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Astrophysical black holes (BHs) are universally expected to be described by the Kerr metric, a
stationary, vacuum solution of general relativity (GR). Indeed, by imaging M87* and Sgr A* and
measuring the size of their shadows, we have substantiated this hypothesis through successful null tests.
Here we discuss the potential of upcoming improved imaging observations in constraining deviations of the
spacetime geometry from that of a Schwarzschild BH (the nonspinning, vacuum GR solution), with a focus
on the photon ring. The photon ring comprises a series of time-delayed, self-similarly nested higher-order
images of the accretion flow, and is located close to the boundary of the shadow. In spherical spacetimes,
these images are indexed by the number of half-loops executed around the BH by the photons that arrive in
them. The delay time offers an independent shadow size estimate, enabling tests of shadow achromaticity,
as predicted by GR. The image self-similarity relies on the lensing Lyapunov exponent, which is linked to
photon orbit instability near the unstable circular orbit. Notably, this critical exponent, specific to the
spacetime, is sensitive to the rr–component of the metric, and also offers insights into curvature, beyond
the capabilities of currently available shadow size measurements. The Lyapunov time, a characteristic
instability timescale, provides yet another probe of metric and curvature. The ratio of the Lyapunov and the
delay times also yields the lensing Lyapunov exponent, providing alternative measurement pathways.
Remarkably, the width of the first-order image can also serve as a discriminator of the spacetime. Each of
these observables, potentially accessible in the near future, offers spacetime constraints that are orthogonal
to those of the shadow size, enabling precision tests of GR.
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The Event Horizon Telescope (EHT) Collaboration has
recently imaged the supermassive compact objectsM87* [1]
and Sgr A* [2], adding to the mounting evidence indicating
the ubiquitous existence of Kerr black holes (BHs), which
are the spinning, vacuum BH solutions of general relativity
(GR), at the centers of galaxies. Images of both EHT sources
reveal a telltale dark region in the center that is surrounded
by a bright emission ring, features that are typical in
the synthetic images constructed from the simulations of
accretion of hot, magnetized plasma onto Kerr BHs, which
are used to model the astrophysical conditions of such
objects [3–6]. Optical transparency at 1.3 mm, the EHT
observing wavelength for these sources, implies that the
observed central intensity depression is best explained by
the presence of a photon shell in the spacetime [7], assured to
exist in a typical BH spacetime [8,9], and which casts a
shadow on the observer’s screen [10].
Since the photon shell and the shadow boundary curve

are determined purely by the spacetime geometry (also the

observer inclination angle for the latter), we realize
immediately that approximate measurements of the shadow
boundary curve, e.g., of its size, can be used to set up
experimental tests of the spacetime geometry [11]. Indeed,
the size of the observed bright emission ring in the image
can be used to infer the shadow size of M87* [12–14] and
of Sgr A* [7],1 and the EHT finds that these are consistent
with those of Kerr BHs of their respective masses [7,12].
Together with gravitational-wave measurements involving
stellar-mass BHs [15–17], the EHT observations demon-
strate the success of GR in describing the strong-field
gravity near astrophysical BHs.

1The current procedures to infer the shadow sizes of M87* and
Sgr A* differ from each other and their shadow sizes cannot,
strictly, be directly compared. For Sgr A*, see the discussion on
α1-calibration in Sec. 3 of Ref. [7] for further details.
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Furthermore, the shadow size can be used to cleanly test
the “no-hair conjecture,”which has been used to posit that all
astrophysical BHs are Kerr BHs [7,11,13,18,19]. For this
reason, the Kerr BH metric is used almost exclusively when
modeling astrophysical BHs. However, its interior geometry
theoretically possesses several pathological features such as
a Cauchy horizon, a spacetime singularity, as well as regions
that permit closed timelike curves. Expanding our scope to
consider phenomenological “regular” alternative BH space-
times to the Kerr metric and looking for potential observable
signatures in BH images can guide us toward resolutions of
such pathologies [7,14,20–22].
Moreover, horizonless compact objects can also possess

photon shells, and can naturally also cast shadows [9,23–33].
Therefore, observations of the shadow cast by an astrophysi-
cal compact object allow us to potentially distinguish
between—and possibly rule out—different types of BHs,
naked singularities, wormholes, gravastars, and other exotic
objects that may be a priori allowed models [7,14,18,22].
These could also enable experimental tests of the weak
cosmic censorship conjecture [34].
Finally, since these BH and non-BH models arise as

solutions in different theories of classical gravity, theories
with new fields, or theories with alternative field couplings
to gravity, such constraints can be used to distinguish
between underlying theories, as emphasized in previous
work [7,14,18,35–37].
Present operating angular resolution prevents access to

finer details such as the ellipticity of the shadow boundary,
which encodes additional information about the spacetime,
such as the BH spin. Future experiments at higher angular
resolutions and/or flux-sensitivities may be able to overcome
some limitations, allowing for unprecedented experimental
tests of the Kerr metric [38] as well as sharper constraints on
alternative spacetimes [39–43]. Indeed, methods have been
proposed to detect the “inner shadow” [44], the lensing
Lyapunov exponent [45,46], the delay time [46–48], and the
Lyapunov time [49–51]. Further work analyzing the fea-
sibility of obtaining such measurements can be found in
Refs. [52–54].
In this demonstrative study, restricting to general spheri-

