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A triangular solution [Phys. Rev. D 107, 044005 (2023)] has recently been found to the planar circular
three-body problem in the parametrized post-Newtonian (PPN) formalism, for which they focus on a class
of fully conservative theories characterized by the Eddington-Robertson parameters β and γ. The present
paper extends the PPN triangular solution to quasielliptic motion, for which the shape of the triangular
configuration changes with time at the PPN order. The periastron shift due to the PPN effects is also
obtained.
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I. INTRODUCTION

The three-body problem is among the classical ones in
physics, which led to a study of the chaos [1]. Particular
solutions, notably Euler’s collinear solution and Lagrange’s
equilateral one [2,3], represent regular orbits, which have
attracted a lot of interest, e.g., [4–8].
Nordtvedt [9] pointed out that the position of the

triangular points is very sensitive to the ratio between
the gravitational mass and the inertial one in gravitational
experimental tests, though the post-Newtonian (PN) terms
are partly considered.
For the restricted three-body problem in the PN approxi-

mation, Krefetz [10] and Maindl [11] found the PN
triangular configuration for a general mass ratio between
two masses. These studies were extended to the PN three-
body problem for general masses [12–17], where the PN
counterparts for Euler’s collinear [12,13] and Lagrange’s
equilateral solutions [14,15] were found. It should be noted
that the PN triangular solutions are not necessarily equi-
lateral for general mass ratios, and they are equilateral only
for either the equal mass case or two test masses. The
stability of the PN solution and the radiation reaction at
2.5PN order were also studied [16,17].
In a scalar-tensor theory of gravity, a collinear configu-

ration for three-body problem was discussed [18]. In
addition to such fully classical treatments, a possible
quantum gravity correction to the Lagrange points was
argued [19,20].
Moreover, the recent discovery of a relativistic hierar-

chical triple system including a neutron star [21] has
sparked renewed interest in the relativistic three-body
problem and the related gravitational experiments [22–24].

In the parametrized post-Newtonian (PPN) formalism
[25], collinear and triangular solutions to the planar circular
three-body problem have recently been found [26], where
they focus on a class of fully conservative theories charac-
terized by the Eddington-Robertson parameters β and γ,
because the two parameters are the most important ones; β
measures howmuch nonlinearity there is in the superposition
law for gravity, and γ measures howmuch space curvature is
produced by unit rest mass [27,28]; see, e.g., [29] for the
celestial mechanics in this class of PPN theories.
In the Newtonian gravity, triangular solutions are not

only to the circular three-body problem but also to the
elliptic one [2,30]. Can a (quasi)elliptic orbit of triangular
solutions be found in PPN case? A point is that the PPN
force seems to be too complicated to admit elliptic orbits
for a triple system. The main purpose of the present paper is
to find it in the class of fully conservative theories.
This paper is organized as follows. InSec. II, basicmethods

and equations are presented. Section III discusses the PPN
triangular solution to the planar elliptic three-body problem.
Section V summarizes this paper. Throughout this paper,
G ¼ c ¼ 1. A;B, and C∈ f1; 2; 3g label three masses.

II. BASIC METHODS AND EQUATIONS

A. Newtonian planar elliptic triangular solution

Let us begin by briefly summarizing the triangular
solution to the Newtonian planar elliptic three-body prob-
lem [2,30]. A homothetic solution is possible, and it
represents the Lagrange equilateral solution in elliptic
motion; see, e.g., Sec. 5 of Ref. [2] for more detail. We
see that the PN triangular solutions are not necessarily
equilateral, mainly because of the velocity-dependent force
at the PN order as shown in Sec. III.
The equation of motion (EOM) for three masses (MA at

the position RA) reads
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MAaA ¼ −
XN
B¼1

MAMB

ðRABÞ2
nAB; ð1Þ

where aA denotes the acceleration of the A-th mass,
RAB ≡ RA − RB, RAB ≡ jRABj, and nAB ≡ RAB=RAB.
By taking the cross product of R1 and Eq. (1) for A ¼ 1,

we obtain

R1 × R2

�
1

ðR12Þ3
−

1

ðR31Þ3
�

¼ 0; ð2Þ

where the coordinate center is chosen as the center of mass
of

P
A MARA ¼ 0. For a triangular configuration, R1 ∦ R2.

