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5Institut de Mathématiques de Bourgogne (IMB), UMR 5584, CNRS, Université de Bourgogne,
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Black holes in anti–de Sitter spacetime provide an important testing ground for both gravitational and
field-theoretic phenomena. In particular, the study of perturbations can be useful to further our under-
standing regarding certain physical processes, such as superradiance, or the dynamics of strongly coupled
conformal field theories through the holographic principle. In this work we continue our systematic study
of the ultraviolet instabilities of black-hole quasinormal modes, built on the characterization of the latter as
eigenvalues of a (spectrally unstable) nonselfadjoint operator and using the pseudospectrum as a main
analysis tool, extending our previous studies in the asymptotically flat setting to anti–de Sitter asymptotics.
Very importantly, this step provides a singularly well-suited probe into some of the key structural aspects of
the pseudospectrum. This is a consequence of the specific features of the Schwarzschild-anti-de Sitter
geometry, together with the existence of a sound characterization by Warnick of quasinormal modes as
eigenvalues, that is still absent in asymptotic flatness. This work focuses on such structural aspects, with an
emphasis on the convergence issues of the pseudospectrum and, in particular, the comparison between the
hyperboloidal and null slicing cases. As a physical by-product of this structural analysis we assess,
in particular, the spectral stability of purely imaginary “hydrodynamic” modes, which appear for axial
gravitational perturbations, that become dominant when the black-hole horizon is larger than the anti–de
Sitter radius. We find that their spectral stability, under perturbations, depends on how close they are to the
real axis, or conversely how distant they are from the first oscillatory overtone.
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I. INTRODUCTION

Quasinormal mode (QNM) frequencies of black hole
(BH) spacetimes, namely the complex frequencies captur-
ing the linear response to external perturbations and en-
coding intrinsic geometric information of the background,
play a major role in different aspects of gravitational
physics [1–5], from fundamental stability results in math-
ematical relativity, applications to the late-time ringdown
phase of dynamical BH spacetimes in gravitational-wave
(GW) astronomy, high-energy astrophysical phenomena,
such as superradiance and superradiant instabilities [6–9],
or in the bulk-boundary duality in the anti–de Sitter/
conformal field theory (AdS=CFT) setting [10,11]. There-
fore, the study of their structural stability aspects is of
major importance. Recent studies have put a focus on the
QNM spectral stability under small perturbations of the
environment [12–15], raising fundamental questions that
remain open. In this work we focus on this problem
dwelling in the setting of asymptotically AdS space-
times, since they provide a particularly well controlled

mathematical environment for the proof-of-principle study
that we aim at here.

A. QNM spectral instability in BH spacetimes

The sensitivity of BH QNM frequencies to small
perturbations of the environment was early identified in
the works by Nollert and Price and Aguirregabiria and
Vishveshwara [16–19], receiving since then some attention
in the literature, mainly in the GW setting [12,20–22].
Recently, an approach to the BH QNM stability problem

based on the discussion of the eigenvalue stability in
nonselfadjoint spectral problems has been proposed1

in [23–26], in particular introducing the notion of pseu-
dospectrum [27–32] both into the QNM problem and in

1The setting is more general than that of BH QNMs, actually
extending to QNM stability in general linear wave equations, in
particular under perturbations in generic potentials but also the
permittivity function in the optical setting [23].
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gravitational physics. This scheme has been then applied
to a variety of BH settings, proving to be robust2 under
various spacetime asymptotics [asymptotically flatness, de
Sitter (dS) and AdS] and boundary conditions [24,36–40].
Of particular importance in the present work is the syste-
matic study in Arean et al. [39], further extended3 by
Cownden et al. [40], that discuss the asymptotically AdS
case providing, in particular, an excellent motivation for the
study of the BH QNM spectral instability in the AdS=CFT
context. Beyond QNM spectral instability, other aspects
of the pseudospectrum in the (nonselfadjoint) BH problem,
namely transients and pseudoresonances, have been
explored in [37,41] (cf. also [40]).
These BH QNM instability studies have prompted other

related works exploring associated aspects [42–45], not
specifically using a nonselfadjoint spectral problem frame-
work, but confirming the qualitative instability picture,
deepening in questions such as the instability of the
fundamental QNM and opening new complementary prob-
lems. A recent review, focused on the GW BH spectros-
copy problem, can be found in [46].

1. Pseudospectrum and BH QNMs: Open problems

Given a self-adjoint operator L (more generally a so-
called “normal operator” [29], namely commuting with its
adjoint ½L;L†� ¼ 0), its spectrum σðLÞ encodes fundamen-
tal information of L that is intrinsic to the operator, not
depending on any other object. However, when the operator
is non-normal (½L;L†� ≠ 0) the spectrum σðLÞ is no longer
necessarily the good notion to consider.
In such a non-normal setting, a more robust notion that

partially substitutes the spectrum, in particular regarding
spectral stability and evolution aspects when L is consid-
ered as an infinitesimal time generator, is the notion of the
pseudospectrum (or more properly the ϵ-pseudospectrum
set) that we briefly revisit in Sec. III. However, there is a
price to pay: the pseudospectrum is not a notion intrinsic
to L, but depends on the choice of a norm. This point has
been addressed in detail in [26]. Specifically, the pseudo-
spectrum sets can be characterized in terms of the norm
of the resolvent RLðωÞ ¼ ðL − ωIdÞ−1, that is, in terms of
kRLðωÞk. As a consequence, the choice of norm (and not
only the structure of the operator L) plays a critical role in
the discussion. In [23–26] and the following articles, the

chosen norm has been the “energy norm” k · kjE defined in
terms of the energy of the propagating linear field. This is a
natural norm in many partial differential equation contexts,
in particular to control initial data in second-order Cauchy
problems (see also [28] in a pseudospectrum related
context). In particular, in our BH QNM stability context
it seems a very natural norm in the spirit of estimating the
“size” of operator perturbations δL in terms of the injected
energy in the system (although such relation is far from
straightforward, cf. [26]). However, the fact that the energy
norm, in particular the associated “energy scalar product,”
might be an appropriate one to characterize the size of
perturbations from a physical perspective in a “BH QNM
stability problem” does not mean that it is also the good
one to “define” the studied BH QNMs. This “stability
versus definition” problem will be addressed in more detail
in [47]. Here we mention that other norms might, and
actually are, key in the BH QNM problem.
Let us mention the following issues regarding the use of

the pseudospectrum in the BH QNM stability problem:
(i) Choice of norm. As discussed above, different

problems (e.g., definition vs stability) may demand
different norms leading to distinct pseudospectra.

(ii) Choice of spacetime slicing. The geometric charac-
ter of the BH QNM pseudospectrum, namely
the assessment of its independence of the slicing,
is still an open problem, in spite of first explora-
tions [36].

(iii) Matrix approximation to the differential operator.
We compute the pseudospectrum of a matrix ap-
proximant LN , not of the actual differential operator
L, and this can be the source of issues, e.g. when the
actual spectrum of L contains a continuous part in
addition to eigenvalues (point spectrum).

(iv) Eigenvalues that are not QNMs. There may be
eigenvalues of L not admitting an interpretation as
QNMs [48]. Then, specific assessments are needed.

(v) Instability of spurious eigenvalues. The use of the
approximant LN may contaminate the pseudospec-
trum by the instability of eigenvalues of LN , that are
not present in the actual spectrum of L.

(vi) Convergence of the pseudospectrum. The status of
the convergence of the pseudospectrun of LN as
N → ∞ is an open issue. This is a critical point.

B. Some structural aspects of Schwarzschild-anti-de
Sitter geometry

1. Timelike null infinity in AdS

In contrast with the asymptotically flat and dS cases,
where the outer (asymptotic) boundary can be naturally
chosen as a null hypersurface (null infinity in the former
and the cosmological horizon in the latter), null infinity in
the asymptotically AdS case is a timelike surface (cf. e.g.
Fig. 1). This makes natural to consider, for asymptotically

2A key aspect of this BH instability is its ultraviolet (high-
wavenumber/low-regularity [33–35] and Ref. [26]) character,
reflected in particular in the logarithmic universality of large
overtones probing small scales that make that, as long as
asymptotics/boundary conditions are leaky, their detailed form
seems important for the qualitative QNM instability effect.

3In the very late stage of the writing this manuscript, we
became aware of the work [40]. Results in [40] and the ones here
presented, in particular regarding the discussion of the pseudo-
spectrum in a null slicing, are independent and complementary.
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AdS BHs,4 two different types of “regular foliations”
(not intersecting the horizon bifurcation surface), namely
spacelike regular foliations [39,48] and null slicings
(e.g. [53,54]). This provides an assessment to caveat
(i) in Sec. VII A 1 of [24], namely the dependence of
the pseudopectrum on the foliation and therefore its geo-
metric content, in a richer setting than the restricted one
implemented in Reissner-Nordström BHs [36].
In the AdS setting, boundary conditions must be chosen

to be imposed at timelike null infinity, with the crucial
requirement of rendering the wave evolution into a well-
posed problem. Specifically, the allowed boundary con-
ditions depend (in a given dimension) on the mass of the
field. In particular, for the massless (scalar) field that we
will focus on here, only a homogeneous Dirichlet condition
is consistent with smoothness [55,56].