cally symmetric and static spacetimes, our first goal is to
highlight the relationships between the various aforemen-
tioned critical parameters (cf., Ref. [54]). These, we hope,
will provide new avenues to independently determine some
parameters. For example, the ratio of the characteristic
delay time and the shadow size is always equal to π. Thus, a
measurement of the delay time from light curves of flaring
events, obtained at relatively lower angular resolution
(possible also at different frequencies), could provide
qualitatively similar spacetime information as the current
high-resolution EHT measurements. Furthermore, while
some parameters may be more challenging to measure
(such as the lensing Lyapunov exponent), these relation-
ships can assure us that equivalent information about the

spacetime geometry is encoded in others that may be easier
to quantify. We find, for example, that a simple ratio of
the delay and the Lyapunov time equals the lensing
Lyapunov exponent. Thus, a single additional measurement
of the Lyapunov time, from future observations, combined
with a measurement of the shadow size, which is already
possible [7,13,14], can lead to an inference of the lensing
Lyapunov exponent. We note that all of these critical
parameters (in addition to δ0, which is nontrivial in
spinning spacetimes) have been obtained also for the
spinning Kerr BH spacetime [47]. The relations between
the Kerr critical parameters were examined in Ref. [55],
with which our findings in general nonspinning spacetimes
are consistent. Combined, both these findings indicate that
such relations may remain true for a general class of
spinning non-Kerr spacetimes (cf. Ref. [56]).
Our second goal here is to understand the implications of

measurements of the critical exponents for measurements
of the underlying spacetime metric. In particular, we
examine here constraints on spherically symmetric devia-
tions from the Schwarzschild BH metric, which is the
nonspinning vacuum solution of GR. We achieve this by
employing the Rezzolla-Zhidenko [57] metric-deviation
parameter spaces, which have previously been used to
explore the impact of currently available EHT shadow-size
measurements [7,13,18,19,58]. We will revisit below how
while these current measurements impose nontrivial con-
straints on these parameter spaces, there remain uncon-
strained directions [13,18,19]. We demonstrate here how
these unconstrained directions become bounded by an
additional measurement of either the lensing Lyapunov
exponent or the Lyapunov time. Furthermore, these addi-
tional measurements also access new aspects of the
spacetime metric (its rr–component as well as its curva-
ture) that current shadow-size measurements are com-
pletely oblivious to. Finally, we find indications that the
width of the first-order image can also be used condition-
ally to infer information about the spacetime geometry.
In conclusion, we anticipate that future black hole

imaging measurements will yield stronger tests of the
no-hair conjecture and help build confidence in our
theoretical understanding of the properties of astrophysical
black holes, as well as provide novel null tests of GR.
One major limitation of our work is ignoring the impact

of the black hole spin. While we expect our findings to
carry over to the metric-deviation parameter spaces describ-
ing spinning black holes, a detailed exploration of the same
is nonetheless crucial.

I. SPACETIME CRITICAL PARAMETERS

In this section, we review the “critical parameters” of
the spacetime, the primary observables of interest here.
These include the shadow size ηPS, the lensing Lyapunov
exponent γPS, the Lyapunov time tl;PS, and the delay time
td;PS. For details regarding the derivations for the results
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presented here, we direct the reader to see our companion
paper [54] as well as earlier pioneering work (see, e.g.,
Refs. [47,50,59,60]).
The line element of an arbitrary static and spherically

symmetric spacetime can be expressed in spherical-polar
coordinates xα ¼ ðt; r; ϑ;φÞ as

ds2 ¼ ĝμνdx
αdxβ ¼ −fdt2 þ g

f
dr2 þ R2dΩ2

2; ð1Þ

where the metric functions f, g, and R are functions of r
alone, and dΩ2

2 ¼ dϑ2 þ sin2 ϑdφ2 is the standard line
element on a unit 2-sphere. We will assume reasonably
that g > 0 everywhere and that R > 0 except at the center
(R ¼ 0). The metric above describes a BH spacetime if
fðrÞ admits real, positive zeroes (with R > 0), the largest of
which locates the event horizon, which we denote by rH.
For a Schwarzschild BH of mass M, we have fðrÞ ¼
1–2M=r; gðrÞ ¼ 1; RðrÞ ¼ r and rH ¼ 2M.
We adopt here the convention of defining, without loss

of generality (due to spherical symmetry), the inclination of
the observer to be zero (ϑo ¼ 0). Due to the planarity of
geodesic orbits in spherically symmetric spacetimes, this
has the profoundly simplifying consequence that all pho-
tons arriving at this observer move only on meridional
planes (dφ ¼ 0) through space. If we denote the four-
velocity along an arbitrary meridional photon orbit by
kμ ≔ ẋμ, where the overdot represents a derivative with
respect to the affine parameter λ along it, then we can
introduce the photon orbit radial R and polar Θ effective
potentials as

Rðη; rÞ ≔ ðṙ=EÞ2 ¼ g−1½1 − η2fR−2�; ð2Þ

Θðη; rÞ ≔ ðϑ̇=EÞ2 ¼ η2=R4: ð3Þ

Here E is the energy of the photon and η ≔ jpϑj=E is the
ratio of its total angular momentum and energy, both
conserved quantities. The latter is also the (apparent)
impact parameter of the photon, i.e., it is the radius at
which it appears on the image plane [10].
Due to the strong gravity near ultracompact objects, it

is generically possible for photons to move on circular
orbits [8,9]. For such photons, ṙ ¼ ̈r ¼ 0, or equivalently,
R ¼ ∂rR ¼ 0. These yield the photon sphere radius rPS
and the critical impact parameter ηPS (this is the shadow
radius) as

ð∂rfÞ=f−2ð∂rRÞ=R¼ 0; ηPS≔RPS=
ffiffiffiffiffiffiffi
fPS

p
: ð4Þ

Here the subscript “PS” for a metric function indicates that
it is evaluated at r ¼ rPS, e.g., RPS ≔ RðrPSÞ. We assume
the first equation above admits a single root outside the
event horizon (however, cf. Refs. [61–63]). For the
Schwarzschild BH spacetime, rPS ¼ 3M and ηPS ¼

ffiffiffiffiffi
27

p
M.

