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This paper delves into the exploration of suitable boundary conditions for the asymptotically flat scenario of
general relativity presented in terms of Ashtekar-Barbero variables.While the standard parity conditions have
been extensively studied by Thiemann [Classical QuantumGravity 12, 181 (1995)] and Campiglia [Classical
Quantum Gravity 32, 145011 (2015)], it turns out that they fail to produce nontrivial supertranslations at
spatial infinity. We propose new parity conditions for the Ashtekar-Barbero variables that do yield nontrivial
supertranslation charges at spatial infinity. We compare our findings with those of Henneaux and Troessaert
[J. High Energy Phys. 03 (2018) 147] and demonstrate that the new boundary conditions ensure the finiteness
of the symplectic structure. Moreover, when embarking on the quest for appropriate parity conditions, it is
essential to ensure that the selected parities remain invariant under hypersurface deformations. Given that
working with Ashtekar-Barbero variables provides more asymptotic structure as compared to the Arnowitt-
Deser-Misner variables, it is shown that by fixing the Lagrange multiplier corresponding to the Gauss
constraint, the invariance of certain parity conditions can be guaranteed.
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I. INTRODUCTION

In recent years, there has been a growing interest in the
study of boundaries [1] in general relativity (GR) [2],
particularly with respect to the asymptotic symmetries of
spacetimes. Bondi, Van der Burg, and Metzner [3] discov-
ered, and Sachs [4] later confirmed, that the asymptotic
region of an asymptotically Lorentzian flat spacetime has a
richer structure than the traditional Poincaré group, which
consists of translations, rotations, and boosts. The Bondi-
Metzner-Sachs (BMS) group, a newly discovered symmetry
group, is an extension of the finite-dimensional Poincaré
group augmented by infinite-dimensional supertranslations
[4]. Strictly speaking, the asymptotic region of an asymp-
totically flat spacetime can be viewed as an infinite set of
classical vacua in general relativity. In this context, super-
translations describe the transformations that connect
these vacua.
The BMS symmetry was initially observed at null infinity

[3,4]. Nevertheless, studying the BMS symmetry at spatial
infinity holds significant importance as well. There are four
distinct motivations for analyzing the asymptotic structure of
gravity at spatial infinity on spacelike hypersurfaces.
First, supertranslations that are inextricably linked to the

asymptotic structure of spacetime are accountable for the
emission of gravitational radiation toward null infinity.
Furthermore, it is well known that gravitational radiations

have the potential to devastate the typical smoothness
requirements imposed at null infinity [5]. Hence, a fruitful
approach to investigating the conditions on Cauchy data
that yield a sufficiently smooth null infinity involves
exploring the symmetries of the theory in a context that
separates the presence of BMS symmetry from gravita-
tional radiation.
Second, soft graviton theorems can be interpreted asWard

identities for the BMS asymptotic symmetries. Ward iden-
tities are mathematical equations that relate the symmetries
of a system to its conserved charges [6]. However, con-
structing the BMS charges that generate the BMS sym-
metries in a canonical way is challenging. One difficulty is
that, at null infinity, it is more appropriate to consider fluxes
rather than charges. Fluxes aremeasures of the flowof energy
andmomentum into or out of a system.Unfortunately, fluxes
are not conserved when they are nonzero. Additionally, the
BMS symmetries are not generated in a canonical way, and
the association of functions with these symmetries is com-
plex. Hypersurfaces that reach null infinity are non-Cauchy,
meaning that they do not capture the entire dynamical
evolution of the system. Only when the fluxes at null infinity
vanish can a standard Hamiltonian picture be recovered. In
conclusion, constructing the BMS charges that canonically
generate theBMS symmetries is a challenging task due to the
nonconservation of fluxes at null infinity and the nonca-
nonical generation of the symmetries themselves.
Third, pioneer studies [7–9] of the Hamiltonian structure

at spatial infinity did not identify the BMS group as a group*s-bakhoda@bnu.edu.cn
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of physical symmetries, leading to a contradiction with
results from null infinity. Therefore, it is important to
resolve this tension in order to gain a better understanding
of the symmetries of gravity.
Finally, our main motivation for studying BMS sym-

metries at spatial infinity lies in the quantum formulation of
the theory, which is inherently explored on Cauchy hyper-
surfaces. The BMS algebra is manifested in the quantum
theory through charges that act in the Hilbert space of
states. These charges should have an expression at spatial
infinity in the Arnowitt-Deser-Misner (ADM) formulation
of evolution, which is based on foliations that approach
asymptotic parallel hyperplanes, representing inertial
observers at infinity. Our ultimate objective is to examine
the quantum properties of the symmetry and its associated
charges within the framework of loop quantum gravity
(LQG) [10].
Since LQG is expressed in terms of the Ashtekar-

Barbero variables [11,12], the initial step toward achieving
our goal is to determine appropriate boundary conditions
for the canonical variables that allow for the emergence of
BMS charges at spatial infinity. This has already been done
in terms of the ADM variables in [13]. In their approach,
they have proposed new boundary conditions compared to
the boundary conditions in the earlier work [9]. The
boundary conditions employed in [9] at spatial infinity,
with the intention of ensuring finite angular momentum,
also result in all BMS charges becoming identically zero.
This outcome, as demonstrated in [9], arises due to the
parity conditions imposed on the leading order of the metric
and its conjugate momentum as one moves toward spatial
infinity. Therefore, to reconcile the tension between the
asymptotic structure at spatial infinity and the emergence of
the BMS algebra at null infinity, it seems necessary to adopt
boundary conditions at spatial infinity that differ from those
of [9]. Simply discarding the standard parity conditions is
not feasible, as it leads to logarithmic divergence of the
symplectic structure, angular momentum, and boost
charges [14]. In the study by Henneaux and Troessaert
[13], they discovered alternative parity conditions for the
leading terms of the metric and its conjugate momentum.
These parity conditions preserve finiteness while allowing
for a well-defined and nontrivial action of the BMS algebra.
The key to their approach is to set the leading order terms of
the constraints to zero. This is an additional restriction, but
it is very mild since the leading terms of the constraints
vanish on shell anyway and therefore do not remove any
solutions.
In this paper, we investigate whether employing the same

approach is possible to identify suitable boundary con-
ditions for Ashtekar-Barbero variables, utilized in a LQG.
The challenge lies in the increased asymptotic structure that
must be determined due to the freedom in selecting the
internal SUð2Þ frame, describing the internal orientation.
However, to reproduce the ADM results, it is necessary to

fix the internal frame at the asymptotic boundary [7,8]. This
constraint is not inappropriate, as an SUð2Þ charge should
not hold any physical significance in general relativity. The
optimal parity conditions simultaneously render the asymp-
totic symmetry generators and the symplectic 2-form finite
while producing an integrable and finite charge. The falloff
and parity conditions of the additional degrees of freedom
must be chosen in a manner that satisfies all these require-
ments concurrently. Furthermore, a challenging aspect of
this work is ensuring that all imposed parities and falloff
conditions are preserved by the hypersurface deformation,
which is a based task to tackle. Our paper is structured as
follows: In Sec. II, we begin by reviewing some classic
background information on the ADM Hamiltonian treat-
ment of asymptotically flat spacetimes, with particular
emphasis on the parity conditions proposed by [9,13].
We then proceed to discuss the Ashtekar-Barbero variables,
deriving their falloff conditions in asymptotically spherical
coordinates. This is necessary because the new boundary
conditions are most conveniently expressed in this coor-
dinate system. Next, we recall the standard boundary
conditions for the Ashtekar-Barbero variables obtained
in [7,8], as well as the strategy employed in these papers
to fix the internal frame at the asymptotic boundary.
In Sec. III, we begin by stating a theorem that introduces

falloff and parity conditions for the canonical variables and
expresses and fixes some of the leading terms of the
Lagrange multipliers. We then spend the remainder of
the section proving the theorem. Specifically, we show that
the symplectic form is finite and well defined, the boundary
conditions are preserved by hypersurface deformations, and
the constraints are well defined and functionally differ-
entiable for asymptotic translations and do yield to non-
trivial supertranslations at spatial infinity. Thus, we derive a
finite and integrable charge for infinite-dimensional
supertranslations.
In Sec. IV, an analysis is carried out to assess the

correlation between our findings and the outcomes pre-
sented in [13], specifically regarding the retrieval of the
supertranslation charge within the ADM formulation.
Furthermore, a discussion is provided on the distinction
observed in the boundary terms when employing ADM
variables in comparison to Ashtekar-Barbero variables.
In the final section, we summarize our findings and

provide an outlook. The conclusive outcomes of some
lengthy calculations have been included in the Appendix.

II. BACKGROUND

This section is dedicated to establishing notation and
outlining the necessary steps for verifying the suitability of
boundary conditions. Additionally, a brief review of pre-
vious work will be provided.
In this paper, we employ the Hamiltonian formalism of

GR. Consequently, it is important to emphasize that this
formulation assumes a foliation of spacetime into spacelike
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hypersurfaces. Consistent with the canonical approach, we
select a Cauchy hypersurface Σ and define Cartesian
coordinates xa ¼ ðx; y; zÞ on it. The region at spatial
infinity is identified as r → ∞, where r ¼ xaxa.
Appropriate boundary conditions are those that satisfy

the following requirements collectively. These require-
ments will be revisited throughout the paper. Consistent
boundary conditions are those that satisfy the following:

(i) Ensure the symplectic structure is well-defined. A
well-defined symplectic structure is crucial for
working in the phase space and calculating Poisson
brackets. Therefore, it is necessary to ensure that the
proposed boundary conditions do not cause the
symplectic structure to become divergent as one
approaches infinity.

(ii) Remain invariant under hypersurface deformations.
To establish a consistent theory, it is essential for the
boundary conditions to remain the same across all
slices. In other words, they must be invariant as one
moves from one hypersurface to the next.

(iii) Enable the Hamiltonian generators of the asymptotic
symmetries to be well defined and integrable. The
surface integrals that yield the charges associated
with the asymptotic symmetries should be finite and
integrable. By integrable, we mean that the variation
can be extracted from the integral in the surface
integral. Mathematically speaking, the variation of
the surface charge is a 1-form in field space obtained
by performing integration by parts on the bulk
generator. This 1-form must be exact.
This requirement can be explained in another

way: In gauge theories, including GR, one has to
work with some constraints whose vanishing rep-
resents equations relating the canonical variables.
The constraint surface of the phase space is defined
by the vanishing of these constraint functionals.
Should these constraints meet the first-class criterion
in Dirac’s terminology [15], they are responsible for
generating gauge transformations. Consequently, it
becomes necessary to calculate Poisson brackets
with these constraint functionals. In order to com-
pute Poisson brackets between the constraint func-
tionals and different functions on the phase space, it
is essential for them to be both finite and function-
ally differentiable.
If, in the presence of a boundary, it occurs that the

generators of gauge transformations are not func-
tionally differentiable, one can address this issue by
following the subsequent procedure: Compute the
variation of the constraint, which involves obtaining
a surface integral. If the variation’s volume term is
well defined, it yields the desired functional deriva-
tive of the functional that we aim to establish as well
defined. Subtract the surface term from the variation
of the original constraint. If, after this process, the
resulting surface term is found to be exact, meaning

it can be expressed as the variation of a surface
integral, then one has acquired an expression that is
functionally differentiable and, if fortunate, is al-
ready finite and so it is well defined.

In a totally constrained system, the calculation of the
charge requires the consideration of the variation of the sum
of the smeared constraints and the identification of appro-
priate surface terms that can be added to the sum to ensure
differentiability. In mathematical terms, let us consider a
fully constrained system characterized by canonical vari-
ables ðqa; paÞ and first-class constraints CI with corre-
sponding smearing functions λI . The variation can then be
expressed as

δCI½λI� ¼
Z

d3xðδλpaδqa − δλqaδpaÞ þ Bλðδqa; δpaÞ:

ð2:1Þ
Here, Bλ½δqa; δpa� represents the surface term. Initially, it is
crucial to ensure that Bλ½δqa; δpa� converges as the boun-
dary is approached. Subsequently, it must be verified if this
term can be expressed as the variation of a surface integral.
If both of these criteria are met, the charge is determined by
Qλðqa; paÞ, defined as

Bλðδqa; δpaÞ ¼ −δQλðqa; paÞ: ð2:2Þ

A. Boundary conditions for ADM variables

Within the framework of the ADM formalism, the spatial
metric tensor qab ofΣ, as well as the lapse functionN and the
shift vector Na, along with their conjugate momenta πab, Π,
and Πa, respectively, serve as the canonical variables. To
simplify notation, we define N ≔ ðN;NaÞ ¼ ðN; N⃗Þ. Upon
deriving theADMaction, it becomes apparent that the action
is independent of the time derivatives of N and Na.
Consequently, this leads to the establishment of primary
constraints Π ¼ 0 and Πa ¼ 0. Regarding the conjugate
momentum of the metric, it can be determined that
πab ¼ ffiffiffi

q
p ðKab − KqabÞ, where q denotes the determinant

of the spatial metric qab and Kab ¼ 1
2N ðq̇ab − LN⃗qabÞ

represents the extrinsic curvature of Σ with K representing
its trace.
Stability of the primary constraints shows that the

secondary constraints are (for a complete review of the
geometrodynamics of GR, the reader is referred to [16])

Ha½Na� ≔ −2
Z
Σ
d3xNaqacDbPbc; ð2:3Þ

H½N� ≔ −
Z
Σ
d3xN

�
sffiffiffi
q

p
�
qacqbd −

1

2
qabqcd

�
πabπcd

þ ffiffiffi
q

p
R

�
; ð2:4Þ
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where R is the Ricci scalar of the spatial hypersurface Σ,
and Da is the Levi-Civita connection associated with qab.
By imposing stability of these constraints under evolution,
no tertiary constraints arise. The complete introduction of
the phase space of the theory is achieved through the
definition of the symplectic structure. Denoted asΩðδ1; δ2Þ,
this symplectic structure is given by

Ωðδ1; δ2Þ ¼
Z
Σ
d3xðδ1qabδ2πab − δ2qabδ1πabÞ: ð2:5Þ

The variation of a phase space functionF ½q; π� is defined as
δF ¼ ΩðδF ; δÞ, where δ ¼ ðδqab; δπabÞ and δF ¼
ðδFqab; δFπabÞ and δF is simply the Hamiltonian vector
field of F . Then the Poisson bracket of two given
spacetime functions F 1 and F 2 is defined by fF 1;F 2g ≔
ΩðδF 1

; δF 2
Þ [8].

1. Regge and Teitelboim boundary conditions

After providing this brief overview, we are now prepared
to explore the examination of the asymptotic region using
the canonical formulation of GR. A spacetime is considered
asymptotically flat1 if, outside of a compact region, the
metric follows the behavior gμν ¼ δμν þ 1

r hμν, where hμν is
a tensor on the asymptotic two-sphere (∂Σ ¼ S2). In order
to make use of the Hamiltonian formalism, it is essential to
comprehend the decay behaviors of the variables qab and
πab. Although there is no indication of the decay behavior
of the latter in the falloff behavior of gμν, the former can be
directly derived from it. Demanding the symplectic struc-
ture (2.5) to be finite, one arrives at this conclusion that
πab ¼ Oðr2þϵÞ (for more detail look at [9] or [16]).
However, it is precisely the finiteness of the ADM
momentum that necessitates the decay of r−2. Therefore,
one must adhere to the falloff behaviors as

qab ¼ δab þ
1

r
h̄abðn⃗Þ þOðr−2Þ;

πab ¼ 1

r2
π̄abðn⃗Þ þOðr−3Þ: ð2:6Þ

Here, h̄ab and π̄ab are tensor fields on the two-sphere at
spatial infinity (n⃗ ¼ x⃗

r), and now the objective is to
eliminate the divergences arising in (2.5) through an
alternate technique. This is exactly where the parity
conditions come into play. A possible way to eliminate
the divergence in (2.5) is to impose the condition that the
functions h̄ab and π̄ab possess opposite parity. In [9], the
following parity conditions were proposed, which are
commonly known as the “standard parity conditions.”

