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In symmetric teleparallel geometry the curvature and torsion tensors are assumed to vanish identically,
while the dynamics of gravity is encoded by nonmetricity. Here the spatially homogeneous and isotropic
connections that can accompany the flat Friedmann-Lemaître-Robertson-Walker metric come in three sets.
As the trivial set has received much attention, we focus on the two alternative sets, which introduce an extra
degree of freedom into the equations. Working in the context of symmetric teleparallel scalar-tensor gravity
with generic nonminimal coupling and potential, we show that the extra free function in the connection
cannot play the role of dark matter nor dark energy, but it drastically alters the scalar field behavior.
We determine the restrictions on the model functions which permit the standard cosmological scenario of
successive radiation, dust matter, and scalar potential domination eras to be stable. However, the alternative
connections also introduce a rather general possibility of the system meeting a singularity in finite time.
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I. INTRODUCTION

The still unresolved origin of the observed accelerated
expansion of the Universe known as dark energy, under-
lined by the significant tension with the cosmic data that the
concordanceΛCDMmodel is evidently facing [1], compels
us to look beyond Einstein’s theory of general relativity
(GR) [2–4]. Perhaps the simplest and most widely studied
type of GR extension is to add a nonminimally coupled
scalar field to the usual tensor degree of freedom. Such
scalar-tensor models are remarkably successful in predict-
ing the correct outcomes of early universe inflation [5,6],
but they can also describe late universe dark energy [7,8]
with effective “phantom crossing” behavior [9] and the
possibility to address the cosmic tension [10]. In the setup
where freely falling test particles follow geodesics (the
Jordan frame), nonminimal coupling manifests itself by
making the Newtonian gravitational constant dependent on
the value of the dynamical scalar field. However, large
classes of scalar-tensor cosmologies exhibit an “attractor
mechanism” whereby the scalar field spontaneously sta-
bilizes since the early matter dominated era [11]. This
feature can explain how the theory passes various Solar
System, astrophysical, and cosmological tests [12–14], and
it has been studied in detail in the literature [15–24].
Remarkably, the Einstein-Hilbert Lagrangian given by

the Levi-Civita curvature scalar R̊ is not the only way to
derive the dynamics of general relativity [25]. By invoking
extra freedom in the connection characterized by torsion or

nonmetricity, it is possible to demand that the geometry is
teleparallel; i.e., the overall curvature tensor is zero. In the
framework where nonmetricity also vanishes, one can then
introduce the (metric) teleparallel equivalent of general
relativity (TEGR) [26,27] by rewriting the Einstein-Hilbert
Lagrangian as R̊ ¼ −T þ BT , where T is the torsion scalar
and BT is a boundary term that does not contribute to the
field equations. Analogously, when torsion vanishes (and
hence the affine connection is symmetric), we get the
symmetric teleparallel equivalent of general relativity
(STEGR) [28] by writing R̊ ¼ Qþ BQ with nonmetricity
scalar Q and the respective boundary term BQ. While the
matter Lagrangian is left unchanged and still includes only
the coupling to the metric (or Levi-Civita connection), the
dynamics of TEGR and STEGR is equivalent to GR. The
extra torsional and nonmetricity bits of connection com-
pletely drop out of the field equations and remain arbitrary
spectators, with their only role being to keep the curvature
zero. However, the freedom to choose the teleparallel
connection arbitrarily may become restricted in the sit-
uations where the boundary term becomes relevant, like
black hole energy or entropy [29–31].
With the same motivation that led to the extensions of

GR, it is immediately tempting to introduce modified
teleparallel Lagrangians like fðTÞ [32–36] and fðQÞ
[36,37], or extend the theory in the scalar-tensor manner
by coupling a scalar field nonminimally to the torsion
scalar [38,39] or nonmetricity scalar [40]. These extensions
differ from their curvature based GR counterparts, which
make them really interesting to study in the search for new
phenomenology [41]. In contrast to the TEGR and STEGR
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cases, the extra bits of connection are now endowed with
their own equation. This raises an issue of how to proceed
in solving the combined system of metric and connection
equations, with different strategies conceivable [42]. One
option that has been fruitful in several situations is to
impose an ansatz for the connection which obeys the
same set of spacetime symmetries as the metric [43].
For example, in the case of cosmological Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetimes, the met-
ric teleparallel connection (torsion only) comes in one
family for spatial flatness and two families for spatial
curvature, including no extra functions besides the scale
factor already present in the metric [43,44]. On the other
hand, the symmetric teleparallel connection (nonmetricity
only) has three distinct options compatible with spatial
flatness and one for spatial curvature, all cases endowed
with an extra free function of time [45,46]. Different
connections imply different field equations and thus differ-
ent dynamics.
The deeper theoretical discussions about extended tele-

parallel gravities, in essence, revolve around the issue of
how much independent dynamics the extra bits of con-
nection really bring. The connection equation has only
first-order derivatives acting on the connection coefficients,
and thus it looks more like a constraint equation.
Furthermore, there is a gauge freedom in metric tele-
parallelism to perform a local Lorentz transformation that
makes the spin connection vanish (Weitzenböck gauge),
usually at the expense of the tetrad assuming a more
complicated form [27]; however, in symmetric teleparallel-
ism, a general coordinate transformation make the affine
connection vanish (coincident gauge), typically making the
metric more involved [47,48]. Thus, the connection itself is
a gauge degree of freedom, but it might conspire to hide
more items in the tetrad or metric. A well-respected
procedure to determine the number of degrees of freedom
in a theory is to perform Hamiltonian analysis, but so far
there is no consensus on the results, neither in fðTÞ [49–53]
nor fðQÞ [54–56] gravity, except that there is something
extra in the usual two tensor degrees of freedom of the
metric. These extra degrees of freedom are hard to pinpoint
precisely, though [57–60]. For instance, it is puzzling that
no extra propagating modes show up among the linear
perturbations around the cosmological backgrounds in
fðTÞ gravity [61–65], while even the perturbations of
the clearly independent scalar field become strangely
blocked in simple scalar-torsion cosmology [62,66,67].
Seeking hints of the extra dynamical degrees of freedom,
one can go to higher perturbation orders [68] or neglect the
spacetime symmetry of the connection [69].
In this context, a closer look at the spatially flat FLRW

connections in symmetric teleparallelism may offer new
insights. The new function present in the connection could
be taken as a clear instance of an extra degree of freedom.
To be more precise, in one of the three classes, this function

completely decouples from the fðQÞ equations [45,46],
which reduce to the ones arising from the trivial connection
(that vanishes in Cartesian coordinates) [37]. This system
actually coincides with the FLRW metric teleparallel
equations [40], which have been extensively studied
[41]. However, in the two other classes the new function
in the connection indeed manages to appear in the fðQÞ
cosmological equations [45,46]. So far, there have been a
few works that considered particular solutions and their
properties [70–72], phase space features [73–75], and
constraints from observational data [76,77], all for certain
specific models of fðQÞ.
In this paper we investigate spatially flat FLRW cosmol-

ogy in scalar-nonmetricity gravity, i.e., in the symmetric
teleparallel analogue of the scalar-tensor theory [40],
utilizing the three classes of connections with respective
symmetry [45,46]. We keep the nonminimal coupling
function and potential completely generic to cover as wide
a class of models as possible. The principal question is,
how does the extra function in the connection affect typical
cosmological dynamics, from the radiation dominated
epoch to matter domination, to the era of dark energy?
Can it be a source of dark energy itself or enable or disable
the scalar field to behave as one? Can it allow phantom
crossing for even a minimally coupled scalar field? Does
the cosmological evolution spontaneously stabilize at some
field values; i.e., is there an “attractor mechanism” like in
the original scalar-tensor theory, or does the connection
make the universe unstable? Finding answers to these
questions can prepare the groundwork for conducting direct
assessments of more interesting types of models through
comparisons with observational data. In the end we might
even unravel a plausible explanation to the current conun-
drums in cosmology.
This paper is organized as follows. Section II recalls the

geometrical setup of symmetric teleparallelism and the key
features of scalar-nonmetricity gravity. All three classes of
flat FLRW connections are explained in Sec. III. Section IV
presents the cosmological field equations arising for these
connections, with a focus on the dimensionality of the
phase space and the possibility of emulating dark energy.
Section V introduces the expansion scheme for small
perturbations, while Sec. VI explores, in detail, the stability
of cosmological evolution in the dust matter dominated,
radiation dominated, and scalar potential dominated
regimes for the three class connections. Finally, Sec. VII
provides a discussion of the obtained results.

II. SYMMETRIC TELEPARALLEL GRAVITIES

Symmetric teleparallel gravity assumes a geometric
setup where the connection is characterized by identically
vanishing curvature and torsion, while only nonmetricity is
allowed to deviate from zero. The action can be constructed
from the nonmetricity scalar, which is equivalent to the
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Levi-Civita Ricci scalar up to a boundary term, thus
providing a link to GR.

A. Geometric preliminaries

A generic connection Γ̃λ
μν with 64 independent compo-

nents can be decomposed into three parts [78,79],

Γ̃λ
μν ¼ Γ̊λ

μν þ Kλ
μν þ Lλ

μν; ð1Þ

namely, the Levi-Civita connection of the metric gμν,

Γ̊λ
μν ≡ 1

2
gλβð∂μgβν þ ∂νgβμ − ∂βgμνÞ; ð2Þ

the contortion tensor

Kλ
μν ≡ 1

2
gλβð−Tμβν − Tνβμ þ TβμνÞ ¼ −Kμ

λ
ν; ð3Þ

and the disformation tensor

Lλ
μν ≡ 1

2
gλβð−Qμβν −Qνβμ þQβμνÞ ¼ Lλ

νμ: ð4Þ

Here, contortion is built from torsion tensors that character-
ize the antisymmetric part of the connection,

Tλ
μν ≡ Γ̃λ

μν − Γ̃λ
νμ; ð5Þ

while disinformation is constructed from nonmetricity
tensors that are symmetric in the last two indices,

Qρμν ≡∇ρgμν ¼ ∂ρgμν − Γ̃β
μρgβν − Γ̃β

νρgμβ: ð6Þ

These quantities, along with curvature tensor

Rσ
ρμν ≡ ∂μΓ̃σ

νρ − ∂νΓ̃σ
μρ þ Γ̃σ

μλΓ̃λ
νρ − Γ̃σ

μλΓ̃λ
νρ; ð7Þ

are the three key properties that characterize any connec-
tion. Zero curvature implies that the orientation of vectors
does not change under parallel transport along a curve. Zero
torsion implies that the connection is symmetric in the
lower indices. Hence, the imposition of vanishing curvature
and torsion merits the name “symmetric teleparallel,” and
we denote it by Γλ

μν.
The connection Γλ

μν has an interesting property that the
scalar curvature of the Levi-Civita part of the connection,
R̊, can be expressed as

R̊ ¼ Qþ ∇̊μðQ̂μ −QμÞ; ð8Þ

where the nonmetricity scalar and the two independent
traces of the nonmetricity tensor are defined as1

Q≡−
1

4
QλμνQλμνþ1

2
QλμνQμνλþ1

4
QμQμ−

1

2
QμQ̂

μ; ð9Þ

Qμ ≡Qμν
ν; Q̂μ ≡Qνμ

ν: ð10Þ

It is also significant that the total Levi-Civita divergence
part in (8),

BQ ¼ ∇̊μðQ̂μ −QμÞ; ð11Þ

becomes a boundary term under a spacetime integral.
The idea behind the symmetric teleparallel equiva-

lent of general relativity is the following. As the
Einstein-Hilbert action of GR is given by the Levi-
Civita curvature scalar R̊, we can rewrite that action using
the nonmetricity scalar Q instead and expect to keep the
same dynamical content since the boundary term does not
affect the field equations. Various extensions of the
symmetric teleparallel theory, like substituting Q in the
action by fðQÞ [37] or introducing a nonminimal coupling
between Q and a scalar field Φ [40], however, lead to
theories that are different from their counterparts fðR̊Þ and
scalar-tensor gravity originally formulated in the
Riemannian geometry.

