the anisotropy of pressure or in terms of the
anisotropy of pressure, the mass-energy density inhomo-
geneity and the dissipative variables.
Another useful expression for YTF may be obtained (see

Ref. [17] for details), which reads

YTF ≡ E − 4πΠ¼ a0

B
−
σ̇

A
þ a2 −

σ2

3
−
2

3
Θσ − a

R0

RB
: ð28Þ

Once the complexity factor for the structure of the fluid
distribution has been established, it remains to elucidate
what is the simplest pattern of evolution.
From the integration of (A3) one obtains

U ¼ UΣ

RΣ
R − R

Z
rΣ

r

�
4π

E
qþ σ

R

�
R0dr; ð29Þ

where r ¼ rΣ ¼ constant is the equation of the boundary
surface of the fluid distribution, and subscript Σ means that
the quantity is evaluated on the boundary surface.
If the integral in the above equation vanishes we have

that U ∼ R, which is a reminiscence of the homologous
evolution in Newtonian hydrodynamics. This may occur if
the fluid is shear-free and nondissipative, or if the two terms
in the integral cancel each other.
In the past, two regimes of evolution have been con-

sidered as candidates to describe the simplest mode of
evolution. One is the relativistic version of homologous
evolution (H) characterized by the conditions (see Ref. [3]
for details)
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U ¼ ãðtÞR; ð30Þ

where ã≡ UΣ
RΣ
, and

RI

RII
¼ constant; ð31Þ

where RI and RII denote the areal radii of two concentric
shells (I; II) described by r ¼ rI ¼ constant, and
r ¼ rII ¼ constant, respectively. In Newtonian hydrody-
namics a linear dependence of radial velocity on the radial
distance implies a condition similar to (31). However in the
relativistic regime, (30) does not imply (31), except in the
geodesic case.
However the H condition may be too stringent, ruling

out many interesting scenarios from the astrophysical point
of view and therefore, another possible (less restrictive)
mode of evolution which also could be used to describe the
simplest mode of evolution, and which we call quasiho-
mologous (QH), has been proposed [4].
In this case the fluid satisfies condition (30), but not (31).
It follows from (29) that condition (30) implies

4π

R0 Bqþ σ

R
¼ 0; ð32Þ

which is the only condition imposed in the QH regime.
To summarize, the H condition implies (31) and (32),

whereas the QH regime only demands (32).
If we impose the H condition, then it can be shown that

(see Ref. [2] for details)

R̈
R
−
B̈
B
¼ YTF: ð33Þ

If we further assume the fluid to be nondissipative,
recalling that in this case the H condition implies the
vanishing of the shear, we obtain (see Ref. [2] for details)

R̈
R
−
B̈
B
¼ 0 ⇒ YTF ¼ 0: ð34Þ

In other words, in this particular case, the H condition
already implies the vanishing complexity factor condition.
More so, for the nondissipative case, theH condition not

only implies YTF ¼ 0, but also implies that the fluid is
shear free, geodesic (nondissipative dust) with homo-
geneous mass-energy density, and vanishing Weyl tensor,
representing the simplest conceivable configuration
(Friedman–Robertson–Walker) (see Refs. [18,19]).
Based on all the precedent comments, it seems reason-

able to consider the H condition as a good candidate to
describe the simplest mode of evolution.

In the dissipative case, we may obtain from (12) and (34)

YTF
R0

R
¼ 4πBq

�
q̇
q
þ 2

Ḃ
B
þ Ṙ
R

�
: ð35Þ

If we assume YTF ¼ 0, then we obtain

q ¼ fðrÞ
B2R

; ð36Þ

where f is an arbitrary integration function.
Taking the time derivative of the above equation and

using (9) and (12), it follows at once

q̇ ¼ −qðΘþ σÞ: ð37Þ

In the above we have assumed the H condition in order
to describe the simplest mode of evolution, however as
indicated before, such a condition may be too restrictive,
and it could be wise to consider less stringent conditions.
That’s why we shall also consider theQH condition (32) as
an alternative to describe the simplest mode of evolution.
In the dissipative case we need to provide a transport

equation to describe the evolution and distribution of
temperature. Assuming a causal dissipative theory (e.g.,
the Israel-Stewart theory [20–22]), the transport equation
for the heat flux reads

