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The three-point function of the energy-momentum tensor in a conformal field theory is completely
determined by three parameters, called A, 13, C. We carry out a holographic calculation of these three
parameters in general d > 4 dimensions from higher curvature gravities up to and including the quartic
order. The result is valid both for massless and perturbative higher curvature gravities. It is known that in
four dimensional conformal field theory (CFT) the a-charge is a linear combination of A, 15, C, our result
reproduces this but also shows that a similar relation does not exist for general d > 4. We then compute the
Weyl anomaly in d = 6 and found all the three c-charges are linear combinations of A, B, C, which is
consistent with that the a-charge is not. We also find the previously conjectured relation between t,, 4,

K" does not hold in general massless gravities.
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I. INTRODUCTION

In conformal field theory (CFT), conformal invariance
typically requires the correlation functions to have fairly
rigid forms. For example, in flat spacetime the two-point
function of the energy-momentum tensor 7', is completely
determined by the parameter C; [1,2]

Tgpea(x =)
<0‘Tab(x)Tcd(y)‘0> = CTaC:d_—de’ (1)
where d is the spacetime dimension. Similarly, after
imposing further constraints that arise from the conserva-
tion of energy, the three-point function of 7', is controlled
by three parameters A, B, C [1,2], i.e.,

<0|Tab(x)Tcd(y)Tef(Z)|0>
1 2 3
_ ‘Az-gb)cdef + BIEzb)cdef + C:Z'—Elb)cdef (2)

lx — y|y — z|9|z — x|

Note that the Z(9), Z(1), 7(2) and Z®) are tensorial structures
whose explicit forms are inessential in our discussion here.
These parameters are generally independent in d > 4, but
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for d =3 and d = 2, the ZU) tensors become degenerate
and the number of independent coefficients is two and one
respectively.

In a curved spacetime background, CFT in even dimen-
sions becomes anomalous in that the trace of T, acquires a
nonzero expectation value known as the trace anomaly [3]

(4n)4/2(T4) = —qEW@ + Zcilf.d), (3)

where E(@ and I’ are the Euler density and Wey! invariants
in (even) d dimensions respectively. The coefficients a and
c¢; are known as central charges. In general even dimensions,
C7 is a linear combination of the ¢;’s [1]; it is thus simply
proportional to the only ¢ in d = 4. Although the concept of
conformal anomaly no longer applies in odd dimensions, the
quantity Cy, alinear combination of ¢;’s in even dimensions,
survives. The a-charge can also be generalized to odd
dimensions as the universal coefficient of the entangle-
ment entropy across a spherical entangling surface, which
coincides with a-charge in even dimensions [4]. Thus the
a-charge, Cr, and three-point function parameters (A, 53, C)
are important characteristics of CFT in general dimensions
as they control the energy-momentum tensor correlators up
to and including three points. These parameters are not
independent. It was shown by Ward identity that Cy is a
linear combination of A, B, C [1,2], namely

7t (d-1)(d+2)A-2B-4(d+1)C
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In d = 4, a similar relation exists for a [1]

;7;6

a = s (13A4= 28— 400). (5)

It thus is tempting to expect that analogous relation of (4)
would exist also for the a-charge.

The AdS/CFT correspondence provides a new way to
study the large N limit of CFTs from the weakly coupled
bulk gravity theory in the anti—de sitter (AdS) background
in D =d+ 1 dimensions [5]. Einstein gravity extended
with higher-order curvature invariants is insightful to study
as they capture new features of the dual CFT. The large
number of higher-derivative terms provide unlimited data
that can not only reveal the CFT in the large N limit, but
also some universal properties of CFT.

There has been extensive studies of the holographic
correlators in the pure gravity sector with higher curvature
extensions, e.g., Refs. [6—10]. For general higher curvature
gravity, the corresponding linearized equation of motion
around AdS background contains at most four derivatives
of the metric, the graviton spectrum thus contains two extra
modes, the massive scalar mode and ghost-like spin-2
mode [11]. Unitarity of the dual CFT requires the decou-
pling of the ghost mode, while the decoupling of the scalar
mode is required by the holographic a-theorem [12]. Thus
we usually require the decoupling of both modes, either
exactly or perturbatively, resulting in massless gravity or
perturbative gravity, respectively. Due to computational
difficulties, three-point function parameters of higher
curvature gravity are usually calculated indirectly via the
energy flux parameters ¢, and ¢4 [7,13], together with Cr,
they contain all the information about the parameters
(A,B,C). Three-point function parameters for massless
cubic gravity was calculated in Ref. [9] for d =3 and
d =4, while the results in arbitrary dimensions or with
higher-order curvature invariants are still absent in the
literature.

Several features of (a,Cy) and (A, B,C) have been
known. It was shown that to distinguish a and ¢ holo-
graphically in d = 4, one needs to introduce at least the
Gauss-Bonnet density, in which case only two of the three
three-point function parameters are independent; one needs
to further consider cubic curvature invariants to obtain all
the three independent parameters [10]. In additional to
these algebraic relations, holography also provides a hidden
differential relation between the ¢ and a charges for all
massless higher curvature gravities [14,15]

I'd+2)  da

Cr=aa-1etor

(6)

where L is the effective radius of AdS. Furthermore, it was
conjectured that a relation exists between f,, t4, h” for
massless gravity [16]

h//(_L—Z)

TIWLY) )

a(d>t2 + b(d)t4 =

where (1) is the AdS vacuum equation of motion, to be
defined later. This relation was later shown to be true for
quasitopological gravity in Ref. [17], the corresponding a4
and b, was determined. It is thus interesting to check for
more general curvature invariants in diverse dimensions.

The main purpose of this work is to calculate holo-
graphically the parameters (A, B, C) of the three-point
function from the general higher curvature invariants up to
and including the quartic order in arbitrary D =d + 1
dimensions with d > 4. We employ an indirect method by
considering the one-point function of an energy flux
operator parametrized by #, and #,, which are directly
related to the three-point function parameters. We consider
both the finite higher-derivative coupling case and pertur-
bative case. For the former, we need to impose the massless
conditions. For the latter the number of nontrivial terms can
be reduced by some appropriate order-by-order field
redefinitions of the metric.