2. Absence of tails, spectral instability and
hydrodynamic modes in AdS

Another crucial aspect of AdS, as it is also the case for
dS, is the absence of Price-law tails in the late-time
behavior of BH perturbations, corresponding to the absence
of a branch cut (or the continuous part of the spectrum in

our setting) present in the asymptotically flat case (see also
Ref. [57] for a description on how AdS dynamics connects
smoothly to that of asymptotic flat spacetime in the limit of
small cosmological constant). Note that the Pöschl-Teller
case, studied in detail in [24] as a test-bed for BH QNM
(and actually corresponding to scalar field perturbations in
dS [24,58]), falls also in this category of potentials without
Price-law tails.5

The use of matrix approximants LN for the operator L,
introduce spurious eigenvalues in the spectrum, corre-
sponding to a discretization of the “branch cut,” whose
potential instability contaminates the pseudospectrum. In
this context, the AdS case (as well as Pöschl-Teller and dS)
provides a much cleaner BH setting than Schwarzschild or
Reissner-Nordström. This has important consequences at a
technical and at a physical level.
At the technical level, in addition to the absence of

contamination of the spectra and pseudospectra by spurious
eigenvalues in the imaginary axis, the complementary
approach tool to explore the spectral instability by using
random perturbations (“filling” pseudospectra sets, cf. the
Bauer-Fike theorem in [24,29]) can be fully explored in this
setting. This was initiated for the Pöschl-Teller potential
in [24] (see also [38]) and further developed in [39]
(also [40]). Crucially, (random) perturbation analyses are
not spoiled by eigenvalues in the “branch cut.”
From the physical point of view, the absence of a

nonconvergent continuous spectrum along the imaginary
axis, permits to study in a clean manner the so-called
“hydrodynamic” modes of AdS BHs [3], namely QNMs
placed also along the imaginary axis corresponding to
actual (convergent) eigenvalues, and not to points in the
continuum spectrum that manifest as (nonconvergent)
eigenvalues upon discretization of the operator. Hydro-
dynamic modes are relics of holography that connect
perturbations of the bulk BH spacetime to corresponding
hydrodynamic quantities in the dual CFTat the boundary of
AdS [3,57,61–64]. These modes can be complex or purely
imaginary depending on the perturbation channel of the
CFT, are nontrivially connected to the properties of hydro-
dynamics, and can become long-lived for AdS BHs when
the event horizon radius is larger than the AdS length
scale [3,65]. The absence of numerically nonconvergent but
unstable eigenvalues corresponding to the “branch-cut” in
the continuum limit, will allow us to study the stability of
these hydrodynamic modes, both when they are funda-
mental, i.e., for “large” Schwarzschild-AdS (SAdS) BHs or
when they are overtones, for “small” SAdS BHs. The study
of their spectral stability will be a physical aspect on which
we will focus in this work.

FIG. 1. SAdS conformal diagram and different types of hyper-
surface slicing families on which the evolution of a decaying field
outside the horizon can be analyzed.

4Actually, null foliations can also be used for QNM calcu-
lations in the asymptotically flat and dS cases, by imposing
vanishing boundary conditions at past null infinity or the past
cosmological horizon, respectively [49–52]. However, in those
cases an actual hyperboloidal slicing is possible and appears as a
privileged one.

5See also accelerating Schwarschild and Reissner-Nordström
BHs, described by the C-metric, where perturbations decay at late
times in an exponential manner [59,60].
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3. QNMs as eigenvalues of a nonselfadjoint operator: The
special status of AdS

Independently of the spacetime asymptotics, adopting a
spacetime foliation that intersects the BH horizon and Iþ in
regular sections permits to cast the QNM calculation as
an eigenvalue problem. For concreteness, let us focus on
spacelike regular foliations, leaving the discussion of the
setting of QNMs in the null slicing approach for Sec. II A 2.
Such regular spacelike foliations are referred to as “hyper-
boloidal slicings” and have been used in the BH QNM
setting in the asymptotically flat case (e.g. [23,24,66–68])
with dS asymptotics (e.g. [38,69]), and the AdS case
(e.g. [39,48], where they are referred as spacelike “regular
slicings”). Considering the wave equation for a scalar field
(that can be the one in the master equation of, say,
gravitational perturbations) in such hyperboloidal setting,
and upon a first-order reduction in time followed by a
Fourier transform, the QNM problem can be cast (see
Sec. II A 1 below) as

Lun ¼ ωnun; ð1Þ

where

u ¼
�
ϕn

ψn

�
; L ¼ 1

i

�
0 1

L1 L2

�
; ð2Þ

and operators L1 and L2 are given in Eq. (19) below.
As formulated in Eq. (1), the QNM system looks as a

relatively simple and harmless eigenvalue problem, in
which even outgoing boundary conditions are no longer
explicit, having being incorporated into the bulk of the
operator. In addition, the success in [67,68] where (1) is
combined with accurate spectral Chebyshev methods,
supports such a vision. However, such apparent simplicity
is misleading. In fact, the trade-off of eliminating outgoing
boundary conditions in favor of conditions on the regularity
of the eigenfunctions introduces a key subtlety in the very
definition of QNMs as eigenvalues.
A clear manifestation of such regularity issues is the

following key remark in [67]: considering the convention in
which QNM frequenciesωn are in the upper-half planeC, it
holds that Eq. (1) admits a smooth (C∞) solution not only
for that discrete set fωng, but actually for any complex
number ω in the upper-half plane.6 In other words, any ω is
an eigenvalue for an appropriate smooth eigenfunction.
This has the remarkable consequence that initial data can be
chosen such that the evolved fields decays as an exponen-
tially damped sinusoidal time-signal, in which the time

decay and the oscillating frequency can be chosen freely
(cf. Fig. 3 in [67] and discussion therein). That is, the field
decays exactly in the way QNMs do (and without tails), but
for an arbitrary complex frequency. What actually singles
out the discrete set of QNM frequencies ωn is that the
corresponding eigenfunctions possess an enhanced regu-
larity. As discussed in Ref. [67], withing the approach
originally put forward by Leaver [70], this property is cast
in terms of the behavior of the coefficients Hk of a Taylor
expansion of the eigenfunction ϕðωÞ around the horizon (a
regular singular point): QNMs correspond to ωn whose
corresponding ϕn ¼ ϕðωnÞ present decreasing coefficients
Hk as k → ∞, whereas for an arbitrary point ω ∉ fωng
coefficients Hk diverge (and still ϕðωÞ is smooth,
cf. Appendix B in [67]).
A systematic manner of dealing with these regularity

requirements consists of enforcing QNM eigenfunctions
to belong to a Hilbert space where the scalar product is
sufficiently stringent to enforce the appropriate regularity.
This is the approach taken by Warnick [48] for the charac-
terization of QNMs as “proper” eigenvalues in asymptoti-
cally AdS (as well as dS) BH spacetimes by using
Sobolev’s spaces Hk (see also [58,71,72]) and then exten-
ded to some BH models in the asymtotically flat case
in [73–75], in terms of Gevrey-2 classes of functions.
The key point in the setting of the present work is that

Warnick’s discussion of the asymptotically AdS (and dS)
case, in terms of Sobolev’s spaces Hk controlling the norm
of the first k derivatives,7 offers a particularly complete
and robust characterization of QNMs as eigenvalues.
Unfortunately, such a level of mathematical control has
not been yet attained in the generic asymptotically flat case
(in terms of so-called Gevrey-2 classes of functions,
needing the control of all derivatives). It is for this reason
that the AdS case offers a particularly well-suited test-bed
for our exploration of the pseudospectrum and related tools,
given the existence of a well-understood mathematical
counterpart. The basic elements of QNMs as eigenvalues
in AdS will be discussed in Sec. III.

II. PERTURBATIONS OF SCHWARZSCHILD-
ANTI–DE SITTER BLACK HOLES

The SAdS geometry [76] is given by the line element

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2; ð3Þ

where dΩ2 is the line element of the unit sphere, and the
redshift function reads

fðrÞ ¼ 1 −
rs
r
þ r2

R2
; ð4Þ

6The discussion in Sec. IVA and Appendix B of Ref. [67] is
presented in terms of the Laplace-transform parameter s, rather
than the Fourier ω (related by s ¼ iω) and without prior first-
order reduction in time. Specifically, our Eq. (1) corresponds to
Eq. (27) in [67], in the particular case of the Schwarzschild BH.