τhαβVγqβ;γ þ qα ¼ −κhαβðT;β þ TaβÞ −
1

2
κT2

�
τVβ

κT2

�
;β

qα;

ð38Þ

where κ denotes the thermal conductivity, and T and τ
denote temperature and relaxation time, respectively.
In the nonrelativistic regime the above equation leads to

the Cattaneo-type equation [23]

τ
∂q⃗
∂t

þ q⃗ ¼ −κ∇!T; ð39Þ

which in turn produces a hyperbolic equation for the
temperature (the telegraph equation) [24]

κ

τγ
∇2T ¼ ∂

2T
∂t2

þ 1

τ

∂T
∂t

; ð40Þ

where γ denotes the heat capacity per volume unit.
In the spherically symmetric case under consideration,

the transport equation has only one independent compo-
nent, which may be obtained from (38) by contracting with
the unit spacelike vector χα, producing

τVαq;α þ q ¼ −κðχαT;α þ TaÞ − 1

2
κT2

�
τVα

κT2

�
;α

q: ð41Þ
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III. SETUP OF THE PROBLEM

We consider a fluid distribution which is initially (say at
t ¼ 0) in equilibrium, and then at t ¼ 0, due to perturba-
tions, it is forced to leave the equilibrium state. We shall
evaluate the system in the time interval ð0; t̃Þ, such that t̃ is
smaller than the hydrostatic time and the thermal relaxation
time. Therefore in that time interval, we have

Ṙ ¼ Ḃ ¼ U ¼ Θ ¼ σ ¼ q ¼ 0;

R̈ ≠ 0; DTU ≠ 0; DTq ≠ 0; ð42Þ

B ¼ B0; R ¼ R0; A ¼ A0; ð43Þ

where the subscript 0 indicates the value of the quantity in
the equilibrium, and (A4) and (B5) have been used.
To summarize: at the timescale considered here, the

metric variables conserve the same value they have before
the perturbation, and their first order time derivatives
vanish. Also, all kinematical variables vanish, but not so
their first time derivatives.
We say that there is a cracking (overturning) at some

value of r (say r ¼ rcr) wheneverDTU vanishes at r ¼ rcr,
being positive (negative) for r > rcr and negative (positive)
for r < rcr.
We shall denote by F≡ ðμþ PrÞDTU the total force

applied to any fluid element immediately after leaving the
equilibrium. Then from (B6) (evaluated at the timescale
mentioned above) we may write

F ¼ −ðμþ PrÞ
�
m
R2

þ 4πPrR

�

− E2

�
DRPr þ 2ðPr − P⊥Þ

1

R

�
− EDTq: ð44Þ

A. Nondissipative isotropic fluid

Let us first consider an isotropic fluid in equilibrium,
whose energy density is given by

μ ¼ ξ=R2; ð45Þ

where ξ is a constant.
Integrating (44) for F ¼ Pr − P⊥ ¼ DTq ¼ 0, we obtain

for Pr

Pr ¼
3ξ

r2

�
1 − r

rΣ

�
�
9 − r

rΣ

� ; ð46Þ

with ξ ¼ 3
56π, and r ¼ rΣ denotes the boundary surface of

the fluid distribution.
Thus our a static solution is characterized by (45), (46),

and

R ¼ r; B ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πξ

p ¼
ffiffiffi
7

p

2
; A ¼ ffiffiffi

r
p ð9rΣ − rÞ:

ð47Þ

It is worth mentioning that such a solution belongs to the
type VI Tolman class [25], whose equation of state for large
values of μ approaches that for a highly compressed Fermi
gas. Since it is singular at r ¼ 0, the center should be
excluded from consideration.
Let us now remove our system from equilibrium by

perturbing the parameter ξ, assuming

ξ ¼ 3

56π
þ ϵ; ð48Þ

where jϵj ≪ 1. It is important to stress that such a
perturbation concerns only the physical variables, the
metric functions remaining the same as for the static
situation.
Then feeding (48) back into (44) we obtain

DTU ¼ −28πϵ

�
3 − r

rΣ

�
r
�
9 − r

rΣ

� ; ð49Þ

where we have neglected terms of order jϵ2j and higher, and
we have assumed that the system abandons the equilibrium
without dissipation.
As is apparent from (49), DTU does not change its sign

in the whole interval ð0; rΣÞ, implying that the system does
not endure a cracking.