Under the antipodal map on the asymptotic two-sphere,
h̄ab and π̄ab show the following behavior:

h̄abð−n⃗Þ ¼ h̄abðn⃗Þ; π̄abð−n⃗Þ ¼ −π̄abðn⃗Þ: ð2:7Þ

In other words, h̄ab ¼ even and π̄ab ¼ odd. Looking at the
power expansion of the symplectic 2-form (2.5), i.e.,

Ωðδ1; δ2Þ ¼
Z

dr
r

Z
S2
dσðδ1h̄abδ2π̄ab − δ2h̄abδ1π̄abÞ

þ finite; ð2:8Þ

one finds that, using the parity conditions (2.7), the
coefficient of the leading logarithmic singularity is zero
because the term δh̄abδπ̄ab is an odd function and its
integral over the sphere vanishes. Here, dσ is the standard
measure on the unit sphere. It is worth mentioning that it is
not possible to interchange the parity conditions (2.7)
due to resulting in disappearance of the ADM energy
momentum.
Now, in accordance with (iii), one needs to verify if the

constraints (2.3) and (2.4) are well defined. To accomplish
this, the asymptotic behaviors of the Lagrange multipliers,
i.e., N and Na, must first be determined. In the simplest
version, in [1] it is shown that the Hamiltonian and
diffeomorphism constraints are finite and functionally
differentiable when the lapse and shift have the following
r → ∞ asymptotic behavior:

N ¼ Sðn⃗Þ þOðr−1Þ; Na ¼ Saðn⃗Þ þOðr−1Þ; ð2:9Þ

where Sðn⃗Þ and Saðn⃗Þ are arbitrary odd functions on the
unit sphere, i.e.,

Sð−n⃗Þ ¼ −Sðn⃗Þ; Sað−n⃗Þ ¼ −Saðn⃗Þ: ð2:10Þ

Thus, the constraints (2.3) and (2.4) with lapse and shift
obeying (2.9) and (2.10) generate the gauge transformation
of the theory. Note that the charge corresponding to the so-
called supertranslation Sðn⃗Þ and Saðn⃗Þ is identically zero.
We will return to this point in Sec. III D.
In the context of asymptotically flat spacetime, it is

reasonable to allow for the decay behaviors of smearing
functionsN,Na, which correspond to infinitesimal Poincaré
transformations. These behaviors can be described as
follows:

N ¼ baxa þ aðn⃗Þ þOðr−1Þ;
Na ¼ babx

b þ aaðn⃗Þ þOðr−1Þ; ð2:11Þ
1Mathematically rigorous definitions for an asymptotically flat

spacetime exist, which are beyond the scope of this paper [17].
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where ba and bab ¼ −bba represent arbitrary constants,
while aðn⃗Þ and aaðn⃗Þ are arbitrary functions on the unit
sphere. The constants ba serve as parameters for Lorentz
boosts, and the antisymmetric constants bab ¼ −bba act as
parameters for spatial rotations. Arbitrary functions a and aa

describe angle-dependent translations whose zero modes are
standard translations.
In their paper [9], Regge and Teitelboim demonstrated

that the boundary conditions (2.6) and (2.7) not only ensure
the finiteness of the symplectic structure (2.5), but also
possess invariance under hypersurface deformations with
lapse and shift (2.11) provided a, aa (except their zero
modes) are odd functions, thereby satisfying conditions (i)
and (ii). However, when introducing the Lagrange multi-
pliers as (2.11), it turns that the constraints (2.3) and (2.4)
are not well defined. Following the procedure outlined in
(iii), the authors were able to identify well-defined gen-
erators. Hence, it can be concluded that the boundary
conditions (2.6) and (2.7) are appropriate as they fulfill all
the requirements (i)–(iii). The only limitation of their work
is that the resulting charge only includes those associated
with Poincaré symmetries, leaving no scope for charges
associated with the nonconstant angle-dependent trans-
lations a, aa. Therefore, there is no room for the BMS
charge. To address this issue, an alternative set of appro-
priate boundary conditions must be sought. This is pre-
cisely what Henneaux and Troessaert (H-T) accomplished
in their study [13]. Below, we briefly outline their approach
and encourage interested readers to consult the original
paper for further details.

2. H-T boundary conditions

In order to investigate the asymptotic region, it is
preferable to use spherical coordinates ðr; xAÞ, where xA

denotes the coordinates on the two-sphere. In what follows,
depending on the definition of the antipodal map on the
two-sphere, two types of coordinates are utilized:
(1) the coordinates for which the antipodal map is

xA → −xA, and
(2) the traditional coordinates xA ¼ ðθ;φÞ, for which the

antipodal map is θ → π − θ, φ → φþ π.
When working with tensorial equations, the choice of
coordinates does not affect the results. However, in terms
of associating parities, it is important to specify the
coordinate system being used. It is always possible to
perform a coordinate transformation to switch between
these two coordinate systems. In a slight abuse of notation,
we utilize xA to represent both sets of coordinates (1) and
(2). However, if any confusion arises, we will explicitly
clarify which coordinate system is being used. Wewill refer
to them as coordinate system (1) and coordinate system (2),
respectively.
When expressed in the spherical coordinates, Eq. (2.6)

can be written as

qrr ¼ 1þ 1

r
h̄rr þ

1

r2
hð2Þrr þOðr−3Þ;

qrA ¼ h̄rA þ 1

r
hð2ÞrA þOðr−2Þ;

qAB ¼ r2γ̄AB þ rh̄AB þ hð2ÞAB þOðr−1Þ;

πrr ¼ π̄rr þ 1

r
πð2Þrr þOðr−2Þ;

πrA ¼ 1

r
π̄rA þ 1

r2
πð2ÞrA þOðr−3Þ;

πAB ¼ 1

r2
π̄AB þ 1

r3
πð2ÞAB þOðr−4Þ; ð2:12Þ

where γ̄AB is the metric on the unit two-sphere. It should be
noted that when deriving the last three equations in (2.12),
one must consider that πab is not a tensor field but rather a
tensor density. Furthermore, it is possible to assume,
without loss of generality, that h̄rA ¼ 0, which greatly
simplifies the calculations in subsequent sections. This
assumption holds true since h̄rA ¼ 0 can always be
achieved through a coordinate transformation [13].
Expressed in spherical coordinates, Eq. (2.11) takes the

form

N ¼ rbþ f þOðr−1Þ; ð2:13Þ

Nr¼WþOðr−1Þ; NA ¼YAþ1

r
IAþOðr−2Þ: ð2:14Þ

Here, b, an arbitrary function satisfying the condition
D̄AD̄Bbþ bγ̄AB ¼ 0, serves as the boost parameter, and
YA is assumed to be the rotation generator, satisfying
LY γ̄AB ¼ 0. It should be noted that D̄A denotes the torsion-
free connection that is compatible with the metric of the
unit two-sphere γ̄AB.
When attempting to compute the surface term

Bλ½δqa; δpa� defined in (2.1) for the case of GR with the
constraints given by (2.3) and (2.4), and with smearing
functions defined in (2.13) and (2.14), it is found that
BN½δqab; δπab� exhibits linear divergence; specifically,

�
BN½δqab; δπab�

�
divergent part

¼ r
Z
S2
dσð−2YAγ̄ABδπ̄

rB − 2
ffiffiffī
γ

p
bδk̄Þ; ð2:15Þ

where

k̄ ≔ γ̄ABk̄AB; k̄AB ≔
1

2
h̄AB þ λ̄γ̄AB; λ̄ ≔

1

2
h̄rr:

ð2:16Þ

In the work by Henneaux and Troessaert [13], it was
observed that the divergent term (2.15) can be eliminated
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with the help of the leading order terms of the constraints,
i.e., H̄, H̄A where H≕ 1

r H̄ þOðr−2Þ and HA ≕ H̄Aþ
Oðr−1Þ. Specifically, the conditions H̄ ¼ 0 ¼ H̄A were
imposed even off shell, where

H̄ ¼ D̄AD̄Bk̄AB − D̄AD̄Ak̄ ¼ 0;

H̄A ¼ γ̄ABπ̄
rB þ γ̄ABD̄Cπ̄

BC ¼ 0: ð2:17Þ

By utilizing Eq. (2.17), performing integration by parts,
and employing the boost property D̄AD̄Bbþ bγ̄AB ¼ 0, the
divergent term (2.15) can be eliminated. In the previous
work by Regge and Teitelboim (R-T) [9], the removal of
(2.15) was achieved through parity conditions. However, in
the study conducted by Henneaux and Troessaert [13], the
role is fulfilled by (2.17), enabling the relaxation of parity
conditions and the introduction of different conditions than
those proposed by R-T, thus leading to the revival of the
supertranslation charge.

To present the H-T parity conditions, in addition to the
newly defined variables (2.16), we need to define

p̄ ≔ 2ðπ̄rr − π̄AAÞ: ð2:18Þ

Then, in terms of the spherical coordinates (1), the set of
parity conditions on the boundary values proposed in [13] are

λ̄ ∼ π̄AB ¼ even; p̄ ∼ k̄AB ∼ π̄rA ¼ odd; ð2:19Þ

or in terms of the spherical coordinates (2),

λ̄ ∼ π̄rφ ∼ π̄θθ ∼ π̄φφ ∼ k̄θφ ¼ even;

p̄ ∼ π̄rθ ∼ π̄θφ ∼ k̄θθ ∼ k̄φφ ¼ odd: ð2:20Þ

Thus, (2.12) togetherwith (2.19) are called theH-T boundary
conditions [13]. It is straightforward to see that these
boundary conditions remove the divergent term of the
symplectic structure, because

Ωðδ1; δ2Þ ¼
Z

dr
r

Z
S2
dσ

�
δ1h̄rrδ2π̄rr þ δ1h̄ABδ2π̄AB − ðδ1 ↔ δ2Þ

�
þ finite

¼
Z

dr
r

Z
S2
dσ

�
δ1h̄rrδ2π̄rr þ δ1h̄ABδ2π̄AB þ δ1h̄rrδ2π̄AA − δ1h̄rrδ2π̄AA − ðδ1 ↔ δ2Þ

�
þ finite

¼
Z

dr
r

Z
S2
dσ

�
δ1h̄rrδ2½π̄rr − π̄AA� þ δ1½h̄AB þ h̄rrγ̄AB�δ2π̄AB − ðδ1 ↔ δ2Þ

�
þ finite

¼
Z

dr
r

Z
S2
dσ

�
δ1λ̄δ2p̄þ 2δ1k̄ABδ2π̄AB − ðδ1 ↔ δ2Þ

�
þ finite; ð2:21Þ

and in accordancewith (2.19), the terms δλ̄δp̄ and δk̄ABδπ̄AB

are odd functions and their integral over the sphere are equal
to zero. It should be noted that the term δh̄rAδπ̄rA does not
contribute to the divergent term of the symplectic structure
due to the assumption h̄rA ¼ 0. Through a lengthy calcu-
lation, it can be demonstrated that the H-T boundary
conditions remain invariant under hypersurface deforma-
tions, thus meeting the requirements (i) and (ii). As pre-
viously mentioned, the divergent part of the surface term
(2.15) is eliminated by setting the leading terms of the
constraints to zero, i.e., (2.17). Furthermore, it has been
proven that the surface term BN½δqab; δπab� is exact, thereby
establishing the integrability of the charge [13]. Therefore, all
the requirements (i)–(iii) are satisfied by H-T boundary
conditions (2.7) and (2.19).
The nonzero supertranslation charge is hence given by

QSupertranslation ¼
Z
S2
dσð4T ffiffiffī

γ
p

λ̄þWp̄Þ; ð2:22Þ

where T ≔ f þ bλ̄þ bk̄ and W are even and odd arbitrary
functions on the unit two-sphere, respectively. The parities
of T and W ensure that the H-T parity conditions (2.19)
remain invariant under hypersurface deformations. Note
that the terms given in (2.22) may not generally vanish as
they are determined by integrating arbitrary even functions.
It is noteworthy to examine why the R-T parity con-

ditions result in a vanishing supertranslation charge. As
mentioned in the concluding paragraph of Sec. II A 1, the
nonzero modes of the arbitrary functions a and aa are odd.
This can be equivalently expressed in terms of spherical
coordinates, indicating that the nonzero modes of f and W
are odd and even, respectively. Furthermore, when the R-T
parity conditions (2.7) are translated into spherical coordi-
nates, it becomes evident that λ̄ ¼ even and p̄ ∼ k̄AB ¼ odd,
leading to even parity for the nonzero mode of T.
Considering all of these factors, we can arrive at the
conclusion that the arbitrary functions present in T and W
have opposite parity to λ̄ and p̄, respectively. Equation (2.22)
indicates that these functions possess identically vanishing
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surface charges, leaving no room for the BMS symmetry
with the parity conditions (2.7).

B. Standard boundary conditions
for Ashtekar-Barbero variables

The Ashtekar-Barbero formalism relies on the use of
tetrad variables to represent the gravitational field. These
variables consist of four covariant fields denoted as eIμðxÞ,
where I; J; � � � ¼ 0, 1, 2, 3 are flat indices that are raised
and lowered by the metric ηIJ ¼ diag½s;þ1;þ1;þ1�. Here,
s represents the signature of the metric (s ¼ þ1 for
Euclidean and s ¼ −1 for Lorentzian metric). The metric
variables can be expressed in terms of the tetrad variables
using the equation gμν ¼ ηIJeIμeJν . This formulation intro-
duces an additional gauge invariance of SOð3; 1Þ into GR.
The corresponding canonical formalism is defined within
the temporal gauge eit ¼ 0, where i; j; � � � ¼ 1, 2, 3 are flat
three-dimensional indices raised and lowered by δij. In this
gauge, the Lorentz group is reduced to SUð2Þ, and the
ADM configuration variables are qab ¼ eiaeib, N ¼ e0t ,
and eit ¼ eiaNa.
The Ashtekar-Barbero variables [11,12] consist of the

following connection 1-form and electric field:

Ai
a ≔ Γi

a þ βKi
a; ð2:23Þ

Ea
i ≔

ffiffiffi
q

p
eai ; ð2:24Þ

respectively, where q ≔ detðqabÞ, and eai is defined by the
relations eai e

j
a ¼ δij and eai e

i
b ¼ δab. The 1-form Ki

a is
defined through Kab ≕Ki

ðae
i
bÞ, the parameter β is an

arbitrary complex number known as the Barbero-Immirzi
parameter [12], and

Γi
a ≔ −

1

2
ϵijkE

j
bDaEb

k

¼ −
1

2
ϵijkEb

k

�
Ej
a;b − Ej

b;a þ Ec
jE

l
aEl

c;b þ Ej
a
ðdetðEÞÞ;b
detðEÞ

�

ð2:25Þ

is the spin connection associated with eia, in which Ei
a is the

inverse of (2.24). The phase space coordinated by the pair
ðAi

a; Ea
i Þ is equipped with the symplectic structure given by

Ωðδ1; δ2Þ ¼
2

β

Z
Σ
d3xðδ1Ai

aδ2Ea
i − δ2Ai

aδ1Ea
i Þ; ð2:26Þ

with respect to which the Ashtekar-Barbero variables (2.23)
and (2.24) form a canonically conjugate pair. In terms of
these variables, the constraints of the theory are expressed
in the form [16]

Gi½Λi� ¼ 2

β

Z
Σ
d3xΛi

�
∂aEa

i þ ϵijkA
j
aEa

k

�
; ð2:27Þ

Ha½Na� ¼ −2s
β

Z
Σ
d3xNa

�
Fi
abE

b
i − Ai

aGi

�
; ð2:28Þ

H½N� ¼
Z
Σ
d3x Ñ

�
Fi
ab − ðβ2 − sÞϵimnKm

a Kn
b

�
ϵijkEa

jE
b
k;

ð2:29Þ

which are known as Gauss, diffeomorphism, and
Hamiltonian constraints, respectively. Here,

Fi
ab ¼ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b; ð2:30Þ

Λi is the Lagrange multiplier corresponding to Gi, and, as
usual, Na is the shift vector and Ñ is the densitized lapse
function with weight −1. The diffeomorphism and
Hamiltonian constraints, i.e., (2.28) and (2.29), are the
same as in the ADM formulation, i.e., (2.3) and (2.4), with
qab and πab expressed in terms of the Ashtekar-Barbero
variables. In addition, there is an extra constraint, i.e.,
(2.27), generating the internal rotations. The canonical
Hamiltonian, which will be used to compute equation of
motions, is a linear combination of the constraints (2.27)–
(2.29) and is expressed as