B. Scalar-nonmetricity gravity

A symmetric teleparallel analogue of a simple scalar-
tensor action can be written as [40]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðAðΦÞQ − BðΦÞgαβ∂αΦ∂βΦ − 2VðΦÞÞ

þ Sm; ð12Þ

where κ2 ¼ 8πG. Like in the usual Riemannian scalar-
tensor theory, the nonminimal coupling function A sets the
strength of the effective gravitational constant, B is the
kinetic coupling function, and V is the scalar potential. We
assume that the matter action Sm is the same as in GR, i.e.,
depending on the metric alone.
By introducing the so-called superpotential (or conju-

gate) tensor

Pα
μν ¼ −

1

4
Qα

μν þ
1

2
QðμανÞ þ

1

4
gμνQα

−
1

4
ðgμνQ̂α þ δαðμQνÞÞ ð13Þ

1Note that some authors define Q with the opposite overall
sign, e.g., Ref. [45].
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as well as some geometric identities, the field equations arising from the variation of the action (12) with respect to the
metric, symmetric teleparallel connection, and scalar field are the following [40,80]:

AðΦÞG̊μν þ 2
dA
dΦ

Pλ
μν∂λΦþ 1

2
gμνðBðΦÞgαβ∂αΦ∂βΦþ 2VðΦÞÞ − BðΦÞ∂μΦ∂νΦ ¼ κ2T μν; ð14aÞ

�
1

2
Qβ þ∇β

��
∂αA

�
1

2
Qμgαβ −

1

2
δαμQβ −Qμ

αβ þ δαμQ
γβ
γ

��
¼ 0; ð14bÞ

2B□̊Φþ dB
dΦ

gαβ∂αΦ∂βΦþ dA
dΦ

Q − 2
dV
dΦ

¼ 0: ð14cÞ

Here, G̊μν is the Einstein tensor and □̊ the d’Alembert
operator computed from the Levi-Civita part of the con-
nection, while T μν is the usual matter energy-momentum
tensor. Taking the Levi-Civita covariant divergence of the
metric field equations (14), and using the connection
equations (14b) as well as the scalar field equation (14c),
gives the usual continuity equation of the matter fields [40],

∇̊μT μ
ν ¼ 0: ð15Þ

It can be understood as a consequence of the matter part of
the action only coupling to the metric (or Levi-Civita
connection) whereby there are no matter (hypermomen-
tum) sources in the connection equations (14b). More
generally, it is related to the diffeomorphism invariance
of the matter action [81]. The same property is shared with
the torsion based teleparallel scalar-tensor theory [39].
Another essential point to highlight is that the connection
equation (14b) is not independent but intricately linked
with the metric equations (14a). This interdependence
arises from the Bianchi identity within symmetric tele-
parallelism, whereby by acting with the Levi-Civita covar-
iant derivative on the metric equation, one can arrive at the
connection equation [82]. Consequently, when the metric
equations are satisfied, the corresponding connection equa-
tions automatically follow. However, we will still keep the
connection equations separately, as they express useful
information about the fields.
When the scalar field is globally constant, Eq. (14a)

reduces to Einstein’s equation in GR, with the value of the
potential playing the role of the cosmological constant,
while (14b) and (14c) immediately vanish. Therefore, the
solutions of GR are trivially also the solutions of these
scalar-tensor theories, with the scalar field just being
constant. If the nonminimal coupling function is fixed to
unity, AðΦÞ≡ 1, and the kinetic and potential terms of the
scalar field vanish, BðΦÞ≡ VðΦÞ≡ 0, the theory is
reduced to a STEGR. If the nonminimal coupling function
is unity but the kinetic term of the scalar field is nontrivial,
then we have a theory that is equivalent to a minimally
coupled scalar field in GR. With the identifications

A ¼ f0ðQÞ, B ¼ 0, 2V ¼ Qf0ðQÞ − fðQÞ, the current
model also represents fðQÞ gravity [40].

III. SPATIALLY HOMOGENEOUS AND
ISOTROPIC FIELD CONFIGURATIONS

Spatially homogeneous and isotropic cosmological
spacetimes are characterized by the Killing vectors of
translations ζTi

and rotations ζRi
, given in spherical

coordinates as

ζμTx
¼

�
0 χ sin θ cosϕ χ

r cos θ cosϕ − χ
r
sinϕ
sin θ

�
; ð16aÞ

ζμTy
¼

�
0 χ sin θ sinϕ χ

r cos θ sinϕ
χ
r
cosϕ
sin θ

�
; ð16bÞ

ζμTz
¼

�
0 χ cos θ − χ

r sin θ 0
�
; ð16cÞ

ζμRx
¼

�
0 0 sinϕ cosϕ

tan θ

�
; ð16dÞ

ζμRy
¼

�
0 0 − cosϕ sinϕ

tan θ

�
; ð16eÞ

ζμRz
¼ ð 0 0 0 −1 Þ; ð16fÞ

where χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
describes the curvature of the 3-space.

In this paper we focus only on the spatially flat case; thus,
k ¼ 0. Since in the teleparallel context the connection is
independent of the metric, imposing the symmetry fully
means that the Lie derivatives of the metric and affine
connection along these vectors vanish [43],

£ζgμν ¼ 0; £ζΓλ
μν ¼ 0: ð17Þ

While it is well known that the metric which satisfies this
condition is the Friedmann-Lemaître-Robertson-Walker
one, conveniently written as

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dθ2 þ r2 sin2 θdϕ2Þ; ð18Þ
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the symmetric teleparallel connection components with the
same spacetime symmetry were worked out only recently,
and practically simultaneously, in Refs. [45,46]. They come
in three sets and are presented below by adopting the notation
of Ref. [70]. First, let us note that matter energy-momentum,
consistent with the cosmological symmetry, is given by

T μν ¼

0
BBB@
ρðtÞ 0 0 0

0 a2ðtÞpðtÞ 0 0

0 0 r2a2ðtÞpðtÞ 0

0 0 0 r2a2ðtÞpðtÞsin2 θ

1
CCCA

ð19Þ

wherewe further assume a barotropic equation of statewhere
the pressure is proportional to density,p ¼ wρ. Similarly, the
spatially homogeneous and isotropic scalar field can only
depend on time,

Φ ¼ ΦðtÞ: ð20Þ

A. Connection set 1

The first set of spatially homogeneous and isotropic
k ¼ 0 symmetric teleparallel connections can be pre-
sented as

Γρ
μν ¼

2
6664
2
6664
γðtÞ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
7775

2
6664
0 0 0 0

0 0 0 0

0 0 −r 0

0 0 0 −rsin2θ

3
7775

2
6664
0 0 0 0

0 0 1
r 0

0 1
r 0 0

0 0 0 − sin θ cos θ

3
7775

2
6664
0 0 0 0

0 0 0 1
r

0 0 0 cot θ

0 1
r cot θ 0

3
7775
3
7775 ð21Þ

where the four matrices in the columns are labeled by the first index ρ, and the entries of the matrices are specified by the

last two indices μν. This set was treated as case 1 (K2 ¼ K3 ¼ 0) with γ ¼ K1 ¼ −K in [45] and as case ΓðIIIÞ
Q with γ ¼ C1

in [46]. There are no extra restrictions on the function γðtÞ. The nonmetricity scalar (9) computed from this connection is

Q ¼ −6H2: ð22Þ

B. Connection set 2

The second set of spatially homogeneous and isotropic k ¼ 0 symmetric teleparallel connections can be presented as

Γρ
μν ¼

2
6664
2
6664
γðtÞþ γ̇ðtÞ

γðtÞ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
7775

2
6664

0 γðtÞ 0 0

γðtÞ 0 0 0

0 0 −r 0

0 0 0 −rsin2 θ

3
7775

2
6664

0 0 γðtÞ 0

0 0 1
r 0

γðtÞ 1
r 0 0

0 0 0 −sinθcosθ

3
7775

2
6664

0 0 0 γðtÞ
0 0 0 1

r

0 0 0 cotθ

γðtÞ 1
r cotθ 0

3
7775
3
7775 ð23Þ

where, by definition, γðtÞ ≠ 0. This set was called case 3 (K2 ¼ 0, K3 ≠ 0) with γ ¼ K3 ¼ K in [45] and case ΓðIÞ
Q with

γ ¼ C3 in [46]. The nonmetricity scalar characterizing the connection (23) is

Q ¼ −6H2 þ 9Hγ þ 3γ̇: ð24Þ

C. Connection set 3

The third set of spatially homogeneous and isotropic k ¼ 0 symmetric teleparallel connections can be presented as

Γρ
μν ¼

2
6664
2
6664
− γ̇ðtÞ

γðtÞ 0 0 0

0 γðtÞ 0 0

0 0 r2γðtÞ 0

0 0 0 r2γðtÞsin2 θ

3
7775

2
6664
0 0 0 0

0 0 0 0

0 0 −r 0

0 0 0 −rsin2 θ

3
7775

2
6664
0 0 0 0

0 0 1
r 0

0 1
r 0 0

0 0 0 −sinθcosθ

3
7775

2
6664
0 0 0 0

0 0 0 1
r

0 0 0 cotθ

0 1
r cotθ 0

3
7775
3
7775 ð25Þ

where, by definition, γðtÞ ≠ 0. This set was called case 2 (K2 ≠ 0, K3 ¼ 0) with γ ¼ K2 ¼ −a2K in [45] and case ΓðIIÞ
Q with

γ ¼ C2 in [46]. The corresponding nonmetricity scalar is
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Q ¼ −6H2 þ 9Hγ̄ þ 3 ˙̄γ ð26Þ

where γ̄ ¼ γðtÞ
aðtÞ2.

IV. SCALAR-TENSOR COSMOLOGY

After these mathematical preliminaries, it is time to write
out the cosmological equations and ask whether the extra
function γðtÞ in the connection really constitutes an inde-
pendent degree of freedom and whether it can mimic dark
matter or dark energy in the description of our Universe.

A. Connection set 1

Substituting the metric (18), connection (21), matter
(19), and scalar field (20) into the field equations (14) and
(15) yields two nontrivial metric equations, a scalar field
equation, and a matter continuity equation as follows:

6H2AðΦÞ − Φ̇2BðΦÞ − 2VðΦÞ ¼ 2κ2ρ; ð27aÞ

− 4HΦ̇A0ðΦÞ − ð6H2 þ 4ḢÞAðΦÞ − Φ̇2BðΦÞ
þ 2VðΦÞ ¼ 2κ2wρ; ð27bÞ

− 6H2A0ðΦÞ − ð6HΦ̇þ 2Φ̈ÞBðΦÞ − Φ̇2B0ðΦÞ
− 2V 0ðΦÞ ¼ 0; ð27cÞ

ρ̇þ 3Hð1þ wÞρ ¼ 0: ð27dÞ

As first pointed out in Ref. [40], these equations coincide
with the scalar-tensor cosmological equations in torsion
based teleparallel gravity [39]. They have been studied a
great deal in the teleparallel context [38,83–94], and we
consider them here mainly for reference in comparison with
the respective set 2 and 3 equations. In an analogous
notation, the corresponding scalar-tensor equations in the
usual Riemannian theory can be found, for instance, in
Ref. [23]. The main difference here is that in the (sym-
metric) teleparallel case, the scalar field equation (27c)
lacks matter sources. For minimally coupled (A0 ¼ 0)
theories, the equations fully coincide.
Notice that for connection set 1 (21), the connection

equations (14b) are satisfied identically, and γðtÞ is left
completely arbitrary by the field equations. The remaining
four equations above are not independent of each other, as
we can take a time derivative of the Friedmann constraint
(27a) and derive any of (27b)–(27d) from the rest.
Furthermore, the Friedmann constraint (27a) gives an
algebraic relation between the variables, making one of
them not independent. In other words, the physical dynam-
ics in the four-dimensional phase space of fΦ; Φ̇; ρ; Hg
takes place on a three-dimensional hypersurface deter-
mined by (27a). In fact, we can explicitly reduce the
system (27) to a set of three first-order differential

equations that faithfully represent its dynamics. For in-
stance, we may eliminate H and write

Φ̇ ¼ Π; ð28aÞ

Π̇ ¼ −
Π2ðAðΦÞB0ðΦÞ þ BðΦÞA0ðΦÞÞ

2AðΦÞBðΦÞ

−
κ2ρA0ðΦÞ þAðΦÞV 0ðΦÞ þ VðΦÞA0ðΦÞ

AðΦÞBðΦÞ

∓ Π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΠ2BðΦÞ þ 2κ2ρþ 2VðΦÞÞ

2AðΦÞ

s
; ð28bÞ

ρ̇ ¼ ∓ð1þ wÞρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΠ2BðΦÞ þ 2κ2ρþ 2VðΦÞÞ

2AðΦÞ

s
ð28cÞ

where the upper (lower) sign corresponds to the expanding
H > 0 (contracting H < 0) branch of the Friedmann
constraint (27a). Any other combination of the variables
like fΦ; ρ; Hg or fΦ; Φ̇H ; ρ

H2g, when properly implemented,
would still yield a three-dimensional system. Below wewill
confirm that for connection sets 2 and 3, the phase space
gets an additional independent dimension.