B. Nondissipative anisotropic fluid

Let us now consider the anisotropic case. For doing that
we shall assume for the anisotropic factor the expression

Pr − P⊥ ¼ χ

r2
; ð50Þ

where χ ¼ ξ
4
and as before ξ ¼ 3

56π.
Integrating (44) we obtain for Pr

Pr ¼
ξ

r2
ð ffiffiffiffiffi

rΣ
p −

ffiffiffi
r

p Þ
ð ffiffiffiffiffi

rΣ
p − 3

7

ffiffiffi
r

p Þ : ð51Þ

This solution is characterized by (45), (50), (51),
and R ¼ r.
Then perturbing the system by ξ → ξþ ϵ and

χ → ξ
4
ð1þ ωÞ, where jϵj, jωj ≪ 1, we obtain from (B6)
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DTU ¼ 2πϵ

3r

�
−17rΣ þ 186

7

ffiffiffiffiffi
rΣ

p ffiffiffi
r

p
− 489

49
r
�

� ffiffiffiffiffi
rΣ

p − 5
7

ffiffiffi
r

p Þð ffiffiffiffiffi
rΣ

p − 3
7

ffiffiffi
r

p �

−
ω

7r

� ffiffiffiffiffi
rΣ

p − 3
7

ffiffiffi
r

p �
� ffiffiffiffiffi

rΣ
p − 5

7

ffiffiffi
r

p � ; ð52Þ

which we will rewrite as

W ¼ ϵ

�
−17þ 186

7

ffiffiffi
x

p
−
489

49
x

�
−ω

�
1−

3

7

ffiffiffi
x

p �
2

; ð53Þ

where W ≡ xð1 − 5
7

ffiffiffi
x

p Þð1 − 3
7

ffiffiffi
x

p ÞrΣDTU is non-negative
in all the range x∈ ½0; 1�, with x≡ r

rΣ
, and the parameters ϵ

and ω have been reparametrized as 2πϵ
3
→ ϵ, ω

7
→ ω.

Some remarks are in order at this point:
(i) There is no cracking (overturning) if ϵ ¼ 0 or ω ¼ 0.
(ii) There is no cracking (overturning) if ϵ ¼ ω.
(iii) There is no cracking (overturning) if ϵ and ω have

the same sign.
The occurrence of cracking may be easily illustrated in

this case by assuming ω ¼ −δϵ, where δ is a positive real
number. In this case (53) becomes

W ¼ ϵ

��
−17þ 186

7

ffiffiffi
x

p
−
489

49
x

�
þ δ

�
1 −

3

7

ffiffiffi
x

p �
2
�
:

ð54Þ

Figure 1 depicts function W for six different values of δ
in the range (2.5, 15). As illustrated by the figure, cracking
occurs for all values of δ in the indicated range. Also as it is
apparent from this figure, greater values of δ are associated
with cracking closer to the center.
Thus, while the isotropic fluid considered above leaves

the equilibrium without the appearance of cracking, its
anisotropic version may exhibit the occurrence of cracking
when both the radial pressure and the anisotropic factor are
perturbed. Similar conclusions were already obtained
in [1].

C. Dissipative isotropic fluid

We shall now turn to the case when the system leaves the
equilibrium allowing the presence of dissipative processes.
Since as we have just seen, pressure anisotropy (at least in
the example examined above) may produce cracking, we
shall consider the isotropic pressure case, in order to isolate
the effects of dissipation in the possible occurrence of
cracking.
Thus evaluating the system immediately after leaving the

equilibrium (“immediately” in the sense explained above),
we obtain from the transport Eqs. (41) and (B6)

DTUð1 − αÞðμþ PrÞ ¼ −ð1 − αÞðμþ PrÞ
�
m
R2

þ 4πPrR

�

−
E2P0

r

R0 þ EκT 0

τB
; ð55Þ

where

α ¼ κT
ðμþ PrÞτ

: ð56Þ

The last term in the above equation brings out the
possible role of dissipative processes in the occurrence
of cracking. However, in order to isolate the dissipative
effects on the occurrence of cracking, we need to resort to a
specific fluid distribution. For doing that we shall consider
the isotropic toy model (45), (46), and (47).
In this case the above equation becomes