7In this context of control of derivatives, a manifestation of the
underlying regularity issues is the observed spectral instability
in [23–26], where the use of the energy norm (essentially an H1

norm) is not sufficiently stringent to control QNM overtones.
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with rs and R positive constants. This redshift function has
only one zero at a positive value of the radial coordinate,
which corresponds to the position of the BH event horizon,
designated as r ¼ rh from here on. With this last parameter,
the function (4) can be recast into the form

fðrÞ ¼
�
1 −

rh
r

��
1þ α2

�
1þ r

rh
þ r2

r2h

��
; ð5Þ

where α ¼ rh=R is a dimensionless constant which relates
the size of the BH to the AdS length scale R. The form (4)
can be recovered with the relation

rs ¼ rhð1þ α2Þ:

The form (5) will be used throughout this work, since it
allows us to simplify the geometric approach of imposing
QNM boundary conditions at the horizon.
Assuming linear-field (e.g. scalar or gravitational) per-

turbations on SAdS spacetime, and imposing appropriate
transformations of the degrees of freedom together with a
decomposition of the angular sector into spherical harmon-
ics, the radial-temporal part of each angular mode of
different types of fluctuations satisfies a wave equation
of the form

−ϕ;tt þ ϕ;r�r� − Vsϕ ¼ 0; ð6Þ

where a comma in the subscript denotes partial differ-
entiation, r� is the tortoise coordinate, defined as
dr� ¼ dr=fðrÞ, and the potential Vs depends on the angular
multipole l and the nature of the perturbations. In this work
we will mainly focus on scalar s ¼ 0 and axial gravitational
s ¼ 2 waves, described, respectively, by the potentials [3]

V0 ¼
f
r2
½lðlþ 1Þ þ rf0�; ð7Þ

V2 ¼
f
r2

�
lðlþ 1Þ − 3rs

r

�
; ð8Þ

respectively, where prime denotes differentiation with
respect to the function’s argument. For the sake of brevity,
in what follows we will present results only for these two
potentials. The electromagnetic and polar gravitational
cases lead to qualitatively similar results, as we will briefly
discuss in the concluding remarks.

A. Boundary conditions

Asymptotically AdS spacetimes have a timelike boun-
dary at r → ∞ (see Fig. 1), where not just spacelike, but
also null and timelike curves can begin and end. Therefore,
in order for the evolution of fields on this spacetime to be
determined unambiguously from initial data on a spacelike
hypersurface, a boundary condition that fits the physical

properties of the geometry at r → ∞ must be imposed.
A typical choice is the reflective (Dirichlet) boundary
condition [77]

ϕjr¼∞ ¼ 0; ð9Þ

which we will adopt in this work. For scalar perturbations
ϕsc, the divergent potential (7) at this boundary along with
the condition (9) result in a falloff at large r as

ϕsc ∼
1

r2
: ð10Þ

For the other types of perturbations, the potentials are finite
at the boundary, and imposing the behavior 1=r is sufficient
for solutions to satisfy the boundary condition.
At the event horizon, all potentials vanish and Eq. (6)

reduces to a free wave equation. The boundary condition
there which defines QNMs is that of an ingoing wave,

ðϕ;t − ϕ;r� Þjr¼rh ¼ 0: ð11Þ

A Fourier decomposition on ϕðt; r�Þ translates this behav-
ior to the frequency domain as

ϕ ∼ eiωðr�þtÞ ∼
�
1 −

rh
r

� iωrh
1þ3α2eiωt: ð12Þ

From the temporal part we observe that in order for the
solution to decay in time, i.e. for the spacetime to be
linearly stable, the QNM frequencies ωn must have a
positive imaginary part. This, however, makes the spatial
part having a divergent, oscillatory behavior. This issue is
typical of QNMs when working in Schwarzschild-like
coordinates, and we will deal with it geometrically in what
follows.

1. Regular (“hyperboloidal”) slicing

Much like how the analytical extension toward the
past of BH spacetimes leads to nonphysical white hole
configurations, the extension of QNMs toward the past
describes oscillations with exponentially increasing ampli-
tude, which are equally nonphysical. At the horizon
bifurcation surface (and at spacelike infinity, if the space-
time were asymptotically flat) this issue is still partially
present, leading to the singular oscillatory behavior
observed at the boundary in Eq. (12). In other words, this
singular tendency can be seen as a consequence of evolving
the wave equation along t ¼ const hypersurfaces. These
span from the horizon bifurcation surface to the AdS
boundary, as shown in Fig. 1, where they are labeled as
Cauchy slices.
A geometric method of working around this issue is to

choose a set of hypersurfaces which intersect the future
event horizon Hþ, as shown in Fig. 1. One possibility is
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to use a (half-)hyperboloidal8 scheme [67,68,78], which
keeps constant-time hypersurfaces spacelike but bends
them toward the future horizon. Another is to directly
use a foliation of ingoing null hypersurfaces. Both of these
transformations, when applied to Eq. (6), change the
problem in a way that not only makes the QNM solutions
regular at the horizon, but also makes regularity equivalent
to the ingoing boundary condition (11).
Aside from this change in the spacetime foliation, in

order to evaluate the problem numerically, we also need to
compactify the infinite span of the radial (tortoise) coor-
dinate to a finite domain. We thus define a new coordinate
system fτ; χg for the radial-temporal sector as

tðτ; χÞ ¼ τ − hðχÞ;
r�ðτ; χÞ ¼ gðχÞ: ð13Þ

The function g ensures that the r� ∈ ð−∞; r�∞Þ interval,
where r�∞ is an integration constant corresponding to
r → ∞, is compactified into a finite domain χ ∈ ½a; b�.
It is also chosen such that the potential in the wave
equations can be written explicitly in terms of χ. A standard
choice is the one defined by the relation χ ¼ rh=r, formally
given by

gðχÞ ¼
Z

rh=χ dr
fðrÞ : ð14Þ

As for the height function h, its purpose is to bend the
spacetime foliation toward the future horizon Hþ, such
that the ingoing wave condition is satisfied geometrically,
as described above. This is achieved as long as the
condition

hðχÞ ∼ gðχÞ ∼ 1

1þ 3α2
log

�
1 −

rh
rðχÞ

�
; ð15Þ

is satisfied when approaching the event horizon. In other
words, τ must behave like the Eddington-Finkelstein
ingoing null coordinate, v ¼ tþ r�, around the horizon.
When (15) is satisfied only in the vicinity of rh, while in the
rest of the BH exterior the τ ¼ const hypersurfaces are
spacelike (h0 < g0), the slicing is hyperboloidal. In particu-
lar, we will work with a slicing

hðχÞ ¼ 1

1þ 3α2
logð1 − χÞ; ð16Þ

obtained by integrating only the dominant term of the
redshift function around the horizon in Eq. (14), and
subsequently checking that the condition h0 < g0 is satisfied

for r > rh. Note that for any τ defined through (13), the
Fourier frequency variable ω is the same as the one
corresponding to t, since ∂τ ¼ ∂t for these transformations.
After this transformation, and a reduction of order in

time through

ψ ¼ ∂τϕ; ð17Þ

the wave equation (6) can be written as

L1ϕþ L2ψ ¼ ∂τψ ; ð18Þ

where

L1 ¼
p
w
∂
2
χ þ

p0

w
∂χ −

q
w
¼ 1

w

�
∂χðp∂χÞ − q

�
;

L2 ¼ 2
γ

w
∂χ þ

γ0

w
¼ 1

w

�
γ∂χ þ ∂χðγ·Þ

�
; ð19Þ

with a prime denoting a derivative with respect to χ, and the
functions

w ¼ g02 − h02

jg0j ; p ¼ 1

jg0j ; γ ¼ h0

jg0j ; q ¼ jg0jV:

ð20Þ

The first-order problem can be obtained from combining
Eqs. (17) and (18),

iLu ¼ ∂τu; ð21Þ

wherewe define the vector and block operator [cf. Eq. (2)] as

u ¼
�
ϕ

ψ

�
; L ¼ 1

i

�
0 1

L1 L2

�
: ð22Þ

2. Null slicing

The third possibility depicted in Fig. 1 is to analyse the
wave equation in an ingoing null slicing, with a time
parameter given directly by the advanced Eddington-
Finkelstein coordinate v ¼ tþ r� (equivalent to a trans-
formation (13) with h ¼ g). This choice in fact turns out to
be the most efficient method for the numerical computa-
tions presented in the following sections. We note that a
similar approach has been recently pursued in [40]. That
said, all computations have been performed with both
the hyperboloidal and null foliations, for the sake of
comparison (as we will see, some of the results differ
between the two). In this sense, our work encompasses both
the hyperboloidal treatment in Arean et al. [39] and the null
slicing approach in Cownden et al. [40], allowing us to
compare and assess both approaches to BH QNM insta-
bility in an AdS setting.

8We say “half” because the standard hyperboloidal scheme
also bends the hypersurfaces toward future null infinity, when this
boundary is null.
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The wave equation (6) cast in the ingoing null coordinate
system acquires the form

iMϕ ¼ B∂vϕ; ð23Þ

where

M ¼ 1

2i

�ð∂χp∂χÞ − q
	 ¼ 1

2i

�
p∂2χ þ p0

∂χ − q
�
;

B ¼ −∂χ ; ð24Þ

with p and q given again by (20).

3. AdS boundary

The ingoing condition at the horizon (11) is satisfied
automatically for regular solutions in both the hyperbol-
oidal and null coordinates, as can be seen by applying the
transformation (13) to (11). On the other hand, the Dirichlet
condition, which we have chosen for the AdS boundary,
must be imposed by hand. For gravitational (and electro-
magnetic) perturbations, this condition can be applied
directly in the numerical implementation of the problem,9

while for scalar perturbations, due to the requirement for a
sharper decay in r [see Eq. (10)], an additional trans-
formation must be applied to the equation through the
rescaling

ϕscðτ; χÞ ¼ χξðτ; χÞ: ð25Þ

With this redefinition, Eqs. (21) and (23) (appropriately
regularized with a multiplication by χ on both sides)
automatically impose that ξ must tend to zero at the timelike
AdS boundary, which, together with smoothness in χ,
completely imposes the required asymptotic behavior (10).
However, one important change is worth noting.