The total angular deflection =Δϑ� experienced by a
meridional photon emitted from a spatial location
ðre; ϑeÞ with impact parameter η is given heuristically as
=Δϑ�ðη; reÞ ¼ �⨏∞

re

ffiffiffiffiffiffiffiffiffiffi
Θ=R

p
dr, where the slash represents a

path-dependent integral. Due to the absence of nontrivial
“polar turning points” (where ϑ̇ ¼ 0) in a spherically
symmetric spacetime, the sense of rotation of a photon
about the center (r ¼ 0) remains invariant along its orbit.
Therefore, since photons emitted from the same spatial
location but with opposite polar velocities (different signs
of ϑ̇) appear at diametrically opposite points on the image
plane, we will use superscripts “�” to keep track of this
aspect.
It is clear to see from the above that for a circular photon

orbit the total deflection angle =Δϑ� diverges because the
radial potential vanishes. If we introduce the bulk r̄ and
boundary η̄ conformal radii respectively as

r̄≔ r=rPS−1; η̄≔ η=ηPS−1; ð5Þ

it follows that photons which become close to the photon
sphere (jr̄j ≪ 1) somewhere along their orbit and whose
impact parameters are close to the critical one (jη̄j ≪ 1)
must also experience strong gravitational lensing (since
jRj ≪ 1). Indeed, the photon ring is identified as the region
on the image plane where the total deflection angle diverges
(logarithmically) as =Δϑ� ∝ ln jη̄j [45].
More precisely, we can write the following scaling

relations for the total deflection angle and total orbital
time for photons that appear in the photon ring, in general
static and spherically symmetric spacetimes, as [54]

=Δϑ�≈∓ π

γPS
ln jη̄j; γPS≔

πR2
PS

ηPS
κ̂PS;

=Δt�≈−tl;PS ln jη̄j; tl;PS ≔
1

fPSκ̂PS
: ð6Þ

The constants introduced above, γPS and tl;PS, are the
lensing Lyapunov exponent and the Lyapunov time respec-
tively. We will see presently how they impact various
observables. Finally, κ̂PS is a constant that is given as [54]

κ̂2PS ≔ −
1

2gPS

�
∂
2
rfPS
fPS

−
∂
2
rR2

PS

R2
PS

�
: ð7Þ

Clearly, this plays a key role in determining various
fundamental quantities and can be understood as follows.
The radial evolution of a photon with critical impact
parameter that is initially present close to the photon sphere,
jr̄ðλ ¼ 0Þj ≪ 1 is given as r̄ðλÞ ¼ r̄ð0Þ exp ½�rEκ̂PSλ�,
where �r denotes the initial sign of the photon’s radial
velocity. Therefore, κ̂PS is the (fundamental) phase space
Lyapunov exponent that governs the radial instability of
photon orbits at the photon sphere, and is related to a certain
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component of the Riemann tensor (cf. Refs. [54,64]). This is
to be expected since the previous equation is a geodesic
deviation equation for null geodesics and is also related to the
Raychaudhuri equation for the meridional null congruence.
For the Schwarzschild BH spacetime, κ̂PS ¼ 1=ð ffiffiffi

3
p

MÞ.
We can rewrite this radial evolution in terms of the

coordinate time as r̄ðtÞ ¼ r̄ð0Þ exp ½�rt=tl;PS� (see also
Ref. [50]). Thus, the Lyapunov time tl;PS is the character-
istic instability timescale for photons located radially close
to the photon sphere. That is, it is the time, as measured by
an asymptotic (r → ∞) static observer (u ∝ ∂t), for the
radial coordinate between photon orbits, close to the photon
sphere, to increase by a factor of e ≈ 2.72. For the
Schwarzschild BH spacetime, tl;PS ¼

ffiffiffiffiffi
27

p
M.

Recently, in Ref. [51] (see also Ref. [49]), it was shown
that this timescale plays an important role in determining
the late-time characteristics of the observed luminosity
evolution (light curve) of a star falling into a BH. Thus,
the Lyapunov time can, in principle, be measured. It
remains to be seen whether this can also be obtained from
the late-time behavior of a light curve corresponding to a
flaring event associated with Sgr A* (see also the delay
time below). Alternatively, observing a gas cloud falling
into Sgr A* [65] for an extended time may be suitable for
such a measurement to be made.
The lensing Lyapunov exponent can be understood as

follows. There exist photons emitted from the same initial
spatial location and captured by an observer at the
same final spatial location that have orbits differing in
impact parameter, total angular deflection, elapsed affine
parameter (or total path-length), and elapsed coordinate
time. These are all photons for which we can write
=Δϑ� ¼ ðϑo − ϑeÞ mod 2π ¼ −ϑe mod 2π (see, e.g.,
Refs. [8,60,66,67]). This is equivalently expressed as [54]

=Δϑ�n ¼ π=2 − ϑe þ ð−1Þnþ1ð2nþ 1Þπ=2; ð8Þ

where n is the order of the photon or image. The absolute
total angular deflection for this class of orbits increases
with image order, taking values in fð0; πÞ; ðπ; 2πÞ;
ð2π; 3πÞ; ð3π; 4πÞ; � � �g respectively. The case when the
source is located along the observer axis must be treated
separately.2 Remembering that the sign (�) denotes the
sign of the initial polar velocity, we see from this equation
that even-order photons (n ¼ 0; 2;…) come with a neg-
ative sign and vice versa.