From our results, we can make some interesting statements:

(1) After setting d = 3 for the general d results, the
value of ¢, coincides with that obtained in Ref. [9],
even though our method should only be valid
for d > 4.

(2) The a-charge and (A, B, C) turn out to be in general
linearly independent for d > 5. In other words, there
is no generalization of (5) beyond d = 4.

(3) Instead, all the three c-charges in d = 6 are linear
combinations of (A, B, C).

(4) The conjectured relation (7) does not hold for
general massless gravity. We also verify this con-
jecture for quasitopological gravity up to and in-
cluding the quartic order.

The three-point function, and hence (.4, 53, C), contains three
different possible structures, which can be enumerated
holographically by Einstein, quadratic, and cubic curvature
terms [10,18,19]. It was claimed by Ref. [9] without proof that
higher order curvature polynomials will not provide further
information. In fact, this can be easily proved, and we present
it in Appendix D. Nevertheless, the quartic-order calculation
provides a useful consistent check.

The paper is organized as follows. In Sec. Il we review
higher curvature gravity and list all the Reimann curvature
polynomial invariants up to and including the quartic order.
In Sec. III we first briefly review the method we use to
calculate the energy flux parameters, following Ref. [7],
then we present our results and cross check them with the
known special cases. Further discussions on our results are
given in Sec. IV, where we also calculate the a-charge in
general dimensions and the three c-charges in d = 6. We
conclude this paper and make further comments in Sec. V.
Some lengthy expressions and digressions are given in five
Appendix sections.
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II. A BRIEF REVIEW ON HIGHER CURVATURE GRAVITIES

We consider Einstein gravity extended with higher-order curvature invariant polynomials in D = d + 1 dimensions, up
to and including the quartic order. The general form of action is

dd-1 i
5= [ @Bl R ) = [ @/l R D 1 YR (8)
0 ij

where Rﬁi) is the jth Riemann scalar polynomial of order i, coefficients e; ; are the coupling constants, and Ly is the bare

AdS radius. All the Riemann curvature polynomial invariants studied in this paper are given explicitly below

R(Z) —_ {R2, RabRabv RabcdRade}v

©)

R(3) _ {RS , RabRava RabRbcRcaa RabcdRacRbdv RRabcdRadev RabRaCdeRbcde ,

RadeRcdefRefab s RaechadeRbedf} ’

(10)

R® = {R* R,,R“’R?,R,*R*R,,.R, (R.,R?)?, R,“R’R,*R .4, RR™’R°R 114
RPRRR gy K2Ry gR. RRR 1oy R 1. Ryp R R gy RE!
R,RRy, 1Ry, RRR, 1R 4o, RPRR 4R T 1y R R“R 1 aR¢ T .
RR ;" R*“IR 4o, RR, /R Rppyp. RR 1R, 10a R,
RPR 9, R R,y RR.I,RIR 4y 1y, (RapeaR)?,
Rupe“RPR g R 4, Ry RP“IR 41 R ot Ry RP“IR " Ry
R RPR IR gy Ry T RP“IRpgin R " R, T RPR IR oan }- (11)

In other words, there are 3, 8, 26 terms for the quadratic,
cubic and quartic orders respectively. The indices (i, j) of
the coefficients e; ; in (8) are labeled based on the above
order.

Before proceeding, we shall briefly review some general
properties of higher curvature gravity. The equation of
motion is given by £ = 0, with

1 oS 1
gtzb — — pa Rbcde _ ab£ -2V.V Pacdb’
\/mégab cde Zg cVd
oL
pabed — 2 (12)
aRabcd

The equation admits the maximally symmetric solution
Ga» Whose Riemann tensor is given by Rupcq = 2474(cGaps
where A is to be determined. When evaluated on such a
background, the tensor P*<¢ takes the following simple
form [20]

Padelg,,b _ 2klga[cgd]b. (13)

Defining £(4) = L], , we have

dRabcd

/ — abed
£ = (st

)_ = 2d(d+ )k;. (14)

Substituting into (12), some useful identities emerge
[16,20]

h(2) = L(A) - dz—jlzx(z) —0. (15)

L(A) = 4dik,,
Note that the above only holds when 4 is taken to the on-
shell value in AdS vaccum, while (14) is defined for generic
off-shell 1. Hence (15) give the vacuum equation of motion
of 4. When taking a derivative with respect to 4, all the
parameters in the theory including L should be treated as
being independent of 4.
The linearized theory is governed by the tensor

2
Cabcdefgh — 0L . (16)
aRabcdaRefgh

Evaluating on the maximally symmetric background, it
takes the form [20]
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Cabcdefgh|gah — kz(g[ale\gb]fg[c\g\gd]h + g[alg\gb]hg[c\e\gd]f>
Akl gloH gela 1
+ 4kt s grleghlogian, (17)

To be precise, the above tensor structure does not satisfy the
cyclic Bianchi identity inherited from the Riemann tensor.
We should impose this identity and redefine the tensor as
follows

(Cabedefgh _, cabedefgh — (abedefgh _ Ca[bcd]e[fgh]' (18)

The linearized theory of any higher curvature theory is
completely described by the coefficients k;, i = 1, 2, 3, 4.
For a Lagrangian that is a polynomial of curvature
invariants, these four coefficients are linear functions of
coupling constants of the polynomial invariants. For a
specific Lagrangian, the coefficients k; can be obtained
efficiently with the method proposed in Ref. [20]. The
effective Newton constant k. and the masses of the
scalar mode m; and ghost-like spin-2 mode m,, are given
below [20]

Kol = 4k, — 81(d — 2)k,. (19)
o ~h+2(d=2)lk,
g 2k + kg
o (d =Dk =4[k +d(d + ks + dky] 20)
¢ 2ks + 4dks + (d + 1)k,

The quantity 1/x appears as a coefficient of the linearized
equation of motion of the massless graviton after the
massive modes are decoupled, namely

1
Edb ~ — (O =22)heb. (21)
Keff

The central charge Cr of the dual CFT is related to x4 as

- I(d+2) L4t
22 (d - 1)T(d)2) ke

Cr (22)

To decouple both the massive modes, we require

At the quadratic order, we have k; = Ad(d + 1)e,; +
ld€2’2 + 2),82,3, k2 = €33, k3 = €2$]/2 and k4 = 622/2,
the above conditions yield precisely the Gauss-Bonnet
density. At the cubic order, we have the following con-
straints on the coupling constants [12]

d(d+1)esn +3des 3+ (2d — 1)e 4 +4d(d + 1)es s
+4(d+ 1)ez 6+ 24e37 —3e35 =0,

12d(d + 1)e3 + d(d 4+ 9)es 5 + 3des 3+ (2d + 3)ez 4
+ 16e35 +4e36 +3e33 = 0. (24)

For the quartic order the constraints become too lengthy
and we record them in Appendix A.