B. Connection set 2

From the metric (18), connection set 2 (23), matter (19),
and scalar field (20), the two nontrivial metric equa-
tions (14a), one nontrivial connection equation (14b), the
scalar field equation (14c), and the matter continuity
equation (15) are

3Φ̇γA0ðΦÞþ6H2AðΦÞ−Φ̇2BðΦÞ−2VðΦÞ¼2κ2ρ; ð29aÞ

ð3Φ̇γ − 4HΦ̇ÞA0ðΦÞ − ð6H2 þ 4ḢÞAðΦÞ − Φ̇2BðΦÞ
þ 2VðΦÞ ¼ 2κ2wρ; ð29bÞ

3γðΦ̈A0ðΦÞ þ 3HΦ̇A0ðΦÞ þ Φ̇2A00ðΦÞÞ ¼ 0; ð29cÞ

ð−6H2 þ 9Hγ þ 3γ̇ÞA0ðΦÞ − ð6HΦ̇þ 2Φ̈ÞBðΦÞ
− Φ̇2B0ðΦÞ − 2V 0ðΦÞ ¼ 0; ð29dÞ

ρ̇þ 3Hð1þ wÞρ ¼ 0: ð29eÞ

The nonzero function γ always appears in the equations
multiplied by the derivatives ofA. Thus, its only effect is in
nonminimally coupled theories, i.e., extensions of STEGR.
For the minimal couplings (A0 ¼ A00 ¼ 0), the function γ is
not present in the field equations and remains completely
arbitrary. In the case of minimal couplings, the field
equations coincide with those of set 1 and of the minimally
coupled scalar field equations in general relativity.
It is interesting to consider whether the connection

contribution γ in the equations can mimic dark matter or
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dark energy. For that, it would need to have an available
regime where it can act analogously to ρwith w ¼ 0 or −1,
respectively. However, this is not possible. If we compare
the terms with γ in Eqs. (29a) and (29b) to the terms with ρ,
then the effective barotropic index we could assign to the γ
term would be þ1 instead. Thus, even by picking suitable
model functions A, B, V that could allow us to rewrite
Eq. (29d) as a respective effective continuity equation for γ,
it cannot contribute to effective dark matter or dark energy
in the cosmological equations.
By construction, only four of the equations (29) are

independent since any of them can be expressed as a linear
combination of the time derivative of (29a) and the
remaining equations. But the actual number of independent
variables in the set fΦ; Φ̇; ρ; H; γg is at first not so obvious
since the connection equation (29c) does not provide
dynamics for the independent connection function γ but
rather restrains the scalar field dynamics to

Φ̈ ¼ −3HΦ̇ −
A00ðΦÞ
A0ðΦÞ Φ̇

2: ð30Þ

This could give an impression that although there is one
extra variable and one extra equation, there is also one extra
constraint that allows us to eliminate Φ̈ from the system and
reduce the number of independent variables by one.
However, after eliminating Φ̈, the Friedmann equation (29a)
ceases to be a constraint that can lessen the number of
independent variables but rather assumes the role of a
dynamical equation for Φ. Thus, in effect, we are left with
four first-order equations for four independent variables
fΦ; ρ; H; γg, and the phase space is four dimensional.
There is no way we can express any of these four in terms
of the others.
Alternatively, we may treat (30) as a dynamical equation

and use (29a) to eliminate H, writing the system (29) as

Φ̇ ¼ Π; ð31aÞ

Π̇ ¼ −
Π2A00ðΦÞ
A0ðΦÞ ∓ Π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΠ2BðΦÞ − 3ΠγA0ðΦÞ þ 2κ2ρþ 2VðΦÞÞ

2AðΦÞ

s
; ð31bÞ

ρ̇ ¼ ∓ð1þ wÞρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΠ2BðΦÞ − 3ΠγA0ðΦÞ þ 2κ2ρþ 2VðΦÞÞ

2AðΦÞ

s
; ð31cÞ

γ̇ ¼ −
Π2ð2AðΦÞBðΦÞA00ðΦÞ −AðΦÞA0ðΦÞB0ðΦÞ − BðΦÞðA0ðΦÞÞ2Þ

3AðΦÞðA0ðΦÞÞ2 −
ΠγA0ðΦÞ
AðΦÞ

þ 2ðκ2ρA0ðΦÞ þAðΦÞV 0ðΦÞ þ VðΦÞA0ðΦÞÞ
3AðΦÞA0ðΦÞ ∓ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΠ2BðΦÞ − 3ΠγA0ðΦÞ þ 2κ2ρþ 2VðΦÞÞ

2AðΦÞ

s
; ð31dÞ

which can be compared to the system (28) of set 1. Again,
there are four independent variables fΦ; Φ̇; ρ; γg, and for
generic model functions, it is not possible to reduce the
system to a lower-dimensional one.
Surprisingly, according to Eq. (30), the kinetic coupling

BðΦÞ and potential VðΦÞ play no direct role in the scalar
field dynamics. Here, for an expanding universe, the first
term on the rhs dominates at small Φ̇ and acts as friction
that slows down the scalar field evolution. The second term
on the rhs dominates at larger Φ̇ values and pushes Φ̇ to
increasing or decreasing values, depending on the sign of
A00ðΦÞ
A0ðΦÞ. This means that for an appropriate initial “speed” Φ̇,

all solutions will reach a standstill at some arbitrary value of
Φ. However, for a sufficiently large initial “speed,” the Φ̇2

term can trigger ever stronger “acceleration” Φ̈, throwingΦ
towards infinity and causing a possible instability. If the

coupling function has an extremum (A0 ¼ 0) at some value
Φs, then even small perturbations from static Φ can launch
such unstable behavior. In the phase space, the scalar field
cannot evolve past the value of Φs where A00

A0 becomes
singular since, depending on the initial conditions, it is
either forced to stop at Φs or meets a sudden singularity
with jΦ̇j → ∞ in finite time. Thus, by simply analyzing the
field equations, we should become apprehensive about the
stability of the solutions with connection set 2.

C. Cosmology of connection set 3

Finally, inserting the metric (18), connection set 3 (25),
matter (19), and the scalar field (20) into the field equations
yields the two nontrivial metric equations (14a), one
nontrivial connection equation (14b), the scalar field
equation (14c), and the matter continuity equation (15) as
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6H2AðΦÞ − 3γ̄ Φ̇A0ðΦÞ − Φ̇2BðΦÞ − 2VðΦÞ ¼ 2κ2ρ;

ð32aÞ

ðγ̄ Φ̇−4HΦ̇ÞA0ðΦÞ − ð6H2 þ 4ḢÞAðΦÞ − Φ̇2BðΦÞ
þ 2VðΦÞ ¼ 2κ2wρ; ð32bÞ

− 6 ˙̄γ Φ̇A0ðΦÞ − 3γ̄ðΦ̈A0ðΦÞ þ 5HΦ̇A0ðΦÞ
þ Φ̇2A00ðΦÞÞ ¼ 0; ð32cÞ

ð−6H2 þ 9Hγ̄ þ 3 ˙̄γÞA0ðΦÞ − ð6HΦ̇þ 2Φ̈ÞBðΦÞ
− Φ̇2B0ðΦÞ − 2V 0ðΦÞ ¼ 0; ð32dÞ

ρ̇þ 3Hð1þ wÞρ ¼ 0: ð32eÞ

Like in the previous case of set 2, the nonzero function γ̄
always appears in the equations as multiplied by the
derivatives of A and thus only has an effect in nonminimal
theories. For the minimal coupling, the function γ̄ does not
enter the field equations and remains completely arbitrary,
while the equations themselves coincide with those of
the minimally coupled scalar field equations in general
relativity.

Compared to the set 2 case, the γ̄ term in (32a) comes
with an opposite sign. Despite that, γ̄ cannot play the role of
effective dark matter or dark energy since the effective
barotropic index we could assign to the γ̄ terms in
(32a)–(32b) is − 1

3
, i.e., analogous to the spatial curvature

term. In the remaining equations, the γ̄ terms do not quite
act like the spatial curvature for generic model functions,
but perhaps some combinations ofAðΦÞ, BðΦÞ, VðΦÞmay
indeed allow it to mimic such behavior even exactly.
Again, by construction, only four of the equations (32)

are independent since any of them can be expressed as a
linear combination of the time derivative of (32a) and
the remaining equations. The connection equation (32c)
contains Φ̈ and γ̄ and can be used to eliminate either of
them, eventually leading to fΦ; ρ; H; γg or fΦ; Φ̇; ρ; Hg
as independent variables. For example, we may express,
from (32c),

Φ̈ ¼ −
�
2 ˙̄γ

γ̄
þ 5H

�
Φ̇ −

A00ðΦÞ
A0ðΦÞ Φ̇

2 ð33Þ

and substitute it in.
Alternatively, we may use (32a) to eliminateH and write

the system (32) as

Φ̇ ¼ Π; ð34aÞ

Π̇ ¼ −
Π2A00ðΦÞ
A0ðΦÞ −

2Π ˙̄γ

γ̄
∓ 5Π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2BðΦÞ þ 3Πγ̄A0ðΦÞ þ 2κ2ρþ 2VðΦÞ

6AðΦÞ

s
; ð34bÞ

ρ̇ ¼ ∓ð1þ wÞρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΠ2BðΦÞ þ 3Πγ̄A0ðΦÞ þ 2κ2ρþ 2VðΦÞÞ

2AðΦÞ

s
; ð34cÞ

˙̄γ ¼ −
Π2γ̄ð2AðΦÞBðΦÞA00ðΦÞ −AðΦÞA0ðΦÞB0ðΦÞ − BðΦÞðA0ðΦÞÞ2Þ

ð4ΠBðΦÞ þ 3γ̄A0ðΦÞÞAðΦÞðA0ðΦÞÞ þ 3Πγ̄2ðA0ðΦÞÞ2
ð4ΠBðΦÞ þ 3γ̄A0ðΦÞÞAðΦÞ

þ 2γ̄ðκ2ρA0ðΦÞ þAðΦÞV 0ðΦÞ þ VðΦÞA0ðΦÞÞ
ð4ΠBðΦÞ þ 3γ̄A0ðΦÞÞAðΦÞ

∓ 9γ̄2A0ðΦÞ þ 4Πγ̄BðΦÞ
3ð4ΠBðΦÞ þ 3γ̄A0ðΦÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΠ2BðΦÞ þ 3Πγ̄A0ðΦÞ þ 2κ2ρþ 2VðΦÞÞ

2AðΦÞ

s
; ð34dÞ

where ˙̄γ in (34b) should be substituted in from (34d). This
can be compared to the systems (28) of set 1 and (31) of set
2. There are four independent variables fΦ; Φ̇; ρ; γg, and
for generic model functions, it is not possible to reduce the
system to a lower-dimensional one.
Concerning the scalar field dynamics, Eq. (34b) is

structurally rather similar to Eq. (31b) of set 2 analyzed
above. The only addition in (34b) is another contribution to
friction which depends on γ̄. Therefore, all the remarks

about the possible instabilities also apply to the set 3
connection here, and we should use caution here.

V. LIMIT OF GENERAL RELATIVITY

Since the extra function in the FLRW symmetric tele-
parallel connections cannot contribute to dark matter or
dark energy but rather induces a possibility for instabilities,
it would make sense to check whether the usual ΛCDM
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background behavior is obtainable in the theory and
prepare the groundwork to study the dynamics near such
regimes.