Hcan ¼
Z
Σ
d3x ðGi½Λi� þHa½Na� þH½Ñ�Þ: ð2:31Þ

We are now prepared to discuss the asymptotic behaviors of
the Ashtekar-Barbero variables ðAi

a; Ea
i Þ which satisfy

requirements (i)–(iii). It is important to note that simply
converting the boundary conditions imposed on the ADM
variables to the new variables does not yield a compre-
hensive asymptotic theory for GR written in terms of
Ashtekar-Barbero variables. This is due to the existence of
an additional internal SUð2Þ frame, the asymptotic behav-
ior of which must be determined while satisfying all
consistency requirements (i)–(iii). Reference [7] provides
an asymptotic analysis of the theory for β ¼ i, which is
equivalent to the R-T boundary conditions described in
Sec. II A 1. Subsequently, Ref. [8] presents a similar
analysis for a real arbitrary Barbero-Immirzi parameter
β. In the remainder of this section, we provide a brief
summary of their discussions and highlight the findings
that are necessary to explain our results in the next section.
Given that the triad 1-form corresponds to the square root

of the three-metric, it is reasonable to anticipate that the
electric field will exhibit a falloff behavior of Ea

i ¼
Ēa
i þ f̄ai

r þOðr−2Þ. Here, Ēa
i represents the densitized triad

of the asymptotic three-metric at spatial infinity. Stated
differently, the associated metric of Ēa

i is considered to be
δab appearing in (2.6). It is important to note that Ēa

i is not
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fixed, in general, as it has the ability to undergo rotations in
the internal space, while still maintaining δab as its
associated metric. However, ensuring a well-defined sym-
plectic structure requires that the electric fields asymptote
to a fixed densitized triad. Thus, we select the fixed, zeroth
order asymptotic electric field to be Ēa

i ¼ δai , where

δai ¼
	
1 if ða; iÞ ¼ ðx; 1Þ; ðy; 2Þ; ðz; 3Þ;
0 otherwise:

Subsequently, the boundary conditions (2.6) in terms of the
Ashtekar-Barbero variables can be expressed as

Ea
i ¼ δai þ

f̄ai
r
þOðr−2Þ;

Ai
a ¼

ḡia
r2

þOðr−3Þ; ð2:32Þ

where f̄ai and ḡ
i
a are tensor fields defined on the asymptotic

two-sphere admitting the definite parity conditions [7,8]

f̄ai ð−n⃗Þ ¼ fai ðn⃗Þ; ḡiað−n⃗Þ ¼ −giaðn⃗Þ: ð2:33Þ

The well definedness of the symplectic structure (2.26) is
ensured by the falloff conditions (2.32) and the parity
conditions (2.33). Specifically, the symplectic structure can
be expressed as

Ωðδ1; δ2Þ ¼
2

β

Z
dr
r

Z
S2
dσðδ1f̄ai δ2ḡia − δ2f̄ai δ1ḡ

i
aÞ þ finite:

ð2:34Þ

Similar to the analysis presented in Sec. II A 1, the
coefficient of the leading logarithmic singularity vanishes.
This is due to the parity conditions (2.33) that render the
term δf̄ai δḡ

i
a an odd function; hence, its integral over

the sphere evaluates to zero. Now it is easy to see the
importance of fixing the zeroth order electric field in (2.32)
in order to ensure the convergence of the integral (2.26).
If we were to allow all possible SUð2Þ rotated Ēa

i , the
convergence of this integral could not be guaranteed. This
means the requirement (i) is fulfilled.
In order to validate the requirement (iii) regarding these

boundary conditions, it is necessary to obtain well-defined
forms of the constraints (2.27)–(2.29) when the smearing
functions include the Poincaré generators (2.11). To
achieve this, the appropriate decay behavior for Λi must
first be determined. Given that the leading term of Gi

presented in (2.27) is an odd function with r−2 decay, the
convergence of Gi½Λi� is contingent upon the decay
condition

Λi ¼ 1

r
Λ̄i þOðr−2Þ; ð2:35Þ

where Λ̄i are even functions defined on the asymptotic S2.
It can be readily confirmed that the differentiability of
Gi½Λi� is also ensured by (2.35).
With regards to the diffeomorphism and Hamiltonian

constraints, i.e., (2.28) and (2.29), it is observed that, even
after subtracting the surface destroying differentiability, the
constraints only converge for translations and not for boosts
and rotations. This situation necessitates modification such
that (1) the generators remain functionally differentiable
and (2) the already available well-defined generator for
translations remains intact up to a pure gauge. Upon
conducting a thorough and meticulous examination, it
becomes evident that the issue at hand stems from the
fact that, despite the fixation of the zeroth order term of the
electric field as δai , it continues to undergo rotation within
the internal space when moving from one hypersurface to
another. Put differently, δai remains unfixed during hyper-
surface deformations. For instance, it is known that under
the action of the diffeomorphism constraint, the variables
change according to their Lie derivative along the shift
vector, i.e., fHa½Na�; Eb

i g ¼ LN⃗E
b
i . By examining the

asymptotic behavior of this equation, it becomes evident
that fHa½Na�; δbi g ¼ LR⃗δ

b
i , which is not generally equal to

zero. Here, R represents the asymptotic rotations. This
problem did not occur in the ADM variables due to the fact
that R⃗ acts as a Killing vector for the asymptotic three-
metric δab, i.e., LR⃗δab ¼ 0. However, it should be noted

that the fact that R⃗ is an asymptotic Killing vector does not
necessarily imply that the asymptotic triad is also Lie
annihilated. It only means that the asymptotic triad is
rotated within the tangent space. Given that the Gauss
constraint is primarily responsible for generating internal
rotations, there is still hope of preventing these rotations by
compensating for their effects through a term proportional
to the Gauss constraint equipped with suitable Lagrange
multipliers. This approach has been implemented in [7,8]. By
subtracting a term proportional to the Gauss constraint from
the diffeomorphism and Hamiltonian constraints, not only is
δai fixed, but it also renders the constraints well-defined
functionals. Specifically, it has been revealed that, for real β,
the final well-defined symmetry generators are [8]

Ha½Na� ≔ Ha½Na� þ sGi½Λ̂i� þ surface terms; ð2:36Þ

H½Ñ� ≔ H½Ñ� − βGi½Λ̊i� þ surface terms; ð2:37Þ

with suitable Lagrange multipliers

Λ̂i ¼ Λi −
1

2
ϵijkδ

j
aδbkb

a
b;

Λ̊i ¼ Λi þ δai ba: ð2:38Þ

Although the Gauss terms have been subtracted to eliminate
the source of divergence coming from boosts and rotations,
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still one needs some surface terms subtracted to ensure the
differentiability. It should be noted that, as expected, the
volume terms added to the constraints, sGi½Λ̂i� and βGi½Λ̊i�,
respectively, are proportional to theGauss constraint, thereby
preserving the invariance of the translation generator on the
constraint surface of the Gauss constraint. The reader can
find the surface terms in the original paper [8], which are
derived based on the specific boundary conditions (2.32) and
(2.33). It has been verified in [7,8] in more detail that the
standard boundary conditions (2.32) and (2.33) are preserved
by hypersurface deformations. This analysis successfully
verifies all the requirements (i)–(iii) for the standard boun-
dary conditions.
As the boundary conditions (2.32) and (2.33) are

equivalent to R-T boundary conditions, similar to what
was discussed in Sec. II A 1, there is no scope for the
supertranslation charge. In the following section, we
present new boundary conditions within the Ashtekar-
Barbero phase space, without relying on the ADM expres-
sions, which result in nonzero supertranslation charges at
spatial infinity.

III. NEW BOUNDARY CONDITIONS FOR
ASHTEKAR-BARBERO VARIABLES

In order to provide a comprehensive description of our
approach for strengthening the boundary conditions, it is
more practical to employ spherical coordinates ðr; xAÞ,
wherein xA denotes coordinates on the sphere. In this
section, we predominantly use the second set of spherical
coordinates introduced in Sec. II A 2, specifically
a; b; � � � ∈ fr; θ;φg, A;B; � � � ∈ fθ;φg and the antipodal
map is defined as θ → π − θ;φ → φþ π. In these coor-
dinates, the asymptotic conditions (2.32) are expressed as

Er
i ¼ r2

ffiffiffī
γ

p
γ̄ri þ r

ffiffiffī
γ

p
f̄ri þ

ffiffiffī
γ

p
f̄ð2Þri þOðr−1Þ;

EA
i ¼ r

ffiffiffī
γ

p
γ̄Ai þ ffiffiffī

γ
p

f̄Ai þ ffiffiffī
γ

p
f̄ð2ÞAi þOðr−1Þ;

Ai
r ¼

ḡir
r2

þ ḡð2Þir

r3
þOðr−4Þ;

Ai
B ¼ ḡiB

r
þ ḡð2ÞiB

r2
þOðr−3Þ; ð3:1Þ

where γ̄ is the determinant of the unit metric γ̄AB on the
sphere, and γ̄ai are asymptotic triads satisfying
γ̄ai γ̄

b
i ¼ γ̄ab ¼ diagð1; γ̄ABÞ. The behavior of the inverse

of Ea
j in the asymptotic region is given by

Ei
r ¼

1

r2
γ̄irffiffiffī
γ

p þ 1

r3
f̄irffiffiffī
γ

p þOðr−4Þ;

Ei
A ¼ 1

r
γ̄iAffiffiffī
γ

p þ 1

r2
f̄iAffiffiffī
γ

p þOðr−3Þ: ð3:2Þ

Here, γ̄ia represents the inverse of γ̄ai satisfying
γ̄iaγ̄

i
b ¼ γ̄ab ¼ diagð1; γ̄ABÞ. It should be noted that when

deriving the first two equations in (3.1) and (3.2), one must
consider that the electric field and its inverse follow the
coordinate transformation rules of tensor densities, rather
than those of tensor fields. Furthermore, from the require-
ment Ei

aEb
i ¼ δba and the relations γ̄ai γ̄

i
b ¼ δab and γ̄

a
i γ̄

j
a ¼ δji ,

we can determine f̄ib in terms of f̄ai as

f̄ib ¼ −γ̄jbγ̄iaf̄aj : ð3:3Þ

Two properties of γ̄ai that will be significant for subsequent
calculations are

D̄Aγ̄
i
r ¼ γ̄iA; ð3:4Þ

D̄Aγ̄
i
B ¼ −γ̄ABγ̄ir: ð3:5Þ

Under the action of the antipodal map, γ̄ia are

γ̄ri ∼ γ̄φi ¼ odd; γ̄θi ¼ even; ð3:6Þ

and their lower spacetime index has the same parity
because

γ̄ir ¼ γ̄ri ; γ̄iθ ¼ γ̄θi ; γ̄iφ ¼ γ̄γ̄φi : ð3:7Þ

Moreover, since fγ̄ir; γ̄iθ; γ̄iφg forms a basis for the internal
space, it proves convenient to use the expression
f̄ai ¼ F̄a

bγ̄
b
i , ḡ

i
b ¼ Ḡa

bγ̄
i
a because in the end we will associate

desired parities to the components

F̄a
b ≔ f̄ai γ̄

i
b; ð3:8Þ

Ḡa
b ≔ ḡibγ̄

a
i : ð3:9Þ

In general, for any field v̄ai (or v̄ia) on the asymptotic two-
sphere, its components in this basis are defined as v̄ab ≔
v̄ai γ̄

i
b (by v̄ba ≔ v̄iaγ̄bi ).
The asymptotic behavior for lapse and shift are still

assumed to be (2.13) and (2.14). Since the smearing
function for the Hamiltonian constraint (2.29) is considered
to be a scalar density of weight −1, we need to derive the
asymptotic behavior of Ñ based on that of N and the
relation Ñ ¼ Nffiffi

q
p , namely,

Ñ ¼ 1

r
bffiffiffī
γ

p þ 1

r2
f̃ffiffiffī
γ

p þOðr−3Þ: ð3:10Þ

The relation between f in (2.13) and f̃ in (3.10) is given by

f̃ ¼ f −
b
2
ðF̄r

r þ F̄A
AÞ; ð3:11Þ
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where we have used the asymptotic expansion of the
determinant of the metric

q ¼ detEa
i ¼ r4γ̄ þ r3γ̄ðF̄r

r þ F̄A
AÞ þOðr2Þ: ð3:12Þ

From this point forward, the smearing functions we use for
the diffeomorphism and Hamiltonian constraints are (2.14)
and (3.10), respectively.
Moving forward, we will assume that we are always

working in a coordinate system in which the equation
γ̄ABF̄A

r þ F̄r
B ¼ 0 holds. This assumption is the same as the

one stated in Sec. II A 2, where we set h̄rA ¼ 0 [13]. In fact,
this assumption for mixed radial-angular components of the
metric was imposed also in [18]. The only cost we must pay
to ensure that we remain in this coordinate when transition-
ing from one hypersurface to the next is to fix IA in the
shift vector (2.14) [for more details, refer to Eqs. (3.67)
and (3.68)].
For future reference, it is necessary to obtain the

asymptotic expansion of the spin connection and extrinsic
curvature, which are parts of the definition of the Ashtekar-
Barbero connection (2.23), as well as the curvature (2.30)
that appears in the constraints (2.28) and (2.29). These
quantities can be expanded in spherical coordinates as

Ki
r ¼

k̄ir
r2

þOðr−3Þ; Ki
B ¼ k̄iB

r
þOðr−2Þ; ð3:13Þ

Γi
r ¼

Γ̄i
r

r2
þOðr−3Þ; Γi

B ¼ k̄iB
r
þOðr−2Þ; ð3:14Þ

FrA ¼ 1

r2

�
−ḡiA − ∂Aḡir

�
þOðr−3Þ;

FAB ¼ 1

r

�
∂AḡiB − ∂BḡiA

�
þOðr−2Þ: ð3:15Þ

By using Eqs. (2.25) and (3.1) and performing a lengthy
calculation, we obtain the leading order term of the spin
connection as

Γ̄i
r ¼

1

2
ffiffiffī
γ

p
�
2ϵCBγ̄ABF̄A

r − ϵCAD̄AðF̄r
r − F̄B

BÞ
�
γ̄iC

þ 1

2
ffiffiffī
γ

p ϵBA
�
D̄Aðγ̄CBF̄C

r þ F̄r
BÞ þ γ̄CBF̄C

A

�
γ̄ir

¼ Γ̄C
r γ̄

i
C þ Γ̄r

rγ̄
i
r; ð3:16Þ

Γ̄i
B ¼ 1

2
ffiffiffī
γ

p
h
ϵDAγ̄ABðF̄C

C − F̄r
rÞ− 2ϵDCγ̄ACðD̄BF̄A

r Þ
i
γ̄iD þ 1

2
ffiffiffī
γ

p
h
2ϵDAγ̄BDγ̄ACF̄C

r − ϵDAγ̄BDD̄AðF̄r
r þ F̄C

CÞ þ 2ϵDAγ̄CDD̄AF̄C
B

i
γ̄ir

¼ Γ̄D
B γ̄

i
D þ Γ̄r

Bγ̄
i
r: ð3:17Þ

Along with Eq. (2.23), these results allow us to determine
the leading terms of Ki

a as

k̄ia ¼ β−1ðḡia − Γ̄i
aÞ ¼ β−1ðḠb

aγ̄
i
b − Γ̄i

aÞ: ð3:18Þ

Finally, by replacing the expressions (3.16) and (3.17) into
(3.18), we can obtain the explicit formula for k̄ia in terms of
F̄a
b and Ḡa

b.