An alternative approach to higher-order gravity is to treat
it as an effective theory of quantum corrections to Einstein
gravity. In this approach, the massive modes are decoupled
perturbatively since at the zeroth order the coefficient k; is
nonzero while k; 3 4 are first order, making the kinetic terms
of the massive modes first order. This applies to effective
field theory where the first massive state appear at some
high energy cutoff scale M [21]. In this approach, one can
perform field redefinitions of the metric order-by-order by
appropriate higher curvature terms, so as to eliminate some
Ricci tensor and scalar terms in the Lagrangian. This gives
the following residual sets of Riemann polynomials:

R/(z) = {RabcdRath}’ (25)
R'G) = {Rup“R.g R, R, S RPAR ), (26)

R'® = {(RupeaR™)?, RypE RP“IR RI .
Ry R“IRggnR o Rap R"“R e Ry,
RabefRadechehRdgfhv RaechadeRbgthegfhv
RaechadeRegthfgdh}' (27)

The coupling constants of these terms are invariant under
the field redefinition.

In many of our calculations in this paper, we find that it is
not necessary to impose the massless conditions explicitly.
Therefore many of our results are valid for both approaches
to higher-derivative gravities.

III. HOLOGRAPHIC CALCULATION
OF ENERGY FLUX PARAMETERS

We now turn to the main subject of this work. We shall
determine holographically the three-point function param-
eters (A, B, C) of the energy-momentum tensor in the dual
CFT. To calculate the three-point function directly from
higher curvature gravities, one needs to perturb the metric
to the third order in the Lagrangian, which is quite
challenging even for Einstein gravity [22]. We therefore
employ an alternative way to determine these parameters.

We follow Refs. [6,7] by considering a specific frame
and polarization in which the three-point function describes
a hypothetical conformal collider experiment proposed in
Ref. [13]. In this experiment one first creates a localized
excitation with the operator O ~¢;;T" where ¢,; is the
polarization tensor, then measures the energy flux at the
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null infinity of the direction indicated by the unit vector 7.
The energy-flux operator £(7) is

+0oo
dtTti(t, rﬁ)ni. (28)

—0o0

E(n) = lim

r—+o0o
Its expectation value takes the form

<0|0T5( )0|0)

For d > 3, by O(d — 1) invariance the most general form
of the energy flux can be determined by two parameters
tz and t4 [13]

. E g eqnn! 1
<5(n)> = —Qd_l |:1 + t2< g%‘.g - d — 1)

ij€ij
le;n'ni|? 2

) - . 30

N 4( e A -1 (30)

Note that for d = 3, the coefficient of 7, vanishes identi-
cally and we are left with only the #, term. To isolate the
contribution from null infinity, it is convenient to define a
new set of coordinate

(2(d+1))(A(d —2)(d +1)(d + 2) + 3Bd?

where x* = t + x?~!, L is some energy scale, to be chosen
as the bulk AdS radius, and i denotes the index of the
(d — 2) dimensional subspace, i.e., 1 <i < d — 2. This is in
fact a conformal transformation with conformal factor
(y*/L)?, after which the energy-flux operator becomes

+oo L
5(ﬁ)=L29d‘1/ dy T__(y'=0,y".y'=y"), (32

where

2 . Ln

- o 33
1 4+ nd! 1 + nd-! (33)

<

On the other hand, the excitation operator O takes the form

O = /ddx e e, Ty (x/o), (34)

where y(x) is some distribution that’s localized at x = 0,
and Eo > 1 is assumed so that the operator is localized.
Thus one can see that the numerator of (29) is indeed the
three-point function with indices contracted with specific
polarizations, thus one can relate (¢, t4) to (A, B, C) [6]

—4C(2d + 1)d)

Using the above and (4) one can solve the parameters
(A, B, C) in terms of (t,, t4, Cr), thus the problem is
converted to the calculation of (¢, ¢4, C7) quantities.

To calculate the energy flux parameters holographically,
we consider the following AdS metric in Poincaré patch

2= d(A(d—1)(d+2)—2B—4C(d+ 1)) ’ (35)
; _(d+l)(A(2d2—3d—3)(d+2)+28(d+2)d2—4(?(d+1)(d—|—2)d) (36)
o d(A(d—1)(d+2) —2B—-4C(d + 1)) '
|
which is an isometric transformation in the bulk
L2 -
ds3gs = =z (dz? — dxFdx™ + dx'dx’)
L2 .
=— (du? — dy*dy™ + dy'dy’), (39)

L?
dsigs = —5 (dz? + dx'dx’)

_2

2
L (42— drtdem + dddd).  (37)
Z

Inspired by (31), we define the new bulk coordinates as
follows

2
. 2 . L
u_Lx+9 y __x_+’
2 PN i
_ _ ¢ x'x . X
y=x-F--F Y=L (38)

and reproduces (31) at the boundary u = 0. According
to holographic dictionary, the energy-momentum tensor is
dual to the metric perturbation #h,,. Specifically, the
energy flux operator in (32) is sourced by k., =

L2Q35(y )87 2(y" — y'), so that the bulk solution is
L2 d
hyyo /dyl_ 2 vt (v——v/— u?
12 =y (7 =y )+ O =y (=Y i)
L2 S(vt d
(o u (40)

w4+ (5 =y ) (o =y
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where the overall factor is unimportant so we ignore it here.
Remarkably, the above insertion for £(7) can be done using
an exact solution instead of perturbation by considering the
shockwave solution

L? .
dszhockwave = dszz\dS +?5(y+)w<u? yl)(der)z’ (41)

where W satisfies the equation of motion

d-1
RW —=—=0,W + 0,0;W = 0. 42
u

It is important to note that this equation will not be altered by
higher curvature terms [23]. We now only need to consider the
second-order perturbation around the shockwave background,
instead of the general third order around the AdS background.
This simplifies the calculation greatly. Comparing (41) with
(40), the desired bulk solution of W is given by

ud

D T
One can verify that it indeed satisfies (42).