A. Relaxation to general relativity

The well-known Friedmann equations for a spatially flat
universe with a single barotropic fluid matter component in
general relativity are

3H2 ¼ 8πGNρþ Λ; ð35aÞ

2Ḣ þ 3H2 ¼ −8πGNwρþ Λ; ð35bÞ

ρ̇þ 3Hð1þ wÞρ ¼ 0; ð35cÞ

whereGN is the Newtonian gravitational constant andΛ the
cosmological constant. The scalar-tensor cosmological
metric equations for different connections (27a)–(27b),
(29a)–(29b), and (32a)–(32b) reduce to (35) when the
dynamics of the scalar field stops, i.e., atΦ� which sustains
Φ̇ ¼ Φ̈ ¼ 0. Then, the value of the nonminimal coupling
function sets the gravitational constant, 8πGN ¼ κ2

AðΦ�Þ, and
the value of the potential plays the role of the cosmological

constant, Λ ¼ VðΦ�Þ
AðΦ�Þ. Note that the vanishing of Φ̇ also

removes the contribution of the connection functions γ and
γ̄ from the metric field equations. Whether the stabilization
of the scalar field to a constant value is possible, as well as
at which value of Φ it occurs, depends on the model
functions AðΦÞ, BðΦÞ, VðΦÞ, and the respective connec-
tion and scalar field equations (27c), (29c)–(29d), and
(32c)–(32d).
To shorten the expressions in the calculations that follow,

it is helpful to remember that, without loss of generality, we
can reparametrize the scalar field, i.e., introduce new ϕðΦÞ
so that the general form of the action (12) does not change.
Since by our starting assumptions the scalar field is only
involved in mediating gravity and does not have other
interactions with the matter fields, the precise value of the
scalar field is unmeasurable and irrelevant. All that matters
in the cosmological context is the coupling to the gravity
term Q in the action, which sets the effective gravitational
constant, and the kinetic and potential terms in the
equations, which affect the dynamics. Thus, for the sake
of simplicity, we can adopt a particular parametrization of
the scalar field whereby the kinetic coupling is canonical,
BðϕÞ≡ 1. We can also rewrite the nonminimal coupling to
gravity as AðϕÞ ¼ 1þ fðϕÞ, which splits out a constant
part, and denote the potential function in terms of the
reparametrized field as VðϕÞ.
In terms of this parametrization, the solutions of

Eqs. (35) for different matter types are easy to write out.
In the case of nonrelativistic matter (pressureless dust,
w ¼ 0), the Hubble parameter and matter density evolve as

H� ¼
2

3ðt− tsÞ
; ρ� ¼

4ð1þf�Þ
3κ2ðt− tsÞ2

; V� ¼ 0; ð36Þ

in the case of relativistic matter (radiation, w ¼ 1
3
), they

evolve as

H� ¼
1

2ðt− tsÞ
; ρ� ¼

3ð1þf�Þ
4κ2ðt− tsÞ2

; V� ¼ 0; ð37Þ

and finally, in the case where the scalar potential plays
the role of dark energy (cosmological constant), the
evolution is

H� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V�
3ð1þf�Þ

s
; ρ� ¼ 0; V� ¼ const≠ 0: ð38Þ

Here, H� and ρ� can evolve in time, but f� ¼ fðϕ�Þ and
V� ¼ Vðϕ�Þ are constants evaluated at the point where
the scalar field stops. The integration constant ts sets the
moment of initial singularity, and we can fix ts ¼ 0. The
cosmological standard ΛCDM model involves all three
types of matter, but since the densities of the matter types
evolve at different rates, the universe goes through a
sequence of radiation, dust matter, and dark energy
domination eras where the other components can be
neglected as subdominant.

B. Expansion around the general relativity limit

In a realistic scenario for the late universe, the eras of
radiation, dust, and dark energy domination follow each
other as the respective energy densities become dominant in
succession. Thus, a basic stability test of a modified gravity
model is whether the single fluid cosmological equations are
stable against small perturbations; i.e., there is no other
phenomenon that could destroy the standard history of the
universe. Moreover, the change of the effective gravitational
constant has had significant constraints since the time of big
bang nucleosynthesis; hence, the scalar must have resided at
an almost constant value from the time of the early universe
until today [12–14,95,96].
To see whether the limit of general relativity is dynami-

cally stable, let us study the evolution of small perturba-
tions near the value of ϕ�. Thus, let us expand

ϕðtÞ ¼ ϕ� þ xðtÞ; HðtÞ ¼ H�ðtÞ þ hðtÞ;
γðtÞ ¼ γ�ðtÞ þ gðtÞ; ρðtÞ ¼ ρ�ðtÞ þ rðtÞ; ð39Þ

where xðtÞ, hðtÞ, gðtÞ, and rðtÞ are small perturbations that
we assume to be of roughly the same order. The respective
derivatives are

ϕ̇ðtÞ ¼ ẋðtÞ; ḢðtÞ ¼ Ḣ�ðtÞ þ ḣðtÞ;
γ̇ðtÞ ¼ γ̇�ðtÞ þ ġðtÞ; ρ̇ðtÞ ¼ ρ̇�ðtÞ þ ṙðtÞ; ð40Þ
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also assumed to be of roughly the same order. We can also
expand the functions of the scalar field as

fðϕðtÞÞ ¼ f� þ f0�xðtÞ þ
f00�ðxðtÞÞ2

2
;

f0ðϕðtÞÞ ¼ f0� þ f00�xðtÞ þ
f000� ðxðtÞÞ2

2
;

f00ðϕðtÞÞ ¼ f00� þ f000� xðtÞ þ
f0000� ðxðtÞÞ2

2
; ð41aÞ

VðϕðtÞÞ ¼ V� þ V 0�xðtÞ þ
V 00�ðxðtÞÞ2

2
;

V 0ðϕðtÞÞ ¼ V 0� þ V 00�xðtÞ þ
V 000� ðxðtÞÞ2

2
: ð41bÞ

Substituting these definitions into the cosmological
equations (27), (29), and (32) yields expressions which
can be solved order by order. At the lowest (background)

order, for all three sets, the metric and matter equations
reduce to (35) as explained above. At the background order,
for all the connections, the connection equation is identically
satisfied while the scalar field equation is slightly different.

VI. STABILITY OF STANDARD
COSMOLOGICAL REGIMES

Now, we are in a position to investigate the stability of
the standard dust, radiation, and dark energy dominated
regimes near the general relativity limit in the configura-
tions with different symmetric teleparallel cosmological
connections.

A. Connection set 1

Applying the parametrization and expansion introduced
in Sec. Von the cosmological equations (27) of connection
set 1 (21) yields up to first-order small quantities

6ð1þ f�ÞH2�ðtÞ − 2V� − 2κ2ρ�ðtÞ þ ð12ð1þ f�ÞH�ðtÞhðtÞ þ 6f0�H2�ðtÞxðtÞ − 2V 0�xðtÞ − 2κ2rðtÞÞ ¼ 0; ð42aÞ

4ð1þ f�ÞḢ�ðtÞ þ 6ð1þ f�ÞH2�ðtÞ − 2V� þ 2κ2wρ�ðtÞ þ ð4f0�xðtÞḢ�ðtÞ þ 12ð1þ f�ÞH�ðtÞhðtÞ þ 4ð1þ f�ÞḣðtÞ
þ 6f0�H2�ðtÞxðtÞ þ 4f0�H�ðtÞẋðtÞ − 2V 0�xðtÞ þ 2κ2wrðtÞÞ ¼ 0; ð42bÞ

−6f0�H2�ðtÞ − 2V 0� − ð2V 00�xðtÞ þ 6f00�H2�ðtÞxðtÞ þ 12f0�H�ðtÞhðtÞ þ 6H�ðtÞẋðtÞ þ 2ẍðtÞÞ ¼ 0; ð42cÞ

ρ̇�ðtÞ þ 3ð1þ wÞH�ðtÞρ�ðtÞ þ ð3wH�ðtÞrðtÞ þ 3wρ�ðtÞhðtÞ þ 3H�ðtÞrðtÞ þ 3ρ�ðtÞhðtÞ þ ṙðtÞÞ ¼ 0: ð42dÞ

The characteristic behavior depends on the dominant
matter type. The same equations but without the matter
perturbation rðtÞ were analyzed in Ref. [91]. Therefore,
below we add the matter perturbation and summarize the
main results.

1. Dust matter domination

In a nonrelativistic (w ¼ 0) matter dominated scenario,
when the matter energy density surpasses the potential and
we can ignore V� over ρðtÞ, the leading-order (background)
expressions of Eqs. (42a), (42b), and (42d) are solved by
the standard dust dominated background (36). The remain-
ing leading-order part of the scalar field equation (42c) then
demands f0� ¼ 0, V 0� ¼ 0. This means a necessary con-
dition for the scalar field evolution to stop and the system to
relax to the general relativity regime is that the functions of
the gravitational coupling fðϕÞ and the potential VðϕÞmust
have coincident critical points at the same value of ϕ�;
otherwise, the scalar field cannot stabilize, and the expan-
sion around ϕ� is meaningless.
Provided a scalar-tensor model has such model func-

tions, we can substitute the expressions H�ðtÞ and ρ�ðtÞ in
(36) into the first-order perturbed parts of Eqs. (42a)–(42d),

and solving those, we find the small perturbations of the
Hubble parameter and matter density decay in time,

hðtÞ ∼ t−2; rðtÞ ∼ t−3: ð43Þ

Upon substituting the background value ofH�ðtÞ into the
perturbed scalar field equation (42c), we get a Klein-
Gordon equation in curved spacetime,

ẍðtÞ þ 2

t
ẋðtÞ þ

�
V 00� þ

4f00�
3t2

�
xðtÞ ¼ 0: ð44Þ

For large t the only surviving mass term is V 00� , which
predicts oscillatory solutions for the minimum of the
potential, V 00� > 0, and exponential growth for the maxi-
mum of the potential, V 00� < 0. The term linear in ẋmodifies
this overall dynamics by adding extra frictional damping. In
fact, the above equation (44) can be recognized as a Bessel
equation and solved exactly in terms of the Bessel functions
or modified Bessel functions. Ignoring the oscillating
factors in the solutions, the leading time dependence of
the scalar perturbation turns out to be [91]

LAUR JÄRV and LAXMIPRIYA PATI PHYS. REV. D 109, 064069 (2024)

064069-10



xðtÞ ∼

8>>>>><
>>>>>:

t−1 V 00� > 0

t−
1
2 V 00� ¼ 0 v� imaginary

t−
1
2
ð1−v�Þ V 00� ¼ 0 v� real

t−1e
ffiffiffiffiffiffiffi
−V 00�

p
t V 00� < 0;

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16f00�
3

r
: ð45Þ

Thus, in summary, for the perturbations to converge and the
general relativistic dust dominated regime to be stable, the
model functions must have the value ϕ� which corresponds
to either a simultaneous local minimum of the potential and
a critical point of the gravitational coupling function
(V 0� ¼ 0; V 00� > 0; f0� ¼ 0), or to a local minimum of the
gravitational coupling function and an inflection point of
the potential (f0� ¼ 0; f00� > 0; V 0� ¼ 0; V00� ¼ 0).

2. Radiation domination

In a relativistic ðw ¼ 1
3
Þmatter dominated case, when we

can ignore V� in the presence of ρðtÞ, the leading-order
expressions of Eqs. (42a), (42b), and (42d) are solved by
the standard radiation dominated background (37). The
remaining leading-order part of the scalar field equa-
tion (42c) again demands f0� ¼ 0, V 0� ¼ 0. Provided the
scalar-tensor model has such suitable model functions, we
can substitute the expressions H�ðtÞ and ρ�ðtÞ from (37)
into the first-order perturbed parts of Eqs. (42a)–(42d) and
find that the small perturbations of the Hubble parameter
and matter density decay in time,

hðtÞ ∼ t−2; rðtÞ ∼ t−3: ð46Þ

After substituting the background value H�ðtÞ into
Eq. (42c), we again get a Klein-Gordon type equation,

ẍðtÞ þ 3

2t
ẋðtÞ þ

�
V 00� þ

3f00�
4t2

�
xðtÞ ¼ 0: ð47Þ

The overall stability is principally determined by the sign of
V 00� , i.e., whether we are at the maximum or minimum of the
potential, while the ẋ term adds an extra friction effect. The
full solutions to Eq. (47) can again be found in the form of
the Bessel functions, whereby, ignoring the oscillating
factors, the leading time dependence of the scalar pertur-
bation turns out to be [91]

xðtÞ ∼

8>>>>><
>>>>>:

t−
3
4 V 00� > 0

t−
1
4 V 00� ¼ 0 v� imaginary

t−
1
4
ð1−v�Þ V 00� ¼ 0 v� real

t−
3
4e

ffiffiffiffiffiffiffi
−V 00�

p
t V 00� < 0;

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12f00�

p
: ð48Þ

Thus, in summary, just like in the dust matter case, for the
perturbations to converge and the general relativistic
radiation dominated regime to be stable, the model func-
tions must have the value ϕ� which corresponds to
either a simultaneous local minimum of the potential
and a critical point of the gravitational coupling function
(V 0� ¼ 0; V 00� > 0; f0� ¼ 0), or to a local minimum of the
gravitational coupling function and an inflection point of
the potential (f0� ¼ 0; f00� > 0; V 0� ¼ 0; V 00� ¼ 0).