DTU ¼ 1

ð1 − αÞ
� ð3rΣ − rÞ
rð9rΣ − rÞ

�
−28πϵþ 6

7
αþ 16πϵα

�

þ EαT 0

BT

�
; ð57Þ

where we have assumed α ≠ 1.
Before proceeding further we need to make some rough

estimations on the possible values of α defined by (56).
First of all it is worth noticing that the range of possible
values of energy density, with respect to Pr, lie between
μ ≫ Pr and μ ≈ Pr. Therefore we can neglect Pr in (56),
since, at most, it would change α by a factor 1=2.
So, we shall evaluate

α ≈
κT
τμ

: ð58Þ

Going back from relativistic units to cgs units we have

κT ¼ G
c5

ðκÞc:g:s:ðTÞc:g:s:; ð59Þ

where G ¼ 6.67 × 10−8 g−1 cm3 s−2 is the gravitational
constant, c is the light speed, and ðκÞc:g:s:; ðTÞc:g:s: denote

FIG. 1. W as function of x for six values of δ (2.5, 5, 7.5, 10,
12.5, 15). Curves from the bottom to the top correspond to
increasing values of δ.
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the values of κ and T, expressed in erg × cm−1 s−1K−1

and K (Kelvin degrees) respectively.
Also

τ ¼ cðτÞc:g:s: μ ¼ G
c2

ðμÞc:g:s: ð60Þ

where ðτÞc:g:s: and ðμÞc:g:s: denote the values of τ and μ,
expressed in seconds and g=cm3 respectively.
With all the above we may write

κT
τμ

≈ 10−42
ðκÞc:g:s:ðTÞc:g:s:
ðτÞc:g:s:ðμÞc:g:s:

: ð61Þ

Next, in the high frequency limit of the thermal wave, we
have from the telegraph equation (40)

τ ≈
κ

v2γ
; ð62Þ

where v and γ denote the speed of the thermal wave and the
heat capacity per volume, respectively.
If the thermal conductivity is dominated by degenerate

electrons, then we may assume for κ [26,27]

κ ≈ 1023½μ=ð1014 g=cm3Þ�½108 K=T� erg s−1 cm−1K−1:

ð63Þ

On the other hand,

cv ≡ γV ¼ βT; ð64Þ

where cv is the specific heat, V is the volume and for the
coefficient β which is model dependent we assume the
value proposed by Shibazaki and Lamb [28]

β ≈ 1029 ergK−2: ð65Þ

Feeding back (63), (64), and (65) into (62) we obtain (for
densities of the order ½μ� ≈ 1014, and the radius of the
degenerate core ≈10 Km)

τ ≈
1020

½T2�½v2� s; ð66Þ

where [μ], [T], and [v] denote the numerical values of
density, temperature, and velocity of the thermal wave in
g=cm3, Kelvin degrees, and cm=s respectively.
We shall need next to provide some possible values for

the velocity of the thermal wave.
If we take the upper limit for v (≈3 × 1010 cm=s), then

assuming ½T� ≈ 102 we obtain

τ ≈ 10−4 s: ð67Þ

However, the above is probably a too low value for the
temperature, corresponding to the latest phases of the
evolution of a neutron star (see Ref. [28]), and a too high
value of v.
For a much more reasonable value of v such as

v ≈ 103 cm=s; ð68Þ

corresponding to the value of the second sound in super-
fluid helium, we obtain τ ≈ 10−4 s for temperatures of the
order of ≈109 K, or τ ≈ 102 s for T ≈ 106 K.
If instead we take the temperature proposed by Harwit

[29] (T ≈ 107 K), we obtain

τ ≈ 1 s: ð69Þ

To summarize, for the conditions considered above the
relaxation time is in the range ð10−4 s; 102 sÞ.
On the other hand, feeding back (63) into (61) we obtain

κT
τμ

≈ 10−25
1

½τ� ; ð70Þ

or, using (66)

α ≈
κT
τμ

≈ 10−45½T2�½v2�: ð71Þ

Using the above expression, we obtain for the extreme
values ½T� ≈ 1013 and ½v� ≈ 109

α ≈ 0.1: ð72Þ

An alternative scenario corresponds to the early stages of a
supernova during the neutronization process. In this case the
temperature may be in the range ð1011 K; 1013 KÞ, and
the density is about 1015 g=cm3 at the center and 1013 on
the surface. Under these conditions τ may be in the range
ð10−6 s; 10−4 sÞ [30], in which case α lies within the
range ð10−4; 102Þ.
Although some arguments based on causality and

stability conditions (see Ref. [31]) seem to prohibit values
of α ≥ 1, suggesting that the value of α, most likely, lies
within the range ð10−4; < 1Þ, there is not a conclusive proof
about this issue. Accordingly we shall also consider the
possibility of α > 1.
In order to remove the fluid from the state of thermo-

dynamic equilibrium we have to perturb the value of the
temperature gradient corresponding to equilibrium.