For the excitation operator O, we choose the polarization
to be €,1,2 = €,2,0 = 1 with all other components vanish-
ing, so that the only nonvanishing component of the metric
perturbation is /A, .. This implies that this particular
holographic procedure requires d > 4, even though the
CFT energy flux (30) can be defined in d = 3. Since & , is
localized at y* = 0, we are only interested in the behavior
of /1,2 on this surface. It can be shown [7,13] that after
transforming to (u,y“) coordinate, hy > is also localized,
namely

(43)

gy (u,y™ = 0,y7, ') ~ e B 28(u — L)5972(y)).  (44)

The transformation also introduces other components 4.+ R
l’ly+y2, hy+y+, but as we shall see later, they can be eliminated
by imposing the transverse and traceless condition

he =0,  V,h? =0, (45)

Defining ¢ by h,1» = (L?/u*)¢p and imposing the trans-

verse and traceless condition, the equation of motion of ¢ is

d—1
0up ————0,¢p — 40,:0y-p + 0;0;0 = 0, (46)
» .

up to interaction terms with the shockwave.

With these preliminaries, we are ready to evaluate the
energy flux. This can be done by turning on the perturba-
tions on the shockwave metric and evaluate the on-shell
action, and then extract the terms of the form W¢?. Note
that by (44) the bulk coordinate u is localized at u = L, so
we do not need to consider the boundary action. After
imposing the transverse and traceless condition, using the
equations of motion (42) and (46), and integration by parts,
the on-shell effective action becomes

1
3)
S )__LdJrl

/ A xpd2- W (Cr +1,T, +1,T,) )
u=L,y'=0

(47)

The basis functions 7, and T, depend only on the
shockwave metric function W, namely

1

y P —
27 2dd-1DW

[uz(di, W+ aiz W) = 2uo, W], (48)

2

T, = d—1)u?(*W + W

$ S dd—Dd- @ nw @ D WL W)
+ut0% %W — (d +2)ud,W

- u (auasl W+ au632 W) - u20;a;W], (49)

where the index i covers the remaining (d — 4) directions,

i.e, 3<1i<d-1. Substitute the solution (43) of W into
the above leads to

_n%+n%_ 1

T _
2 2 d—1’

— 222
T, =2nin; —

—. 50
While T, and T, are independent of the detail of the action,

the coefficients Cy, 7,, 7, are determined by the coupling
constants of higher curvature gravities. Specifically, we find

CT :Ld_l{l +2L_2[—d(d+ 1)62!1 —dezqz +2(d—3)62q3] +L_4[3(d+ 1)261263'1 +3(d+ 1)d2€3,2 +3d2€3‘3 +3d2€3’4

—2(d+ 1)(2(1- 7)d€3y5 - 2(2d—7)d€376 + (60 - 24d)€3’7 + 3(3(1- 5)63,8} +L_6 |:—2d3 (d+ 1)364.1

—2d3(d+1)2e40—2d(d+ 1)es3=2d%(d+ 1)ey 4 —2dP ey 5 —2d° (d+ 1) eg s —2d%e4 7 +2(d—4)d? (d+ 1)%ey g
+2(d=4)d*(d+1)egg +2(d—4)d*(d+1)es 10 +2(d=4)dey 1y +2(d—4)d? ey 1y =2’ €4 13+ 2(d = 4)dey 14
+4d(d+1)(3d —8) ey s —d(d+1)(5d—8)ey 16 +2(d—4)dPey 7 +4d(3d —8)ey 15— d(5d —8)ey 1o
+8(d—3)d(d+1)esn0+8(d—3)deyr +16(3d—T)es 2, +8(3d—T)es 3 +2(d? —10d + 14) ey,

|
—2(d = Td+ 14)e4 05 +5 (8 —52d+56)e4,26} }

(51)
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By =d(d— 1)L 4L ey 5 + L4[-4d(d + 1)es s — ddes o — 36(d +2)es 7 — 3(7d + 2)es]
x L7O[4(d + 1)2d?esg + 4(d + 1)dPeso + 4(d + 1)dPey o + dd%ey ) + dd2ey 1 + dd%ey 14
+4dPey 17 +36(d+1)(d +2)dey 15+ 3(d+1)(7d + 2)dey 16 + 36(d + 2)dey 1
+3(7d +2)dey 19 + 16(d + 1)deyrg + 16dey »1 +96(3d + 5)eq 0y +48(3d + 5)eq 3
+4(13d — 6)ey 04 + (24 — 48d)e4 25 + 8(7d — 3)eq 56}, (52)

;4 = 6d(d + 1)(d - 1)(d + 2)Ld_1{L_4[283’7 + 63,8] + L_ﬁ[—Zd(d + 1)64.15 — d(d + 1)64,16
—2dey 13 — dey 19 — 16€45) — 8ey 3 — 2e44 + 2€425 — 2e46] }- (53)

To obtain the final result, we need to divide the cubic action
by the two-point function (7', T, ), which is proportional to
Cr. The latter can be calculated using (22) and for the case
we study, we find

2I(d +2) R
= . 54
T 2d2(d=1rd/2) " (54)
Thus we have
_ﬁi_N1+jaCﬁ+@__i_>
(T12T12) Cr 2 d-1
7 2
4 2.2
— | 2 e 55
+ CT ( n1n2 d2 _ 1) ( )