Equation (21), after the rescaling (25), takes on the form

iL̃uξ ¼ χ2∂τuξ; ð26Þ

with uξ a vector of components ξ and ∂τξ, and L̃ obtained
by direct substitution of (25) into (21), followed by a
multiplication by χ. The key feature is that the χ2 multi-
plying the right-hand side cannot be absorbed into L̃
without making this operator singular at the AdS boundary,
due to the very divergence of the potential this trans-
formation is meant to regularise. This makes the problem in
the hyperboloidal framework more similar to the one in the
null case (23), with operators on both sides of the equation.
After the Fourier transform discussed below, this equation
turns into a generalized eigenvalue problem. As for the
wave equation in the null case (23), after the rescaling (25)

and the multiplication by χ, the right-hand side operator
simply turns into B̃ ¼ −χ2∂χ − χ.

III. QNMs AS EIGENVALUES, SPECTRAL
INSTABILITY AND NORM

The discussion in the previous Sec. II leads naturally to
casting the calculation of QNMs as an eigenvalue problem
in two distinct but (in principle) formally equivalent
formulations corresponding, respectively, to the (regular)
hyperboloidal and the null slicings.
For the gravitational perturbation problem expressed in

the hyperboloidal frame, described in Sec. II A 1, taking a
Fourier transform in Eq. (21) with respect to τ leads to the
(“frequency domain”) eigenvalue problem for the infini-
tesimal time generator L in Eq. (22)

Lu ¼ ωu: ð27Þ

On the other hand, when we consider the same problem in
the null slicing (II A 2), we obtain QNMs characterized in
terms of a generalized eigenvalue problem10 (see also [40]).
Specifically, taking the Fourier transform in the (advanced)
time v, the wave equation (23) becomes

Mϕ ¼ ωBϕ: ð28Þ

Although the analysis of such a generalized eigenvalue
problem requires some additional care, a key difference
with Eq. (27) is that such an approach does not involve a
previous first-order reduction in time, as in the hyper-
boloidal approach. This may prove to be relevant in the
analysis of the pseudospectrum, as we comment below.
For scalar perturbations, as noted above, the Fourier-

transformed equation turns into a generalized eigenvalue
problem in both the hyperboloidal and null slicings. In the
hyperboloidal one, this is in addition to the time-order
reduction, while for the null one the problem remains
structurally the same as the gravitational perturbation
case (28). In the following discussion, the two spectral
problems (27) and (28) will be referenced, and the latter
should be understood to encompass the scalar field case for
both slicings.
The QNM frequencies, being eigenvalues in spectral

problems of the type (27) and (28), can be defined as ω∈C
for which the operators ðL − ωIdÞ and ðM − ωBÞ, respec-
tively, are not invertible. In other words, frequencies ω for
which there exist eigenfunctions uðωÞ and ϕðωÞ [respec-
tively for Eqs. (27) and (28)] in the appropriate Hilbert
space. Indeed, as discussed in Sec. I B 3, such uðωÞ and
ϕðωÞ QNM eigenfunctions must be defined in the appro-
priate Hilbert space for enforcing the regularity required to

9The same method has been used in [37] to apply Dirichlet
boundary conditions at the perfectly reflective surface of hori-
zonless compact objects.

10These generalized eigenvalue problems have been studied in
the QNM instability context in [23] in optical cavity scenarios.
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correctly characterize the QNMs. The choice of Hilbert
space is key. In terms of the corresponding resolvent
operators, namely

RLðωÞ ¼ ðL − ωIdÞ−1; ð29Þ

for the hyperboloidal case and [23,29,40]

RM;BðωÞ ¼ ðM − ωBÞ−1; ð30Þ

for the null slicing, QNM frequencies are those ω∈C for
which the resolvents RLðωÞ and RM;BðωÞ, defined in the
corresponding appropriate Hilbert space, do not exist.
In particular, when considering the operator norm k · k
induced from the Hilbert space norm, these resolvent norms
diverge as ω tends to one of these eigenvalues.

A. QNMs as eigenvalues in AdS: Hk regularity

As discussed in Sec. I B 3, the question about the
appropriate regularity required to characterize QNMs in
asymptotically AdS BHs has been fully addressed by
Warnick [48]. As a result of this analysis, it follows that
the upper-complex-half plane ImðωÞ > 0 presents a struc-
ture in horizontal bands of width given by the BH horizon
surface gravity κ, where increasing regularity of the QNM
eigenfunctions is required to identify QNMs as they
become more damped. More specifically, focusing on
the hyperboloidal slicing eigenvalue problem (27):

(i) Given k∈N, Hk-QNMs are introduced as eigenfunc-
tions of the spectral problem (27) with Hk-regularity,
i.e. whose first k derivatives are L2-integrable
(namely, they are in the Sobolev space Hk). Specifi-
cally, defining the Hk-regular Lk operator

Lk∶ Hk ×Hk−1 → Hk ×Hk−1

ðϕ;ψÞ ↦ Lðϕ;ψÞ ¼ ðψ ; L1ϕþ L2ψÞ;
ð31Þ

Hk-QNM frequencies are proper eigenvalues of Lk.
(ii) Hk-QNM frequencies in the horizontal band above

the real axis, characterized by

ImðωÞ < aþ κ

�
k −

1

2

�
; ð32Þ

form a discrete set (here a is a fixed constant
depending on the spacetime and not on k).

(iii) The Hk-resolvent RLk
ðωÞ ¼ ðLk − ωIdÞ−1, where

RLk
ðωÞ∶Hk ×Hk−1 → Hk ×Hk−1; ð33Þ

exists and is a Hk-bounded operator in the region
defined by inequality (32), of course except in the
discrete set given by Hk-QNM frequencies.

(iv) However, for every k∈N, there exists a constant ck
such that RLk

ðωÞ does not exist for ω∈C with

ImðωÞ > ck: ð34Þ

In other words, all complex numbers ω in the half-
plane defined by (34) are proper Hk-QNM frequen-
cies, namely actual eigenvalues of Lk.

In more simple terms, if we want to characterize and
locate the QNMs in asymptotically AdS BHs as eigenval-
ues in the spectral problem (27), we must proceed band by
band, of width κ, starting from the real axis11 by imposing
more and more control on the derivatives of the corre-
sponding eigenfunctions. In order to find the discrete
QNMs in the first κ-band we impose the first derivative
to be in L2 (so the eigenfunction is in H1). All frequencies
above this band are valid QNMs at this regularity level.
Then, to access the discrete QNMs in the second κ-band we
impose second derivatives to be in L2 (eigenfunctions in
H2) and so on and so forth: for each κ-band where we want
to locate discrete eigenvalues we must add control on one
more derivative. QNMs become more regular as they are
more damped, thus requiring more regularity to “pick up”
the appropriate discrete QNM frequencies in each new
band. But, for any finite k, there always remain a continu-
ous set of QNMs with that Hk-regularity above the kth
κ-band.12

B. Spectral stability of QNMs: Pseudospectrum
and choice of norm

In the previous section we have sketched what in
Sec. I A 1 we have referred to as the “BH QNM definition
problem,” in the specific context of asymptotically AdS
BHs, where it is fully addressed. We have seen that the
choice of the proper Hilbert space, with its associated norm,
is key to control the required regularity. The focus of the
present manuscript is however placed in the related, but
different, “BH QNM stability problem,” where the choice
of norm is also a key part of the analysis.

1. Characterizations of the pseudospectrum

Non-self-adjoint operators L (and, more generally non-
normal operators, for which ½L;L†� ≠ 0), can potentially
suffer from spectral instability, as a consequence of the
general nonorthogonality of the eigenfunctions of L and its
adjoint L†. In this setting, the spectrum σðLÞ is not

11Actually, the starting point depends on the constant a in (32),
but this is just a technical point.

12This formalizes in terms of Hk Hilbert spaces, and for
asymptotically AdS BHs, the remark in [67] commented in
Sec. I B 3, according to which all frequencies in the upper
complex half-plane are QNMs of the Schwarzschild BH if no
appropriate enhanced regularity is enforced on the corresponding
eigenfunctions.
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necessarily the proper object to consider, and the notion of
ϵ-pseudospectrum σϵðLÞ becomes relevant. The latter is
defined as the set, for a given ϵ > 0, of all complex
numbers ω∈C that are eigenvalues for “some” perturbed
version Lþ δL of the operator L, with perturbations δL
of “size” kδLk < ϵ in some appropriate norm. In other
words [29,31,32],

σϵðLÞ ¼ 

ω∈C; ∃ δL; kδLk < ϵ∶ω∈ σðLþ δLÞ�; ð35Þ

Spectrally stable operators are such that the perturbed
eigenvalues remain at a distance of order ϵ under pertur-
bations with kδLk ∼ ϵ, giving rise to ϵ-pseudospectral
levels structured as concentric circles (more specifically
“tubular neighborhoods”) of radii ϵ. On the contrary,
spectrally unstable operators present ϵ-pseudospectra
extending over much larger regions in the complex plane.
Clearly, such a notion of spectral stability depends on what
identifies as a “big” or “small” perturbation, and therefore
on the choice of norm (see discussion in [24,26]). More-
over, the natural choice of norm in this “stability” problem
need not coincide with the appropriate one in the “defi-
nition” problem [47]: whereas the latter is dictated by the
mathematical structure of the operator, the former may be
determined on physical grounds.
An equivalent characterization of the ϵ-pseudospectrum

providing a direct link to the resolvent, as well as an
efficient manner of determining the ϵ-pseudospectral sets13

is given in terms of the norm of the resolvent. In the
hyperboloidal case (29), this is given by