3. Potential domination

In the era when the scalar potential dominates over the
matter energy density, and we can drop ρðtÞ in comparison
with Vðϕ�Þ [but keep dust matter perturbations rðtÞ with
w ¼ 0], the leading-order expressions of Eqs. (42a), (42b),
and (42d) are solved by the standard dark energy (cosmo-
logical constant) dominated background (38). The remain-
ing leading-order part of the scalar field equation (42c) can
then be satisfied in two ways.
First, the background scalar field equation can be solved

by f0� ¼ 0, V 0� ¼ 0. Then, the first-order perturbed metric
and matter equations give

hðtÞ ∼ e−3H�t; rðtÞ ∼ e−3H�t: ð49Þ

The first-order perturbed scalar field equation

ẍðtÞ þ 3H�ẋðtÞ þ ðV 00� þ 3H2�f00�ÞxðtÞ ¼ 0 ð50Þ

is again a Klein-Gordon type with a friction term. The
overall stability, i.e., exponentially damped oscillations or
exponential growth, depends on the sign of the third term
(effective mass squared). Dropping the factor of oscillations
in the solutions, the time dependence of the scalar field
perturbation can be expressed as [91]

xðtÞ ∼
	
e−

3H�t
2 v� imaginary

e−
3H�t
2
ð1−v�Þ v� real;

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9H2�
ðV 00� þ 3H2�f00�Þ

s
: ð51Þ

Thus, to realize a stable dark energy era in this scenario, the
model functions must have the value ϕ� which corresponds
to either a local minimum of the potential and simulta-
neously to a local minimum of the gravitational coupling
function (V 0� ¼ 0; V 00� > 0; f0� ¼ 0; f00� > 0), or at least to a
simultaneous critical point of the potential and the gravi-
tational coupling (f0� ¼ 0; V 0� ¼ 0) with an additional con-
dition V�f00� þ ð1þ f�ÞV 00� > 0.
The background scalar field equation (42c) can also be

satisfied by a “balanced” configuration where the scalar
field resides not at a critical point of the potential or of
the gravitational coupling function but at a value which
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satisfies V�f0� ¼ −V 0�ð1þ f�Þ whereby Eq. (38) implies

H� ¼
ffiffiffiffiffiffiffiffiffiffi
− V 0�

3f0�

q
. In this case the perturbed part of the matter

continuity equation gives [Eq. (42d)]

rðtÞ ∼ e−3H�t; ð52Þ

while the remaining perturbed equations show that, taking
the leading order, the Hubble and scalar field perturbations

are proportional to each other, hðtÞ ∼ xðtÞ. The latter
evolves according to a Klein-Gordon type equation

ẍðtÞþ3H�ẋðtÞþ
�
V 00� þ3H2�f00� þ2

ðV 0�Þ2
V�

�
xðtÞ¼ 0: ð53Þ

The behavior of the solutions to this equation again
depends on the sign of the last term and can be summarized
as [91]

hðtÞ ∼ xðtÞ ∼
	
e−

3H�t
2 v� imaginary

e−
3H�t
2
ð1−v�Þ v� real;

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9H2�

�
V 00� þ 3H2�f00� þ

2ðV 0�Þ2
V�

�s
: ð54Þ

The perturbations die off in time, and this configuration is
stable if V�f00� þ ð1þ f�ÞV 00 þ 2f0�V 0� > 0. However, in
constructing a realistic cosmic history, we might prefer
this configuration to be unstable, like a saddle point, and
play the role of a launching point for an inflationary
trajectory [93]. If it is unstable, it can trigger an early
epoch of inflationary expansion, making the scalar field roll
to a value where f0� ¼ 0, V 0� ¼ 0. If the latter point is stable,
inflation would give way to radiation, dust matter, and dark

energy eras, whereas the scalar field just relaxes in damped
oscillations around that second point.

B. Connection set 2

Applying the parametrization and expansion introduced
in Sec. Von the cosmological equations (29) of connection
set 2 yields

6ð1þf�ÞH2�ðtÞ−2V�−2κ2ρ�ðtÞþð12ð1þf�ÞH�ðtÞhðtÞþ6f0�H2�ðtÞxðtÞþ3f0�γ�ðtÞẋðtÞ−2V 0�xðtÞ−2κ2rðtÞÞ¼ 0; ð55aÞ

4ð1þ f�ÞḢ�ðtÞ þ 6ð1þ f�ÞH2�ðtÞ − 2V� þ 2κ2wρ�ðtÞ þ ð4f0�xðtÞḢ�ðtÞ þ 12ð1þ f�ÞH�ðtÞhðtÞ þ 4ð1þ f�ÞḣðtÞ
þ 6f0�H2�ðtÞxðtÞ þ 4f0�H�ðtÞẋðtÞ − 3f0�γ�ðtÞẋðtÞ − 2V 0�xðtÞ þ 2κ2wrðtÞÞ ¼ 0; ð55bÞ

ð9f0�H�ðtÞγ�ðtÞẋðtÞ þ 3f0�γ�ðtÞẍðtÞÞ þ ð9f00�H�ðtÞγ�ðtÞxðtÞẋðtÞ þ 3f00�γ�ðtÞxðtÞẍðtÞ þ 3f00�γ�ðtÞðẋðtÞÞ2
þ 9f0�H�ðtÞgðtÞẋðtÞ þ 9f0�γ�ðtÞhðtÞẋðtÞ þ 3f0�gðtÞẍðtÞÞ ¼ 0; ð55cÞ

3f0�ðγ̇�ðtÞ − 2H2�ðtÞ þ 3H�ðtÞγ�ðtÞÞ − 2V 0� − ð2V 00�xðtÞ þ 6f00�H2�ðtÞxðtÞ − 9f00�H�ðtÞγ�ðtÞxðtÞ − 3f00�xðtÞγ̇�ðtÞ
þ 12f0�H�ðtÞhðtÞ − 9f0�γ�ðtÞhðtÞ − 9f0�H�ðtÞgðtÞ − 3f0�ġðtÞ þ 6H�ðtÞẋðtÞ þ 2ẍðtÞÞ ¼ 0; ð55dÞ

ρ̇�ðtÞ þ 3ð1þ wÞH�ðtÞρ�ðtÞ þ ð3wH�ðtÞrðtÞ þ 3wρ�ðtÞhðtÞ þ 3H�ðtÞrðtÞ þ 3ρ�ðtÞhðtÞ þ ṙðtÞÞ ¼ 0: ð55eÞ

We will consider the stability in the case of different matter
types separately, going through the dust matter calculations
in detail, and presenting the main results in the other cases.

1. Dust matter domination

The regime of dust matter domination means we take
w ¼ 0 and neglect V� in comparison with ρðtÞ. At the
background level (without perturbations), the metric and
matter equations (55a), (55b), and (55e) coincide with the
GR cosmological equations (35) and are solved by the
standard background evolution (36). The background part
of the connection equation (55c) is identically zero, while

in solving the scalar field equation (55d) at the background
level,

3f0�

�
γ̇�ðtÞ þ

2γ�ðtÞ
t

−
8

9t2

�
− 2V 0� ¼ 0; ð56Þ

there are three options: either f0� ≠ 0, V 0� ≠ 0 and the
evolution of γ�ðtÞ is given by

γ�ðtÞ ¼
2V 0�t
9f0�

þ 8

9t
þ c1

t2
ð57Þ
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which leaves the value of ϕ� arbitrary; f0� ≠ 0, V 0� ¼ 0 in
(56) and (57); or the model functions fðϕÞ and VðϕÞ both
have an extremum at the same value of ϕ and the respective
derivatives vanish,

f0� ¼ 0; V 0� ¼ 0; ð58Þ

which fixes ϕ� but leaves γ�ðtÞ undetermined.
In the first case, substituting the background values (36)

and (57) into the first-order perturbed equations, i.e.,
keeping only terms that are linear in xðtÞ, hðtÞ, gðtÞ, and
rðtÞ in (55), gives

4ð1þ f�ÞhðtÞ
t

−
ð3V 0�t2 − 4f0�ÞxðtÞ

3t2

þ ð2V 0�t3 þ f0�ð9c1 þ 8tÞÞẋðtÞ
6t2

¼ κ2rðtÞ; ð59aÞ

− 4ð1þ f�ÞḣðtÞ −
8ð1þ f�ÞhðtÞ

t
þ ð2V 0�t3 þ 9c1f0�ÞẋðtÞ

3t2

þ 2V 0�xðtÞ ¼ 0; ð59bÞ

ð2V 0�t3 þ 9c1f0� þ 8f0�tÞ
3t3

ðtẍðtÞ þ 2ẋðtÞÞ ¼ 0: ð59cÞ

f0�

�
3ġðtÞ þ 6gðtÞ

t

�
þ ð2V 0�t3 þ 9c1f0�ÞhðtÞ

t2

−
2ðV 00�f0� − V 0�f00�ÞxðtÞ

f0�
− 2ẍðtÞ − 4

t
ẋðtÞ ¼ 0; ð59dÞ

ṙðtÞ þ 2rðtÞ
t

þ 4ð1þ f�ÞhðtÞ
κ2t2

¼ 0: ð59eÞ

Here, we can first integrate Eq. (59c) to get

xðtÞ ¼ c2
t
þ c3: ð60Þ

The integration constant c3 ¼ 0 since we have defined that,
in the end, the scalar field stops at ϕ�, not at ϕ� þ c3. Thus,
as time passes, the perturbation in the scalar field dimin-
ishes, which ensures that the γðtÞϕ̇ðtÞ term in the
Friedmann equation (55a) does not grow to spoil the dust
domination regime, despite γðtÞ [Eq. (57)] increasing in
time. Substituting (60) into (59b), we get an equation for
hðtÞ, which is solved by

hðtÞ ¼ c2V 0�
6ð1þ f�Þ

þ c4
t2

þ 3c1c2f0�
4ð1þ f�Þt3

: ð61Þ

Then, we can substitute (60) and (61) into (59d) and solve
to find

gðtÞ ¼ −
c2ðV 0�Þ2t2

36f0�ð1þ f�Þ
þ c2V 00�f0� − c2V 0�f00� − c4V 0�f0�

3ðf0�Þ2

−
c1c2V 0�
ð1þ f�Þt

þ c5
t2

þ 3c1c4
t3

þ 9c21c2f
0�

8ð1þ f�Þt4
: ð62Þ

Finally, the solutions (60) and (61) can be substituted into
(59e), where it is possible to algebraically express

rðtÞ ¼ −
2c2V 0�
3κ2t

þ 4c4ð1þ f�Þ
3κ2t3

þ 3c1c2f0�
2κ2t4

: ð63Þ

The latter expression, along with (61), also solves (59e).
Thus, we see that if we perturb around an arbitrary scalar
field value, where neither V 0� ≠ 0 nor f0� ≠ 0, then, to the
leading order in time, the quantities evolve as

γ�ðtÞ ∼ t; xðtÞ ∼ t−1; hðtÞ ∼ t0;

gðtÞ ∼ t2; rðtÞ ∼ t−1; ð64Þ

and the configuration cannot be considered stable.
Although the evolution of ϕ slows to a stop and ρ converges
to its general relativity regime, and even the effects of the
growing connection function are suppressed by decreasing
ϕ̇, the connection function perturbations gðtÞ grow bigger
in time and eventually spoil the approximation which
assumes the perturbations to be small.
If the perturbation takes place around f0� ≠ 0, V 0� ¼ 0,

mentioned as the second case above, then for V 00� ≠ 0

γ�ðtÞ ∼ t−1; xðtÞ ∼ t−1; hðtÞ ∼ t−2;

gðtÞ ∼ t0; rðtÞ ∼ t−3: ð65Þ

Although the connection function perturbations do not
decrease, they do not increase either, and the configuration
may be considered marginally stable. If the second deriv-
atives of the potential are also zero (like for a cosmological
constant), then