L. HERRERA and A. DI PRISCO PHYS. REV. D 109, 064071 (2024)

064071-8



Accordingly, we shall write

T ¼ Teqð1þ ψÞ → T 0 ¼ T 0
eqð1þ ψÞ; ψ ≪ 1; ð73Þ

where the subscripts eq denotes the value in equilibrium.
The condition of thermal equilibrium reads [32]

ðTeqAÞ0 ¼ 0; ð74Þ

implying

T 0 ¼ −
A0

A
Teqð1þ ψÞ: ð75Þ

Using (47) and (75), we may write

αT 0E
BT

≈ −
6αð3rΣ − rÞ
7rð9rΣ − rÞ ð1 − 7πϵÞ; ð76Þ

where the expressions

B ≈
ffiffiffi
7

p

2
; E ≈

2ffiffiffi
7

p ð1 − 7πϵÞ; Teq

T
≈ 1 − ψ ; ð77Þ

have been used, and terms of order ψ2 have been neglected.
Feeding back (76) into (57) we obtain

DTU ¼ 2ϵπ

ð1 − αÞ
ð3rΣ − rÞ
rð9rΣ − rÞ ½−14þ 11α�; ð78Þ

where terms of order ϵ2 have been neglected, and we recall
that α is assumed to be different from 1.
For cracking to occur at some point (say r ¼ rck), the

expression within the square bracket in (78) should vanish
at r ¼ rck, being positive (negative) for r > rck (r < rck),
for any positive small value of ϵ (for negative values of ϵ the
same argument applies for the inverse sign of the term
within the square bracket).
Then for any sign of ϵ, for values of α in the range

½10−4; < 14=11�, neither cracking nor overturningwill occur.
However, if we allow the value of α to rise from some

value within the range ½14=11 > α > 1� for r < rck, to the
value 14=11 for r ¼ rck, increasing for r > rck, then we
may observe a cracking produced by dissipative processes,
for negative values of ϵ, whereas an overturning will
happen for ϵ > 0.
Inversely, if ϵ > 0, then if we allow values of α larger

than 14=11 for r < rck, decreasing to 14=11 for r ¼ rck,
cracking will also happen, whereas overturning will be
observed for ϵ < 0. We shall discuss these results with
more detail in the last section.

IV. CRACKING AND COMPLEXITY

We shall next bring out the link between the restrictions
imposed on the complexity of the fluid distribution and the

occurrence (or not) of cracking (overturning). As men-
tioned before, the analysis of the complexity of an evolving
fluid implies two different (though related) issues: on the
one hand the complexity of the fluid distribution, described
by the scalar YTF and on the other hand, the complexity of
the mode of evolution.
Regarding the complexity of the mode of evolution we

shall consider the H evolution described by (30) and (31),
and the QH evolution, described only by (30), as the two
modes of evolution to be considered as the simplest ones.
So, the question we want to answer to here is: are the

vanishing complexity factor condition and theH or theQH
evolution compatible with the appearance of cracking
(overturning)?
We shall tackle this problem by considering separately

nondissipative and dissipative fluids.

A. H condition, q̇= 0

Let us first consider a nondissipative fluid, and let us
assume that immediately after perturbation, the system
abandons the equilibrium satisfying the H condition. Then
we obtain from (30)

U̇ ¼ U̇Σ
R
RΣ

; ð79Þ

where the fact that the system is evaluated at the timescale
defined by (42) has been used.
From the above expression it is evident that no cracking

(overturning) occurs, since the sign of U̇ will be the same as
that of U̇Σ, i.e., it will be the same for any value of r. On the
other hand we know that the H condition in the non-
dissipative case implies that YTF ¼ 0 (see Ref. [3] for
details). Thus, the H condition alone implies in the non-
dissipative case the vanishing of the complexity factor and
prevents the occurrence of cracking.