σϵðLÞ ¼ 

ω∈C∶kRLðωÞk ¼ kðL−ωIdÞ−1k> 1=ϵ

�
; ð36Þ

whereas in the generalized eigenvalue case (30) we have14

σϵðM;BÞ ¼ 

ω∈C∶kRM;BðωÞk ¼ kðM −ωBÞ−1k> 1=ϵ

�
:

ð37Þ

In the case that the norm k · k is induced from a scalar
product, the pseudospectrum calculation can be reduced
to the calculation of the minimum of the (generalized)
singular values sminðAÞ of the appropriate operator A (see
details in [24], in particular in its Appendix B). In the
hyperboloidal case we have the characterization

σϵðLÞ ¼ 

ω∈C∶sminðL − ωIdÞ < ϵ

�
; ð38Þ

whereas in the null slicing case, the expression is

σϵðM;BÞ ¼ 

ω∈C∶sminðM − ωBÞ < ϵ

�
: ð39Þ

2. Energy and Hk Sobolev norms

As we have mentioned above, the natural norm to assess
QNM stability is not necessarily the same as the one needed
in order to control the appropriate regularity of the QNMs.
Whereas in the asymptotically AdS (and dS) case the latter
is given by Hk norms controlling the “size” of the first k
derivatives (cf. Sec. III A), from a physical perspective
a natural norm concerning the stability issue is the one
related to the energy introduced in the system by the pertur-
bation δL. Such an energy norm is essentially an H1 norm,
which is natural in the control of the well posedness of the
initial value problem of the second-order wave equation (6),
but it is clearly insufficient to characterize BH QNMs
beyond the first κ-band in the upper complex plane (namely
the fundamental or slowest decaying QNM frequency).
Starting from the expression of the energy, in a stationary

spacetime, associated with a field ϕ in a given hypersur-
face, we can write explicitly the energy scalar product in the
hyperboloidal case, as (cf. [24,26])

hu1; u2iE ¼ 1

2

Z
b

a

�
wðχÞψ̄1ψ2 þ pðχÞ∂χϕ̄1∂χϕ2

þ qðχÞϕ̄1ϕ2

�
dχ: ð40Þ

In the null slicing case, the product is essentially the same,
keeping in mind that there is no reduction of order in time
and, correspondingly, wðχÞ ¼ 0, leading to

hϕ1;ϕ2iE ¼ 1

2

Z
b

a

�
pðχÞ∂χϕ̄1∂χϕ2 þ qðχÞϕ̄1ϕ2

�
dχ ð41Þ

For the case of a scalar field, where the function ϕ is
rescaled according to (25), the above expressions apply to
the quantity χξðτ; χÞ. They can be further simplified to
remove the cross products between differentiated and non-
differentiated functions using integration by parts. Defining
the order-reduced rescaled function ηðτ; χÞ ¼ ∂τξðτ; χÞ ¼
ψðτ; χÞ=χ, and the vector uξ with components ξ and η, the
resulting product reads

huξ1; uξ2iE ¼ 1

2

Z
b

a

�
χ2wðχÞη̄1η2 þ χ2pðχÞ∂χ ξ̄1∂χξ2

þ�
χ2qðχÞ − χp0ðχÞ�ξ̄1ξ2�dχ ð42Þ

For the null slicing, the above expression once again
applies, setting wðχÞ ¼ 0 and considering the appropriate
functions pðχÞ and qðχÞ corresponding to the coordinate
transformation.
For higher-order Hk Sobolev norms, we consider an

extension to the above expression through the direct

13Alternatively, the characterization (35) of the ϵ-pseudospectrum
can be employed to determine the ϵ-pseudospectra sets by using
random perturbations δL of norm kδLk ≤ ϵ, cf. [29]. This has
been systematically used in [39] in the AdS black brane setting.

14See Chapter 45 in [29] for the specificities of pseudospectra
in this generalized eigenvalue formulation.
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addition of a term

χð1 − χÞ∂kχϕ̄∂kχϕ ð43Þ

to the integrand. The weight χð1 − χÞ has been chosen
simply in order to avoid adding nontrivial terms at the
boundaries, as such terms are directly related to the non-
selfadjoint nature of the operator L in the energy norm
(see [24]). In practice, any simple weight function, even one
which does not vanish at the boundaries, appears to lead to
the same qualitative results described below.
Since, both the energy and the Hk norms are induced by

the scalar product in the appropriate Hilbert space, we can
use the characterizations (38) and (39) in the standard and
the generalized eigenvalue problems, respectively.

C. Numerical implementation

To obtain the QNM spectrum, and subsequently the
pseudospectrum, of the simple and generalized eigenvalue
problems discussed above, we follow the method employed
in [24,36,37] and use a Chebyshev-Lobatto grid discreti-
zation in the χ variable with N grid points. The discretized
expressions for both the derivative and integral operators
defined above are obtained by expanding the solution in N
Chebyshev polynomials, and expressing the derivative/
integral of each of them in the same basis, with the
operators making the corresponding connection.
The ingoing boundary condition at the horizon is

automatically satisfied in the coordinate system used for
solutions regular at r ¼ rh, which are the only ones the
numerical method can approximate. As for the reflective
boundary condition at r → ∞, for the axial gravitational
perturbations it is imposed by removing a row and column
from the discretized matrix operators corresponding to the
position of χ ¼ 0 in the grid; for scalar perturbations, as
mentioned above, the rescaling (25) and the regularization
of the resulting equation already impose the necessary
condition for the solutions at the boundary, so no additional
steps need to be taken.
In what follows, we use several different values of N for

different calculations. For calculating the QNM spectrum
of the BHs, we find that N ¼ 100 is more than sufficient to
resolve at least the first 6-7 modes closest to the origin to
within several decimal places of accuracy, for all cases
studied. For the contour plots of the pseudospectrum, we
therefore use the same N, finding the result to be quali-
tatively well behaved. For the QNM spectra of the
perturbed operators, we increase the resolution to N ¼ 150
for the purpose of numerically resolving the highly
oscillating perturbation well. Lastly, for the convergence
tests we use values in the range N ∈ ½50; 800�, with
jumps of 25.
For the calculation of the pseudospectrum, we use the

generalized singular value decomposition from Eqs. (38)
and (39), with

smin
E

�
R−1ðωÞ� ¼ min


 ffiffiffi
c

p
∶c∈ σ

�ðR−1ðωÞÞ†R−1ðωÞ��;
ð44Þ

where RðωÞ stands for the resolvent RLðωÞ or RM;B, defined
above for the eigenvalue problems studied, and ðR−1ðωÞÞ†
is the adjoint of its inverse. The calculation of the adjoint is
performed with respect to the norms described above for
each case, with its numerical implementation given by

A† ¼ ðGÞ−1 · ðAtÞ� · G; ð45Þ
where A is any operator, with its conjugate transpose
denoted as ðAtÞ�, and G is the Gram matrix corresponding
to each norm, as defined in Appendix C of [24].

IV. RESULTS

In this section we present the results concerning the
stability of SAdS QNMs, focusing on their generic struc-
tural aspects, rather than systematically exploring the para-
meter space of this problem. We start by presenting the
results in the hyperboloidal slicing setting, and then in the
null slicing. After this we discuss and interpret these results
in light of Warnick’s analytical results in [48]. Finally, this
analysis allows us to focus on the physical problem
concerning the stability of hydrodynamic modes.

A. Pseudospectra: Hyperboloidal slicing

Figures 2 and 3 illustrate, respectively, the stability
properties of QNMs for a scalar field and the axial
gravitational perturbation (both for the l ¼ 2 mode) in
SAdS BHs for given choices of the parameter α ¼ rh=R.

�17.5
�15.0
�12.5
�10.0
�7.5
�5.0

BH

Pert. 10�1

Pert. 10�3

Pert. 10�5

FIG. 2. Pseudospectrum in the energy norm of l ¼ 2 scalar
perturbations on SAdS with α ¼ 1, in the hyperboloidal slicing.
The spectrum of the unperturbed operator is shown with red circles
while the resulting spectra of perturbed versions, where perturba-
tions of the type (46) with k ¼ 20 have been added to the dis-
cretized potential of the operator, are shown with differently
shaped and colored points according to their energy norm, indi-
cated in the legend. The grid-point resolution used is N ¼ 100 for
the pseudospectrum and N ¼ 150 for the perturbed spectra.
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These and subsequent figures include two independent
classes of calculations:

(i) QNM calculations: they corresponds to the resolution
(through an appropriate numerical algorithm) of the
eigenvalue problem (27), both for the exact SAdS
spacetime (red points) and for effective potentials
subject to perturbations δV (differently colored and
shaped points). These perturbations are of the form

δV ¼ ε sinð2πkχÞ; ð46Þ
with thewave number k generally chosen to be as high
as possible while still safely allowing for convergent

results with the numerical resolution used (since
high wave number perturbations lead to the strongest
destabilization, as shown in [24]), and ε is chosen in a
way that fixes the energy norm of the perturbation
operator (δL or δM) to the specified values.