γ�ðtÞ ∼ t−1; xðtÞ ∼ t−1; hðtÞ ∼ t−2;

gðtÞ ∼ t−2; rðtÞ ∼ t−3; ð66Þ

and a stable regime is possible.
When we consider perturbations around a simultaneous

critical point of the potential and gravitational coupling
functions, Eq. (58), the scalar field equation is identically
solved at the background level and γ�ðtÞ remains undeter-
mined. The lowest-order perturbed equations (55) are now

4ð1þ f�ÞhðtÞ
t

¼ κ2rðtÞ; ð67aÞ

− 2ð1þ f�Þ
�
ḣðtÞ þ 2hðtÞ

t

�
¼ 0; ð67bÞ
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xðtÞẍðtÞ þ ẋðtÞ2 þ 2xðtÞẋðtÞ
t

¼ 0; ð67cÞ

ð9f00�t2γ̇�ðtÞ − 6V 00�t2 þ 18f00�tγ�ðtÞ − 8f00�Þ
xðtÞ
3t2

− 2ẍðtÞ − 4

t
ẋðtÞ ¼ 0; ð67dÞ

ṙðtÞ þ 2rðtÞ
t

þ 4ð1þ f�ÞhðtÞ
κ2t2

¼ 0: ð67eÞ

Note that at the first (linear) perturbation level, the con-
nection equation is identically satisfied, and (67c) represents
the second (nonlinear) perturbation level as the leading
nonzero order. The equation for the Hubble perturbation
(67b) can be integrated to

hðtÞ ¼ c2
t2
; ð68Þ

and Eq. (67a) then gives

rðtÞ ¼ 4c2ð1þ f�Þ
κ2t3

: ð69Þ

We cannot tackle the remaining first-order perturbed scalar
field equation (67d) directly since it contains two unknown
functions γ�ðtÞ and xðtÞ. However, it is still possible to
proceed by taking the next order perturbation of the
connection equation which contains second-order small
quantities (67c). Interestingly, the structure of that equation
parallels the perturbed scalar field equation near the general
relativity limit of the usual curvature based scalar-tensor
cosmology with dust matter or potential [20–22]. However,
the signs are different, and the solutions behave differently
here. Equation (67c) can be solved easily by

xðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c6
t
þ c7

r
: ð70Þ

Despite its appearance, this expression actually harbors a
singularity, related to the feature briefly discussed already at
the end of Sec. IV B. From (70), we can compute

ẋðtÞ ¼∓ c6

2t2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c6
t þ c7

q ð71Þ

and express the integration constants in terms of initial
conditions x0, ẋ0 at t0 as

c6 ¼ −2ẋ0x0t20; c7 ¼ x20 þ 2ẋ0x0t0: ð72Þ

Both integration constants are real. At a finite time t� ¼ − c6
c7
,

the scalar perturbation xðtÞ goes to zero, but the speed ẋðtÞ
becomes singular and the approximation of perturbations
being small breaks down. The singularity occurs in the
physical time t > 0 if c6 and c7 have opposite signs. We can
write

t0
t�
¼ −

c7t0
c6

¼ 1þ x0
2ẋ0t0

ð73Þ

and analyze the situation in conjunction with the phase
portrait in Fig. 1(a) as follows. First, in regions ðIÞ, where x0
and ẋ0 are of the same sign, t� < t0 and the singularity occurs
before the solution, i.e., the solution which is specified by
some initial conditions at the moment t0 emerges from a
singularity at a finite time. These solutions evolve away from
ϕ� and could be classified as unstable. Asymptotically, they
would reach jxðt → ∞Þj → ffiffiffiffiffi

c7
p

; however, first, the current
approximation breaks down, and they should fall under the
purview of the more general case that follows from (57)
whichwas considered before. Second, in regions ðIIÞ, where

FIG. 1. Sketch of the phase space where singular solutions occur. The portrait of (a) set 2, dust dominated, Eq. (67c) at t ¼ 1,
populated by the solutions (70); (b) set 3, dust dominated, Eq. (97) for V 00� ¼ 1, f00� ¼ 1, c9 ¼ 0.5 at t ¼ 1; (c) set 3, dust dominated,
Eq. (97) for V 00� ¼ 1, f00� ¼ 1, c9 ¼ −1 at t ¼ 1.
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x0 and ẋ0 are of opposite signs and jẋ0j > jx0j
2t0
, then t� > t0

and the singularity happens in the future of the solution.
Definitely the approximation scheme breaks down as ẋ
diverges, but quite likely the full system hits a singularity.
Third, in regions ðIIIÞ, where x0 and ẋ0 are of opposite signs
but jẋ0j < jx0j

2t0
, the integration constants are of the same sign,

and the solutions have a tendency to slow down and arrive at
jxðt → ∞Þj → ffiffiffiffiffi

c7
p

. However, in a strict sense, they would
again belong to the more general case considered above
since the point of eventual stability for ϕ does not satisfy the
condition (58). Finally, there is a particular set of solutions
specified by x0 ¼ −2ẋ0t0 so that c7 ¼ 0. Running between
regions ðIIÞ and ðIIIÞ, they come from x > 0 and x < 0.
Only this type of solution manages to asymptotically reach
jxðt → ∞Þj → 0while avoiding the singularity aswell as the
fate of stopping before that value. To complete the analysis
of this particular case, we can substitute (70) with c7 ¼ 0
into (67e) and find the background evolution of the con-
nection function to be

γ�ðtÞ ¼
2V 00�t
9f00�

þ 8

9t
−

1

6f00�t
þ c8

t2
: ð74Þ

For nonzeroV 00� , the connection function diverges linearly in
time, but the γ�ϕ̇ term in the Friedmann equation is still
suppressed. Although the Hubble, matter, and scalar field
perturbations diminish in time, we cannot safely conclude
that this particular type of solution is convergent since the
connection perturbation gðtÞ remains undetermined.
At this point, an astute reader may raise a concern as to

whether it was consistent to consider quantities quadratic in
the perturbations only in the perturbed connection equa-
tion (67c) but not in the others of (67). The reason is that for
each equation, we are interested only in the leading
dominant behavior that is relevant for the stability of the
system, i.e., whether the solutions converge to or diverge
from the general relativity limit. Although in the other
equations the subdominant quadratic and higher terms are
also present, under the assumption of smallness, they have
less influence and do not decide the issue of stability. If we
want to know the higher corrections to the time dependence
of the solutions, then we would also need to include higher-
order small perturbations in the expansions (39). However,
most likely, the system of equations would then become
even more complicated and harder to solve.
In any case, for large enough initial velocities, the system

meets a singularity in finite time. It is remarkable that the
limit V 0� ¼ 0, f0� ¼ 0, which gives a stable standard history
in the case of connection set 1, is unstable for a large range
of initial conditions in the dust dominant case of set 2.
The strange fact that the background equations fail to
determine the connection function γ�ðtÞ in this limit while
the derivative of the scalar field perturbation becomes
singular may indicate that the scalar-nonmetricity theory

is problematic and does not reduce to general relativity in a
smooth manner here. Alternatively, we may interpret this
feature as an indication that connection set 2 is unphysical
and should be discarded in favor of set 1 where the GR limit
is smooth. In view of the remark at the end of Sec. IV B, a
more thorough investigation of the instability of the full
equations might shed light on this issue, but it is beyond the
scope of the present work.

2. Radiation domination

The regime of radiation domination allows us to neglect
V� in comparison with ρðtÞ, which is characterized by
w ¼ 1

3
. The calculations can be performed analogously

to the previous subsection, and we summarize the key
results. At the background level, the metric and matter
equations (55a), (55b), and (55e) coincide with the GR
cosmological equations (35) and are solved by the standard
background evolution (37). The background part of the
connection equation (55c) is identically zero, while solving
the scalar field equation (55d) at the background level,

3f0�

�
γ̇�ðtÞ þ

3γ�ðtÞ
2t

−
1

2t2

�
− 2V 0� ¼ 0; ð75Þ

gives three options.
First, for an arbitrary ϕ� whereby f0� ≠ 0, V 0� ≠ 0, the

evolution of γ�ðtÞ in (75) is given by

γ�ðtÞ ¼
4V 0�t
15f0�

þ 1

t
þ c1

t
3
2

: ð76Þ

Substituting the background values (37) and (76) into the
first-order perturbed parts of (55) gives a system of
equations to determine the behavior of perturbations,
which, at leading order, turn out to be

xðtÞ∼ t−
1
2; hðtÞ∼ t

1
2; gðtÞ∼ t

5
2; rðtÞ∼ t−

1
2: ð77Þ

Even the perturbations of the Hubble parameter grow, and
the configuration is unstable.
Second, if ϕ� is fixed by V 0� ¼ 0, but f0� ≠ 0, then the

scalar field equation (75) is solved by the subleading terms
in (76). Then, the first-order perturbations at leading order
behave as

γ�ðtÞ ∼ t−1; xðtÞ ∼ t−
1
2; hðtÞ ∼ t−2 ln t;

gðtÞ ∼ t
1
2; rðtÞ ∼ t−3 ln t; ð78Þ

and the configuration is still unstable because the connection
function perturbations diverge. If the second derivative of the
potential is also zero, we find better stability properties,
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γ�ðtÞ ∼ t−1; xðtÞ ∼ t−
1
2; hðtÞ ∼ t−2 ln t;

gðtÞ ∼ t−
3
2; rðtÞ ∼ t−3 ln t; ð79Þ

and the solutions converge to general relativity.
Finally, if the model functions fðϕÞ and VðϕÞ both have

an extremum at the same value of ϕ and the respective
derivatives vanish, f0� ¼ 0, V 0� ¼ 0, the background equa-
tions leave γ�ðtÞ undetermined. We can integrate the first-
order perturbed metric and matter equations to find

hðtÞ ∼ t−2; rðtÞ ∼ t−3: ð80Þ

As the first-order perturbed connection equation is iden-
tically satisfied, we can invoke the second-order perturbed
connection equation, which is solved by

xðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c6ffiffi
t

p þ c7

r
: ð81Þ

Like in the dust matter case, a significant class of solutions

with large enough initial velocities, jẋ0j > jx0j
4t0
, reaches ϕ�

(i.e., x ¼ 0) with diverging speed ẋ, and the system
experiences a singularity. Only the solutions with the
integration constant c7 ¼ 0 converge asymptotically to
ϕ� without meeting a singularity. For those solutions, we
can solve the first-order scalar field equation by

γ�ðtÞ ¼
4V 00�t
15f00�

þ 1

t
−

1

12f00�t
þ c8

t
3
2

; ð82Þ

but the question of stability remains without a decisive
answer since the connection perturbations gðtÞ remain
undetermined.
In summary, the only radiation dominated configuration

which is stable for perturbations around the standard
general relativistic cosmological scenario is given by
f� ≠ 0, V 0� ¼ V 00� ¼ 0.