With the expression for =Δϑ�n in hand (8), we can use the
angular deflection scaling relation (6) to obtain the relation
between the image radii of consecutive orders for an
arbitrary point source location as

η̄nþ1

η̄n
≈ e−γPS · e�γPSð2ϑe=π−1Þ: ð9Þ

In this equation, and similar equations below (10), (11), the
upper sign is picked if n is even and (nþ 1) is odd, and
vice versa.
Scaling relations that relate the characteristics of con-

secutive order images have been obtained for equatorial
sources of emission and/or when viewed by an observer at
the pole [45,47]. The general equation above, for arbitrary
sources and observers in spherical spacetimes, shows that
the equatorial (ϑe ¼ π=2) scaling relations receive order-
unity corrections for nonequatorial emitters.
In astrophysical accreting systems such as M87* and

Sgr A*, emission is sourced by both the accretion flow
(“disk”) and an outflow (“jet” or “wind”). Since the scale
height of the disk is rather small (h=r≲ 0.4; cf. Ref. [70]),
modeling its emission as being primarily equatorial is a
good approximation. Emission from the jet (sheath) is
primarily sourced from off the equator and can contribute a
significant amount of flux density on the image plane. Thus,
the extended relations above (9) could play a useful role in
establishing expectations regarding inferences of the lensing
Lyapunov exponent from observations (cf. Ref. [54]).
As discussed there, for an extended conical surface of

emission, ϑ ¼ ϑe ≠ π=2, viewed face-on, it follows from
Eq. (9) that the image radii ηn, widths wn, and their flux
densities Fn of consecutive order images approximately
satisfy

ηnþ1−ηPS
ηn−ηPS

≈
wnþ1

wn
≈
Fν;nþ1

Fν;n
≈e−γPS · e�γPSð2ϑe=π−1Þ: ð10Þ

For emission from the equatorial plane, ϑ ¼ ϑe ¼ π=2, the
right-hand side reduces simply to e−γPS [45]. Thus, the
lensing Lyapunov exponent controls the self-similar scaling
of higher-order images, and it has recently been argued that
this could be measured from future black hole imaging
measurements [45]. For the Schwarzschild BH spacetime,
γPS ¼ π [59,60,71].
Furthermore, with Eq. (9) and the orbital time scaling

relation (6), we can obtain the time delay Δt�n ≔ =Δt∓nþ1 −
=Δt�n between consecutive order images as

Δtn≈πηPS

�
1∓

�
2ϑe
π

−1

��
≔ td;PS

�
1∓

�
2ϑe
π

−1

��
: ð11Þ

In the above, we have finally introduced the characteristic
delay time, td;PS, which is an approximate measure of the
time elapsed between the appearance of consecutive order

2A point source present at ϑe ¼ 0 or π does not form discrete
images. Instead, images are entire rings, called Einstein rings or
“critical curves” (cf. Ref. [68]). Such source locations are called
caustics, which are defined as locations in the past light cone of
the observer that have divergent magnifications. Critical curves
are the maps of caustics on the image plane [68,69]. Thus, it
becomes clear that the n ¼ ∞ critical curve coincides with the
shadow boundary curve [60].
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images on the image plane. For a Schwarzschild BH,
td;PS ¼ π

ffiffiffiffiffi
27

p
M [47,60]. The delay time is simply the half-

orbital time of a photon moving on a circular meridional
orbit,

torb;PS
2

¼ π

ΩPS
¼ πηPS; ð12Þ

where ΩPS ≔ 1=ηPS is its angular velocity. This is a
remarkable result: A clean detection of the time delay
between higher-order images can yield an independent
estimate of the shadow size ηPS in spherically symmetric
spacetimes. Since such a measurement is independent, in
GR, of the frequency at which these observations are
conducted, multifrequency observations of flaring events
can potentially be used to set up null tests of the
achromaticity of the BH shadow.
Compact flux eruption events, or flaring events, asso-

ciated with Sgr A* are observed across a multitude of
wavelengths [72,73]. Such sources of compact flux have
been modeled in practice using hotspots (compact blobs
of emission), moving in the BH equatorial plane, and
it has been suggested that the time delay between its
zeroth and first-order images can be measured from
observations [46,48,74,75]. Another alternative to meas-
uring this delay time comes from measuring the light
curve of a gas cloud that is falling into a black hole [65].
Proposals to use such measurements to infer the spin of
Sgr A* [48,65] as well as to obtain information about the
spacetime geometry [76] have also been forwarded.
Another promising avenue for detecting higher-order

images and measuring the delay time and the lensing
Lyapunov exponent could be by constructing autocorrela-
tions either of the light curve or of the intensity fluctuations
in high-resolution movies of black holes, as described in
Ref. [46] and explored in Ref. [77].
We also point out that Ref. [50] (see also [78,79])

establishes a concrete connection between the shadow size
and the Lyapunov time on the one hand and the quasi-
normal mode frequencies on the other, in arbitrary spheri-
cally symmetric and static spacetimes,

ωQNM ¼ l

�
1

ηPS

�
− i

�
nþ 1

2

��
1

tl;PS

�
; ð13Þ

where l and n are the angular momentum and the overtone
numbers of the quasinormal mode perturbation.
Finally, we note that a combined measurement of the

Lyapunov and delay time yields an alternative and inde-
pendent estimate of the lensing Lyapunov exponent,

tl;PS
td;PS

¼ πηPS=γPS
πηPS

¼ 1

γPS
: ð14Þ

This relationship has been shown to hold in the Kerr
spacetime as well (cf., Eq. (3.40) of Ref. [55]). Together,

these results provide a firm basis for finding similar ones in
general axisymmetric spacetimes (cf., e.g., Ref. [43]),
which may play a vital role in developing methods for
inferring harder-to-measure critical parameters (e.g., lens-
ing Lyapunov exponent) from (relatively) easier-to-
measure ones.