B. QH condition, q̇= 0

If we relax the homologous condition, assuming that
immediately after perturbation, the system abandons the
equilibrium under the quasihomologous regime, then we
obtain from (30)

U̇ ¼ U̇Σ
R
RΣ

; ð80Þ

implying again that no cracking (overturning) occurs.
However, in this case YTF does not necessarily vanish.

C. H condition, q̇ ≠ 0

Let us next assume that the system abandons the
equilibrium in the homologous regime, but now we allow
for dissipative processes to be present. In such a case it
follows from (35) that YTF ¼ 0, implies q̇ ¼ 0, i.e.,
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dissipative processes require nonvanishing YTF at the
timescale under consideration.
Of course no cracking (overturning) occurs in this case

since condition (79) is satisfied.

D. QH condition, q̇ ≠ 0

If we assume instead that the system abandons the
equilibrium in the QH regime with the presence of
dissipative processes, no cracking (overturning) occurs
since condition (79) is satisfied, but again YTF does not
necessarily vanish.

E. YTF = 0, q̇= 0, Π = 0

If we assume the vanishing complexity factor condition,
without imposing any restriction on the mode of evolution,
then in the isotropic nondissipative case, we obtain that the
Weyl tensor vanishes, which implies (see Eq. (78) in [19])
that the shear and its time derivatives of all orders vanish. In
such a case we obtain from (29) again

U̇ ¼ U̇Σ
R
RΣ

: ð81Þ

Thus, no cracking (overturning) is observed in this case
either.

F. YTF = 0, q̇ ≠ 0, Π= 0

If we assume the vanishing complexity factor condition,
without imposing any restriction on the mode of evolution,
then in the isotropic dissipative case, we obtain that the
Weyl tensor vanishes, however in this case we do not obtain
(81) from (29), implying that in principle cracking (over-
turning) is allowed.

G. YTF = 0, q̇ = 0, a= 0

If we assume the vanishing complexity factor condition
and the geodesic condition a ¼ 0, we see from (28) that (at
the timescale we are working with) the shear and its time
derivatives of all orders vanish. In such a case we obtain
from (29) again

U̇ ¼ U̇Σ
R
RΣ

: ð82Þ

Thus, no cracking (overturning) is observed in this case
either.

H. YTF = 0, q̇ ≠ 0, a= 0

If we assume the vanishing complexity factor condition,
with dissipation, then in the geodesic case a ¼ 0, we see
from (28) that (at the timescale we are working with) the
shear and its time derivatives of all orders vanish. However,
in such a case we do not obtain (82) from (29), implying
that cracking may occur in this case.

All these results as well as those obtained in the previous
section are summarized in Tables I and II.

V. DISCUSSION

We started this work with three main objectives in mind.
First, we wanted to develop a general method to treat the
problem of cracking in comoving coordinates. Such an
approach was set up and it allowed us to tackle our second
goal, namely, to study the influence of dissipative processes
on the occurrence (or not) of cracking. Finally, using the
presented approach we were able to establish the link
between the occurrence (or not) of cracking and different
restrictions imposed on the complexity of the fluid
distribution.
Let us start the discussion by making some general

remarks on the formalism here presented:
(i) Although the basic idea underlying the concept of

cracking is independent on the frame (comoving or
noncomoving), the variables used to describe it are
different in both frames.

(ii) As for the case of noncomoving coordinates, the
occurrence of cracking is described for specific
solutions. However, the link between cracking and
complexity was analyzed in general, without any
reference to an explicit solution.

(iii) The influence of dissipation on the occurrence (or
not) of cracking is also highly model dependent.
Accordingly the example examined here is just a
guide to proceed in each specific case.

(iv) In order to force the system to leave the equilibrium,
we shall perturb some of the parameters of the
physical variables corresponding to the solution
under consideration. Then, the system is analyzed
on a timescale which is smaller than the hydrostatic
time and the relaxation time. In such a case we may
safely assume that on this timescale, the metric
functions remain the same as those before perturba-
tion, as well as their first time derivatives, while
physical variables are perturbed.