From Eq. (2), we thus obtain R12 ¼ R23. By cyclic argu-
ments, we obtain an equilateral solution [2,30].
In elliptic motion, the arm length RA becomes R1 ¼

afN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν22 þ ν2ν3 þ ν23

p
, R2 ¼ afN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν23 þ ν3ν1 þ ν21

p
, and

R3 ¼ afN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν21 þ ν1ν2 þ ν22

p
, where the total mass is

M≡P
A MA, the mass ratio is defined as νA ≡MA=M,

a is some constant, and fN denotes the dilation factor
[2,14,15,30]. In circular motion, fN ¼ 1, while fN is a
function of time in elliptic motion [2,30].
From the total energy and angular momentum, an elliptic

orbit is obtained as [2,30]

fN ¼ ANð1 − e2NÞ
1þ eN cos θ

; ð3Þ

where θ denotes the true anomaly, eN is the eccentricity of
the elliptic orbit as eN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2L2

NENM−2μ−3
p

for the
total energy EN, the total angular momentum LN and
μ≡Mðν1ν2 þ ν2ν3 þ ν3ν1Þ, and AN ≡ −μM=ð2aENÞ.
Here, θ ¼ 0 is chosen as the periastron.
For simplicity, we refer to A≡ aAN as the semimajor

axis and P≡ aANð1 − e2NÞ as the semilatus rectum. For
instance, the semimajor axis for the elliptic orbit of M1

is aAN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν22 þ ν2ν3 þ ν23

p
.

From the total angular momentum, the angular velocity
ωN of the triangular configuration is obtained as

ωN ¼ ð1þ eN cos θÞ2
ffiffiffiffiffiffi
M
P3

r
: ð4Þ

All the above relations are reduced to Keplerian orbits in
the restricted three-body problem (e.g., ν3 → 0).

B. EOM in the PPN formalism

In a class of fully conservative theories including only
the Eddington-Robertson parameters β and γ, the PPN
EOM becomes [27,28]

aA ¼−
X
B≠A

MB

R2
AB

nAB−
X
B≠A

MB

R2
AB

�
γv2A−2ðγþ1ÞðvA · vBÞþðγþ1Þv2B−

3

2
ðnAB ·vBÞ2− ð2γþ2βþ1ÞMA

RAB
−2ðγþβÞMB

RAB

�
nAB

þ
X
B≠A

MB

R2
AB

fnAB · ½2ðγþ1ÞvA− ð2γþ1ÞvB�gðvA− vBÞþ
X
B≠A

X
C≠A;B

MBMC

R2
AB

�
2ðγþβÞ
RAC

þ2β−1

RBC
−
1

2

RAB

R2
BC

ðnAB ·nBCÞ
�
nAB

−
1

2
ð4γþ3Þ

X
B≠A

X
C≠A;B

MBMC

RABR2
BC

nBCþOðc−4Þ; ð5Þ

where vA denotes the velocity of the A-th mass.

III. PPN PLANAR ELLIPTIC
TRIANGULAR SOLUTION

A. PPN planar elliptic orbit

In order to obtain a PPN solution as a perturbation
around the Newtonian equilateral elliptic solution, we
assume a quasicommon dilation as RAB ¼ afð1þ εABÞ
for three masses, where εAB denotes a PPN distortion.
The perfectly common dilation occurs at the Newton
order, whereas the dilation is not common by εAB; see
also Fig. 1.
In the same way as deriving Eq. (2), we take

the cross product of R1 and Eq. (5) for M1 to
obtain

FIG. 1. Schematic figure for the PPN triangular configuration
of three masses. The inequilateral triangle is characterized by εAB.
In the Newtonian limit, εAB vanishes, and RAB becomes afN.
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l2
1