A. Explicit form

We are now prepared to present the new boundary
conditions for the Ashtekar-Barbero variables in the form
of a theorem. The subsequent sections of this paper will be
dedicated to the thorough analysis of the implications and
substance of this theorem.
Theorem. The following boundary conditions meet both

requirements (i) and (ii). They also fulfill requirement
(iii) for spacetime translations and result in nonzero super-
translation charges. The boundary conditions consist of the
decay conditions (3.1) and the parity conditions

F̄θ
r ∼ F̄θ

φ ∼ F̄φ
θ ¼ even; ð3:19Þ

F̄φ
r ∼ F̄θ

θ ∼ F̄φ
φ ∼ Ḡr

r ¼ odd; ð3:20Þ

ðF̄r
r − F̄A

AÞ ∼ ðḠθ
θ þ Ḡr

rÞ ∼ ðḠφ
φ þ Ḡr

rÞ ¼ even; ð3:21Þ

Ḡθ
r þ

1

2
ffiffiffī
γ

p D̄φðF̄r
r − F̄A

AÞ ¼ odd; ð3:22Þ

Ḡr
θ þ

1

2
ffiffiffī
γ

p D̄φðF̄r
r − F̄A

AÞ ¼ odd; ð3:23Þ

Ḡφ
r −

1

2
ffiffiffī
γ

p D̄θðF̄r
r − F̄A

AÞ ¼ even; ð3:24Þ

Ḡr
φ −

ffiffiffī
γ

p
2

D̄θðF̄r
r − F̄A

AÞ ¼ even; ð3:25Þ

Ḡθ
φ þ

ffiffiffī
γ

p
2

�
F̄r
r − F̄A

A

�
¼ odd; ð3:26Þ

Ḡφ
θ −

1

2
ffiffiffī
γ

p
�
F̄r
r − F̄A

A

�
¼ odd: ð3:27Þ

Moreover, we have assumed
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γ̄ABF̄A
r þ F̄r

B ¼ 0; ð3:28Þ

γ̄B½EδF̄B
D� ¼ 0: ð3:29Þ

The restrictions we have in our Lagrange multipliers are

W ¼ odd; f̃ ¼ even; ð3:30Þ

ID ¼ ∂DW − βb

�
s
β
ðk̄rD þ γ̄BDk̄Br Þ −

ϵACffiffiffī
γ

p γ̄ADγ̄BCF̄B
r

�
;

ð3:31Þ

2Λ̄r ¼ −s
ϵDAffiffiffī
γ

p D̄A

�
b½k̄rD þ γ̄BDk̄Br �

�

− β

�
F̄A
r ðD̄AbÞ − 2bD̄AF̄A

r þ b
ϵABffiffiffī
γ

p γ̄BCḠC
A

�
; ð3:32Þ

Λ̄θ þ β
b
2
D̄θðF̄r

r − F̄A
AÞ ¼ odd; ð3:33Þ

Λ̄φ þ β
b
2
D̄φðF̄r

r − F̄A
AÞ ¼ even; ð3:34Þ

where Λ̄a ≔ Λ̄iγ̄ai .

Note that obviously the new boundary conditions differ
from the standard ones. Specifically, in terms of F̄a

b, Ḡ
a
b the

standard parity conditions (2.33) is stated as

F̄a
r ¼ f̄ai γ̄

i
r¼odd; F̄a

θ¼ f̄ai γ̄
i
θ¼even; F̄a

φ¼ f̄ai γ̄
i
φ¼odd;

Ḡr
a¼ ḡiaγ̄ri ¼even; Ḡθ

a¼ ḡiaγ̄θi ¼odd; Ḡφ
a¼ ḡiaγ̄

φ
i ¼even;

ð3:35Þ

where all the canonical variables have definite parities. Here,
to read the parities, we have the relations (3.6) and (3.7) in
mind. Furthermore, the parity condition Λ̄i ¼ even in the
standard boundary conditions is equivalent to Λ̄r ∼ Λ̄φ ¼
even and Λ̄θ ¼ odd, while Eqs. (3.32)–(3.34) tells us that all
Λ̄a do have both even and odd pieces in the new setting of
boundary conditions. Moreover, in the standard parity
conditions, IA is not fixed, while here it is through Eq. (3.31).
The rest of this section is dedicated to prove this

theorem. First, we show that these boundary conditions
give us a well-defined symplectic structure (2.26). As we
already saw in (2.34), since the asymptotic triads are
supposed to be fixed, the divergent part of the symplectic
structure is

2

β

Z
dr
r

Z
S2
dσðδ1f̄ai δ2ḡia − δ2f̄ai δ1ḡ

i
aÞ

¼ 2

β

Z
dr
r

Z
S2
dσðδ1F̄a

bδ2Ḡ
b
a − δ2F̄a

bδ1Ḡ
b
aÞ

¼ 2

β

Z
dr
r

Z
S2
dσ

�
δ1F̄r

rδ2Ḡr
r þ δ1F̄r

Aδ2Ḡ
A
r þ δ1F̄A

r δ2Ḡr
A þ δ1F̄A

Bδ2Ḡ
B
A − ðδ1 ↔ δ2Þ

�

¼ 2

β

Z
dr
r

Z
S2
dσ

�
δ1ðF̄r

r − F̄A
AÞδ2Ḡr

r þ δ1F̄A
Aδ2Ḡ

r
r þ δ1F̄A

r δ2ðḠr
A − γ̄ABḠB

r Þ þ δ1F̄A
Bδ2ðḠB

AÞsym − ðδ1 ↔ δ2Þ
�

¼ 2

β

Z
dr
r

Z
S2
dσ

�
δ1F̄A

Aδ2Ḡ
r
r þ δ1F̄A

Bδ2

�
ðḠB

AÞTL þ 1

2
ḠC

Cδ
B
A

�
− ðδ1 ↔ δ2Þ

�

¼ 2

β

Z
dr
r

Z
S2
dσ

�
δ1F̄A

Aδ2

�
Ḡr

r þ
1

2
ḠC

C

�
þ δ1ðF̄A

BÞTLδ2ðḠB
AÞTL − ðδ1 ↔ δ2Þ

�

¼ 0: ð3:36Þ

Here, in the first step, we have used (3.8), (3.9), and
γ̄ai γ̄

i
b ¼ δab. In the second step, we have separated the radial

and angular components. In the third step, we have added
and subtracted δ1F̄A

Aδ2Ḡ
r
r, then we used (3.28) to conclude

that δ1F̄r
Aδ2Ḡ

A
r þ δ1F̄A

r δ2Ḡr
A ¼ δ1F̄A

r δ2ðḠr
A − γ̄ABḠB

r Þ and
we also used (3.29) to see that only the symmetric part of
ḠB

A contributes in it as δ1F̄A
Bδ2Ḡ

B
A ¼ δ1F̄A

Bδ2ðḠB
AÞsym, where

by ðḠB
AÞsym we mean the symmetric part of the 2 × 2matrix

ḠB
A. In the fourth step, first we used the parity conditions

(3.19) to see that δ1ðF̄r
r − F̄A

AÞδ2Ḡr
r ¼ odd and also the

parity conditions (3.22)–(3.25) to conclude that
δ1F̄A

r δ2ðḠr
A − γ̄ABḠB

r Þ ¼ odd. These two odd terms vanish
because integration of an odd function over the two-sphere
is equal to zero. Then we have also split the symmetric
matrix ðḠB

AÞsym into the trace piece and traceless piece
ðḠB

AÞTL, i.e., ðḠB
AÞsym ¼ ðḠB

AÞTL þ 1
2
ḠC

Cδ
B
A. In the fifth step,
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we have factored F̄A
A out of the terms including it and noted

that only the traceless part of the symmetric matrix F̄A
B

contributes in the term δ1F̄A
Bδ2ðḠB

AÞTL. Finally, by using the
parity conditions (3.19)–(3.21), (3.26), and (3.27), we see
that the two remaining terms are both odd functions and so
their integrations vanish.
Therefore, the parity conditions introduced in the theo-

rem ensure convergence of the symplectic structure and the
requirement (i) is satisfied.

B. Constraints

The newly established parity conditions do ensure the
finite nature of the symplectic form, but they alone do not
guarantee the cancellation of the divergent components in
the boost charges and angular momentum, in contrast to the
parity conditions presented in [9]. Therefore, these con-
ditions must be complemented by additional asymptotic
restrictions in order to achieve the finiteness of the charges.
As explained in Sec. II A 2, the approach employed in

[13] to solve this issue involves setting the leading terms of
the constraints to zero. These supplementary conditions are
relatively moderate. In this study, while working with
Ashtekar-Barbero variables, our objective is to investigate
whether this strategy leads to the elimination of divergence
in surface terms. For this purpose, in the current section,
we derive the leading terms of the constraints in terms of
the Ashtekar-Barbero variables and set them to zero.
Additionally, we analyze the behavior of the constraints
and their variations at infinity.
With the given boundary conditions (3.1) and in spheri-

cal coordinates, the constraints (2.27)–(2.29) exhibit the
following decay behavior:

Gi ¼ Ḡi þOðr−1Þ; ð3:37Þ

Hr ¼
1

r
H̄r þOðr−2Þ; HA ¼ H̄A þOðr−1Þ; ð3:38Þ

H ¼ rH̄ þOð1Þ: ð3:39Þ

The strengthened boundary conditions require the absence
of leading divergences in the constraints, thus imposing the
conditions

Ḡi ¼ H̄r ¼ H̄A ¼ H̄ ¼ 0: ð3:40Þ

As in this section we wish to thoroughly discuss aspects
related to the constraints, we will derive their actions on the
canonical variables and also examine the surface terms that
affect their differentiability, which will be addressed in
Sec. III D when the asymptotic charges are discussed.
Before delving into the details, it is important to recall

from Sec. II B that, to ensure the finiteness of the volume

part of the diffeomorphism and Hamiltonian constraints, a
term proportional to the Gauss constraint needs to be added
to their expressions [see Eqs. (2.36) and (2.37), respec-
tively]. In spherical coordinates, the Lagrange multipliers
Λ̂i and Λ̊i are given by

Λ̂i ¼ Λi þ 1

2

ϵBCffiffiffī
γ

p γ̄AC

�
−2YAγ̄jB þ ðD̄BYAÞγ̄jr

�
; ð3:41Þ

Λ̊i ¼ Λi þ ðbγ̄rj þ ð∂AbÞγ̄Aj Þ: ð3:42Þ

In the subsequent discussion, we examine the behavior of
each constraint individually.

1. Gauss constraint

After some calculation, one can obtain the explicit
expression of the conditions Ḡi ¼ 0 in (3.40) as equivalent
to the following equations:

Ḡr ¼ 2

β

� ffiffiffī
γ

p ðF̄r
r − F̄A

AÞ þ
ffiffiffī
γ

p ðD̄AF̄A
r Þ − ϵABḠC

A γ̄BC

�
¼ 0;

ð3:43Þ

ḠA ¼ 2

β

� ffiffiffī
γ

p ðF̄r
Bγ̄

AB þ F̄A
r Þ þ

ffiffiffī
γ

p
γ̄ABðD̄CF̄C

BÞ

þ ϵABðḠC
r γ̄BC − Ḡr

BÞ
�

¼ 2

β

� ffiffiffī
γ

p
γ̄ABðD̄CF̄C

BÞ þ ϵABðḠC
r γ̄BC − Ḡr

BÞ
�
; ð3:44Þ

where Ḡi ¼ Ḡrγ̄ir þ ḠAγ̄iA, and to obtain the second equality
of (3.44), we make use of the assumption (3.28). It is
important to ensure the convergence of the smeared
constraint. In the standard boundary conditions discussed
in Sec. II B, it is required to assign definite even parity to Λ̄i

in order to ensure the finiteness of (2.27). However, in this
case, we do not need to restrict the parity of Λ̄i, as the
divergent part of (2.27) has already been removed, as
represented by the equation

Gi½Λi� ¼
Z
Σ
drdθdφGiΛi

¼
Z

dr
r

Z
S2
dσ ðΛ̄iḠiÞ þ finite ¼ finite; ð3:45Þ

where we have used the condition Ḡi ¼ 0.
Now, it is necessary to verify the differentiability of the

constraint. The variation of the smeared Gauss constraint
can be represented as
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δGi½Λi� ¼ 2

β

Z
Σ
d3xΛi

�
∂aδEa

i þ ϵijkðδAj
aÞEa

k þ ϵijkA
j
aðδEa

kÞ
�

¼ 2

β

Z
Σ
d3x

�
−∂aΛk þ ϵijkA

j
aΛi

�
ðδEa

kÞ þ
�
ϵijkΛiEa

k

�
ðδAj

aÞ þ 2

β

I
dSaðΛiδEa

i Þ: ð3:46Þ

By expressing the above variation in the form

δGi½Λi� ¼ ΩðδΛ; δÞ þ BΛðδAi
a; δEa

i Þ ¼
2

β

Z
Σ
d3x

�
ðδEa

i ÞaδΛAi
aÞ − ðδAi

aÞðδΛEa
i Þ
�
þ BΛðδAi

a; δEa
i Þ; ð3:47Þ

we can determine the variation of the canonical variables
under the action of the Gauss constraint, as well as the
surface term that needs to be subtracted in order to obtain a
functionally differentiable generator for internal rotations.
Specifically, we find

δΛAi
a ¼ −∂aΛi þ ϵijkΛjAk

a; ð3:48Þ

δΛEa
i ¼ ϵijkΛjEa

k; ð3:49Þ

BΛðδAi
a; δEa

i Þ ¼
2

β

I
dSaðΛiδEa

i Þ: ð3:50Þ

We will address the issue arising from the surface term in
Sec. III D.

2. Diffeomorphism constraint

The conditions H̄r ¼ H̄A ¼ 0 stated in (3.40) can be
expressed explicitly as

H̄r ¼
2s
β

ffiffiffī
γ

p �
ḠA

A þ 2Ḡr
r þ D̄AḠA

r

�
¼ 0; ð3:51Þ

H̄A ¼ −
2s
β

ffiffiffī
γ

p �
D̄AḠr

r − ḠB
r γ̄AB þ D̄AḠB

B − D̄BḠB
A

�
¼ 0:

ð3:52Þ

In order to check the convergence of the smeared constraint
(2.28), we calculate its asymptotic expansion

Ha½Na� ¼
Z
Σ
drdθdφ

�
HrNr þHANA

�

¼
Z

dr
r

Z
S2
dσðWH̄rÞ þ

Z
dr

Z
S2
dσðYAH̄A

þOðr−1ÞÞ þ finite: ð3:53Þ

It is evident that, even with the imposition of the conditions
H̄r ¼ H̄A ¼ 0, the constraint Ha½Na� diverges due to the
logarithmic divergence arising from the second integral in
(3.53). This issue was already encountered in Sec. II B,
where applying the standard parity conditions allowed the
removal of the divergent parts including WH̄r and YAH̄A,
but the logarithmic divergence in the second integral of
(3.53) persisted. As mentioned previously, this problem can
be resolved without relying on any specific parity condition
by working with Ha½Na� defined in (2.36) alongside the
Lagrange multiplier (3.41) instead of Ha½Na�. For a more
detailed explanation, the interested reader can refer to [7,8].
Although Ha½Na� provides us with a finite generator for

the symmetries, it is still necessary to ensure its differ-
entiability. Let us compute the variation ofHa½Na� to obtain
the surface terms mentioned in (2.36), as well as the
variations of the canonical variables under its action

δðHa½Na�Þ ¼ −2s
β

δ

Z
Σ
d3xNa

�
Fi
abE

b
i − Ai

aGi

�
þ sδGi½Λ̂i�

¼ −2s
β

δ

Z
Σ
d3xNa

�
½∂aAj

b − ∂bA
j
a�Eb

i − Aj
a∂bEb

j

�
þ sδGi½Λ̂i�

¼ −2s
β

Z
Σ
d3xNa

�
2ð∂½aδAj

b�ÞEb
i þ 2ð∂½aAj

b�ÞδEb
i − ðδAj

aÞ∂bEb
j − Aj

a∂bδEb
j

�
þ sδGi½Λ̂i�

¼ −2s
β

Z
Σ
d3x

�
ðδEa

i ÞðLN⃗A
i
aÞ − ðδAi

aÞðLN⃗E
a
i Þ
�

−
2s
β

Z
S2
dSa

�
NaEb

i δA
i
b − NbEa

i δA
i
b − NbAi

bδE
a
i

�
þ sδGi½Λ̂i�
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¼ −2s
β

Z
Σ
d3x

�
ðδEa

i ÞðLN⃗A
i
a − ϵijkΛ̂jAk

aÞ − ðδAi
aÞðLN⃗E

a
i − ϵijkΛ̂jEa

kÞ
�

−
2s
β

I
S2
dSa

�
NaEb

i δA
i
b − NbEa

i δA
i
b − NbAi

bδE
a
i − Λ̂iδEa

i

�
: ð3:54Þ

By expressing the above variation in the form

δHa½Na� ¼ ΩðδN⃗ ; δÞ þ BN⃗ðδAi
a; δEa

i Þ

¼ 2

β

Z
Σ
d3x

�
ðδEa

i ÞðδN⃗Ai
aÞ − ðδAi

aÞðδN⃗Ea
i Þ
�

þ BN⃗ðδAi
a; δEa

i Þ; ð3:55Þ

we can determine the variation of the canonical variables
under the action of the diffeomorphism constraint, as well
as the surface term that must be subtracted to obtain a
functionally differentiable generator for spatial diffeomor-
phisms. Specifically,

δN⃗A
i
a ¼ −sðLN⃗A

i
a − ϵijkΛ̂jAk

aÞ; ð3:56Þ

δN⃗E
a
i ¼ −sðLN⃗E

a
i − ϵijkΛ̂jEa

kÞ; ð3:57Þ

BN⃗ðδAi
a; δEa

i Þ ¼ −
2s
β

I
S2
dSa

�
NaEb

i δA
i
b − NbEa

i δA
i
b

− NbAi
bδE

a
i − Λ̂iδEa

i

�
: ð3:58Þ

We will treat the issue coming from the surface term in
Sec. III D.