On the other hand, specializing to the polarization €12 =
€2, = 1, the two terms involving 7 in (30) become

* oo minl 2 2 |2

eean’'n’  nd +n3 |e;in'n!| P (56)
* o - 2 ’ X o - 172

€€ €€

By comparing (55) to (30), we arrive at the final result

=2 ol (57)
Cr Cr
where the hatted variables are given by (51)—(53).
Now we examine some known special cases. First, for
Lovelock gravities up to and including the quartic order, we
set the coupling constants to

3

fer = o [H(d - -a, (5%)

-1
{es;} = s [H(d - i)} {1,-12,16,24,3,-24,4, -8},
i=2

(59)
|

7 -1
{es:} = s [H(d - i)] {1,-24,64,48,-96,96,

i=2
—384,6,-96,-24,192,96,—-192, 192, 16,
—32,192,-192,384,3,-48,6,48,-96, 48,
—~96}. (60)

Substituting them into our results (51)—(53) and (57), we
obtain

f = 4(d —_ l)d ,leL_z - 3/A3L_4 + 6//l4L_6
2T (d=3)(d-2)1=2u,L™2 + 33 L4 — 4y, 176"
14 =0. (61)

Energy flux parameters for general Lovelock gravity was
derived in Ref. [10]. Explicitly we have (after adapting to
our conventions)

- Zd(d— 1) h”(_L—Z) -
h= (d-2) (d -3) L2h/(_L_2) ) t, =0. (62)

In our case the function %(4) is given by
1

Substituting this into (62) we get exactly identical result
with (61).

Secondly, after specializing our result to general mass-
less cubic curvature gravity in d = 4 and eliminating e; 7,
e3¢ by the massless condition (24), we arrive at

2

g = 48(234063’1 + 55263’2 + 14463‘3 + 12363.4 + 31663'5 + 80616)
a L4 — 2(6063’1 + 863,2 + 63’4 + 483‘5) ’

(64)
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_ 360(600@3’1 + 14063’2 + 3663’3 + 3163’4 + 8063’5 + 2063,6)

ty =

which reproduces the result of Ref. [9].

We can now obtain all the three-point function param-
eters (A, B, C) by inverting (4), (35), and (36). The final
expressions of (A, B, C) in general dimension d are
recorded in Appendix B.

IV. DISCUSSIONS

Having obtained all the three-point function para-
meters (A, B,C) holographically from higher curvature
|

L* —2(60e3 1 + 8e3, + €34 + 4es5)

_ 120(360631 + 966‘3‘2 + 2763‘3 + 2583‘4 + 6483’5 + 1863’6)

, (65)

gravities up to and including the quartic order, we can
compare our results to those in literature and study their
implications.

First, it is interesting to mention that even though
our result, based on its derivation, should be valid only
for d > 4, there exists a smooth d = 3 limit. In particular, if
we restrict to massless cubic gravity and set d = 3, our
result gives rise to the following value for #4

t, =

which is precisely the one obtained in Ref. [9] that was
derived using a different method. We thus expect that our
new result of #,, arising from the quartic massless gravity, is
also valid at d = 3. From our general results, setting d = 3
also gives a nonzero value for #,; however, in d = 3 the
symmetry group reduces to O(2), and hence there can only
be one energy flux parameter #,. Furthermore, specializing
1, in d = 3, we find it is actually linearly independent of C T
and 7,. Therefore, it is interesting to explore the physical
meaning of the value of #, of general d in the d = 3 limit.

Second, we examine the conjecture (7). Since for
massless gravity #'(—L~?) is proportional to Cr [16], it
is equivalent to that 7,, %, and h"(—L7?) are linearly
dependent, i.e.,

gy + bl a = W'(=L72). (67)

As mentioned earlier, the conjecture (7) was already proved
for quasitopological gravity, it’s easy to check for cubic and
quartic quasitopological gravity in general dimension using
our result of 7, and 7,. We find the coefficients are given by

_ (d=3)(d-2)
@=""2(d=1)d
— 3 _ —
by — - (d —2)(7d® = 194> — 8d + 8) (68)

2(d=1)d(d+1)(d+2)(2d—1)’

they are in consistent with Ref. [17]. A brief review on
quasitopological (QT) gravities can be found in
Appendix E, where we find that there are 15 such theories
in quartic gravities. However, for the case of general
massless higher curvature gravity we find that 7,, 7, and
h"(—L~?) are actually linearly independent, thus we have
disproved the conjecture (7) for general massless gravity.

L* —2(36e5 + 6esp + €34 + dess)

(66)

|

Third, we focus on identities involving the a-charge (5)
and (6). As mentioned earlier, the a-charge can be
generalized to arbitrary dimensions as the entanglement
entropy across a spherical region S¢=2. It was shown with a
conformal map that the entanglement entropy over the
spherical region in Minkowski background equals to the
thermal entropy of R x HY~! background. The latter can be
calculated holographically by the black hole entropy of a
locally AdS hyperbolic topological black hole [4]

1
dS2 = —f(l")dlz +mdr2 + rdefl_lykz_l,
r2

fr) =251, (69)
The black hole entropy can be calculated from the Wald
entropy in a standard way [24,25]

Swad = —2ﬂ/dd_1x\/EP”de€ab€cd . (70)

r=L
where o,, is the induced metric of the horizon, and
€ =dr A dr is the binormal of the horizon, satisfying
€€? = =2. For the topological black hole (69), the
integrand is a constant proportional to the area of the horizon
so the value diverges, thus one may assign the entropy

density on the horizon to the a-charge as follows [15]

a— z/? Swald
221(d/2) Q11

74/2

— _ Ld—l Pabcd . 71
F(d/Z) ( €ab€Cd)r:L ( )

It can be shown that with this definition the value coincides
with a-charge in even dimensions. It is straightforward to
calculate the a-charge from (71), we obtain
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27d/2
“ T/