II. CONSTRAINTS ON SPACETIME
FROM CRITICAL PARAMETERS

The black hole no-hair conjecture has been used to posit
that astrophysical BHs (not in dynamical scenarios like
mergers) are described by just two numbers—their massM
and intrinsic angular momentum J. That is, all multipoles
of the gravitational field [80] are determined by these
numbers. A restricted empirical test of this conjecture
becomes possible by first constructing parameter spaces
that measure spherically symmetric (J ¼ 0) deviations
from a Schwarzschild BH and then examining the con-
straints induced by measurements such as the EHT mea-
surements of the shadow sizes [11]. Indeed, this approach
has provided nontrivial null tests of the conjecture [7,13].
However, significant degeneracies remain [13,18,19],

and, indeed, the spacetime metric of M87* or Sgr A* can
differ by an arbitrarily large amount from that of a
Schwarzschild BH in certain parametric directions. We will
show below by using the Rezzolla-Zhidenko (RZ; [57])
parametrization framework that a single additional
measurement of a lensing exponent can render such pres-
ently unconstrained regions compact, thus making no-hair
tests significantly more potent. Our analysis can easily be
extended to other popular parametrization frameworks
[56,81] to yield similar findings.
Several well-known static BH spacetimes, that arise as

solutions in distinct alternative theories of gravity (and
fields), have been approximated to very high accuracy
using a small number (≲11) of RZ metric deviation, or
expansion, parameters [82]; This is possible since the RZ
framework exploits the fantastic convergence properties of
Padé approximants. The ambit of the RZ framework has
also been extended to arbitrary static spacetimes (including
non-BHs) there. Furthermore, it has also been demon-
strated that when using it to approximate observables, such
as the shadow size, of known solutions, the accuracy
required to enable comparisons against EHT measurements
can be achieved with even fewer (≲3) RZ parameters [83].
The original RZ metric functions, N2 and B2 [57], are

related to the ones used here simply as, N2ðrÞ ¼ fðrÞ and
B2ðrÞ ¼ gðrÞ. Furthermore, the RZ metric sets RðrÞ ¼ r.
Here, since this suffices for our purposes, in addition to a
parameter ϵ, which exclusively controls the size of the event
horizon, we will consider only the first few leading order
parameters of the RZ metric fa0; a1; b0; b1g. Here we will
only consider BHs of the same (Arnowitt-Deser-Misner;
Ref. [84]) massM. As we shall see below, a0 and b0 control
the asymptotics of the spacetime whereas a1 and b1 control
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the near-horizon geometry. The metric functions for this RZ
family are then given explicitly as,

fðrÞ ¼ 1 −
2M
r

þ 4a0
ð1þ ϵÞ2

M2

r2

þ 8ðϵ − a0 þ a1Þ
ð1þ ϵÞ3

M3

r3
−

16a1
ð1þ ϵÞ4

M4

r4
; ð15Þ

gðrÞ ¼
�
1þ 2b0

r
þ 4b1

r2

�
2

: ð16Þ

The location of the outermost horizon r ¼ rH is defined to
be at [57],

rH ≔
2M
1þ ϵ

: ð17Þ

Clearly, we will require that ϵ > −1 for BH spacetimes. We
emphasize that requiring the largest root of fðrÞ be located
at r ¼ rH automatically imposes non-trivial constraints on
the RZ metric deviation parameter space. The ranges of the
theoretically permissible RZ metric deviation parameters
depend, in general, on the family of RZ metric in use. For
three of the families of RZ metric that we will use here
(bi ¼ 0), these constraints can be found in Table 2 of
Ref. [19]. For the last family we use here (ai ¼ 0), the
condition that gðrÞ be nonvanishing everywhere (r > 0)
imposes the condition that b1 > b20=4. This is necessary
simply to ensure that the proper volume of space inside a
finite coordinate radius r is nonzero everywhere. The
boundary demarcating the permissible and impermissible
regions is shown in all panels as a red line, with the latter
shown as white regions. We note that these spacetimes can
contain strong curvature singularities at their centers r ¼ 0
but are regular everywhere else [19].
From the above, it is evident that of all RZ BHs with the

same mass M, only those for which ϵ ¼ 0 have the same
horizon size as the Schwarzschild BH. It is also clear from
eqs. (15) and (16) that the first post-Newtonian (PN)
coefficients (1=r-terms) are determined by ϵ; a0, and b0,
whereas, for this class of RZ metrics, the higher-order RZ
parameters, a1 and b1, control higher-PN coefficients.
Moreover, the parametrized post-Newtonian (PPN) param-
eters, βPPN and γPPN, are given by particular combinations of
these metric deviation parameters [57]. In particular, PPN
constraints obtained by solar systemmeasurements [85] can
be translated into constraints on combinations of the lowest-
order RZ parameters as j2b0=ð1þ ϵÞj ≲ 2.3 × 10−5 and
j2a0=ð1þ ϵÞ2þ2b0=ð1þ ϵÞj≲2.3×10−4 [57]. Therefore,
finding similar constraints on a0 and b0 via black hole
imaging measurements in the strong gravity near super-
massive compact objects can help us compare the strength of
obtained constraints across several magnitudes in gravita-
tional-field strength [7], and test the validity of the Birkhoff
theorem (see, e.g., Ref. [86]).