3. Potential domination

In the era when the scalar potential dominates over the
matter energy density, and we can drop ρðtÞ in comparison
with Vðϕ�Þ [but keep dust matter perturbations rðtÞ with
w ¼ 0], the leading-order expressions of Eqs. (55a),
(55b), and (55e) are solved by the standard dark energy
(cosmological constant) dominated background (38) where

H� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

V�
3ð1þf�Þ

q
. The background part of the connection

equation (55c) is identically zero, while the remaining
leading-order part of the scalar field equation (42c) can then
be satisfied in three ways.
First, for an arbitrary ϕ� whereby f0� ≠ 0, V0� ≠ 0, the

evolution of γ�ðtÞ in (75) is given by

γ�ðtÞ ¼ c1e−3H�t þ 2H�
3

þ 2V 0�
9H�f0�

: ð83Þ

Substituting the background values (38) and (83) into the
first-order perturbed parts of (55) gives a system of
equations to determine the behavior of perturbations,
which, at leading order, turn out to be

xðtÞ ∼ e−3H�t; hðtÞ ∼ e−3H�t;

gðtÞ ∼ te−3H�t; rðtÞ ∼ e−3H�t: ð84Þ

This regime is stable.
Second, if ϕ� is fixed by V 0� ¼ 0, but f0� ≠ 0, the time

dependence of the connection function γ�ðtÞ remains as
in (83), and the first-order perturbations at leading order
behave exactly as in (84).
Finally, if the model functions fðϕÞ and VðϕÞ both have

an extremum at the same value of ϕ and the respective
derivatives vanish, f0� ¼ 0, V 0� ¼ 0, the background equa-
tions leave γ�ðtÞ undetermined. We can integrate the first-
order perturbed metric and matter equations to find

hðtÞ ∼ e−3H�t; rðtÞ ∼ e−3H�t: ð85Þ

As the first-order perturbed connection equation is iden-
tically satisfied, we can invoke the second-order perturbed
connection equation, which is solved by

xðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c6e−3H�t þ c7

q
: ð86Þ

Analogously to the previous cases of dust and radiation, the
trajectories encounter a singularity with diverging ẋ at a
finite future moment if the initial values x0 and ẋ0 are of
the opposite sign and jẋ0j > 9H�jx0j. Only the class of
solutions with c7 ¼ 0 converges to ϕ�. For those solutions,
we can solve the perturbed scalar field equation to find

γ�ðtÞ ¼ c1e−3H�t þ 2H�
3

−
H�
2f00�

þ 2V 00�
9H�f00�

; ð87Þ

but the perturbations gðtÞ remain undetermined and the
stability of the system unclear.
Thus, combining the analysis results of all three eras, the

cosmic history with connection set 2 can be stable only if
there exists ϕ� which satisfies f0� ≠ 0, V 0� ¼ V 00� ¼ 0. In
such a scenario, the function γðtÞ decreases in time, and the
solutions will converge to their respective GR behaviors.
Otherwise, the presence of the extra connection function
diverts the cosmic evolution from the standard path. In
particular, if the extrema of the model functions fðϕÞ and
potential VðϕÞ coincide, a wide class of initial conditions
will lead to a singular behavior of the scalar field pertur-
bations, which would probably be detrimental to the
background dynamics.
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C. Connection set 3

Applying the parametrization and expansion introduced in Sec. Von the cosmological equations (32) of connection set 3
yields

6ð1þf�ÞH2�ðtÞ−2V�−2κ2ρ�ðtÞþð12ð1þf�ÞH�ðtÞhðtÞþ6f0�H2�ðtÞxðtÞ−3f0�γ�ðtÞẋðtÞ−2V 0�xðtÞ−2κ2rðtÞÞ¼ 0; ð88aÞ

4ð1þ f�ÞḢ�ðtÞ þ 6ð1þ f�ÞH2�ðtÞ − 2V� þ 2κ2wρ�ðtÞ þ ð4f0�xðtÞḢ�ðtÞ þ 12ð1þ f�ÞH�ðtÞhðtÞ þ 4ð1þ f�ÞḣðtÞ
þ 6f0�H2�ðtÞxðtÞ þ 4f0�H�ðtÞẋðtÞ − f0�γ�ðtÞẋðtÞ − 2V 0�xðtÞ þ 2κ2wrðtÞÞ ¼ 0; ð88bÞ

15f0�H�ðtÞγ�ðtÞẋðtÞþ3f0�γ�ðtÞẍðtÞþ6f0�γ̇�ðtÞẋðtÞþð15f00�H�ðtÞγ�ðtÞxðtÞẋðtÞþ3f00�γ�ðtÞxðtÞẍðtÞ
þ3f00�γ�ðtÞðẋðtÞÞ2þ6f00�xðtÞγ̇�ðtÞẋðtÞþ15f0�H�ðtÞgðtÞẋðtÞþ15f0�γ�ðtÞhðtÞẋðtÞþ3f0�gðtÞẍðtÞþ6f0�ġðtÞẋðtÞÞ¼ 0; ð88cÞ

3f0�ðγ̇�ðtÞ − 2H2�ðtÞ þ 3H�ðtÞγ�ðtÞÞ − 2V 0� − ð2V 00�xðtÞ þ 6f00�H2�ðtÞxðtÞ − 9f00�H�ðtÞγ�ðtÞxðtÞ
− 3f00�xðtÞγ̇�ðtÞ − 9f0�H�ðtÞgðtÞ þ 12f0�H�ðtÞhðtÞ − 9f0�γ�ðtÞhðtÞ − 3f0�ġðtÞ þ 6H�ðtÞẋðtÞ þ 2ẍðtÞÞ ¼ 0; ð88dÞ

ρ̇�ðtÞ þ 3ð1þ wÞH�ðtÞρ�ðtÞ þ ð3wH�ðtÞrðtÞ þ 3wρ�ðtÞhðtÞ þ 3H�ðtÞrðtÞ þ 3ρ�ðtÞhðtÞ þ ṙðtÞÞ ¼ 0: ð88eÞ

As before, we will consider the stability of the equations in
the case of different matter types separately. The calculations
are rather similar to the dust matter case in the previous
section, and we will just present the main results here.

1. Dust matter domination

In the regime of dust matter domination, we take w ¼ 0
and assume V� is negligible in comparison with ρðtÞ. At the
background level, the metric and matter equations (88a),
(88b), and (88e) coincide with the GR cosmological
equations (35) and are solved by the standard background
evolution (36). The background part of the connection
equation (88c) is identically zero, while in solving the
scalar field equation (88d) at the background level,

3f0�

�
˙̄γ� þ

2γ̄�
t

−
8

9t2

�
− 2V 0� ¼ 0; ð89Þ

there are three options.
First, if f0� ≠ 0 and V 0� ≠ 0, then to leading order the

background connection function obeys

γ̄� ¼
2V 0�t
9f0�

þ 8

9t
þ c1

t2
: ð90Þ

Substituting this into the first-order small equations, we
find that the perturbations evolve as

h ∼ t−2; r ∼ t−3; x ∼ t−
13
3 ; g ∼ t0; ð91Þ

and the configuration is marginally stable. Although γ̄�
increases in time, its effects are not visible since ϕ̇
decreases and, in the Friedmann equation, the combined
term evolves as γ̄ ϕ̇∼t−13

3 .

Second, if f0� ≠ 0 but V 0� ¼ 0, then to leading order

γ̄� ∼ t−1; ð92Þ
and the first-order small equations give

h ∼ t−
4
3; r ∼ t−

7
3; x ∼ t−

1
3; g ∼ t

2
3: ð93Þ

This situation is unstable due to the growth of connection
function perturbations gðtÞ, which, at some moment, would
spoil the assumption that all perturbations are small.
However, if, in addition, V 00� ¼ 0, then the leading-order
solution becomes

h ∼ t−
4
3; r ∼ t−

7
3; x ∼ t−

1
3; g ∼ t−

4
3; ð94Þ

and the regime can be considered to be stable instead.
Third, if the model functions allow a scalar field value

where simultaneously f0� ¼ 0 and V 0� ¼ 0, then the con-
nection field equation is automatically satisfied at leading
as well as first perturbative order, and we cannot determine
γ̄� from there. The other first-order small equations give

h ∼ t−2; r ∼ t−3: ð95Þ
To find γ̄�ðtÞ and xðtÞ, we have the first perturbation of the
scalar field equation (88d) and the second perturbation of
the connection equation (88c) at our disposal. It is a
coupled system for γ̄�ðtÞ and xðtÞ, and straightforward
integration seems difficult. However, incidentally, the
connection equation (88c), with hðtÞ and rðtÞ substituted
in, can be solved by

γ̄� ¼
c9

t
5
3

ffiffiffiffiffiffiffiffiffiffijxjjẋjp : ð96Þ
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We can substitute that expression into the remaining equation (88d), which yields

ẍ ¼ −
ẋð3c9f00�ð3tẋ − 2xÞ þ 4t

2
3ð3V 00�t2xþ 4f00�xþ 6tẋÞ ffiffiffiffiffiffiffiffiffiffijxjjẋjp Þ

3tð3c9f00�xþ 4t
5
3ẋ

ffiffiffiffiffiffiffiffiffiffijxjjẋjp Þ : ð97Þ

This is by far a more complicated equation than the
corresponding equation (67c) which emerged for connec-
tion set 2. It is rather hard to solve analytically, but we can
still discern the main characteristics by studying the
equation in different limits, complemented by the sample
phase portraits in Fig. 1. Since Eq. (97) depends explicitly
on time t, the actual phase space is three dimensional.
Furthermore, it depends on the values of the parameters V 00� ,
f00� , and c9. However, to gain a glimpse of the principal
features of the dynamics, Figs. 1(b) and 1(c) present two
illustrative phase portraits for fixed values of parameters
and time that capture the qualitative behavior of the
available cases.
In the limit x → 0, we can expand (97) to get

ẍ ¼ −
3c9f�00

ffiffiffiffiffijẋjp
4t

5
3

ffiffiffi
x

p þOðx0Þ; ð98Þ

and we see that the force diverges. Hence, the solutions
experience a singularity, depicted by a red line between the
regions ðIÞ and ðIIÞ in Figs. 1(b) and 1(c). The direction of
the force (accelerating or decelerating) depends on the
signs of the parameters c9 and f00� . Next, in the limit ẋ → 0,
we get from (97)

ẍ ¼ 2ẋ
3t

þOðẋ3
2Þ; ð99Þ

which tells us that the standstill state ẋ ¼ 0 is unstable and
any small deviation from it will meet a force (“antifriction”)
pushing the solutions away. This is marked by a red line
between the regions ðIÞ and ðIIIÞ in Figs. 1(b) and 1(c), and
it is a common feature for all values of parameters. Thus,
contrary to the set 2 case in Fig. 1(a), the solutions cannot
become stabilized at some value of the scalar field. Finally,
we notice that the expression (97) also has another string of
singularities at

xs ¼ −
16t

10
3 ẋ3

9c29ðf00�Þ2
signðc9f00�Þ ð100Þ

where the denominator on the rhs vanishes. This is shown
as the red line between the regions ðIIÞ and ðIIIÞ on the
plots. This string of singularities can act as a source or sink
for the neighboring trajectories, depending on the sign of
the numerator in Eq. (97). The point where the numerator
vanishes, and this singular curve switches between repeller

and attractor behaviors, is marked by an enlarged dot on
the plots.
In summary, for the case in Fig. 1(b), the available

classes of solutions can be summarized as follows. First, if
the initial conditions x0 and ẋ0 are of the same sign, i.e.,
regions ðIÞ, the solutions either started from an initial
singularity at x ¼ 0 or from an unstable state at ẋ ¼ 0, and
consistently flow away from the value ϕ�. Alternatively, if
x0 and ẋ0 are of opposite signs, either in region ðIIÞ with
jxj < jxsj or region ðIIIÞ with jxj > jxsj, the solutions
inevitably crash into a singularity where ẍ diverges. Thus,
none of the solutions can actually manage to reach the point
ϕ� and stabilize there (x ¼ 0, ẋ ¼ 0).
For the case in Fig. 1(c), the available classes of solutions

can be summarized in a similar manner. First, if the initial
conditions x0 and ẋ0 are of the opposite sign, i.e., regions
ðIÞ, the solutions started from the unstable state at ẋ ¼ 0
and flowed towards the singularity of jxj → 0, jẋj → ∞.
Alternatively, if x0 and ẋ0 are of the same sign, either in
region ðIIÞ with jxj < jxsj or region ðIIIÞ with jxj > jxsj,
the solutions inevitably crash into another singularity where
ẍ diverges. Hence, none of the solutions can actually
manage to reach the point ϕ� and stabilize there.
Therefore, we do not need to consider the scenario of
f0� ¼ 0, V 0� ¼ 0 any further [estimating γ̄ðtÞ, gðtÞ] but just
conclude that this regime is unstable.
In summary, the dust matter dominated regime for con-

nection set 3 can be stable if f0� ≠ 0 and V 0� ¼ V 00� ¼ 0.
However, if a model allows a valueϕ� where simultaneously
f0� ¼ 0 and V 0� ¼ 0, then a large class of solutions will likely
face a singularity in finite time.