3. Hamiltonian constraint

The explicit expression of the condition H̄ ¼ 0 in (3.40) is

H̄ ¼ −2
ffiffiffī
γ

p
D̄A

�
ϵABðḠC

r γ̄BC − Ḡr
BÞ
�

¼ 0: ð3:59Þ

To check convergence of the smeared constraint (2.29), we
compute the asymptotic expansion of it, namely,

H½Ñ� ¼
Z
Σ
drdθdφ ÑH

¼
Z

dr
Z
S2
dσðbH̄ þOðr−1ÞÞ þ finite: ð3:60Þ

Despite implementing the conditions H̄ ¼ 0, it is apparent
that the constraint H½Ñ� becomes divergent due to the
logarithmic divergence arising from the Oðr−1Þ term in
Eq. (3.60). It is noteworthy tomention that a similar problem
was encountered in Sec. II B, where the utilization of
standard parity conditions allowed for the elimination of
divergent parts, including bH̄, while the logarithmic diver-
gence in the second integral of Eq. (3.60) persisted. As
previously stated, this issue can be resolved without relying
on any specific parity condition by working with H½N� as
defined in (2.37) and incorporating the Lagrange multiplier
from (3.42). For a more comprehensive explanation, we
recommend referring to [7,8].

The variation of the smeared Hamiltonian constraint is given by

δH½Ñ� ¼
Z
Σ
d3xÑ

�
ϵijkδFi

abE
a
jE

b
k þ 2ϵijkFi

abδE
a
jE

b
k − 4ðβ2 − sÞ½δKj

½aK
k
b�E

a
jE

b
k þ Kj

½aK
k
b�δE

a
jE

b
k �
�
− βδGi½Λ̊i�

¼
Z
Σ
Ñ

�
ϵijk½2∂aδAi

b þ 2ϵilmAm
b δA

l
a�Ea

jE
b
k þ 2ϵijkFi

abδE
a
jE

b
k − 4ðβ2 − sÞKj

½aK
k
b�δE

a
jE

b
k

−4β−1ðβ2 − sÞδAj
½aK

k
b�E

a
jE

b
k þ 4β−1ðβ2 − sÞδΓj

½aK
k
b�E

a
jE

b
k

�
− βδGi½Λ̊i�

¼
Z
Σ
d3xð−2ϵnjk∂aðÑEa

jE
e
kÞδAn

e þ 2ÑϵijkϵinmAm
b δA

n
eEe

jE
b
k þ 2ϵinkÑFi

ebE
b
kðδEe

nÞ − 4ðβ2 − sÞÑKn
½eK

k
b�E

b
kðδEe

nÞ

− 2β−1ðβ2 − sÞÑKk
bE

e
nEb

kðδAn
eÞ þ 2β−1ðβ2 − sÞÑKk

aEa
nEe

kðδAn
eÞ

þ4β−1ðβ2 − sÞÑδΓj
½aK

k
b�E

a
jE

b
kÞ þ

I
dSa2ÑϵijkδAi

bE
a
jE

b
k
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¼
Z
Σ
d3xðδAn

eÞ
�
−2ϵnjk∂aðÑEa

jE
e
kÞ þ 2ÑϵijkϵinmAm

b E
e
jE

b
k − 4β−1ðβ2 − sÞÑKk

aE
½e
n E

a�
k − βϵnjkΛ̊

jEe
k

�

þ
Z
Σ
d3xðδEe

nÞEb
kð2ϵinkÑFi

eb − 4ðβ2 − sÞÑKn
½eK

k
b� − βϵnjkΛ̊

jAk
eÞ

þ 4β−1ðβ2 − sÞ
Z
Σ
d3x ÑδΓj

½aK
k
b�E

a
jE

b
k þ

I
dSað2ÑϵijkδAi

bE
a
jE

b
k − 2Λ̂iδEa

i Þ: ð3:61Þ

In order to obtain δÑA
i
a and the respective surface terms, it is necessary to express the term

R
Σ d

3xÑδΓj
½aK

k
b�E

a
jE

b
k explicitly

in terms of δEa
i . We have performed these calculations as shown as follows:

Z
Σ
d3xÑδΓj

½aK
k
b�E

a
jE

b
k ¼

1

2

Z
Σ
d3xðÑδΓj

aEa
jK

k
bE

b
k − ÑδΓi

aEa
mKm

d E
d
i Þ

¼ 1

4

Z
Σ
d3xðδEe

nÞ
�
ϵnjkÑKi

aEa
i E

b
k

�
El
eEc

jE
l
c;b þ Ej

e
ðdetðEÞÞ;b
detðEÞ

�
þ ϵljk∂aðÑKi

dE
d
i E

b
kE

a
l ÞEn

bE
j
e

�

þ 1

4

Z
Σ
d3x ÑϵijnðδEe

nÞKm
d E

d
i

�
Ea
mE

j
a;e − Ea

mE
j
e;a þ Ec

jE
m
c;e þ δjm

ðdetðEÞÞ;e
detðEÞ

�

−
1

4

Z
Σ
d3x ÑϵijkðδEe

nÞEb
kK

n
dE

d
i

�
Ec
jE

l
eEl

c;b þ Ej
e
ðdetðEÞÞ;b
detðEÞ

�
þ 1

4

Z
Σ
d3x ÑϵinkðδEe

nÞEb
kK

m
d E

d
i E

m
e;b

þ 1

4

Z
Σ
d3x ϵijkðδEe

nÞEj
e½∂bðÑEb

kK
m
d E

d
i E

a
mÞEn

a − ∂aðÑEb
kK

m
d E

d
i E

a
mÞEn

b�

−
1

4

Z
Σ
d3x ϵijkðδEe

nÞ½−∂bðÑEb
kK

m
d E

d
i E

c
jÞEn

cEm
e þ ∂bðÑEb

kK
j
dE

d
i ÞEn

e �

þ 1

4

I
dSaϵijkÑKn

eEe
nEb

kE
a
i δE

j
b þ

1

4

I
dSb ϵijkÑEb

kK
m
d E

d
i ½Ea

mδE
j
a þ Ec

jðδEm
c Þ þ δjmðEl

dδE
d
l Þ�

−
1

4

I
dSa ϵijkÑEb

kK
m
d E

d
i E

a
mδE

j
b; ð3:62Þ

where the variation of the spin connection is calculated using the relation (2.25).
By substituting (3.62) into (3.61) and reorganizing the terms, we can express δH½Ñ� in the desired form,

δH½Ñ� ¼ ΩðδÑ ; δÞ þ BÑðδAi
a; δEa

i Þ ¼
2

β

Z
Σ
d3x

�
ðδEa

i ÞðδÑAi
aÞ − ðδAi

aÞðδÑEa
i Þ
�
þ BÑðδAi

a; δEa
i Þ: ð3:63Þ

From this expression, we can read both δÑA
i
a, δÑE

a
i , as well as the boundary term BÑðδAi

a; δEa
i Þ. The variation of the

Ashtekar-Barbero connection under the action of the Hamiltonian constraint is

δÑA
n
e ¼ βEb

k

�
ϵinkÑFi

eb − 2ðβ2 − sÞÑKn
½eK

k
b�

�
þ 1

2
ðβ2 − sÞ

�
ϵnjkÑKm

f E
f
mEb

k

�
El
eEc

jE
l
c;b þ Ej

e
ðdetðEÞÞ;b
detðEÞ

�

þ ϵljk∂aðÑKi
dE

d
i E

b
kE

a
l ÞEn

bE
j
e þ ÑϵijnKm

d E
d
i

�
Ea
mE

j
a;e − Ea

mE
j
e;a þ Ec

jE
m
c;e þ δjm

ðdetðEÞÞ;e
detðEÞ

�

− ÑϵijkEb
kK

n
dE

d
i

�
Ec
jE

l
eEl

c;b þ Ej
e
ðdetðEÞÞ;b
detðEÞ

�
þ ÑϵinkEb

kK
m
d E

d
i E

m
e;b

þ ϵijkEj
e

�
∂bðÑEb

kK
m
d E

d
i E

a
mÞEn

a − ∂aðÑEb
kK

m
d E

d
i E

a
mÞEn

b

�

−ϵijk
�
−∂bðÑEb

kK
m
d E

d
i E

c
jÞEn

cEm
e þ ∂bðÑEb

kK
j
dE

d
i ÞEn

e

��
− βϵnjkΛ̊

jAk
e: ð3:64Þ

The variation of the electric field is given by
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δÑE
e
n ¼ βϵnjk∂aðÑEa

jE
e
kÞ − βÑϵijkϵinmAm

b E
e
jE

b
k þ 2ðβ2 − sÞÑKk

aE
½e
n E

a�
k − βϵnjkΛ̊

jEe
k: ð3:65Þ

The surface term associated with the Hamiltonian constraint is

BÑðδAi
a; δEa

i Þ ¼
I

dSa 2ÑϵijkδAi
bE

a
jE

b
k þ β−1ðβ2 − sÞ

I
dSaϵijkÑKn

eEe
nEb

kE
a
i δE

j
b

þ β−1ðβ2 − sÞ
I

dSb ϵijkÑEb
kK

m
d E

d
i

�
Ea
mδE

j
a þ Ec

jðδEm
c Þ þ δjmðEl

dδE
d
l Þ
�

− β−1ðβ2 − sÞ
I

dSa ϵijkÑEb
kK

m
d E

d
i E

a
mδE

j
b − 2

I
dSa Λ̊

iδEa
i : ð3:66Þ

We will deal with the surface term issue in Sec. III D.

C. Preservation under hypersurface deformations

In this section, we want to show that the boundary conditions proposed in the theorem are preserved under the
hypersurface deformations. To do that, we use the results we obtained in the Appendix. We begin with Eq. (3.28). We
should make sure that this equation is preserved when one moves from one hypersurface to the next. Using the variations
(A2) and (A3), we have

δðF̄B
r γ̄BD þ F̄r

DÞ ¼ γ̄BD

�
β

�
ϵACffiffiffī
γ

p bD̄AF̄B
C þ ϵCBffiffiffī

γ
p F̄A

CðD̄AbÞ þ
ϵABffiffiffī
γ

p ðD̄Af̃Þ þ b

�
Ḡr

Aγ̄
AB −

ðβ2 − sÞ
β

k̄Br

��
þ LYF̄B

r −
ϵBCffiffiffī
γ

p Λ̄C

�

þ β

�
γ̄AD

ϵABffiffiffī
γ

p ½bD̄BF̄r
r − bðγ̄BCF̄C

r − F̄r
BÞ þ F̄C

BðD̄CbÞ þ ðD̄Bf̃Þ� þ bḠA
r γ̄AD −

ðβ2 − sÞ
β

bk̄rD

�

− ∂DW þ ID þ LYF̄r
D þ ϵABffiffiffī

γ
p γ̄ADΛ̄B

¼ βb
�
ϵACffiffiffī
γ

p ðγ̄BDD̄AF̄B
C þ γ̄AD½D̄CF̄r

r − 2γ̄BCF̄B
r �Þ þ Ḡr

D þ ḠA
r γ̄AD −

ðβ2 − sÞ
β

ðk̄rD þ γ̄BDk̄Br Þ
�

− ∂DW þ ID þ LYðγ̄BDF̄B
r þ F̄r

DÞ: ð3:67Þ

In order to make sure that (3.28) is preserved, we have to fix IA by the equation

ID ¼ ∂DW − βb

�
ϵACffiffiffī
γ

p ðγ̄BDD̄AF̄B
C þ γ̄AD½D̄CF̄r

r − 2γ̄BCF̄B
r �Þ þ Ḡr

D þ ḠA
r γ̄AD −

ðβ2 − sÞ
β

ðk̄rD þ γ̄BDk̄Br Þ
�

¼ ∂DW − βb

�
s
β
ðk̄rD þ γ̄BDk̄Br Þ −

ϵACffiffiffī
γ

p γ̄ADγ̄BCF̄B
r

�
: ð3:68Þ

In fact, inserting (3.68) in (3.67) leads to δðF̄B
r γ̄BD þ F̄r

DÞ ¼ 0.
In order to show that Eq. (3.29) is preserved, we use Eqs. (A4) to get

γ̄B½EδF̄B
D� ¼ β

�
1ffiffiffī
γ

p γ̄B½Eγ̄D�C

�
ϵCAbD̄AF̄B

r − ϵCBF̄A
r ðD̄AbÞ

�
þ bḠC

½Eγ̄D�C

�

− γ̄B½ED̄D�IB þ LYðγ̄B½EF̄B
D�Þ þ

ϵBCffiffiffī
γ

p Λ̄rγ̄B½Eγ̄D�C

¼ γ̄B½Eγ̄D�C

�
β

�
ϵCAbD̄AF̄B

r − ϵCBF̄A
r ðD̄AbÞ þ bḠC

A γ̄
AB

�
− D̄CIB þ ϵBCffiffiffī

γ
p Λ̄r

�
þ LYðγ̄B½EF̄B

D�Þ: ð3:69Þ

One can solve the equation γ̄B½EδF̄B
D� ¼ 0 for Λ̄r in the following way:
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2Λ̄r ¼ ffiffiffī
γ

p
ϵBCðD̄CIBÞ − β

�
2F̄A

r ðD̄AbÞ − bD̄AF̄A
r þ b

ffiffiffī
γ

p
ϵBCḠC

A γ̄
AB

�

¼ ffiffiffī
γ

p �
1

γ̄
ϵDAγ̄DBγ̄AC

�
ðD̄CIBÞ − β

�
2F̄A

r ðD̄AbÞ − bD̄AF̄A
r þ b

ffiffiffī
γ

p �
1

γ̄
ϵDEγ̄DBγ̄EC

�
ḠC

A γ̄
AB

�

¼ 1ffiffiffī
γ

p ϵDAðD̄AIDÞ − β

�
2F̄A

r ðD̄AbÞ − bD̄AF̄A
r þ b

1ffiffiffī
γ

p ϵABγ̄BCḠC
A

�

¼ ϵDAffiffiffī
γ

p D̄A

�
∂DW − βb

�
s
β
ðk̄rD þ γ̄BDk̄Br Þ −

ϵECffiffiffī
γ

p γ̄EDγ̄BCF̄B
r

��
− β

�
2F̄A

r ðD̄AbÞ − bD̄AF̄A
r þ b

ϵABffiffiffī
γ

p γ̄BCḠC
A

�

¼ −s
ϵDAffiffiffī
γ

p D̄Aðb½k̄rD þ γ̄BDk̄Br �Þ − β

�
F̄A
r ðD̄AbÞ − 2bD̄AF̄A

r þ b
ϵABffiffiffī
γ

p γ̄BCḠC
A

�
: ð3:70Þ

Plugging (3.70) into (3.69) ensures that δðγ̄B½EF̄B
D�Þ ¼ 0.

Using Eqs. (A1) and (A4), we compute the variation of F̄r
r − F̄A

A that is supposed to be even,

δðF̄r
r − F̄A

AÞ ¼ β

�
ϵABffiffiffī
γ

p bD̄AF̄r
B −

ϵABffiffiffī
γ

p γ̄ACbF̄C
B − bḠA

A þ ðβ2 − sÞ
β

bk̄AA

�
þ 2W þ D̄AIA þ LYF̄r

r

− β

�
γ̄CBffiffiffī
γ

p
�
ϵCAbD̄AF̄B

r

�
þ bð−ḠA

A − 2Ḡr
rÞ þ

ðβ2 − sÞ
β

bð2k̄rr þ k̄BBÞ
�
þ 2W þ ðD̄AIAÞ þ LYF̄B

B

¼ β

�
2bḠr

r −
ðβ2 − sÞ

β2
2bḠr

r −
ϵABffiffiffī
γ

p γ̄ACbF̄C
B

�
þ LYðF̄r

r − F̄B
BÞ

¼ β

�
2bḠr

r −
ðβ2 − sÞ

β2
2bḠr

r

�
þ LYðF̄r

r − F̄B
BÞ

¼ 2s
β
bḠr

r þ LYðF̄r
r − F̄B

BÞ;

which is even because b ∼ odd and Ḡr
r ∼ odd. This means that the first parity condition in (3.21) is preserved.