Ld_l{l - 2L_2[d(d + 1)62’1 + d€2_2 + 282_3] + 3L_4[d2(d + 1)263,1

+d*(d+1)esp + dPesz + dPesy +2d(d + 1)ess +2des g+ des; + (d = 1)ez]
+4L7-d*(d + 1)%ey —d*(d+ 1)%esy —d*(d + 1)ey3 — d*(d + 1)egq — dPey s
—d*(d+1)es—dPes7 —2d*(d+ 1)%ey5 —2d°(d + 1)eq9 — 2d*(d + 1)ey 10 — 2d%e4 1,
—2dPey 1y — dPey 3 —2dPeq 14— 4d(d + 1)eg s — d(d” = 1)ey 16— 2d7eq 17 — 4dey 15

— (d=1)dey 9 —4d(d + 1)e4 0 — 4dey ) — Beq —4esn3 —2(d — 1)eqns

- (d2 —-d+ 2)64,25 + (2 - 3d)e4$26]}‘

With both C7 and a evaluated, it follows immediately that
after applying the massless condition we have (6).

Specializing our results to d = 4, we reproduce (5) and
therefore we verify the relation holographically in higher
curvature gravity up to and including the quartic order.
However, for d > 5, we find that a and (A, B, C) are in
general linearly independent. In other words, the d = 4
relation (5) does not have a higher-dimensional generali-
zation. This somewhat unexpected result instructs us to
further consider central charges in d = 6, where there are
three c-charges. Details and explicit values of the c-charges
in d = 6 can be found in Appendix C. We find that all three
c-charges turn out be linear combinations of (A, B, C),
namely

2

‘17233280

(—98A + 9B + 174C), (73)

P

=— (122 -1 2 74
€2 = o= (12264 — 1538 + 8820), (74)

7t 7
c3 —_—

In terms of 1, 4, we have

L _ 15(23¢, —4de, + 144cy)

2 16¢; ’

105(cy — 2¢5 + 6¢3)
ty =— , 76
4 2, (76)

which coincides with the CFT results derived from free
Dirac fermion, real scalar, and antisymmetric two-form
fields [26]. Our results suggest that this is indeed a
universal property of d = 6 CFT.

V. CONCLUSION

In this work we considered general higher curvature
gravity up to and including the quartic order and calculated

(72)

holographically the three-point function parameters (A, B,
C) of the dual field theory in general d dimensions. We
adopted an indirect method by calculating the central
charge Cr and the energy flux parameters t,, t,, which
are known to be directly related to the three-point function
parameters. We therefore obtained the complete list of the
holographic results of (a, Cy) and (A, B,C) for general d
dimensions.

Despite of the fact that our method should be valid only
for d > 4, we not only reproduce the previously known
result in d = 4, but also the correct value of ¢, of Ref. [9]
after setting d = 3. Therefore it may be of interest to
explore the physical meaning of #, in this case since at
d =3 the parameter f, does not contribute to the
energy flux.

We also examined the relation between 1, t4, h”
proposed by Ref. [16] and checked its validity for cubic
and quartic quasitopological gravity, but found that it does
not hold for general massless gravities. We also found that
the d =4 identity (5) cannot be generalized to higher
dimensions. The generalized a-charge is linearly indepen-
dent of (A, B,C) when d > 5. We calculated the c-charges
in d =6 and found they are all linear combinations
of (A, B,C). Considering the fact that the number of
c-charges proliferates as d increases, their relations to
(A,B,C) are hard to conjecture and require a new
investigation.
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APPENDIX A: MASSLESS CONDITION FOR
QUARTIC CURVATURE GRAVITY

In this appendix, we give the conditions on the coupling
constants for higher curvature massless gravity. The con-
dition for the decoupling of the massive scalar mode is
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(d+1)*d?esn+3(d+ 1)d*eqs +2(d + 1)dPesq + 6d%eys +4(d + 1)°d*ey g
4 (3d? = 2d + 1)eq 13 + (4d> +9d — 1)ey 14 + 2(2d° + 3d — 2)ey 7
4 (d+1)(2d — 1)dey g+ 2(2d — 1)dey 7 + 4(d + 1)2deq o +2(d + 1)(2d + 1)des 10
+2(2d + S)deq 11 +24(d + V)dey 15 — 3(d + )dey 16 + 16(d + 1)deg 0+ (4(d + 1)2 = 6)es 12
+12(2d + 1)eg 13 — (d + 4)es 19 + 16(d + 1)eg0) +2(2d = T)eq 4 +4(d + 4)eq 5
+2(4d — 5)eq 6 + 96€45; + 4843 = 0. (A1)

The condition for the decoupling of the massive ghostlike spin-2 mode is

24(d+1)*dPesy + (d+ 1)(d+21)d%es5 + 3(d + 5)d*es 5 + 2(d + 9)dPey 4 + 6d%ey s + (2d* + 17d + 3)dey s
+ (3 +10d — 3)eq 13 + 3(d? + 5d — 4)es 6 +2(2d + 3)deq 5 +40(d + 1)dess +4(d + T)dess
+2(d + 17)dey 1o + 10dey | + 5dey 19 + 4dey s +2(4d + 3)eq 12 +3(3d + 1)eq 14 + 6(d + 2)eq 17 + 48ey 5
+ 12e4 15 + 64e4 50 + 16e45; + 10e4 54 + 14e46 = 0. (A2)

APPENDIX B: EXPLICIT EXPRESSIONS FOR (A, B, C)
In Sec. III, we obtained the energy flux parameters ¢, and #, and also Cy. From these, we can read off the three-point
function parameters. They are given by
B 23774 (d + 2)
(d—=1)3(d+1)
+d*(d+1)e3n + d*ess + d?es 4+ 6d(d + 1)ess + 6des s + 36e37 + (d* —2d — T)esg)
AP (d +1)3es) +4d3(d + 1)2e4n +4d°(d + 1)egs +4d°(d + 1)egs +4dey s
+4d3(d+ 1)eqq +4dPes7 +20d*(d + 1)%e4s + 20d%(d + 1)eqo + 20d>(d + 1)eq 1o
+20d%ey 11 +20d%ey 15 + 4dPey 13 + 20d%ey 14 + 112d(d + 1)ey s
+d(d+1)(3d? —5d — 22)ey 16 + 20d%ey 17 + 112dey 15 + d(3d? — 5d — 22)ey 19
+64d(d + 1)eq 0 + 64dey s + 512e45 + 256423 + 4(3d? — 4d — 26)e4 24
—8(d* —4d — 13)ey 55 +4(3d* — 26)e456) }- (B1)