When the metric describing a spherically symmetric and
static spacetime is written in areal-polar coordinates,
RðrÞ ¼ r, as in the RZ metric, the locations of the horizon,
photon sphere, and the innermost stable circular orbit
(ISCO; This is the timelike Keplerian orbit that is closest
to the compact object) are set by the tt–component of the
metric alone (see, e.g., Ref. [82]). Fig. 3 in the Appendix
shows the variation of these quantities for all the RZ BH
models we consider below.
We turn now in Fig. 1 to the variation in the purely

metric-dependent observables with varying spacetime
geometry. We define the three deviation parameters that
we need as follows,

δ ¼ dsh
dsh;Schw

− 1 ¼ ηPSffiffiffiffiffi
27

p
M

− 1;

δt ¼
tl;PS

tl;PS;Schw
− 1 ¼ tl;PSffiffiffiffiffi

27
p

M
− 1;

δγ ¼
γPS

γPS;Schw
− 1 ¼ γPS

π
− 1: ð18Þ

The first, δ, measures fractional deviations in the shadow
diameter of an arbitrary BH from the Schwarzschild value
(see, e.g., [7]). This is not to be confused with the rotation
parameter in Refs. [38,47]. The shadow diameter, or
shadow size, also depends purely on the tt–component
of the metric alone (see, e.g., Ref. [13]). The others, δt and
δγ , capture the fractional deviations in the Lyapunov time
tl;PS and the lensing Lyapunov exponent γPS of a BH from
the Schwarzschild values.
In each panel of Fig. 1, we only vary, between �1, the

metric deviation parameters that are shown on the axes (all
others are set to zero). The isocontours corresponding to
these different observables do not overlap, in general, and a
measurement of any pair of these can constitute a null test
of the Schwarzschild metric, in strong gravity, of unprec-
edented precision. This is especially true when considering
the variation in the horizon sizes of nonspinning BHs (see
the top-right and bottom-left panels).
The fractional deviation of the shadow boundary has

already been inferred (at the 1σ level) from the 2017 EHT
image of M87* to be δ ¼ −0.01þ0.17

−0.17 [12,13] and from the
2017 EHT image of Sgr A* to be δ ¼ −0.04þ0.09

−0.10 (see
Eq. (12), or Table 2, of Ref. [87]), albeit with disparate
methodologies. These measurements significantly con-
strain the range of metric deviation parameters, as indicated
by the hatched regions for Sgr A*. However, the allowed
bands (nonhatched regions) of the parameter spaces remain
noncompact (see also Refs. [7,13,18]). For example, it may
be possible for a0 to take unboundedly large values, a0 ¼
−∞ (for the ða0; a1Þ–models) or a0 ¼ þ∞ (for the ðϵ; a0Þ–
models). This would hold also for the other metric
deviation parameters (ϵ > −1 always for BHs however),
simply because constraining two-dimensional parameter
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FIG. 1. Variation in characteristic spacetime observables with metric deviation parameters.We show here the fractional deviations in
the shadow size (ηPS), the Lyapunov time (tl;PS), and the lensing Lyapunov exponent (γPS) from their Schwarzschild values in black,
green, and red lines respectively, for four different families of (RZ) black holes. All of these BHs have the same mass M, and the
Schwarzschild BH is located at (0,0) in each panel. Each of these observables involves a different combination of the metric functions
and their derivatives. Their respective isocontours intersect at unique locations generically in these BH metric deviation parameter
spaces. This demonstrates, quite strikingly, how combining measurements of these observables would yield stringent and precision tests
of general relativity in the strong-field regime. Each of these BH parameter spaces samples a qualitatively different type of metric
deviation from the Schwarzschild spacetime: ϵ and ai control the tt–component of the metric whereas bi control its rr–component. The
2017 EHT M87* and Sgr A* shadow size (1σ) bounds are shown in dotted and dashed lines respectively (hatches indicate the region
ruled out by the latter).
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spaces with a single observable is not, in general, possible.
An additional measurement of the lensing Lyapunov
exponent can significantly reduce these allowed regions.
Indeed, it can render the allowed regions on the (2D) metric
deviation parameter spaces compact.
Furthermore, if such a region does not contain the

Schwarzschild values (ϵ ¼ a0 ¼ a1 ¼ b0 ¼ b1 ¼ 0), then
we obtain compelling evidence of a nonvacuum BH
spacetime. This would lead to a violation of one of the
assumptions of the Birkhoff theorem, in the strong gravity
regime. This could potentially also be interpreted as a
precise and accurate smoking-gun signature of a violation
of general relativity, as well as of several alternative
theories of gravity that admit the Schwarzschild BH metric
as a solution. We expect similar statements to become
possible even when considering spinning BH spacetimes.
Thus, a measurement of the lensing Lyapunov exponent
can yield irrefutable evidence of the Kerr metric as being an
accurate descriptor of the spacetime geometries of astro-
physical ultracompact objects or provide insight into
necessary modifications of general relativity in the
strong-field regime.
The BHs considered in the bottom right panel are

particularly interesting. As noted above, such BHs have
horizons, photon spheres, and ISCOs located at precisely
the Schwarzschild BH locations. Furthermore, since they
have shadow sizes identical to that of a Schwarzschild BH,
deviations in the rr–component of the metric due to
nonzero b0 or b1 remain completely unconstrained by cur-
rent EHT measurements. Remember also that the b0 ¼ 0
BHs also pass all solar system constraints, as discussed
above. However, as is evident from this panel, both the
lensing Lyapunov exponent and the Lyapunov time for
these BHs differ from that of a Schwarzschild BH. Thus,
inferring either of these critical parameters grants us access
to a fundamentally new aspect of the spacetime geometry of
astrophysical BHs.