Utilizing Eq. (A3) and subsequent simplification, we obtain the following expression for δF̄θ
r :

δF̄θ
r ¼

βffiffiffī
γ

p
�
bD̄θF̄θ

φ − bD̄φF̄θ
θ − F̄θ

φðD̄θbÞ − F̄φ
φðD̄φbÞ þ D̄φf̃ þ b

ffiffiffī
γ

p �
Ḡr

θ −
β2 − s
β

k̄θr

��
þ LYF̄θ

r −
1ffiffiffī
γ

p Λ̄φ

¼ βb

�
Ḡr

θ −
β2 − s
β

k̄θr

�
−

1ffiffiffī
γ

p Λ̄φ þ even

∼ even; ð3:71Þ

where, by employing the parity conditions (3.19), (3.20), and (3.30) in the first step, we can determine the terms with
transparent even parity. Subsequently, we make use of the parity k̄θr ¼ β−1ðḠθ

r − Γ̄θ
rÞ ∼ odd derived from (3.22) and the

equation

Γ̄θ
r ¼

1

2
ffiffiffī
γ

p
�
2γ̄F̄φ

r − D̄φðF̄r
r − F̄A

AÞ
�
: ð3:72Þ

Furthermore, through the cancellation of the odd parts of βbḠr
θ and − 1ffiffī

γ
p Λ̄φ as shown in (3.23) and (3.34), an even quantity

remains. Thus, the parity of F̄θ
r is preserved.

BOUNDARY CONDITIONS FOR ASHTEKAR-BARBERO … PHYS. REV. D 109, 064066 (2024)

064066-17



A similar approach is utilized for δF̄φ
r . By employing Eq. (A3) and simplifying, we obtain

δF̄φ
r ¼ βffiffiffī

γ
p

�
bD̄θF̄

φ
φ − bD̄φF̄

φ
θ þ F̄θ

θðD̄θbÞ þ F̄φ
θ ðD̄φbÞ þ D̄θf̃ þ b

ffiffiffī
γ

p �
Ḡr

φ −
β2 − s
β

k̄φr

��
þ LYF̄

φ
r þ 1ffiffiffī

γ
p Λ̄θ

¼
�
Ḡr

φ −
β2 − s
β

k̄φr

�
þ 1ffiffiffī

γ
p Λ̄θ þ odd

∼ odd: ð3:73Þ

In the first step, we used the parity conditions (3.19), (3.20), and (3.30) to determine the terms with transparent odd parity.
Next, we employed the parity k̄φr ¼ β−1ðḠφ

r − Γ̄φ
r Þ ∼ even resulting from (3.24) and the equation

Γ̄φ
r ¼ 1

2
ffiffiffī
γ

p
�
−2γ̄F̄θ

r − D̄θðF̄r
r − F̄A

AÞ
�
: ð3:74Þ

Additionally, the cancellation of the even parts of βbḠr
θ and − 1ffiffī

γ
p Λ̄φ is evident from (3.23) and (3.34), resulting in an odd

quantity. Consequently, the parity of F̄φ
r is preserved.

Furthermore, considering that the parities of F̄θ
r and F̄φ

r are both preserved, and due to the fact that Eq. (3.28) remains
unchanged under hypersurface deformations, we can conclude that the parities of F̄r

θ and F̄
r
φ are also preserved. This result

can also be confirmed directly from (A3).
By using Eq. (A4), one can derive δF̄θθ and δF̄φφ, which can be simplified as

δF̄θ
θ ¼ β

�
1ffiffiffī
γ

p bðD̄φF̄θ
rÞ − bðḠr

r þ Ḡφ
φÞ þ ðβ2 − sÞ

β2
bðḠr

r þ Ḡφ
φ − Γ̄φ

φÞ
�
þW þ D̄φIφ þ LYF̄θ

θ

∼ odd; ð3:75Þ

δF̄φ
φ ¼ β

�
−

ffiffiffī
γ

p
bðD̄θF̄

φ
r Þ − bðḠr

r þ Ḡθ
θÞ þ

ðβ2 − sÞ
β2

bðḠr
r þ Ḡθ

θ − Γ̄θ
θÞ
�
þW þ D̄θIθ þ LYF̄

φ
φ

∼ odd: ð3:76Þ

It is evident that both δF̄θθ and δF̄φφ are odd, as can be verified by the fact that Iθ ∼ even, Iφ ∼ odd, and

Γ̄φ
φ ¼ 1ffiffiffī

γ
p D̄φF̄θ

r ∼ even; Γ̄θ
θ ¼ −

ffiffiffī
γ

p
D̄θF̄

φ
r ∼ even: ð3:77Þ

Consequently, the parities of F̄θθ and F̄φφ are maintained under deformations of hypersurfaces.
The off-diagonal component of δF̄A

B can be expressed as follows in a simplified manner:

δF̄θ
φ ¼ β

� ffiffiffī
γ

p �
−bD̄θF̄θ

r þ F̄A
r ðD̄AbÞ

�
þ bγ̄Ḡφ

θ −
ðβ2 − sÞ

β
bk̄θφ

�
− D̄φIθ þ LYF̄θ

φ þ
ffiffiffī
γ

p
Λ̄r

¼ βbγ̄Ḡφ
θ þ

ffiffiffī
γ

p
Λ̄r þ even

∼ even: ð3:78Þ

We arrived at this result by utilizing the fact that k̄θφ ∼ odd and the observation that, from (3.32), it can be deduced that

Λ̄r ¼ even − β
b
2
ðF̄r

r − F̄A
AÞ: ð3:79Þ

Therefore, the odd components of βbγ̄Ḡφ
θ and

ffiffiffī
γ

p
Λ̄r cancel each other out. Additionally, given that the parity of F̄θ

φ remains
unchanged and Eq. (3.29) is unaffected by deformations in hypersurfaces, it can be concluded that the parity of F̄φ

θ is
likewise preserved.
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Based on the appearance of Eq. (A5), it is not possible to ensure that it is odd. Therefore, we proceed to apply slight
adjustments in order to transform it into a more appropriate format, facilitating the determination of its parity. The
subsequent calculation outlines the procedure employed for this purpose,

δḠr
r ¼ −β

ϵACffiffiffī
γ

p γ̄BC

�
D̄AðbḠB

r Þ þ bḠB
A

�
þ β2 − s

2
ffiffiffī
γ

p D̄AðbϵABπ̄rBÞ þ LYḠr
r þ Λ̄r

¼ −β
ϵACffiffiffī
γ

p γ̄BCD̄A

�
b

�
−
ϵDB

2
ffiffiffī
γ

p ðγ̄DEF̄E
r − D̄DðF̄r

r − F̄E
EÞÞ þ β

1

2
ffiffiffi
γ

p π̄rB
��

− βb
ϵACffiffiffī
γ

p γ̄BCḠB
A

þ β2 − s
2γ̄

D̄AðbϵABπ̄rBÞ þ LYḠr
r −

s
2γ̄

ϵDAD̄Aðbπ̄rDÞ þ β

�
bðD̄AF̄A

r Þ −
1

2
F̄A
r ð∂AbÞ −

1

2
b
ϵACffiffiffī
γ

p γ̄BCḠB
A

�

¼ β

2
γ̄ADD̄A

�
b½γ̄DEF̄E

r − D̄DðF̄r
r − F̄E

EÞ�
�
þ LYGr

r þ β

�
bðD̄AF̄A

r Þ −
1

2
F̄A
r ð∂AbÞ −

3

2
b
ϵACffiffiffī
γ

p γ̄BCḠB
A

�

¼ 3

2
βbðD̄AF̄A

r Þ −
β

2
ðD̄AbÞ½D̄AðF̄r

r − F̄B
BÞ� −

β

2
bD̄AD̄AðF̄r

r − F̄B
BÞ −

3

2
βb

ϵACffiffiffī
γ

p γ̄BCḠB
A þ LYḠr

r

¼ −
3

2
βbðF̄r

r − F̄B
BÞ −

β

2
ðD̄AbÞ½D̄AðF̄r

r − F̄B
BÞ� −

β

2
bD̄AD̄AðF̄r

r − F̄B
BÞ þ LYḠr

r þ
3

2
βb

Ḡrffiffiffī
γ

p

∼ odd: ð3:80Þ

The odd parity of δḠr
r arises due to the fact that the first four terms in the last line of the above calculation are odd and

Ḡr ¼ 0 is taken into consideration. Consequently, the parity of Ḡr
r remains unchanged.

The remaining parity conditions are addressed in a similar way using the equations provided in the Appendix. The
variations of the remaining variables with definite parity conditions are presented below:

δ

�
Ḡr

r þ Ḡθ
θ

�
¼ β

ffiffiffī
γ

p �
D̄φ½bðḠθ

rÞodd� − D̄θ½bðḠφ
r Þeven�

�
þ β2 − s

2
ffiffiffī
γ

p
�
D̄θðb½k̄rφ þ γ̄k̄φr �Þ − D̄φðb½k̄rθ þ k̄θr �Þ

�

þ β
bffiffiffī
γ

p
�
−γ̄D̄θðḠφ

r Þeven þ D̄θðḠr
φÞeven − D̄φðḠr

θÞodd
�
− β

1ffiffiffī
γ

p
�
ð∂φbÞðḠr

θÞodd
�

þ β2 − s
2

ffiffiffī
γ

p
�
D̄φðbk̄θrÞ þ bγ̄k̄φθ − bk̄θφ − D̄θðb½k̄rφ − γ̄k̄φr �Þ þ D̄φðb½k̄rθ − k̄θr �Þ

�
þ LY

�
Ḡr

r þ Ḡθ
θ

�
− D̄θðΛ̄θÞodd

∼ even; ð3:81Þ

δ

�
Ḡr

r þ Ḡφ
φ

�
¼ β

ffiffiffī
γ

p �
D̄φ½bðḠθ

rÞodd� − D̄θ½bðḠφ
r Þeven�

�
þ β2 − s

2
ffiffiffī
γ

p
�
D̄θðb½k̄rφ þ γ̄k̄φr �Þ − D̄φðb½k̄rθ þ k̄θr �Þ

�

þ β
bffiffiffī
γ

p
�
γ̄D̄φðḠθ

rÞodd − D̄φðḠr
θÞodd þ D̄θðḠr

φÞeven
�
þ β

1ffiffiffī
γ

p
�
ð∂θbÞðḠr

φÞeven
�
:

þ β2 − s
2

ffiffiffī
γ

p
�
−2γ̄D̄θðbk̄φr Þ þ bγ̄k̄φθ − bk̄θφ − D̄θðb½k̄rφ − γ̄k̄φr �Þ þ D̄φðb½k̄rθ − k̄θr �Þ

�

þ LY

�
Ḡr

r þ Ḡφ
φ

�
− D̄φðΛ̄φÞeven

∼ even; ð3:82Þ

δ

�
Ḡθ

r þ
1

2
ffiffiffī
γ

p D̄φðF̄r
r − F̄B

BÞ
�

¼ β
1ffiffiffī
γ

p
�
2bγ̄ðḠφ

r Þeven − bðḠr
φÞeven

�
− ðβ2 − sÞ ffiffiffī

γ
p

b k̄φr

þ LY

�
Ḡθ

r þ
1

2
ffiffiffī
γ

p D̄φðF̄r
r − F̄B

BÞ
�
þ ðΛ̄θÞodd

∼ odd; ð3:83Þ

BOUNDARY CONDITIONS FOR ASHTEKAR-BARBERO … PHYS. REV. D 109, 064066 (2024)

064066-19



δ

�
Ḡr

θ þ
1

2
ffiffiffī
γ

p D̄φðF̄r
r − F̄B

BÞ
�

¼ −β
1ffiffiffī
γ

p
�
bðḠr

φÞeven þ bD̄θðḠθ
φÞodd − D̄φðbðḠθ

θÞevenÞ þ ð∂θbÞγ̄ðḠφ
θ Þodd

�

þ β2 − s
2

ffiffiffī
γ

p
�
2b k̄rφ þ 2D̄θðb k̄θφÞ − 2β−1D̄φðb½ðḠθ

θÞeven þ
ffiffiffī
γ

p ðD̄θF̄
φ
r Þ�Þ

�

−
1

2
D̄θ

�
−s

ϵDAffiffiffī
γ

p D̄Aðb ½k̄rD þ γ̄BDk̄Br �Þ − β½F̄A
r ðD̄AbÞ − bD̄AF̄A

r �
�

þ LY

�
Ḡθ

r þ
1

2
ffiffiffī
γ

p D̄φðF̄r
r − F̄B

BÞ
�
þ ðΛ̄θÞodd

∼ odd; ð3:84Þ

δ

�
Ḡφ

r −
1

2
ffiffiffī
γ

p D̄θðF̄r
r − F̄B

BÞ
�

¼ −β
bffiffiffī
γ

p
�
2ðḠθ

rÞodd − ðḠr
θÞodd

�
þ β2 − sffiffiffī

γ
p bk̄θr þ LY

�
Ḡφ

r −
1

2
ffiffiffī
γ

p D̄θðF̄r
r − F̄B

BÞ
�
þ ðΛ̄φÞeven

∼ even; ð3:85Þ

δ

�
Ḡr

φ −
ffiffiffī
γ

p
2

D̄θðF̄r
r − F̄B

BÞ
�

¼ −β
ffiffiffī
γ

p ð−bðḠr
θÞodd − bD̄φðḠφ

θ Þodd þ D̄θðbðḠφ
φÞevenÞÞ þ ðβ2 − sÞ ffiffiffī

γ
p ðD̄θðβ−1b½ðḠφ

φÞeven�Þ − bk̄rθ − D̄φðbk̄φθ ÞÞ

þ βffiffiffī
γ

p ð∂φbÞðḠθ
φÞodd −

1

2
D̄φ

�
−s

ϵDAffiffiffī
γ

p D̄Aðb ½k̄rD þ γ̄BDk̄Br �Þ − β½F̄A
r ðD̄AbÞ − bD̄AF̄A

r �
�

þ LY

�
Ḡr

φ −
ffiffiffī
γ

p
2

D̄θðF̄r
r − F̄B

BÞ
�
þ ðΛ̄φÞeven

∼ even; ð3:86Þ

δ

�
Ḡθ

φ þ
ffiffiffī
γ

p
2

ðF̄r
r − F̄B

BÞ
�

¼ −βb
ffiffiffī
γ

p
D̄φðḠφ

r Þeven þ ðβ2 − sÞ ffiffiffī
γ

p
D̄φðbk̄φr Þ −

βffiffiffī
γ

p ð∂φbÞðḠr
φÞeven − D̄φðΛ̄θÞodd

þ LY

�
Ḡθ

φ þ
ffiffiffī
γ

p
2

ðF̄r
r − F̄B

BÞ
�

∼ odd; ð3:87Þ

δ

�
Ḡφ

θ −
1

2
ffiffiffī
γ

p ðF̄r
r − F̄B

BÞ
�

¼ β
bffiffiffī
γ

p D̄θðḠθ
rÞodd −

β2 − sffiffiffī
γ

p D̄θðbk̄θrÞ þ
βffiffiffī
γ

p ð∂θbÞðḠr
θÞodd − D̄θðΛ̄φÞeven

þ LY

�
Ḡφ

θ −
1

2
ffiffiffī
γ

p ðF̄r
r − F̄B

BÞ
�

∼ odd; ð3:88Þ

where to obtain the parities we have used the parity conditions in the theorem.

This demonstrates that the newly established boundary
conditions remain intact when subjected to deformations of
hypersurfaces. Hence, the requirement (ii) is satisfied. The
sole matter that still requires examination pertains to the
derived surface terms as described in Sec. III B, conse-
quently giving rise to the asymptotic charges. This is the
task that we will undertake in the subsequent section.

D. Asymptotic charges

Thus far, we have shown that the new boundary
conditions ensure their invariance under deformations
of hypersurfaces as well as the well definedness of the
symplectic structure. We will now investigate the circum-
stances under which the canonical generators of the
asymptotic symmetries remain well defined when the
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parity conditions introduced in the theorem are applied.
In other words, we must first examine whether the
boundary terms are finite and then determine if they
are exact.