d
dt

ðf2ωÞðλ × ρÞ ¼ ðλ × ρÞ
�
−

ffiffiffi
3

p

2

M
fNa

ν2ν3

�
3ðε12 − ε31Þ þ

M
2a

ðν3 − ν2Þ
�

1

fN
−

1

AN

�

þ 3

8
a2fḟNð1þ 3ν1Þ þ

ffiffiffi
3

p
fNωNð1 − ν1 − 2ν2ÞgfḟNð1 − ν1 − 2ν2Þ þ

ffiffiffi
3

p
fNωNð1 − ν1Þg

−
M

4fNa
ðν2 − ν3Þð8β − 3Þ

�
−

ffiffiffi
3

p

4
Maν2

�
ν3

ḟN
fN

þ ωNffiffiffi
3

p ðν1 − ν2 − 1Þ
�

×ðð4γ þ 3þ ν2 − ν1ÞfN −
ffiffiffi
3

p
ν3fNωNÞþ

ffiffiffi
3

p

4
Maν3

�
ν2

ḟN
fN

−
ωNffiffiffi
3

p ðν1 − ν3 − 1Þ
�

×ðð4γ þ 3þ ν3 − ν1ÞḟN þ
ffiffiffi
3

p
ν2fNωNÞ

�
þOðc−4Þ; ð6Þ

where l1 ≡ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν22 þ ν2ν3 þ ν23

p
[2,15,26,30], and we introduce an orthonormal basis λ and ρ. Here, λ≡ R1=R1, and ρ is the

90 degree rotation of λ. It is more convenient to use the orthonormal basis than R1 and R2, because the right-hand side of
Eq. (5) relies upon not only the positions but also the velocities. In elliptic motion, the velocity is not always orthogonal to
the position vector, though it is in circular motion.
From the PPN total angular momentum, we find

d
dt

ðf2ωÞ ¼ −
MḟNωN

4a
13ν1ν2ν3 − 8fðγ þ 1Þη − ζg

η
þOðc−4Þ; ð7Þ

where the dot denotes the time derivative, and we denote η≡ ν1ν2 þ ν2ν3 þ ν3ν1 and ζ≡ ν21ν
2
2 þ ν22ν

2
3 þ ν23ν

2
1. Equation (7)

is reduced to dðfNω2
NÞ=dt ¼ 0 in the Newtonian limit, which recovers the Newtonian case of the planar elliptic triangular

solution. It follows that Eq. (7) can be derived also from the sum of Eq. (6) for A ¼ 1, 2, 3.
By substituting Eq. (7) into the left-hand side of Eq. (6), we obtain

ε12 − ε31 ¼
M
8A

ðν3 − ν2Þð3ν1 þ 1Þ − M
12P

ðν3 − ν2Þð9ν1 þ 8β − 2Þð1þ eN cos θÞ

þ M
4P

ðν3 − ν2Þð3ν1 − 1Þð1þ eN cos θÞ2 −
ffiffiffi
3

p
eNM

72ν2ν3P
sin θð1þ eN cos θÞ

×

�
34ν1ν2ν3 þ 16ν1ðν22 þ ν23Þ þ 9ν2ν3f1 − 3ν21 þ ðν2 − ν3Þ2g

−
4ðν22 þ ν2ν3 þ ν23Þð13ν1ν2ν3 þ 8ζÞ

η

�
þOðc−4Þ; ð8Þ

where Eq. (3) is used for fN. By cyclic arguments, ε23 − ε12 and ε31 − ε23 are obtained.
Following Ref. [15], the gauge fixing is chosen as ε12 þ ε23 þ ε31 ¼ 0, for which the PN triangular area remains the same