III. CONSTRAINTS ON GRAVITY FROM
MEASURING THE WIDTH OF THE FIRST

HIGHER ORDER IMAGE

The diameters of photon subrings cast by an emission
disk on the observer’s sky are tied closely to the shadow
diameter of the black hole. Thus, a measurement of a
subring diameter yields an excellent additional measure-
ment of the shadow diameter [38]. Here we consider the
impact of a varying spacetime geometry on the widths of
photon subrings. Since our only purpose here is to
demonstrate that widths can play a (surprising) role in
metric tests, we will ignore realistic astrophysical effects
such as magnetic fields and a varying synchrotron emis-
sivity profile, optical depth, Doppler and gravitational
redshifts, etc. Indeed, by “width” of the order–n image,
here we mean the difference between the lensed image radii
of the inner and outer boundaries of the emitting region.

In particular, we will consider three classes of two-
parameter RZ BH metric families, all with b0 ¼ b1 ¼ 0.
We have already seen how current EHT measurements
already impose nontrivial constraints on these parameter
spaces. We have also discussed how these nonetheless
remain unconstrained in certain directions. Here we would
like to explore what we can learn additionally about these
same parameter spaces from a single additional measure-
ment of the width of a (lowest-order) subring, which is not a
purely metric-dependent observable.
To cleanly isolate the impact of spacetime geometry, and

for simplicity, we fix the observer inclination (ϑo ¼ 0)
and adopt a fiducial configuration for the emission mor-
phology. In Sec. 3.2 of Ref. [70] (see also Refs. [88,89]),
the effective scale-heights h for hot accretion flows
around Kerr BHs were studied extensively through general
relativistic magentohydrodynamics simulations and it
was found that h=r≲ 0.4. This translates into the faces
of the emission zone being located at ðh=2Þ=r ¼
tan ½�ðπ=2 − ϑeÞ� ≈�½π=2 − ϑe�, or, equivalently, ϑe ≈
π=2� 2=10. Roughly matching their results, we will
consider here emission to be sourced from a moderately
geometrically thick disk whose conical faces are at colat-
itudes of ϑe ¼ π=2� π=10 and whose inner boundary,
reasonably, is located at rin ¼ rH. For concreteness, we
pick the outer boundary to be located at rout ¼ 3rISCO. Here
rISCO denotes the location of the timelike Keplerian
geodesic that is closest to the BH (see Fig. 3 in the
Appendix). Naturally, by increasing (decreasing) the latter,
we should expect the widths of all order images to
concomitantly increase (decrease).
In Fig. 2, we show the variation in the widths of the first

pair of photon subrings with varying metric deviation
parameters for the aforementioned fiducial emission region
morphological parameters and families of RZ BHs, for a
fixed BH mass. We note that the mass of the BH3 can be
obtained in practice from stellar dynamics measurements
(cf., e.g., the discussion in Sec. 9.2 of Ref. [12] for M87*
and Sec. 2 of Ref. [7] for Sgr A*, and references therein).
We uniformly sample the parameter spaces with a reso-
lution of 0.01 for the ða0; a1Þ–models (yielding ≈35000
different BHs), 0.01 for the ðϵ; a1Þ–models (≈30000 BHs),
and 0.015 for the ðϵ; a0Þ–models (≈13000 BHs).
The variations in the widths of the n ¼ 1 subrings across

all panels of Fig. 2 fall roughly within the range
0.3M ≲ w1 ≲ 1.8M. From the left panel, it appears that
the subring widths depend more sensitively on a0 as
compared to a1. We understand this to be due to a0
appearing at lower PN order, causing its effect at the
photon sphere to be stronger relative to a1. From the
remaining panels, it appears that the widths depend more
sensitively on ϵ as compared to either a0 or a1. This is

3More accurately, its angular gravitational radius, θg ¼
ðGM=c2Þ=D, where D is the distance to the BH.
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especially true for extremely large BHs (ϵ → −1), with
larger BHs casting wider subrings. We note that this last
trend seems to reverse however (i.e., smaller BHs cast
wider subrings) for BHs that have approximately the same
event horizon size as a Schwarzschild BH (ϵ ≈ 0). These
are, of course, only rough trends, and establishing a reliable
link between the horizon size and the width of subrings will
require a careful disentangling of the possible confounding
effects, including the spin of the BH, the choice of
parametrization scheme and the various physical effects
we have neglected. Nonetheless, these findings uncover an
interesting connection between the width of the n ¼ 1
subring and the spacetime geometry, for a fixed BH mass,
and warrant further consideration.
Since the hatched regions in all panels are disallowed by

the EHT 1σ shadow size measurement for Sgr A* [7], this
figure shows then that combining the width of the lowest-
order subring with the shadow size measurement, for black
holes of known mass, can yield a new and precise null test
of the spacetime geometry, due to the orthogonality of their
constraints, allowing us to break persisting degeneracies in
such BH parameter spaces.
Finally, we find promising evidence that it may be

possible to obtain accurate (with an error≲10%) inferences
of the lensing Lyapunov exponent if a measurement of the
widths of a pair of higher-order images (n ¼ 1 and n ¼ 2
here) were ever to become possible. As we saw above, this
sets up yet another completely new test of the spacetime
geometry.