Our objective is to prove that the bulk portion of the
generators, defined by the smeared constraints

R
d3xðH½Ñ�þ

Ha½Na� þ G½Λ�Þ, can be supplemented with appropriate
surface terms that render the sum functionally differentiable,

δðN;ΛÞ

�Z
d3xðH½Ñ� þHa½Na� þ G½Λ�Þ

�
¼ 2

β

Z
Σ
d3x

�
ðδEa

i ÞðδðN;ΛÞAi
aÞ − ðδAi

aÞðδðN;ΛÞEa
i Þ
�
þ BðN;ΛÞðδAi

a; δEa
i Þ; ð3:89Þ

where

BðN;ΛÞðδAi
a; δEa

i Þ ≔ BÑðδAi
a; δEa

i Þ þ BN⃗ðδAi
a; δEa

i Þ þ BΛðδAi
a; δEa

i Þ; ð3:90Þ

and the explicit expressions of the boundary terms are given in (3.61), (3.58), and (3.50), respectively.
By employing the asymptotic expansion and gathering all divergent and finite terms, we derive the following expression:

BðN;ΛÞðδAi
a; δEa

i Þ ¼ 2r
I

dσ

�
ðbϵABγ̄BCδḠC

A − b
ffiffiffī
γ

p
δF̄r

r −
ffiffiffī
γ

p ð∂AbÞγ̄ABδF̄r
BÞ þ

s
β

ffiffiffī
γ

p
YAðδḠr

A − 2ϵBCγ̄ACδF̄r
BÞ
�

þ
I

dσ

�
−2ϵAB

	
bF̄r

BδḠ
r
A − bF̄r

rγ̄BCδḠC
A − bF̄C

A γ̄BDδḠ
D
C − bγ̄BCδḠ

ð2ÞC
A − f̃γ̄BCδḠC

A

−
β2 − s
β

b

�
k̄DB γ̄CDδF̄

C
A − k̄rAδF̄

r
B

�

− 2

ffiffiffī
γ

p ðbδF̄ð2Þr
r þ ð∂AbÞγ̄ABδF̄ð2Þr

B Þ

þ 2s
β

ffiffiffī
γ

p �
−WδḠA

A þ IAδḠr
A þ YAδḠð2Þr

A þ YAδðF̄r
aḠa

AÞ − 2YA ϵ
BCffiffiffī
γ

p γ̄ACF̄
ð2Þr
B

�
þ 2

β

ffiffiffī
γ

p
Λ̄aδF̄r

a

�
: ð3:91Þ

As previously discussed in Sec. II A 2, when working
with the ADM variables, vanishing of the leading terms of
the constraints were used to eliminate the divergent
portion of the surface terms. However, in this case, the
divergent part of the surface terms [i.e., the first line in
Eq. (3.91)] cannot be eliminated, neither by employing
Eqs. (3.43), (3.44), (3.51), (3.52), and (3.59) nor by
applying parity conditions. This discrepancy is unex-
pected since the Ashtekar-Barbero variables’ formulation

of general relativity is expected to be equivalent to the
formulation utilizing the ADM variables. In the sub-
sequent section, we will investigate and address this
fundamental difference.
The notable aspect regarding the aforementioned surface

term (3.91) is that, if we disregard asymptotic rotations and
boosts (i.e., by setting b ¼ YA ¼ 0), the divergent term is
eradicated, while the corresponding charge for supertrans-
lations remains integrable and nonzero. In other words,

BðN;ΛÞðδAi
a; δEa

i Þjb¼YA¼0 ¼
I

dσ

�
2ϵABf̃γ̄BCδḠC

A þ 2s
β

ffiffiffī
γ

p �
−WδḠA

A þ ðD̄AWÞδḠr
A

��

¼
I

dσ

�
2ϵABf̃γ̄BCδḠC

A −
2s
β

ffiffiffī
γ

p
W

�
δḠA

A þ D̄AδḠr
A

��

¼ δ

�
2

I
dσ

ffiffiffī
γ

p �
f̃ðF̄r

r − F̄A
AÞ þ

2s
β
WḠr

r

��
; ð3:92Þ

where we have utilized Eqs. (3.43) and (3.51) as well as the parity D̄AF̄A
r ∼ odd in order to arrive at the final result.

Furthermore, we made the assumption that ðΛ̄θÞodd ¼ ðΛ̄φÞeven ¼ 0, which is satisfactory due to the fact that an SOð3Þ
charge typically does not have any significance in the context of general relativity. Hence, based on Eq. (2.2), the charges
associated with supertranslations can be expressed as
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QSupertranslation ¼ −2
I

dσ
ffiffiffī
γ

p �
f̃ðF̄r

r − F̄A
AÞ þ

2s
β
WḠr

r

�
:

ð3:93Þ

These charges do not vanish, in general, as they represent
integrals of nontrivial even functions. This outcome holds
significant importance since, even in the absence of boosts
and rotations in the expansion of lapse and shift, respec-
tively, the charges linked to supertranslations become null
when standard boundary conditions are employed [see
Eq. (2.9) and its accompanying explanation]. Conversely,
the newly proposed parity conditions in Sec. III A yield
nonzero supertranslation charges. Note that when f̃ and W
represent arbitrary angle-dependent even and odd functions,
respectively, the nonzero supertranslation charges emerge.
Additionally, the zero modes of f̃ and W give rise to the
customary charges associated with ordinary translations.

IV. COMPARISON WITH HENNEAUX AND
TROESSAERT’S PAPER

In this section, we begin by transcribing the boundary
conditions imposed on the Ashtekar-Barbero variables into
the ADM variables. This transcription is performed in order
to facilitate a comparison between the results obtained in
this paper and those obtained in [13]. It should be recalled,
as discussed in Sec. II A 2, that the leading terms of
canonical variables are λ̄, h̄rA, k̄AB [refer to (2.16) for
the definition of λ̄ and k̄AB], along with leading terms of
their conjugate momenta p̄, π̄rA, π̄AB [refer to (2.18) for the
definition of p̄]. It is assumed that h̄rA is equal to zero, as
stated in Sec. II A 2.
By utilizing the relation qab ¼ eiaeib ¼ q−1Ei

aEi
b and

performing the asymptotic expansion of both sides, we
can express the variables λ̄, h̄rA, k̄AB in terms of F̄a

b as

λ̄ ¼ 1

2
h̄rr ¼

1

2

�
F̄a
a − 2γirf̄ir

�
¼ 1

2

�
F̄A
A − F̄r

r

�
∼ even;

ð4:1Þ

h̄rA ¼ f̄ri γ
i
A þ γ̄ABf̄Bi γ

i
r ¼ F̄r

A þ γ̄ABF̄B
r ¼ 0; ð4:2Þ

h̄AB ¼ F̄a
aγ̄AB − γiAf̄

i
B − γiBf̄

i
A: ð4:3Þ

Here, we have used Eqs. (2.12), (3.2), (3.3), and (3.12). The
parity of (4.1) is inferred from (3.21) and Eq. (4.2)
from (3.28).
Using (4.3), the components of k̄AB can be determined as

k̄AB ¼
1

2
ðh̄ABþ h̄rrγ̄ABÞ⇒ k̄θθ ¼ f̄φi γ

i
φ ¼ F̄φ

φ∼odd; ð4:4Þ

k̄φφ ¼ γ̄f̄θi γ
i
θ ¼ γ̄F̄θ

θ ∼ odd; ð4:5Þ

k̄θφ ¼−
1

2
ðf̄θi γiφþ γ̄f̄φi γ

i
θÞ¼−

1

2
ðF̄θ

φþ γ̄F̄φ
θ Þ∼ even: ð4:6Þ

The parities of these variables have been determined based
on (3.19) and (3.20).
Using the relation πab ¼ 2j detðEÞj−1Ea

kE
d
kK

j
½dδ

b
c�E

c
j , we

can express the ADM momenta in terms of the Ashtekar-
Barbero variables,

πrr ¼ 2j detðEÞj−1Er
kE

d
kK

j
½dδ

r
c�E

c
j

¼ j detðEÞj−1Er
kðEd

kK
j
dE

r
j − Er

kK
j
cEc

jÞ
¼ j detðEÞj−1Er

kðEA
kK

j
AE

r
j − Er

kK
j
AE

A
j Þ

¼ −
ffiffiffī
γ

p
k̄jAγ

A
j þOðr−1Þ; ð4:7Þ

πrA ¼ 2j detðEÞj−1Er
kE

d
kK

j
½dδ

A
c�E

c
j

¼ j detðEÞj−1Er
kðEd

kK
j
dE

A
j − EA

kK
j
cEc

jÞ
¼ j detðEÞj−1Er

kðEA
kK

j
AE

r
j − Er

kK
j
AE

A
j Þ

¼ j detðEÞj−1Er
kðEr

kK
j
rEA

j þ EB
kK

j
BE

A
j

− EA
kK

j
rEr

j − EA
kK

j
BE

B
j Þ

¼ 1

r

ffiffiffī
γ

p ðk̄jrγAj þ γ̄ABk̄jBγ
r
jÞ þOðr−2Þ; ð4:8Þ

πAB ¼ 2j detðEÞj−1EA
kE

d
kK

j
½dδ

B
c�E

c
j

¼ j detðEÞj−1EA
k ðEd

kK
j
dE

B
j − EB

kK
j
cEc

jÞ
¼ j detðEÞj−1EA

k ðEr
kK

j
rEB

j þ EC
k K

j
CE

B
j

− EB
kK

j
rEr

j − EB
kK

j
CE

C
j Þ

¼ 1

r2
ffiffiffī
γ

p ðγ̄ACk̄jCγBj − γ̄ABk̄jrγrj − γ̄ABk̄jCγ
C
j Þ þOðr−3Þ:

ð4:9Þ

From the above equations, we can easily read the leading
order terms,

π̄rr ¼ −
ffiffiffī
γ

p
k̄AA; ð4:10Þ

π̄rA ¼ ffiffiffī
γ

p ðk̄Ar þ γ̄ABk̄rBÞ; ð4:11Þ

π̄AB ¼ ffiffiffī
γ

p ðγ̄ACk̄BC − γ̄ABk̄rr − γ̄ABk̄CCÞ: ð4:12Þ

Now we need to express p̄, π̄rA, π̄AB in terms of F̄a
b and Ḡ

a
b.

Let us start with p̄, as defined in (2.18),
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p̄ ¼ 2ðπ̄rr − π̄AAÞ ¼ 2

�
−

ffiffiffī
γ

p
k̄AA −

ffiffiffī
γ

p ðk̄CC − 2k̄rr − 2k̄CCÞ
�

¼ 4
ffiffiffī
γ

p
k̄rr ¼ 4

ffiffiffī
γ

p
β−1ðḠr

r − Γ̄r
rÞ

¼ 4
ffiffiffī
γ

p
β−1

�
Ḡr

r þ
1

2

1ffiffiffi
γ

p ϵBAγ̄C½BF̄C
A�

�

¼ 4
ffiffiffī
γ

p
β−1Ḡr

r ∼ odd; ð4:13Þ

where in the last step we have used (3.29). We have found that p̄ has an odd parity based on the parity condition (3.20).
Next, we examine π̄rθ using Eq. (4.11) by substituting in it the explicit expressions of Γ̄a

b from (3.16) and (3.17). Then, the
expression for π̄rθ is

π̄rθ ¼ ffiffiffī
γ

p ðk̄θr þ γ̄θBk̄rBÞ ¼
ffiffiffī
γ

p ðk̄θr þ k̄rθÞ

¼ ffiffiffī
γ

p
β−1

�
Ḡθ

r þ Ḡr
θ − ðΓ̄θ

r þ Γ̄r
θÞ
�

¼ ffiffiffī
γ

p
β−1

�
Ḡθ

r þ Ḡr
θ −

�
1

2
ffiffiffī
γ

p
�
2ϵθφγ̄φφF̄

φ
r − ϵθφD̄φðF̄r

r − F̄B
BÞ
�

þ 1

2
ffiffiffī
γ

p
�
2ϵθφγ̄θθγ̄φφF̄

φ
r − ϵθφγ̄θθD̄φðF̄r

r þ F̄B
BÞ þ 2ϵθφγ̄θθD̄φF̄θ

θ þ 2ϵφθγ̄φφD̄θF̄
φ
θ

���

¼ ffiffiffī
γ

p
β−1

�
Ḡθ

r þ Ḡr
θ þ

1ffiffiffī
γ

p D̄φðF̄r
r − F̄B

BÞ
�
þ odd

∼ odd: ð4:14Þ

By using the parities proposed in the theorem, particularly (3.22) and (3.23), we have deduced that π̄rθ has an odd parity.
Similarly, we can express π̄rφ in terms of F̄a

b and Ḡa
b using Eqs. (4.11), (3.16)–(3.18),

π̄rφ ¼ ffiffiffī
γ

p ðk̄φr þ γ̄φBk̄rBÞ ¼
ffiffiffī
γ

p ðk̄φr þ γ̄−1k̄rφÞ
¼ ffiffiffī

γ
p

β−1ðḠφ
r þ γ̄−1Ḡr

φ − ðΓ̄φ
r þ γ̄−1Γ̄r

φÞÞ

¼ ffiffiffī
γ

p
β−1

�
Ḡφ

r þ γ̄−1Ḡr
φ −

�
1

2
ffiffiffī
γ

p ½2ϵφθγ̄θθF̄θ
r − ϵφθD̄θðF̄r

r − F̄B
BÞ�

þ 1

2γ̄
ffiffiffī
γ

p ½2ϵφθγ̄φφγ̄θθF̄θ
r − ϵφθγ̄φφD̄θðF̄r

r þ F̄B
BÞ þ 2ϵθφγ̄θθD̄φF̄θ

φ þ 2ϵφθγ̄φφD̄θF̄
φ
φ�
��

¼ ffiffiffī
γ

p
β−1

�
Ḡφ

r þ γ̄−1Ḡr
φ −

1ffiffiffī
γ

p D̄θðF̄r
r − F̄B

BÞ
�
þ even

∼ even: ð4:15Þ

By utilizing the parities proposed in the theorem, specifically (3.24) and (3.25), we conclude that π̄rφ has an even parity.
To express π̄AB in terms of F̄a

b and Ḡa
b, we use Eqs. (4.12), (3.18), (3.16), and (3.17),

π̄θθ ¼
ffiffiffī
γ

p ð−k̄rr − k̄φφÞ ¼ −
ffiffiffī
γ

p
β−1ðḠr

r þ Ḡφ
φ − Γ̄φ

φÞ

¼ −
ffiffiffī
γ

p
β−1

�
Ḡr

r þ Ḡφ
φ þ 1ffiffiffī

γ
p ϵφθγ̄θθD̄φF̄θ

r

�

¼ −
ffiffiffī
γ

p
β−1

�
Ḡr

r þ Ḡφ
φ −

1ffiffiffī
γ

p D̄φF̄θ
r

�
∼ even; ð4:16Þ
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π̄φφ ¼ ffiffiffī
γ

p ð−k̄rr − k̄θθÞ ¼ −
ffiffiffī
γ

p
β−1ðḠr

r þ Ḡθ
θ − Γ̄θ

θÞ

¼ −
ffiffiffī
γ

p
β−1

�
Ḡr

r þ Ḡθ
θ þ

1ffiffiffī
γ

p ϵθφγ̄φφD̄θF̄
φ
r

�

¼ −
ffiffiffī
γ

p
β−1

�
Ḡr

r þ Ḡθ
θ −

1ffiffiffī
γ

p D̄θF̄
φ
r

�
∼ even; ð4:17Þ

where the assumption Γ̄r
r ¼ 0 [obtained from the relation (3.29)] is used in this derivation. The parity conditions (3.19)–

(3.21) are also applied to deduce that π̄θθ ∼ π̄φφ ∼ even.
Furthermore, the expressions for π̄θφ and π̄φθ are found as

π̄θφ ¼ ffiffiffī
γ

p
k̄θφ ¼ ffiffiffī

γ
p

β−1ðḠθ
φ − Γ̄θ

φÞ

¼ ffiffiffī
γ

p
β−1

�
Ḡθ

φ −
1

2
ffiffiffī
γ

p
�
ϵθφγ̄φφðF̄C

C − F̄r
rÞ − 2ϵθφγ̄φφD̄φF̄

φ
r Þ
��

¼ ffiffiffī
γ

p
β−1

�
Ḡθ

φ −
ffiffiffī
γ

p
2

�
F̄C
C − F̄r

r − 2D̄φF̄
φ
r

��
∼ odd; ð4:18Þ

π̄φθ ¼ ffiffiffī
γ

p
k̄φθ ¼ ffiffiffī

γ
p

β−1ðḠφ
θ − Γ̄φ

θ Þ

¼ ffiffiffī
γ

p
β−1

�
Ḡφ

θ −
1

2
ffiffiffī
γ

p
�
ϵφθγ̄θθðF̄C

C − F̄r
rÞ − 2ϵφθγ̄θθD̄θF̄θ

r

��

¼ ffiffiffī
γ

p
β−1

�
Ḡφ

θ þ
1

2
ffiffiffī
γ

p
�
F̄C
C − F̄r

r − 2D̄θF̄θ
r

��
∼ odd: ð4:19Þ

The parity conditions (3.19), (3.20), (3.26), and (3.27) are utilized to conclude that π̄θφ ∼ π̄φθ ∼ odd.