(ii) Pseudospectrum calculation: this corresponds to the
contour lines map of the function fL∶ C → Rþ,
with fLðωÞ ¼ kRLðωÞk [actually we plot the inverse
1=fLðωÞ] where RLðωÞ is given in (29). Pseudo-
spectral sets σϵðLÞ in (36) are given by the regions
bounded below by the ϵ-contour lines.

These numerical results recover the qualitative features
and contour-line patterns previously found when using
the hyperboloidal slicing to study BH QNM stability in the
asymptotically flat [23–25,36,37,46], asymptotically dS [38],
and asymptotically AdS [39] configurations.

1. Pseudospectra

Concerning the (numerical approximation to the)
ϵ-pseudospectral sets, they indicate a strong spectral in-
stability of the BH QNM spectral problem, with increasing
instability as ImðωÞ grows, that is, for higher overtones of
the nonperturbed spectrum. The fundamental QNM is the
most stable of the QNMs but, at the pseudospectrum level,
the transition to instability in the overtones is a smooth one,
without any drastic qualitative difference in the transition to
the first overtone, as compared to the transition between the
first and second overtones.
Although the pseudospectrum analysis does not allow us

to identify the origin of the QNM instability, an interesting
point concerns the asymptotic structure of the contour lines
for large jReðωÞj. They present a qualitative open structure,
already found in other BH settings. More specifically, in the
asymptotically flat case (but also in Pöschl-Teller corre-
sponding to a dS setting [58]) it was determined [23,25,36]
that the contour lines are consistent with an asymptotic
logarithm structure ImðωÞ ∼ C1 þ C2 lnðReðωÞ þ C3Þ, for
jReðωÞj ≫ 1, and support was found for the universality of
this structure as long as asymptotic flatness is preserved.
Remarkably, for asymptotically AdS BHs it was shown in
Ref. [40] that this behaviour turns into a power-law one,
namely ImðωÞ ∼ C1 þ C2jReðωÞjα for large jReðωÞj
asymptotics. We have double-checked this original result
from Ref. [40] for the cases corresponding to Figs. 2 and 3,
finding agreement with a power-law tendency (in regions
beyond those shown in the plots). From the perspective of
the notion of “resonant free region” discussed in [5], this
would indicate that AdS BHs fall into a different “univer-
sality class” than asymptotically flat BHs, more akin to the
scattering from “impenetrable obstacles” (note the reflect-
ing homogeneous Dirichlet condition at the timelike
boundary at infinity) as opposed to the scattering from
“(penetrable) potentials” in the asymptotically flat case
(cf. section III. C in [36]). These various behaviours would
reflect a non-trivial intertwining between, on the one hand,

FIG. 3. Pseudospectrum of l ¼ 2 axial gravitational perturba-
tions on SAdS with α ¼ 1=2 (top panel), α ¼ 1 (middle panel)
and α ¼ 10 (bottom panel), for the hyperboloidal slicing and the
energy norm. Again, the spectrum of the unperturbed operator is
shown with red circles while the resulting spectrum of perturbed
versions of the effective potential under perturbations (46) with
k ¼ 20 is shown with differently shaped and colored points. Once
again, the grid-point number used is N ¼ 100 for the pseudo-
spectrum and N ¼ 150 for the perturbed spectra.
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the underlying “ultraviolet” origin of such asymptotic open
branches (since large real frequency ReðωÞ values explore
small-scale structures) and, on the other hand, the “infra-
red” nature of large scale spacetime asymptotics.

2. BH QNM perturbations

Regarding the calculation of QNMs as eigenvalues
in (27), QNMs corresponding to the nonperturbed BH
potential correctly recover the values found by other
methods. In particular, the convergence of such eigenvalues
of the LN finite-rank approximant, with the grid resolution
N, demonstrates their convergence to the actual QNMs of
the differential operator L.
Regarding QNM instability, the implementation of per-

turbations δV to δL allows us to probe the origin of the
instabilities encoded in the pseudospectra figures. In par-
ticular, the use of “physical” perturbations δV of the effective
potential permits us to conclude that high wave number
perturbations do trigger QNM instabilities, whereas low
wave number perturbations leave the QNM spectrum stable.
A crucial point in the asymptotically AdS setting is that the
absence of a continuous part of the spectrum along the upper
imaginary axis (corresponding to the branch cut in the
scattering resonance approach to QNMs) permits us to use
both deterministic and random perturbations of the poten-
tials, as in the Pöschl-Teller case in [24]. This is crucial since,
on the one hand, this feature permits us to soundly imple-
ment a convergence analysis of the perturbed QNMs, namely
under deterministic perturbations. This will be crucial in the
convergence issues discussed below. On the other hand,
the possibility of enforcing random perturbations on V (that
were not available in the asymptotically flat BH cases due to
the contamination from the “branch cut”) allows us to push
the study of the instability analysis, since they maximize the
migration of QNMs to the newNollert-Price perturbed QNM
branches, in particular saturating the pseudospectrum and
probing a modified version (namely, a power-law extension)
of the (logarithmic) Regge QNM conjecture under “ultra-
violet” perturbations [25,26]. While the plots in Figs. 2 and 3
(and subsequently in Figs. 4 and 5) only present the QNMs
after convergent deterministic perturbations, the same quali-
tative behavior has been observed for the case of random
perturbations.
The resulting qualitative picture recovers the generic

picture of the asymptotically flat case, but in a much cleaner
setting due to the absence of “branch cut.” In particular, the
fundamental QNM remains much more stable15 under such

FIG. 4. Pseudospectrum in the energy norm of l ¼ 2 scalar
perturbations on SAdS with α ¼ 1, in the null slicing. The
parameters and perturbations used are the same as those of Fig. 2.
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FIG. 5. Pseudospectrum of l ¼ 2 axial gravitational perturba-
tions on SAdS with α ¼ 1=2 (top panel), α ¼ 1 (middle panel)
and α ¼ 10 (bottom panel). The parameters and perturbations
used are the same as those of Fig. 3.

15Perturbations nonvanishing at the horizon, not necessarily of
“ultraviolet” nature do indeed perturb the fundamental QNM, as
stressed in [44] and shown in the AdS context in [39]. In our
present context, and in contrast to Ref. [39] we are not consid-
ering an actual potential in the original geometric wave equation,
and the effective one coming from the D’Alembertian do not
allow such nonvanishing perturbations at the horizon if we want
to preserve the (classical) BH horizon structure.
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ultraviolet perturbations (but less stable than in asymptoti-
cally flat case, as in the dS case [38]). Concerning SAdS
QNM overtones, they become unstable under high wave
number perturbations of the underlying geometry, migrat-
ing to perturbed open Nollert-Price-like QNM branches.
QNMs in such perturbed Nollert-Price-like branches are
stable under further high wave number perturbations. A
crucial point to underline here, in view of the latter
discussion, is that the exact SAdS QNM overtones are
spectrally unstable, and this conclusion can be reached
independently of the study of the pseudospectrum. This
will prove to crucial in the discussion below.

B. Pseudospectra: Null slicing

We consider now the BH QNM spectral instability in the
setting of null slicings. In particular, together with [40], we
present the first BH QNM pseudospectra constructed in a
null slicing, since hyperboloidal slicings had been used in
the calculation of all previous BH QNM pseudospectra,
independently of the Iþ spacetime null asymptotics. In
accordance with point (ii) in Sec. I A 1, the calculation of
the pseudospectrum in different slicings has the interest of
providing a test on the geometric nature (slicing independ-
ence) of the pseudospectrum. As we will see below, this
comparison problem turns out to be a subtle one, in
particular reinforcing the interest of the null slicing pseu-
dospectrum by itself.
The spectral stability properties of QNMs of SAdS in the

null slicing are illustrated in Figs. 4 and 5, respectively
corresponding to a scalar field and an axial gravitational
perturbation (all of the with l ¼ 2), and with the same
choices for the parameter α as in Figs. 2 and 3. As in the
hyperboloidal case, such figures present two independent
sets of calculations:

(i) QNMs: now calculated from the generalized eigen-
value problem (28), for the exact effective potential
Veff ¼ Vs=ðχ2fÞ of SAdS spacetime (red points)
and for perturbed potentials (differently shaped and
colored points).

(ii) Pseudospectrum: now giving the “topographic map”
of (the inverse of) function fM;B∶ C → Rþ, where
fM;BðωÞ ¼ kRM;BðωÞk with RLðωÞ in (29).

When considering the qualitative picture of BH QNM
instability for overtones in the null slicing, both from the
pseudospectra and QNM perturbation perspectives (and
with a criterion for “big/small” perturbations given by the
energy norm) it coincides with that obtained in the hyper-
boloidal slicing. Specifically, if we consider the pseudo-
spectrum far away from the fundamental QNM, we observe
in the null slicing (as we did in the hyperboloidal case)
an increment of the spectral instability for higher values
of ImðωÞ in the upper-half complex plane, with ϵ-contour
lines opening for large ReðωÞ. Likewise, regarding QNM
perturbations and as in the hyperboloidal case, QNM
overtones migrate to open Nollert-Price-like branches,

triggered by high wave number perturbations in the
effective potential, whereas the fundamental mode shows
a spectrally stable behavior. This provides an overall
consistency in that region away the fundamental QNM.
However, discrepancies appear in both the ϵ-pseudospectra

contour lines and the perturbed QNMs as we compare more
closely the region around the fundamental QNM. We
comment on this below.