{—1 + 2L_2[d(d + 1)62,1 + d€272 + 86‘2’3} — 3L [dz(d + 1)263,1

dr?L4'T(d + 2)
 (d=1)P(d+1)
—(d* = T7d® +5d* —d — 6)ey3]) + L—4[—6d2(d + 1)2(d® = d® + 1)e3 —6d%(d + 1)(d° — d® + 1)es,

—6d*(d3 —d* + 1)es 5 — 6d*(d® — d* + 1)es 4 +4d(d + 1)(d* = 8d> + 64> —d — T)es 5

+4d(d* —8d® + 64> —d —T)ez — 12(d5 =3d* + 11d° = 7d* + 6d + 10)e3

—3(3d° —3d* = 11d> +9d*> — 4d — 10)es 5] + LO8d(d + 1)*(d® — & + 1)ey; +8d(d + 1) (d® — d*> + 1)ey,
+ 8 (d+ 1)(d® —d* +1)es3+ 8 (d+ 1)(d® —d* + 1)ess + 83 (d® — d* + 1)ey s

+ 8B (d+ 1)(d® —d® + 1)eyq+ 84 (> — d® + 1)ey7 — 4d>(d + 1)>(d* — 9d° + Td*> — d — 8) ey

—4d*(d +1)(d* =9 +7d> —d — 8)es o — 4d*(d + 1)(d* = 9d&® + Td*> — d — 8)e4 1

—4d*(d* —9d® +7d*> —d — 8)ey ;| — 4d*(d* —9d° +7d*> —d — 8)ey 1, + 8 (d® — d* + 1)ey 3

—4d*(d* —9d® +7d*> — d — 8)ey 14 + 4d(d + 1)(3d° — 9d* + 35d° — 23d” + 18d + 32)ey 15

+d(d +1)(d +2)(9d* = 25d3 + 13d*> + 3d — 16) ey 16 — 4d?*(d* —=9d> +Td> — d — 8)e4 17

+4d(3d° — 9d* + 35d° — 23d* + 18d + 32)e4 15 + d(d + 2)(9d* — 25d° + 13d> +3d — 16)e4 19

{=2(P =+ 1) +4L72[d(d + 1)(d® = d®> + 1)ey; +d(d® — d® + 1)ey,
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—16d(d + 1)(d* = 7d* 4+ 5d* — d — 6) ey 59 — 16d(d* = Td* + 5d° — d — 6) ey 5,

+32(3d° — 6d* + 14d> — 8d> + 15d + 14)ey 5y + 16(3d° — 6d* + 14d> — 8d> + 15d + 14)ey 03

+4(5d8° — 3d* = 29d% + 23d> — 22d — 28)ey 4 — 16(d° — 2d* — 6d° + 5d°> —Td — T)ey 55

+ 8(2d° +2d* — 17d° + 12d> — 8d — 14)e4 5]} (B2)

dPr LT (d +2)
2(d—1)%(d+1)

+d(2d* —2d — 1)ey5 — 2(d® — 8> + 5d + 6)e, 3]

+ L-3d%(d + 1)*(2d*> = 2d — 1)e3; — 3d*(d + 1)(2d> — 2d — 1)e3,

—3d2(2d? = 2d — 1)es 3 — 3d2(2d?> — 2d — 1)es 4

+2d(d +1)(2d> — 184> + 12d + 13)e3 5 + 2d(2d> — 184> + 12d + 13)e; ¢

+36(d® — 6d* +3d + 5)e3; — 3(d* = 2d° — 8> + 2d + 15)es 4]

+ L7M4d*(d + 1)3(2d* —2d — 1)ey +4d*(d + 1)*(2d* —2d — 1)ey

+4d(d+1)(2d*> =2d — 1)eqs +4d°(d + 1)(2d*> = 2d — 1)ey 4 + 4d>(2d* —2d — 1)ey 5

+4d>(d+ 1)(2d? —2d — 1)e46 + 4d>(2d> — 2d — 1)ey

—4d? V(d® = 10d? +7d + T)ess — 4d*(d + 1)(d* — 104> + 7d + T)e4o

—4d? Nd® = 10d* +7d + T)eq 0 — 4d*(d® — 104> +7d + T)ey 1

—4d?(d® — 10d> +7d + T)ey 1y + 4d>(2d?> — 2d — 1)ey 3 — 4d*(d®> — 10d* +7d + T)ey 14

—4d(d +1)(9d* — 56d% +29d + 46)ey 15 + d(d + 1)(d +2)(3d® — 10d> — 8d + 23)ey 16

—4d?(d® — 10d> +7d + T)ey 17 — 4d(9d® — 56d° + 29d + 46) ey 1

+d(d+2)(3d® = 10d*> — 8d + 23)e4 19 — 16d(d + 1)(d* — 8d*> + 5d + 6)e4 9

—16d(d® — 8d* + 5d + 6)ey, — 64(3d> — 164> +7d + 14)e,

—32(3d’ — 164> +7d + 14)e4 53 + 4(2d* + d* — 35d> + 3d + 56) e, 24

—4(d* = 5d° — 29d* 4 9d + 56) ey 55 + 4(d* + 9d°> — 40d> — 3d + 56)e, 4]} (B3)

{=2d? +2d + 1 +2L72[d(d + 1)(2d* = 2d — 1)ey,

+1
(d+1
(d+1

APPENDIX C: CENTRAL ¢-CHARGES IN d=6 where C,,., is the Weyl tensor, and the explicit form of
V,J9 is irrelevant since it is a total divergence and can be

In d =6 there are three Weyl invariants /; [27] canceled by a local counterterm. This gives three c-charges