(v) In relation with the comment above, particular care
should be exercised with the mass function. Indeed,
as defined by (13), it depends only on metric
functions (and first derivatives) and then one could
(wrongly) conclude that it should not be perturbed.
On the other hand the mass function may also be
defined through physical variables as in (20). This
apparent contradiction is easily resolved if we
remember that expressions (13) and (20) are equiv-
alent modulo field equations. However the metric
variables after perturbation are not solutions to the
field equations for the perturbed physical variables
(they represent solutions for nonperturbed physical
variables). Therefore, the mass function should be
perturbed according to its expression (20).
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(vi) The concept of cracking adopted here is based on the
definition of “velocity” as given by U (the areal
velocity). However alternative definitions of “veloc-
ity” exist (see Ref. [4]) which could be used instead
of U, giving rise to different definitions of cracking.

Once the general setup of the problem was well defined,
we proceeded to analyze first the role of dissipative
processes in the occurrence of cracking. For doing that
we started by considering a toy model describing a static
solution for an isotropic fluid defined by (45)–(47). This
solution is then removed from equilibrium, by perturbing
the parameter ξ, and we took a “snapshot” of the system
after perturbation on a timescale smaller than the hydro-
static time and the thermal relaxation time. We did that
assuming that no dissipative processes are allowed ensuing
the perturbation. Then, it was shown that no cracking
appears as a consequence of the perturbation. Next, we
generalized the toy model to the case where the pressure is
anisotropic, such a toy model is characterized by (45), (50),
and (51). In this case we observe the appearance of cracking
if both parameters ξ and χ are perturbed and furthermore ϵ
and ω are different and have different signs. This situation
is illustrated in Fig. 1.
Next, we considered the toy model described above for

the isotropic fluid, but we perturbed it allowing dissipation
to be present when the system abandons the equilibrium. In
this case we were led to (78), where the variable α plays a
fundamental role.
Based on some likely astrophysical scenarios, we started

by making some rough estimations about the possible
values of α, as a result of which we established as a
reasonable range ½10−4; 102�. However as mentioned
before, some arguments based on stability seem to rule
out values of α ≥ 1 (see Ref. [31] for a discussion on this
issue). Nevertheless such arguments are not conclusive, and
furthermore some numerical models with good physical
behavior and α > 1 have been described in the literature
(see Ref. [33]). Accordingly we have considered also the
possibility of α > 1.
Equation (78) brings out the influence of dissipation on

the occurrence or not of cracking. Thus, for all values of α
in the range ½≈0; < 14=11�, no cracking occurs. However,
cracking (or overturning) may occur for α ≈ 14=11, for
conditions summarized in Table I.
Next, we focused on our third goal, namely, to find out

how the occurrence of cracking is related to restrictions
imposed on the complexity of the fluid distribution. These
restrictions involve the complexity factor YTF and/or
restrictions on the mode in which the system leaves the
equilibrium (H or QH). It is important to stress here that
while in the treatment of the second problem (bringing out
the relevance of dissipation on the occurrence of cracking)
we resorted to a specific toy model in this third problem and

we obtained general results without reference to any
specific solution.
The first important point to mention is that the restric-

tions on the mode of evolution (as the system leaves the
equilibrium) appear to be more relevant (concerning the
occurrence of cracking) than the restrictions on YTF.
Thus, the sole imposition ofH orQH regime, in both the

nondissipative and the dissipative cases, rules out the
possibility of cracking. Furthermore in the former case
the complexity factor vanishes. This brings out further the
link between H or QH regime and the complexity of the
mode of evolution, if we recall that the occurrence of
cracking may be regarded as a factor enhancing the
complexity of the system.
We also were able to prove that the vanishing of the

complexity factor alone (without any imposition on the
mode of leaving the equilibrium) rules out the occurrence
of cracking in the geodesic nondissipative case, and in the
nondissipative isotropic case. These results are summarized
in Table II.
Finally, we would like to say few words about the case

α ¼ 1. As it is apparent from (55), one of the effects of
dissipative processes consists of decreasing the inertial
mass density (the factor multiplying DTU) and (as a
consequence of the equivalent principle) the passive gravi-
tational mass density [the factor multiplying the first square
bracket on the right of (55)], by a factor 1 − α. This strange
effect which was discovered and discussed in [34] implies
that the effective inertial mass density vanishes for α ¼ 1.
Until now, in spite of long discussions about this point, no
definitive answer has been reached concerning the physical
meaning (if any) of this strange effect, and the possibility of
reaching the above mentioned critical value in a real
physical system.