1. Issues in the comparison of hyperboloidal and null
slicing pseudospectra near the fundamental QNM

We comment on two differences in the BH QNM
instability in the hyperboloidal and the null slicings:

(i) Pseudospectrum contour lines crossing into the
unstable complex half-plane. The most apparent
difference between the hyperboloidal and null slic-
ing pseudospectra is the fact that, in the null slicing
case, pseudospectrum contour lines near the funda-
mental QNM cross into the lower half of the
complex plane. Such a behavior is a potential
indication of a transient dynamical phenomenon
(see e.g. [27,29,37,40,41]). However this qualitative
behavior of pseudospectrum contour lines is absent
in the hyperboloidal case. Actually, this points out a
structural difference between the AdS BH QNM
pseudospectra in Arean et al. [39] (hyperboloidal
slicing case) and in Cownden et al. [40] (null slicing
case). A careful assessment is then needed.

(ii) Calibration of perturbation “sizes” and ϵ-contour
values. When comparing the perturbation of the
fundamental QNM in Figs. 2 and 3 (hyperboloidal
slicing) with Figs. 4 and 5 (null slicing), we observe
that the fundamental QNM seems much more stable
in the null slicing case. When trying to assess this
issue by using the values in the pseudospectrum
contour lines another difficulty arises, namely
assigning a neat correspondence between contour
lines with the same ϵ in both sets of pseudospectra.

The origin of these difficulties is two-fold. A first
problem concerns the relation between the “size” of
the operator perturbation, on the one hand, and the
resulting perturbation of the eigenvalue, on the other
side. A neat relation between the module jδωj of the
eigenvalue in the complex plane and the size kδLk
of the operator perturbation holds for the standard
eigenvalue problem (27) and the corresponding
ϵ-pseudospectra in Eq. (36) (cf. [29], in particular
the discussion around the Bauer-Fike theorem).
However, such a relation is more difficult to estab-
lish for the generalized eigenvalue problem (28). If B
were invertible, the proper comparison would be
between jδωj and kB−1δMk (cf. Chapter 45 in [29]).
However, in our problem B is not invertible (ac-
tually, the corresponding matrices are very ill-posed
for inversion). Avenues to circumvent this issue can
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be explored, but the second problem is more serious:
the pseudospectrum in the hyperboloidal slicing
does not converge when N → ∞ in the finite-rank
approximants LN to L.

In the following subsection we discuss this pseudospectrum
convergence issue. The AdS structure is key now, since in
this case we have a theorem to compare with.

C. Pseudospectra convergence properties: Comparison
with Warnick’s characterization

The nonconvergence of the hyperboloidal pseudospec-
trum with the size N × N of the matrices LN , signalled at
the end of the last subsection, is a major issue in the
scheme. Indeed, whereas perturbed eigenvalues in both the
hyperboloidal and the null slicing approaches do converge
as the numerical grid gets finer, at the pseudospectrum level
the situation is less clear, with a convergent behavior in
the null slicing case and a nonconvergent one in the
hyperboloidal setting. QNM spectral instability is not under
question, since the convergence of the perturbed eigen-
values soundly demonstrates the ultraviolet instability of
QNMs. What is under question is the actual significance
of the numerically calculated pseudospectra in the hyper-
boloidal slicing and, in particular, their capability to
“predict” the displacement in the complex plane of QNMs
under operator perturbations of “size” ϵ. We address below
this pseudospectrum convergence issue, both in the hyper-
boloidal and the null slicing settings.

1. Hyperboloidal slicing

In order to properly characterize the nonconvergence of
the pseudospectrum we proceed as follows: (i) we take an
arbitrary complex number ω in the upper-half plane, (ii) we
consider a finite rank approximant LN of the operator L and
calculate the norm of its resolvent kRLNk, and (iii) we take
the limit of kRLNk as N → ∞. The statement is then that
this limit diverges. In other words, according to our

numerical scheme for the pseudospectrum, all points in
the upper complex plane are in the spectrum σðLÞ of L.
The last remark is consistent with the statement in [67],

formulated in the asymptotically flat context, according to
which all points in the upper complex plane are eigenvalues
of L if we allow their eigenfunctions to be of sufficiently low
regularity. In the asymptotically AdS case, however, the
results by Warnick [48] provide a sound characterization
of the appropriate regularity and the manner to control it in
terms of the corresponding Sobolev norm. Indeed, as dis-
cussed in Sec. III A, if we consider a band of width∼k · κ, the
Hk-QNM spectrum is a discrete set. In particular, for pointsω
in this band that are not in the Hk-spectrum, the point
(iii) in III A guarantees that the resolvent has finite Hk norm.
We use the energy norm in our analysis of QNM stability,

namely an H1 norm. Therefore, if the resolvent RLðωÞ of
the differential operator L is well attained as the limit of
the resolvents RLN ðωÞ of the matrix approximants LN , as
N → ∞, thenWarnick’s theorem implies that we should find
convergence in an horizontal band above the real axis with
width of the order of the surface gravity κ, except for the
fundamental QNM frequency. However, this is not the case.
Indeed, the left panel in Fig. 6 demonstrates a convergence
test of the (inverse of the) energy=H1 norm of the resolvent at
an illustrative point ω ¼ 2þ i0.5, providing strong support
for a (power-law) divergence. This behavior is generic for
any point in the upper half plane, no matter how close to the
real axis. Even worse, the right panel of Fig. 6 shows the
convergence test of the norm of the resolvent for a point in
the lower-half plane, showing also nonconvergence.
In spite of their unexpected character, these negative

results on the convergence of the pseudospectrum (namely
of the norm of the resolvent evaluated any point ω) are not
in contradiction with Warnick’s theorem. The reason is that
the resolvent RLðωÞ is a noncompact operator. As pointed
out in (iii) of Sec. III A, in [48] it has been proven that the
resolvent RLðωÞ exists and it is Hk-bounded in the band
ImðωÞ < aþ κðk − 1=2Þ [cf. inequality (32), except in a

FIG. 6. Norm of (inverse of) RLðωÞ as function of the numerical resolution N, for l ¼ 2 axial gravitational perturbations on an SAdS
BH with α ¼ 1. Left: Hk; k ¼ 1 (energy norm); rhω ¼ 2þ i0.5. Right: Hk; k ¼ 1 (energy norm); rhω ¼ 2 − i0.5. (These points are not
part of the discrete spectrum.) The linear fit in the Log-Log scale shows whether there is an inverse-polynomial approach to zero.
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discrete set of points, namely the QNM frequencies. But it
is also shown that RLðωÞ is not a compact operator. This
means that RLðωÞ cannot be obtained as the limit of a
sequence of matrices; in other words, it cannot be approxi-
mated (as a whole] by the resolvent of our finite-rank
approximants LN .
Assessing the previous point is a subtle issue. On the one

hand, we know that partial features of other noncompact
operators, such as L, admit good approximations by
matrices. If this were not the case, we could not approxi-
mate the QNMs of L from the eigenvalues of LN . But such
a calculation works, because we retain only a subset of all
the eigenvalues of LN . However, when calculating the
pseudospectrum, the procedure simply fails, and there is no
inconsistency in it. On the other hand, not everything is
spurious in the resolvent of finite-rank approximations LN :
indeed the open contour-lines of the pseudospectrum
of LN matrices do capture the qualitative distribution of
perturbed operators, that we know to be correct since
such perturbed eigenvalues do converge as N → ∞. What
fails is the assignment of a particular value ϵ to a given
contour line. In other words, the finite-rank approximants
of the noncompact operator RLðωÞ do capture the quali-
tative aspects of the pseudospectrum, but fail in the
quantitative ones.

2. Null slicing

The situation changes when considering the null slicing.
In this case the pseudospectrum presents much better
convergence properties, in particular consistent with the
horizontal κ-band structure discussed in Sec. III A. This is
in spite of the fact that, a priori, the comparison with the
results in [48], which are presented in the hyperboloidal
setting, is now less straightforward [in particular regarding
the compactness of RMBðωÞ]. In the following we present
results, at an exploratory stage, demonstrating such con-
vergence (for a more detailed study, cf. [47]).
As commented above, since the energy norm is an H1

one, we should expect convergence in a horizontal band of
approximate width given by the surface gravity κ and, then,
convergence in this energy norm should fail in all ω’s
points above such a band. In order to extend by κ the width
of the convergent horizontal band in the upper-half plane,
we need to control also the L2 size of the second deri-
vatives, i.e. we must use anH2 norm. Convergence inH2 is
then expected in a band of approximate width 2 · κ and,
above this band the pseudospectrum in the H2 should not
converge.
In Fig. 7 we test this picture (in our setting, we have

κ ¼ 2=M). In the upper panel of the left row, we present the
convergence test for the energy norm (H1) resolvent at a