I, =C ceefd be ind=6. . o
! abed e f The central charges of cubic curvature gravity in d = 6
Iy = CupegCel C o, was computed in Ref. [28], we therefore extend the result to

quartic order. We employ the reduced Fefferman-Graham

expansion trick to calculate the central charges [12,29]. We

_ § C,podCPR + Y, J (1) find that the a-charge is given by (72) specialized to d = 6,
and the three c-charges are

I3 = CupegV?C 4+ 4C g RECP

4
c| = 571'3145 [—3 —+ 4L_2(63€2’1 -+ 962.2 - 62’3) 4 3L_4(—5292€371 — 75663.2 — 10863’3 - 10863’4

—28e35 —4e3 5+ 20e37 — 39e35) + 24L75(37044¢, | + 5292¢45 + 756€4 3 + 756€4 4

+ 108ey 5 + 756e4 6 + 108ey 7 + 588ey g + 84ey9 + 84ey 10 + 12e4 11 + 12e41, + 108ey 13

+ 12e4 14 — 84ey15 +231ey 16 + 12e4 17 — 12e4 15 + 33€4.19 — 28e450 — 4eqn) — 12e4

—6e43 + 13e404 + des 05 + 12€456)], (C2)
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1
Cyr = 571'3L5 [—3 + 4L_2(63€2’1 + 962’2 + 762.3) + 3L_4<—5292€3'1 - 75663,2 - 10863’3 - 10883.4

- 47663’5 - 6863’6 + 2063’7 - 763,8) + 24L_6

(3704484’1 + 529264’2 —+ 75664.3 + 75664'4

—|— 10864’5 + 75664’6 + 1086477 + 294084’8 + 420@4,9 + 42034’10 + 6084’11 + 60@4712

+ 10864’13 + 6064’14

71.6

3004 “Tlss

APPENDIX D: GENERAL STRUCTURE
OF THREE-POINT FUNCTION

Holographic three-point functions can be extracted from
the cubic effective action of graviton on AdS background.
For higher curvature gravities whose the Lagrangian
depends on the metric g,;, and R,,.4, the metric dependence
becomes implicit if one chooses R, as the independent
variable [30], i.e., £ = L(R,,°?). The general form of the
cubic effective action can then be obtained by varying the
action to the third order

1
S§06) — a |:53 /dd+1x\/H£(Rabcd)]
. gab

1 _ _

= g/derlx |g| |:Pabcd53(Rade)
430, 8 R 3Ry )
+Gabcdefgh kl ( )S(Refg ) ( kl)

3_ _ 4 X
- EP“bcdé(Rabcd)hefhef 1z klhé’hzh?} . (D)

where h,;, = 89,5, Gup is the AdS metric, tensors P*¢¢ and
Cabedefgh are given by (12) and (16) respectively. The
tensor G4¢defohijkl g defined by

*L

Gahcdefghijkl — .
aRabcdaRefgh aRijkl

(D2)

We have also imposed the transverse and traceless con-
dition. It now becomes clear that there are three different
structures of the three-point function, controlled by the
tensors Pabed  cabedefgh (Gabedefghijkl ayalyated on the AdS
background respectively. The AdS background has
Rupea = =2/ L*GuicGapp- it follows that when evaluated on
this background, these three tensors can only be built from
the metric g,;,, thus their forms are all rigidly fixed, with
theory-dependent coefficients, e.g., (13) and (17). For
Einstein gravity only the contribution from P> is nonzero,
while for quadratic gravity the G@cdef9hijkl contribution

—8dey 15 + 63eq16 1+ 60ey 17 — 12¢4 13 + 9e4 19 + 196€4 50 + 28e4 51
- 4464’22 - 2264’23 + 1364'24 + 1264‘25 + 2064,26>]v

vanishes. All three tensors are nonzero for cubic gravity,
which can therefore enumerate all the possible structures. For
the quartic or higher orders, no new structures arise; they just
modify the coefficients in these three tensors.

APPENDIX E: QUASITOPOLOGICAL GRAVITY

We shall briefly review QT gravity and present dimension-
generic cubic and quartic QT combinations. There has been
an extensive study on QT gravity (e.g., Refs. [7,31-35]). A
quasitopological (QT) gravity is a type of gravity theories
whose equation of motion on the special spherically sym-
metric metric ansatze

1
ds? = —f(r)df* + malr2 +r}dzZ . (El)
is algebraic in f(r), i.e., does not involve derivatives of f(r).
This condition is equivalent to [36]

v, Pabed], = 0 (E2)

where ...| f denotes evaluating on the metric ansatze (E1).
This makes the black hole solutions of QT gravities easy to
obtain, thus QT gravity serves as a simplified model of
general higher curvature gravity.

At a given curvature polynomial order, it is straightfor-
ward to derive QT curvature combinations using con-
straints arise from (E2). For our purpose we only
consider dimension-generic case here, but it is important
to note that at specific dimensions there may be more
possible combinations than dimension-generic case. We
have two linearly independent cubic combinations with
coupling constants given by

{eS} = {d® —2d +3,-12(d - 1)%,16(d - 2)d,
24(d? = 3d +2),3(d? - 2d - 1),
—24(d* =3d +1),4d*> —14d + 6,0}, (E3)
{97} ={3(d+1),12-36d,48(d - 1),24(d + 1),
9d — 15, -24(d — 1),0,8(2d> —7d 4+ 3)}. (E4)
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Note that Lovelock combination is a special case of
QT gravity, we thus have only one nontrivial cubic
QT combination. For the quartic order we have 15
independent combinations, the full set of them is too
lengthy to be presented here so we only show the first
two of them.

(€91} = {1,-2(d +1).8(d = 1).d> — 4d + 7,
2-24%,0,0,...},

{ef7} =1{0.2(d +1),0,-2(d* —2d +5),0,-16(d - 1),
8(d> —1),—d*> +3d—4,4(d— 1),
& —4d> +5d+2,-2(d—1)*(d+1),0,0,...}.
(E6)
The full set of quartic QT combinations can be found in the
Supplemental Material r4QTG.wl [37], which is a

Wolfram Language file with further instructions included
in the usage messages.
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