2. Radiation domination

In the radiation domination regime, we take the baro-
tropic index w ¼ 1

3
and assume V� is negligible in com-

parison with ρðtÞ. At the background level, the metric and
matter equations (88a), (88b), and (88e) coincide with the
GR cosmological equations (35) and are solved by the
standard background evolution (37). The background part
of the connection equation (88c) is identically zero, while
in solving the scalar field equation (88d) at the background
level,

3f0�

�
˙̄γ� þ

3γ̄�
2t

−
1

2t2

�
− 2V 0� ¼ 0; ð101Þ

there are again three possible cases.
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First, ifϕ� is arbitrary in the sense that f0� ≠ 0 andV 0� ≠ 0,
then the connection background solution is given by

γ̄�ðtÞ ¼
4V 0�t
15f0�

þ 1

t
þ c1

t
3
2

; ð102Þ

while, taking into account only the leading orders, the
perturbations evolve as

xðtÞ∼ t−
7
2; hðtÞ∼ t−2; rðtÞ∼ t−3; gðtÞ∼ t0: ð103Þ

This regime is only marginally stable.
Second, if f0� ≠ 0 but V 0� ¼ 0, then

γ̄�ðtÞ ∼ t−1; ð104Þ

and the perturbations solve the equations at leading order as

xðtÞ∼ t
1
2; hðtÞ∼ t−2; rðtÞ∼ t−3; gðtÞ∼ t

3
2; ð105Þ

which is unstable. If, in addition, V 00� ¼ 0, then

xðtÞ∼ t
1
2; hðtÞ∼ t−2; rðtÞ∼ t−3; gðtÞ∼ t−

1
2; ð106Þ

but the regime is still unstable as the scalar field perturba-
tions are not under control.
Third, if there exists ϕ� such that f0� ¼ 0 and V 0� ¼ 0,

then we obtain

hðtÞ ∼ t−2; rðtÞ ∼ t−3: ð107Þ

Like in the dust case, the first-order perturbation of the
connection equation (88c) is identically satisfied. To
proceed, we turn to the second-order perturbation of the
connection equation, which can be solved by

γ̄� ¼
c9

t
5
4

ffiffiffiffiffiffiffiffiffiffijxjjẋjp : ð108Þ

Substituting this into the first-order scalar field equa-
tion (88d) again yields a highly nonlinear equation

ẍðtÞ ¼ −
ẋð3c9f00�ð2tẋ − xÞ þ 2t

1
4ð3f00�xþ 4V 00�t2xþ 6tẋÞ ffiffiffiffiffiffiffiffiffiffijxjjẋjp Þ

2tð3c9f00� þ 4t
5
4ẋ

ffiffiffiffiffiffiffiffiffiffijxjjẋjp Þ : ð109Þ

This is structurally analogous to Eq. (97) from the dust
matter dominated case with only slightly differing numeri-
cal factors and one power of t. Thus, the phase portraits are
qualitatively similar to Figs. 1(b) and 1(c), and so are the
results of the analysis of the solutions. The conclusion is
that the dynamics around f0� ¼ 0 and V 0� ¼ 0 is unstable
and can lead to a singular behavior.
In summary, we see that the radiation dominated regime

is unstable, even the case of f0� ≠ 0 but V 0� ¼ V 00� ¼ 0.
Again, if a model allows a value ϕ� where simultaneously
f0� ¼ 0 and V 0� ¼ 0, then a large class of solutions will
likely face a singularity in finite time.

3. Dark energy domination

In the dark energy domination regime, we assume V� is
much larger than ρðtÞ but keep the dust matter perturbations
rðtÞ with w ¼ 0. At the background level, the metric and
matter equations (88a), (88b), and (88e) coincide with the
GR cosmological equations (35) and are solved by the

standard background evolution (38) where H� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

V�
3ð1þf�Þ

q
.

The background part of the connection equation (88c) is
identically zero, while solving the scalar field equa-
tion (88d) at the background level,

3f0�ð ˙̄γ� þ 3H�γ̄� − 2H2�Þ − 2V 0� ¼ 0; ð110Þ

again allows three possible cases.

First, if f0� ≠ 0 and V 0� ≠ 0, then Eq. (110) is solved by

γ̄�ðtÞ ¼ c1e−3H�t þ 2H�
3

þ 2V 0�
9H�f0�

; ð111Þ

and up to leading order, the perturbations evolve as

xðtÞ ∼ e−5H�t; hðtÞ ∼ e−3H�t;

rðtÞ ∼ e−3H�t; gðtÞ ∼ te−3H�t; ð112Þ
which is a stable situation.
Second, if f0� ≠ 0 but V 0� ¼ 0, then some terms in the

equations drop out, but the leading-order behavior of γ̄�
and the perturbations does not change compared to the
above. Similarly, taking also V 00� ¼ 0 retains the picture of
convergence.
Third, if f0� ¼ 0 and V 0� ¼ 0, we can solve the equations

by the same means as in the analogous case of set 3 dust
matter domination to find that the leading behavior is

rðtÞ ∼ e−3H�t; hðtÞ ∼ e−3H�t: ð113Þ
To obtain γ�ðtÞ, since the background connection equa-
tion (88c) is identically satisfied, we need the second-order
small connection equation

γ�ðtÞ ¼
c9

e
5H�t
2

ffiffiffiffiffiffiffiffiffiffijxjjẋjp : ð114Þ
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Using the above equation (114) in the first-order small scalar field equation (88d), we again obtain a highly nonlinear
differential equation

ẍðtÞ ¼ −
ẋð3c9f00�ðẋ −H�xÞ þ 4e

5H�t
2 ð3f00�H2�xþ V 00�xþ 3H�ẋÞ

ffiffiffiffiffiffiffiffiffiffijxjjẋjp Þ
3c9f00�xþ 4e

5H�t
2 ẋ

ffiffiffiffiffiffiffiffiffiffijxjjẋjp : ð115Þ

Apart from the details of the explicit time factors, this
equation is analogous to Eqs. (97) and (109) in the dust and
radiation cases. A closer analysis reveals the same key
features of dynamical behavior. It is not possible for the
system to relax at ϕ� where f0� ¼ 0 and V 0� ¼ 0, but the
solutions either flow away from this value or the system
encounters a singularity where ẍ diverges and the approxi-
mation of small perturbations breaks down.
In summary, the potential dominated regime is stable if

f0� ≠ 0. On the other hand, for f0� ¼ 0 and V 0� ¼ 0, large
classes of solutions meet a finite singularity. In the end,
combining the analysis results of all three eras, it seems a
cosmic history from radiation to dust to dark energy
domination cannot be realized in a stable manner in the
vicinity of some fixed scalar field value ϕ�. Dust matter and
potential domination eras are stable around f0� ≠ 0,
V 0� ¼ V 00� ¼ 0, but this is not the case in the radiation
domination epoch.

VII. DISCUSSION

In this paper, we have explored the cosmological
implications of alternative FLRW connections that become
available in symmetric teleparallel geometry, focusing on
the analogue of scalar-tensor gravity where a scalar field is
nonminimally coupled to the nonmetricity scalar in the
action (12). Demanding that the independent connection
with zero curvature and zero torsion obeys the symmetries
of spatial homogeneity and isotropy was recently shown to
yield three sets of connections which involve an extra free
function of time [45,46]. In the first set, this extra function
actually drops out of the cosmological equations, and the
system reduces to the one already known to correspond to a
trivial connection and also to coincide with the scalar-
torsion case in metric teleparallelism, which has been
studied a great deal. In the two other classes, however,
the extra function is present in the equations and could be
interpreted as an instance of an extra degree of freedom that
has been notoriously difficult to pinpoint in extended
teleparallel gravity before.
In Sec. IV, we presented the cosmological field equations

arising from these connections and confirmed that the new
function does indeed increase the number of independent
phase space dimensions by one; thus, it is not a constraint in
disguise. We also observed, from the Friedmann equations,
that the new function cannot itself take the role of dark
energy or dark matter; rather, it behaves as a stiff fluid or

spatial curvature in connection set 2 or 3, respectively.
Furthermore, in the Friedmann equations, the extra function
only appears if the nonminimal couplingAðΦÞ between the
scalar field and nonmetricity is not constant and the time
derivative of the scalar field is not zero. Hence, it has no
effect in the case of minimally coupled fields or when the
dynamics of the scalar field has stopped, i.e., in the cases
when the model is equivalent to GR. In addition, we also
found that the extra function drastically modifies the scalar
field dynamics since the connection equation can be viewed
as a dynamical equation for the scalar field, albeit without
any contribution from the kinetic coupling BðΦÞ or scalar
potential VðΦÞ; see Eqs. (30) and (33), which look quite
puzzling. Moreover, these equations could potentially
push the scalar field into a singular state (infinite Φ̈) when
the nonminimal coupling function has an extremum
(dA=dΦ ¼ 0), again a rather problematic feature, although
possible to mitigate with monotonic functions. Though
difficult to state in full generality for arbitrary model
functions, in the cosmological equations, it is not obvious
how the extra function in the connection could offer new
options to generate dark energy, besides the well-known
regime of a slowly evolving scalar field with a positive
potential acting similarly to a cosmological constant.
Owing to the strange features that the alternative con-

nections introduce into the system, we proceeded in Secs. V
and VI to study whether and under which conditions the
standard cosmological eras are stable in the model, i.e., that
the succession of eras is not disturbed by factors other than
the densities of different matter components decreasing at
different rates as the universe expands. In the scalar-tensor
context, the scalar field value should not change too much
either, in order to satisfy the observational constraints. The
vague expectation is that the current tension in the data could
eventually be explained by suitable convergence processes
or oscillations around the standard scenario. Thus, we
expanded the scalar-nonmetricity FLRW equations around
the ΛCDM background with the radiation domination, dust
matter domination, and potential domination assumptions,
solved them explicitly, and determined the asymptotic
behavior of all quantities. In a stable situation, all perturba-
tions should decrease in time. In essence, the question is
whether the “attractor mechanism” that is known in
Riemannian scalar-tensor cosmology [11,15–24] has an
analogue in the symmetric teleparallel counterpart.
For connection set 1, the investigation can be carried

over from the metric teleparallel case which has the same
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equations [91]. In the parametrization where A¼1þfðϕÞ,
B ¼ 1, V ¼ VðϕÞ, all three eras are stable if the model
functions allow a value ϕ� which corresponds to a
simultaneous minimum of the gravitational coupling func-
tion (f0� ¼ 0, f00� > 0) and a minimum or at least an
inflection point of the potential (V 0� ¼ 0; V 00� ≥ 0). It is
notable that, while in the Riemannian scalar-tensor case
during the radiation era the scalar field stabilizes to an
arbitrary value which can be very different from the value it
will be drawn to in the matter and potential domination eras
(thus possibly causing a large drift in the gravitational
constant at the beginning of matter domination), in the
symmetric teleparallel case of connection set 1, the scalar
field value would then remain stable since the radiation era.
For the alternative connection sets, our results are new

and can be summarized as follows. The cosmic history with
connection set 2 can be stable through all three eras only if
there exists ϕ� which satisfies f0� ≠ 0, V 0� ¼ V 00� ¼ 0. In
such a scenario, the extra connection function decreases in
time, and the solutions converge to their respective GR
behaviors. Otherwise, the presence of the extra connection
function diverts the cosmic evolution from the standard
path. In contrast, for connection set 3, the dust matter and
potential domination eras are stable around f0� ≠ 0,
V 0� ¼ V 00� ¼ 0, but there is no stable configuration for the
radiation domination epoch. At face value, these stability
properties seem adequate, although in comparison with
connection set 1, it is unusual that the minima of the
coupling function or potential do not figure into the
stability conditions. Further investigation, however,
uncovers a deeper problem. The gradient of the potential

that would normally act as a force term in the evolution
equation has no role in determining the scalar field
dynamics; see Eqs. (30) and (33). The scalar field only
experiences friction and antifriction types of influence
and can only rather randomly end up at the point of
stability. On the contrary, the scalar field can experience a
singularity if the extrema of the model functions coincide,
f0ðϕsÞ ¼ V 0ðϕsÞ. This feature is illustrated in the phase
portraits of Fig. 1 and probably means that the other
quantities become singular as well.
In conclusion, the alternative FLRW connections cannot

be deemed outright pathological and do not make the
universe definitely unstable, but they have a very strange
and possibly dangerous influence on the scalar field
dynamics nevertheless. Further studies are needed to
understand whether this influence is overwhelmingly
harmful or whether it could be useful in describing some
phenomena in the end. We might find that, although
compatible with FLRW symmetry, the alternative connec-
tions are eventually ruled out when we learn how to
correctly implement the boundary term in the actions of
extended teleparallel gravities to fix the connection.
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