The cumulative summation of the aforementioned cal-
culations concludes that, if the parity conditions stated in
the theorem are translated to the ADM variables, the
resultant parity conditions (2.20) as introduced in [13]
are exactly obtained. The question that arises here is why,
despite the application of the same parity condition to the
theory, the divergence of surface terms is eliminated using
the leading order terms of the constraints when working
with ADM variables, but not when working with Ashtekar-
Barbero variables. By examining the process of obtaining
Ashtekar-Barbero variables from ADM variables, it
becomes evident that, in order to establish Ai

a and Ea
i as

conjugate variables, particularly to demonstrate that the
Poisson bracket between two Ai

a is zero, it is necessary to
prove

δΓj
aðxÞ

δEb
kðyÞ

−
δΓk

bðyÞ
δEa

j ðxÞ
¼ 0: ð4:20Þ

This equation represents the integrability condition for Γj
a

to possess a generating function, denoted by F. While
readily found in a manifold without a boundary, construct-
ing F within the context of asymptotically flat spacetimes
with standard boundary conditions presents no particular
challenge. It has been established in [16] that F can be
expressed as

F ≔
Z
Σ
d3xEa

i ðxÞΓi
aðxÞ þ

1

2

Z
∂Σ
sgnðdetðeÞÞej ∧ ðej − δjÞ:

ð4:21Þ

Evidently, a vanishing boundary term renders F well
defined when ∂Σ is empty. Similarly, under standard
boundary conditions, the well definedness of F is straight-
forward to demonstrate. A detailed discussion on this topic
is provided in [16].
Nonetheless, when one wishes to relax the boundary

conditions, (4.21) is not necessarily well defined, especially
with the boundary conditions proposed in Sec. III. In other
words, matters become more complex and the well defined-
ness of F should be regarded as an additional requirement,
in addition to the three requirements necessary to propose
appropriate boundary conditions. In fact, if a well-defined
F cannot be defined under specific boundary conditions, it
indicates that the Ashtekar-Barbero variables are not
canonically transformed from the ADM variables under
those boundary conditions. This is manifested just in
surface terms and, consequently, all analyses pertaining
to the bulk, such as the well definedness of the symplectic
structure and the preservation of boundary conditions under
hypersurface deformations, remain the same in both sets of
variables.
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The intriguing aspect of this situation is that, despite the
significant disparity, the supertranslation charges derived in
this paper using Ashtekar-Barbero variables, denoted as
Eq. (3.93), are equivalent to those presented in [13],
denoted as Eq. (2.22). To demonstrate this, we will begin
with Eq. (3.93) and attempt to express it in terms of ADM
variables. To elaborate, we have

QSupertranslation ¼ −2
I

dσ
ffiffiffī
γ

p �
f̃ðF̄r

r − F̄A
AÞ þ

2s
β
WḠr

r

�

¼ −2
I

dσ
ffiffiffī
γ

p �
f̃

�
−2λ̄

�
þ 2s

β
W

�
β

4
ffiffiffī
γ

p p̄

��

¼
I

dσ

�
4f̃

ffiffiffī
γ

p
λ̄ − sWp̄

�
: ð4:22Þ

In arriving at Eq. (4.22), we have utilized Eqs. (4.1) and
(4.13), which allow us to express F̄r

r − F̄A
A as −2λ̄ and Ḡr

r as
β

4
ffiffī
γ

p p̄, respectively. Note that, in the case of considering

Lorentzian signature (s ¼ −1), the charge presented in
Eq. (4.22) is equivalent to that of Eq. (2.22), since f̃ and T
are both arbitrary even functions.

V. CONCLUSION AND OUTLOOK

In this paper, we have put forward novel boundary
conditions for the Ashtekar-Barbero variables at spatial
infinity within the framework of asymptotically flat space-
times. These new boundary conditions are described by
Eq. (3.1), with the parity conditions stated in the theorem of
Sec. (III A). We have examined these boundary conditions
without resorting to the ADM expressions.
These boundary conditions satisfy the following con-

sistency requirements: the symplectic structure is well
defined and the boundary conditions are preserved under
hypersurface deformations. It turns out that, by using the
new parity conditions, the generators of the asymptotic
symmetries are finite only for spacetime translations, but
not for boosts and rotations. This issue also arises when
working with ADM variables; however, in [13], the authors
provide a strategy to resolve it, which involves imposing
faster falloff conditions for the constraints, namely, the
additional conditions (2.17). In this paper, we have
imposed conditions (3.43), (3.44), (3.51), (3.52), and
(3.59), with the hope that a similar strategy will eliminate
the divergence in boundary terms obtained in terms of
Ashtekar-Barbero variables. Contrary to expectations, this
strategy did not render the surface terms finite, and in fact,
the charges corresponding to boosts and rotations remain
divergent. In Sec. IV, we have analyzed the reason for this
discrepancy and conclude that, with the new boundary
conditions, ADM variables and Ashtekar-Barbero variables
cannot be considered canonically equivalent, and this
distinction manifests itself in the boundary terms.

Nonetheless, the significant and noteworthy accomplish-
ment of the present work is that, if we disregard boosts and
rotations, the charge corresponding to translations is not
only finite and integrable, but also incorporates super-
translations. In contrast to [7,8], where the charge corre-
sponding to supertranslations vanishes and thus they are
pure gauge, in this work, the supertranslation generators are
not identically zero and therefore act nontrivially in the
physical phase space. Thus, we have successfully achieved
the objective outlined in the Introduction, which is to
associate standard canonical generators at spatial infinity
with supertranslations in terms of Ashtekar-Barbero vari-
ables initially observed at null infinity. The parity con-
ditions in the theorem play a crucial role in the new
boundary conditions, distinguishing themselves from the
previously proposed conditions in [7,8]. It has been duly
noted that the odd parity of W and the even parity of f̃
define the characteristics of the supertranslations. These
parities, which are incompatible with the parity conditions
laid out in [7,8], do not exist in that approach except when it
comes to Poincaré translations.
This work has potential for extension and further

exploration in multiple directions:
(1) Our initial motivation for investigating new boun-

dary conditions in the Ashtekar-Barbero framework
is to incorporate techniques from LQG in order to
establish a quantum theory. In future research, our
objective is to construct quantum operators corre-
sponding to the charges of supertranslations using
holonomy and flux operators, and then investigate
their quantum behaviors.

(2) As the charges associated with boosts and rotations
are not finite under the proposed boundary con-
ditions, our future work will focus on identifying
alternative boundary conditions that overcome this
limitation. We have observed that finiteness of the
symplectic structure can be achieved through parity
conditions, and therefore we must constrain our-
selves to those parity conditions that yield a finite
symplectic structure. One possible approach to relax
these parity conditions is to adopt the framework of
holographic renormalization to remove the diver-
gences appearing in the symplectic structure, as
proposed in [18].

(3) Once we have successfully accomplished the pre-
vious goal, our next aim is to determine boundary
conditions that not only yield supertranslations at
spatial infinity, but also incorporate superrota-
tions [19].
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APPENDIX: VARIATIONS OF THE LEADING
ORDER TERMS OF THE CANONICAL

VARIABLES

In this appendix, we proceed with the calculation of the
variation of F̄a

b and Ḡ
a
b under hypersurface deformations, as

used in Sec. III C. We begin by examining the variations of
the variables associated with the densitized triad Ea

i . It is
important to note that the variation of Ea

i under hypersur-
face deformations can be obtained through a combination

of Eqs. (3.49), (3.57), and (3.65). By utilizing the asymp-
totic expansion of δEa

i , we can readily determine the
variation of f̄ai . Specifically, we have that δE

r
i ¼ r

ffiffiffī
γ

p
δf̄ri þ

Oð1Þ and δEA
i ¼ ffiffiffī

γ
p

δf̄Ai þOðr−1Þ. It is worth mentioning
that we assume that γ̄ai is not subject to variations under
hypersurface deformations, i.e., δγ̄ai ¼ 0. Once we have
obtained the expression for δf̄ai , we can determine the
variation of δF̄a

b as δF̄a
b ¼ δðf̄ai γ̄ibÞ ¼ γ̄ibðδf̄ai Þ. This result

follows again from the fact that δγ̄ia ¼ 0.
Using the above strategy and after a rather lengthy

calculation, we have obtained all the radial and angular
components of δF̄a

b as follows:

δF̄r
r ¼ β

�
ϵABffiffiffī
γ

p D̄AðbF̄r
BÞ −

ϵABffiffiffī
γ

p γ̄ACbF̄C
B − bḠA

A þ ðβ2 − sÞ
β

bk̄AA −
ϵABffiffiffī
γ

p ð∂AbÞF̄r
B

�
þ 2W þ D̄AIA þ LYF̄r

r

¼ β

�
ϵABffiffiffī
γ

p bD̄AF̄r
B −

ϵABffiffiffī
γ

p γ̄ACbF̄C
B − bḠA

A þ ðβ2 − sÞ
β

bk̄AA

�
þ 2W þ D̄AIA þ LYF̄r

r; ðA1Þ

δF̄r
D ¼ β

�
γ̄BD

ϵBAffiffiffī
γ

p
�
D̄AðbF̄r

rÞ − bγ̄ACF̄C
r þ F̄C

AðD̄CbÞ þ ðD̄Af̃Þ
�
þ bḠA

r γ̄AD −
ðβ2 − sÞ

β
bk̄rD

�

− β
ϵABffiffiffī
γ

p γ̄AD

�
−bF̄r

B þ ð∂BbÞF̄r
r

�
− ∂DW þ ID þ LYF̄r

D þ ϵABffiffiffī
γ

p γ̄ADΛ̄Cγ̄BC

¼ β

�
γ̄AD

ϵABffiffiffī
γ

p
�
bD̄BF̄r

r − bðγ̄BCF̄C
r − F̄r

BÞ þ F̄C
BðD̄CbÞ þ ðD̄Bf̃Þ

�
þ bḠA

r γ̄AD −
ðβ2 − sÞ

β
bk̄rD

�

− ∂DW þ ID þ LYF̄r
D þ ϵABffiffiffī

γ
p γ̄ADΛ̄B; ðA2Þ

δF̄B
r ¼ β

�
ϵACffiffiffī
γ

p D̄AðbF̄B
CÞ þ

ϵCBffiffiffī
γ

p F̄A
CðD̄AbÞ þ

ϵABffiffiffī
γ

p ðD̄Af̃Þ þ b

�
Ḡr

Aγ̄
AB −

ðβ2 − sÞ
β

k̄Br

�
−
ϵACffiffiffī
γ

p ð∂AbÞF̄B
C

�

þ LYF̄B
r −

ϵBAffiffiffī
γ

p γ̄ACΛ̄C

¼ β

�
ϵACffiffiffī
γ

p bD̄AF̄B
C þ ϵCBffiffiffī

γ
p F̄A

CðD̄AbÞ þ
ϵABffiffiffī
γ

p ðD̄Af̃Þ þ b

�
Ḡr

Aγ̄
AB −

ðβ2 − sÞ
β

k̄Br

��
þ LYF̄B

r −
ϵBCffiffiffī
γ

p Λ̄C; ðA3Þ

δF̄B
D ¼ β

�
γ̄CDffiffiffī
γ

p
�
ϵCAD̄AðbF̄B

r Þ − ϵCBF̄A
r ðD̄AbÞ − ϵCAbF̄B

A

�

þ ffiffiffī
γ

p
bðḠC

A γ̄
ABγ̄CD − δBDḠ

b
bÞ þ

ðβ2 − sÞ
β

ffiffiffī
γ

p
bðk̄bbδBD − k̄BDÞ

�

− β
ϵCAffiffiffī
γ

p γ̄CD

�
−bF̄B

A þ ð∂AbÞF̄B
r

�
þWδBD − D̄DIB þ δBDðD̄AIAÞ þ LYF̄B

D þ ϵABffiffiffī
γ

p Λ̄rγ̄BD

¼ β

�
γ̄CDffiffiffī
γ

p
�
ϵCAbD̄AF̄B

r − ϵCBF̄A
r ðD̄AbÞ

�
þ bðḠC

A γ̄
ABγ̄CD − δBDḠ

b
bÞ þ

ðβ2 − sÞ
β

bðk̄bbδBD − k̄BDÞ
�

þWδBD − D̄DIB þ δBDðD̄AIAÞ þ LYF̄B
D þ ϵBCffiffiffī

γ
p Λ̄rγ̄CD: ðA4Þ

SEPIDEH BAKHODA PHYS. REV. D 109, 064066 (2024)

064066-26



A similar approach should be employed for Ai
a. Note that

the variation of Ai
a under hypersurface deformations can be

determined by combining (3.48), (3.56), and (3.64). By
using the asymptotic expansion of δAi

a, the variation of ḡai
can be easily deduced as follows: δAi

r ¼ 1
r2 δḡ

i
r þOðr−3Þ

and δAi
A ¼ 1

r δḡ
i
A þOðr−2Þ. Once δḡia is obtained, we can

find δḠa
b using the equation δḠa

b ¼ δðḡibγ̄ai Þ ¼ γ̄ai ðδḡibÞ,
since it is known that δγ̄ai ¼ 0.
Using the above strategy and after a tedious calculation,

we have obtained all the radial and angular components of
δḠa

b as follows:

δḠr
r ¼ −β

bffiffiffī
γ

p ϵACγ̄BC

�
D̄AḠB

r þ ḠB
A

�
þ β2 − s

2
ffiffiffī
γ

p D̄Aðb ϵAB½γ̄CBk̄Cr þ k̄rB�Þ − β
ϵACffiffiffī
γ

p ð∂AbÞγ̄BCḠB
r þ LYḠr

r þ Λ̄r; ðA5Þ

δḠB
r ¼ −β

bffiffiffī
γ

p ϵAB
�
−D̄AḠr

r þ γ̄ACḠC
r − Ḡr

A

�

þ β2 − s
2

ffiffiffī
γ

p
�
−2D̄AðbϵABk̄rrÞ − D̄AðbϵABk̄CCÞ − 2bϵBCγ̄ACk̄Ar þ D̄AðbϵACk̄BC − bϵBCk̄ACÞ

�

− β
ϵBAffiffiffī
γ

p
�
ð∂AbÞḠr

r − bγ̄ACḠC
r

�
þ LYḠB

r þ Λ̄B; ðA6Þ

δḠr
B ¼ −β

bffiffiffī
γ

p ϵDA

�
γ̄BDḠr

A þ γ̄DCD̄BḠC
A − γ̄CDD̄AḠC

B

�

þ β2 − s
2

ffiffiffī
γ

p
�
γ̄BCD̄AðbϵACk̄EEÞ − 2bϵCAγ̄ABk̄rC − γ̄BDD̄AðbϵCDk̄AC þ bϵCAk̄DCÞ

�

− β
ϵADffiffiffī
γ

p ð∂AbÞγ̄CDḠB
C þ LYḠr

B − D̄BΛ̄r þ γ̄ABΛ̄A; ðA7Þ

δḠD
B ¼ β

bffiffiffī
γ

p
�
ϵCDγ̄BCḠr

r þ ϵCDγ̄ACD̄BḠA
r þ ϵDAD̄BḠr

A − ϵDAγ̄BCḠC
A − ϵDAD̄AḠr

B

�

þ β2 − s
2

ffiffiffī
γ

p
�
−2ϵADbγ̄ABk̄rr − ϵADbγ̄ABk̄CC þ ϵADbγ̄BCk̄CA þ γ̄BCD̄AðϵCAbk̄Dr Þ − ϵCAbγ̄ABk̄DC

−γ̄BCD̄AðϵCDbk̄Ar Þ þ ϵAEbγ̄ECk̄CAδ
D
B − γ̄BCD̄AðϵADbk̄Cr Þ þ δDBD̄AðϵEAb½k̄rE − γ̄ECk̄Cr �Þ

�

− β
ϵDAffiffiffī
γ

p
�
ð∂AbÞḠr

B − bḠC
B γ̄AC

�
þ LYḠD

B − δDB Λ̄r − D̄BΛ̄D: ðA8Þ
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