as the Newtonian one. From this gauge fixing and Eq. (8), we obtain

ε12 ¼
M
24A

½3fν1ðν3 − 2ν2Þ þ ν3ð1þ ν2Þg − 1�

−
M
36P

½2ð4β − 1Þð3ν3 − 1Þ þ 9fν1ðν3 − ν2Þ þ ν2ðν3 − ν1Þg�ð1þ eN cos θÞ

þ M
12P

½1 − 3ðν23 þ 2ν1ν2Þ�ð1þ eN cos θÞ2 − eNM
ffiffiffi
3

p

108P
ðν1 − ν2Þ sin θð1þ eN cos θÞ

×

�
8ν3ð1 − ν3Þ

ν1ν2
þ 27ν3 − 1þ 2ðν1ν2 − ν23Þð13ν1ν2ν3 þ 8ζÞ

ν1ν2ν3η

�
þOðc−4Þ: ð9Þ

It is worthwhile to mention that γ makes no contribution to Eq. (9), while β is included in it. This means that the PPN
nonliearity parameter β affects the asymmetric shape of the PN triangle, whereas γ does not affect the asymmetry.
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We can obtain also ε23 and ε31 cyclically. We thus obtain
the PPN triangular quasielliptic solution. See Fig. 2 for
ε12; ε23 and ε31 for an elliptic orbit. Note that this solution
does not follow a perfectly elliptic motion owing to the
periastron shift as shown below, whereas the Newtonian
counterpart is elliptic. For instance, the periastron position
in the PPN orbit moves significantly in a long time scale.
Namely, the obtained solution represents an osculating
orbit [2,30].

B. Periastron shift

After direct calculations, the PPN expression of the total
energy [31,32] for the PPN planar quasielliptic triangular
solution can be rewritten as

�
du
dθ

�
2

þ GðuÞ du
dθ

¼ FðuÞ; ð10Þ

where u≡ 1=f. FðuÞ and GðuÞ are functions of u, which
are too long to write down in this paper.
The periastron shift is

θPPN ¼
Z

umax

umin

du
1

ðdudθÞ
− π; ð11Þ

where umax and umin correspond to the apoapsis and
periapsis, respectively.
In the same way as the post-Newtonian calculations of

the periastron shift [27,28], by using Eq. (10) for Eq. (11),
we obtain the periastron shift at the PPN order as

θPPN ¼ πM
36Pη

½18ν1ν2ν3ð9−2βÞþηð65−44βþ72γÞþ36ζ�

þOðc−4Þ: ð12Þ

The periastron shift per orbital period is 2θPPN. In General
Relativity (β ¼ γ ¼ 1), Eq. (12) becomes

θPPN ¼ πM
36Pη

ð126ν1ν2ν3 þ 93ηþ 36ζÞ þOðc−4Þ: ð13Þ

In the test particle limit of a third mass (ν3 → 0), Eq. (12)
disagrees with that of a binary system, because the
restricted three-body dynamics does not equal to the binary
dynamics [2,15,30]; see, e.g., Eq. (66) in Ref. [27] and
Eq. (13.51) in [28] for the PPN periastron shift formula of a
binary case.

IV. CONCLUSION

We found a PPN triangular solution to the planar elliptic
three-body problem in a class of fully conservative theories.
The distortion function εAB of a triangular solution depends
on β but not on γ. It follows that, in the circular limit, the
present solution recovers the PPN triangular circular
solution in Ref. [26]. In the limit of eN → 0, Eq. (9) agrees
with Eq. (41) in [26].
The periastron shift of the PPN triangular solution was

also obtained. Because of the three-body interactions, the
periastron shift in the PPN triangular solution is different
from that of a binary system.
There are potential observational tests for the above

models. One is the monitoring of an artificial satellite at (or
around) L4 (or L5) of the Sun-Jupiter system (or Sun-Earth
system), if such a satellite is launched. It could allow to test
the relativistic three-body gravity through the measurement
of β and γ, though it is technically difficult.
The other is to find a hypothetical object of a relativistic

triangular system composed from, e.g., two black holes and
a neutron star. If the two black holes are much heavier than
the neutron star, the triple system is likely to be stable,
though its formation process is unclear.
It is left for future to study the stability of the present

solution.
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FIG. 2. ε12, ε23, ε31 for ν1 ¼ 1=2, ν2 ¼ 1=3, ν3 ¼ 1=6 and
M=a ¼ 0.01 in elliptic motion with eN ¼ 0.5. The horizontal axis
denotes θ from a periastron (θ ¼ 0) to the next periastron
(θ ¼ 2π).
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