FIG. 7. Norm of (inverse of) RM;BðωÞ as function of the numerical resolution N, for l ¼ 2 axial gravitational perturbations on an
SAdS BH with α ¼ 1. The surface gravity of this BH is κ ¼ 2=rh. Left: first row Hk; k ¼ 1; rhω ¼ 2þ i1.5, second row
Hk; k ¼ 2; rhω ¼ 8þ i3. Right: first row Hk; k ¼ 1 (energy norm); rhω ¼ 2þ i2.6, second row Hk; k ¼ 2; rhω ¼ 8þ i5. (These
points are not part of the discrete spectrum.) The linear fit in the Log-Log scale shows whether there is an inverse-polynomial approach
to zero.
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point in the first κ-band, indicating a tendency to con-
vergence in stark contrast with the hyperboloidal foliation.
In the upper panel of this first row in Fig. 7 we repeat the
convergence test in the energy norm, but for a point above
the first κ-band, finding a nonconvergent behavior. This is
consistent with Warnick’s notion of Hk-QNMs. In order to
further test the latter, in the lower panel of the left row we
consider the convergence test in an H2 norm for a point in
the second κ-band, finding a clearly convergent tendency.
Finally, keeping the H2 norm but considering a point in the
third κ-band, the lower panel of the right row shows again a
nonconvergent behavior. These tests provide a nontrivial
confirmation of the κ-band structure of the SAdS BH,
consistent with Warnick’s theorem, and illustrate the good
convergence properties of the resolvent, and therefore the
pseudospectrum, in the null slicing.
The results in this section demonstrate the possibility of

using the null slicing for constructing the pseudospectrum
of SAdS BHs, in contrast with the hyperboloidal slicing,
where convergence issues must be addressed. For this
reason, we use the null slicing pseudospectrum to assess in
the next section the physical question concerning the
spectral stability of SAdS hydrodynamic QNMs.

D. Stability of hydrodynamic modes

We observe a special mode appearing in the complex
plane, namely the hydrodynamic mode. This mode, shown
in Fig. 5, has decreasing imaginary part as the BH radius
increases. Approximately when the event horizon radius is
comparable to the AdS scale, and beyond, the hydro-
dynamic mode become the dominant one and approaches
the real axis. In this section we investigate its pseudospec-
tral properties, as well as if this mode migrates under
perturbations of the effective potential.
The stability of the hydrodynamic mode under the

random perturbations considered seems to depend on
whether it is the fundamental mode or an overtone. In the
case where the hydrodynamic mode dominates the dynam-
ics at late times, it seems to exhibit spectral stability
features in contrast to the overtones as it shown in the
middle and bottom panels of Fig. 5. In contrast, when the
hydrodynamic mode is not fundamental then it becomes
spectrally unstable as shown in the top panel of Fig. 5.
Figure 8 zooms in the pseudospectrum contour lines around
this mode for the α ¼ 1 and 10 cases, when the mode is
spectrally stable, to further enhance our conclusions. The
contour lines of rather large values of ϵ (up to approx-
imately 10−1.7 in the first case, and up to well above ϵ ¼ 1
in the latter case) have a circular shape, which is a direct
imprint of spectral stability (see also Fig. 6 in [24] and
Fig. 10 in [36]). Furthermore, the perturbed versions of
these modes migrate less than what the pseudospectrum
would quantitatively suggest, implying an even higher
degree of stability, since we only perturb the effective
potential and not the whole operator L. To our knowledge,

this is the first BH spacetime in the literature that exhibits
spectrally stable purely imaginary modes when they are
fundamental, while the overtones are still spectrally unstable.
Despite the qualitative evidence for the stability of the

hydrodynamic mode, a quantitative and definitive conclu-
sion relies on a direct identification between the size ϵ
associated to the norm the perturbed term kδMk, with the
contour line for the ϵ-pseudospectra σðϵÞ as defined in
Eq. (39), and the circles of radius ϵ around the mode.
Reference [24], however, points out some limitations in the
direct identification between the size ϵ for the operator’s
perturbation and the contour line for the ϵ-pseudospectra
σðϵÞ. From the technical perspective, even though the
qualitative behavior for the pseudospectra does not change
as one increases the numerical resolution, the ϵ value
associated with a given pseudospectrum contour line does.
This lack of absolute convergence for the pseudospectra

FIG. 8. Zoom in around the hydrodynamic mode (shown in
red), for the middle case of Fig. 5 (top) with α ¼ 1 and the bottom
case of Fig. 5 (bottom) with α ¼ 10 panels. The pseudospectrum
contour lines are shown for N ¼ 100 (dashed), N ¼ 150 (dot-
dashed) and N ¼ 200 (continuous). The differently shaped and
colored points designate the perturbed versions of the hydro-
dynamic modes resulting from random perturbations added to the
potential, with energy norm kδL1k ≃ 0.5.
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on the original results raises, at first, a red flag to the conclu-
sion on the spectral stability for the hydrodynamic mode.
However, we do observe the convergence of the pseudo-

spectra contour lines around the hydrodynamic mode when
it becomes the slowest decaying one of the system. Indeed,
not only does Fig. 8 show that the ϵ-pseudospectral contour
lines retain the same values as we increase the numerical
resolution (e.g. N ¼ 100, 150 and 200), but also that these
lines coincide with the circles of radius ϵ around the mode
under question. The convergence becomes even faster as
the hydrodynamic mode moves further apart from the first
oscillating mode and approaches the real axis. This result
may hint toward an underlying convergence on the pseudo-
spectrum in a larger region of the complex plane as well.

V. CONCLUSIONS

This work has focused on assessing some key structural
aspects of the spectral stability of BH QNMs, focusing
on the convergence properties of the pseudospectrum and
using asymptotically AdS BHs as a test-bed, thanks to the
existing mathematical characterization by Warnick [48] of
QNMs as eigenvalues of nonselfadjoint operators.
Specifically, we have studied the SAdS BH pseudo-

spectrum in hyperboloidal and null slicings providing,
in particular, a common perspective and synthesis of the
recent studies of this problem, namely [39] in the hyper-
boloidal slicing and [40] in the null case. Our main
conclusion is that, in their current (straightforward) numeri-
cal implementation, pseudospectrum convergence proper-
ties present a better behavior in the null case and, crucially
and nontrivially, are consistent with Warnick’s theorems for
AdS BH QNMs. It is indeed the existence of such a neat
mathematical characterization of BH QNMs in the asymp-
totically AdS case [48] that has provided the key ingredient
allowing us to reach this conclusion on the convergence of
the respective numerical schemes. In particular, it has been
crucial for demonstrating the structure of the frequency
ω-complex stable half plane in horizontal bands of width
given by the surface gravity κ, in such a way that increasing
regularity is required to identify QNM frequencies as we
explore higher overtones.
Regarding the numerical BH QNM pseudospectra cal-

culated in the hyperboloidal slicing, we observe evidence
of nonconvergent features in the numerical scheme. Such
nonconvergence does not hamper the validity of the
(asymptotic) structure of the pseudospectrum contour
lines, but it critically affects the ϵ values assigned to such
boudaries ϵ-pseudospectra sets. Although the presented
analysis has been focused on SAdS BH, the conclusion
actually extends to pseudospectra calculated in hyper-
boloidal slicings for all spacetime asymptotics, namely
asymptotically flat, dS and AdS spacetimes. These poor
convergence properties are indeed consistent with the
underlying mathematical structure, the ultimate reason
being the noncompact nature of the infinitesimal time

generator in such hyperboloidal slicings. Although hints
for such nonconvergent issues had been found in the
asymptotically flat case [24], the contamination by spurious
eigenvalues in the continuous “branch cut” hindered a clear
assessment of this problem. Very importantly, we empha-
sise that BH QNM spectral instability is not in question, as
the convergence of (deterministically) perturbed QNMs
demonstrates. The latter had been soundly shown in the
asymptotically flat and dS cases and has now also been
established for the AdS case in Refs. [39,40] and the
present work. Yet, the numerical approximations to the
hyperboloidal pseudospectrum must be taken with a grain
of salt: although the open contour-lines at a given resolution
N do capture the qualitative spectral instability, the non-
convergence with N of their associated ϵ values prevents
any quantitative conclusion. In summary, this behavior
signals a fundamental issue of the numerical scheme for
hyperboloidal pseudospectra in its current implementations
but, at the same time, it identifies its underlying cause (the
noncompactness of the operator) and therefore points to a
concrete avenue for its solution. We conclude the urgent
need of devoted studies to address, clarify and, hopefully,
cure this pseudospectrum nonconvergence problem.
Finally, as a concrete application of the insight gained

by the previous discussion on the structural aspects of BH
QNMs as eigenvalues of nonselfadjoint operators, we have
addressed the physical problem concerning the spectral
stability of AdS BH hydrodynamic modes. Specifically,
given the good convergence properties of the pseudospec-
trum in the null slicing, we have chosen this foliation
(instead of the “worse-posed” hyperboloidal one) to study
the problem. This has permitted us to conclude the
convergence of such BH AdS hydrodynamic modes. As
a by-product, the confidence gained in the null slicing
pseudospectrum also provides support for the potential
presence of transients phenomena in the AdS BH setting,
suggested by the crossing of pseudospectra contour lines
into the unstable half plane (cf. Fig. 5). Both the hydro-
dynamic modes and the possible transients have been
discussed in [40], but it is the pseudospectrum convergence
analysis here presented and its consistence with Warnick’s
theorems that provides a solid picture.
We plan [47] to further push forward these structural

studies, extending the present analysis to include further
physical aspects of the problem, that remain open.
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