ACKNOWLEDGMENTS

This work was partially supported by the Spanish
Ministerio de Ciencia, Innovación, under Research
Project Grant No. PID2021-122938NB-I00 funded by
MCIN/AEI/ 10.13039/501100011033 and by “ERDF A
way of making Europe.” L. H. also wishes to thank
Universitat de les Illes Balears for financial support and
hospitality. A. D. P. wishes to thank Universitat de les Illes
Balears for its hospitality.

APPENDIX A: EINSTEIN EQUATIONS

Einstein’s field equations for the interior spacetime (1)
are given by

Gαβ ¼ 8πTαβ; ðA1Þ

and its nonzero components with (1), (2), and (41) become
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8πT00 ¼ 8πμA2 ¼
�
2
Ḃ
B
þ Ṙ
R

�
Ṙ
R
−
�
A
B

�
2
�
2
R00

R
þ
�
R0

R

�
2

− 2
B0

B
R0

R
−
�
B
R

�
2
�
; ðA2Þ

8πT01 ¼ −8πqAB ¼ −2
�
Ṙ0

R
−
Ḃ
B
R0

R
−
Ṙ
R
A0

A

�
; ðA3Þ

8πT11 ¼ 8πPrB2 ¼ −
�
B
A

�
2
�
2
R̈
R
−
�
2
Ȧ
A
−
Ṙ
R

�
Ṙ
R

�
þ
�
2
A0

A
þ R0

R

�
R0

R
−
�
B
R

�
2

; ðA4Þ

8πT22 ¼
8π

sin2θ
T33 ¼ 8πP⊥R2 ¼ −

�
R
A

�
2
�
B̈
B
þ R̈
R
−
Ȧ
A

�
Ḃ
B
þ Ṙ
R

�
þ Ḃ
B
Ṙ
R

�

þ
�
R
B

�
2
�
A00

A
þ R00

R
−
A0

A
B0

B
þ
�
A0

A
−
B0

B

�
R0

R

�
: ðA5Þ

The component (A3) can be rewritten with (9) and (11) as

4πqB ¼ 1

3
ðΘ − σÞ0 − σ

R0

R
: ðA6Þ

APPENDIX B: DYNAMICAL EQUATIONS

The nontrivial components of the Bianchi identities, Tαβ
;β ¼ 0, from (A1) yield

Tαβ
;β Vα ¼ −

1

A

�
μ̇þ ðμþ PrÞ

Ḃ
B
þ 2ðμþ P⊥Þ

Ṙ
R

�
−
1

B

�
q0 þ 2q

ðARÞ0
AR

�
¼ 0; ðB1Þ

Tαβ
;β χα ¼

1

A

�
q̇þ 2q

�
Ḃ
B
þ Ṙ
R

��
þ 1

B

�
P0
r þ ðμþ PrÞ

A0

A
þ 2ðPr − P⊥Þ

R0

R

�
¼ 0; ðB2Þ

or, by using (8), (9), (14), (18), and (16), they become, respectively,

DTμþ
1

3
ð3μþ Pr þ 2P⊥ÞΘþ 2

3
ðPr − P⊥Þσ þ EDRqþ 2q

�
aþ E

R

�
¼ 0; ðB3Þ

DTqþ 2

3
qð2Θþ σÞ þ EDRPr þ ðμþ PrÞaþ 2ðPr − P⊥Þ

E
R
¼ 0: ðB4Þ

This last equation may be further transformed as follows, the acceleration DTU of an infalling particle can be obtained by
using (8), (A4), (13), and (16), producing

DTU ¼ −
m
R2

− 4πPrRþ Ea; ðB5Þ

and then, substituting a from (B5) into (B4), we obtain

ðμþ PrÞDTU ¼ −ðμþ PrÞ
�
m
R2

þ 4πPrR

�
− E2

�
DRPr þ 2ðPr − P⊥Þ

1

R

�
− E

�
DTqþ 2q

�
2
U
R
þ σ

��
: ðB6Þ

TABLE I. Cracking and complexity.

H;QH; YTFnq̇ 0 ≠ 0

H No cracking, no overturning, YTF ¼ 0 No cracking, no overturning, YTF ≠ 0
QH → YTF ≠ 0 No cracking, no overturning No cracking, no overturning
YTF ¼ 0;Π ¼ 0 No cracking, no overturning Cracking or overturning are allowed
YTF ¼ 0; a ¼ 0 No cracking, no overturning Cracking or overturning are allowed
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