IV. SUMMARY AND DISCUSSION

The recent Event Horizon Telescope images of the
supermassive ultracompact objects M87* and Sgr A* have
provided new experimental tests of gravity in the strong-
field regime [7,12–14,22]. Future imaging observations,
including movies, at higher angular resolution and flux
sensitivity, are expected to bring the photon ring into
focus [45]. Such observations are expected to usher in yet
another wave of new experimental tests, as examined here
(see also complementary work in Refs. [38,40–42,61,90]).
Central to these tests is the existence of several “critical

parameters,” that are determined by the spacetime geom-
etry, and which control various properties of the photon
ring. The photon ring is located close to the shadow
boundary curve (or n ¼ ∞ critical curve) on the image
plane, and is a collection of higher-order images that are
both time-delayed and radially demagnified versions of the
accretion flow. Photons that belong to an image of one
higher-order execute approximately an additional half-loop
around the BH, causing a time delay between the appear-
ance of different order photons (or images) on the observ-
er’s sky. With increasing image order, the time-delay and
the radial-demagnification factor become increasingly in-
dependent of the properties of the accretion flow [38,45].
Current EHT tests of gravity rely on inferring the size of

the shadow (boundary curve). We show here that measuring
the characteristic delay time between higher-order images
can lead to an independent inference of the same. Recent

FIG. 2. Variation in subring widths with spacetime geometry, for fixed morphology of the emission zone and observer viewing angle.
We show the variation in the width of the first subring (solid lines) and the scaled width of the second subring (dot-dashed lines), with
changing metric deviation parameters for three different families of Rezzolla-Zhidenko BHs across three different panels. All of these
BHs have the same massM, and the Schwarzschild BH is located at (0,0) in each panel. The hatched regions are disallowed by the 2017
EHT (1σ) shadow size measurement of Sgr A*. While it is clear that the shadow size measurement imposes nontrivial constraints on the
BH parameter spaces, these extend to infinity in certain directions. Here we demonstrate how, with prior knowledge of the morphology
of the emitting region, an additional measurement of the width of the first subring would drastically reduce the allowed band of BH
parameters, due to the subring width isocontours being nonparallel to the shadow size isocontours. The morphological parameters for
the emission disk here were motivated by state-of-the-art numerical simulations [70]. Finally, the color bars show a typical error of
≲10% when inferring the lensing Lyapunov exponent using the widths of the first two subrings, across all BH parameter spaces.
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work has indicated that this may be possible from obser-
vations of flaring events associated with Sgr A* [48].
Furthermore, this can also be performed at a multitude of
wavelengths, providing a new test of the achromaticity of
the shadow, a fundamental prediction of GR.
The lensing Lyapunov exponent determines the radial-

demagnification on the image plane and can be inferred
approximately by measuring the diameters or widths of the
first pair of photon subrings. Since detecting the n ¼ 2
subring (tertiary image) may be hard in practice, we find
that it can also be inferred from a joint measurement of the
delay and Lyapunov times. The latter is a characteristic
linear instability timescale for photons present close to the
photon sphere to radially diverge away from it and is also
related to the damping timescale of the quasinormal modes
of a black hole (cf. Ref. [50]). It has recently been
suggested that this may also be inferred from the late-time
behavior of light curves of events involving emitters falling
into black holes [49,51]. Finally, a measurement of the
width of the n ¼ 1 subring can also encode nontrivial
information about the spacetime geometry. We have shown
here how combining measurements of any of the afore-
mentioned observables yields highly nontrivial constraints
on black hole parameter spaces.
By restricting our analysis here to spherically symmetric

and static spacetimes, we were able to obtain the relations
between the several spacetime critical parameters rather
straightforwardly. However, astrophysical objects are
expected to possess nontrivial angular momentum.
Therefore, demonstrating extensions of our results to
encompass stationary and axisymmetric spacetimes will

be hugely exciting for the prospects of experimental gravity
with black hole imaging.
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APPENDIX: THE HORIZON,
PHOTON SPHERE, AND ISCO IN RZ BHs

We now show Fig. 3 the impact of varying the spacetime
geometry on the locations of the event horizon, the photon
sphere, and the innermost stable circular orbit (ISCO; This
is the timelike Keplerian geodesic that is closest to the BH),
which are determined purely by the spacetime metric. In
particular, we consider Rezzolla-Zhidenko BHs that are
described by the deviation parameters ϵ; a0, and a1. Since,

FIG. 3. Variation in characteristic spacetime locations with metric deviation parameters.We show the variation in the locations of the
horizon (rH; colormap), the photon sphere (rPS; dot-dashed lines), and the innermost stable circular orbit (rISCO; solid lines) for three
different families of Rezzolla-Zhidenko BHs across three different panels. All of these BHs have the same mass M, and the
Schwarzschild BH is located at (0,0) in each panel. The hatched regions are disallowed by the 2017 EHT (1σ) shadow size measurement
of Sgr A*. This shows how the EHT measurements can be translated into ≈25% constraints on the deviations of these characteristic
locations, for spherically symmetric black holes, from their Schwarzschild values.
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as discussed above (see also Ref. [82]), the locations
of the horizon, the photon sphere, and the ISCO are set by
the tt–component of the metric alone, in areal-polar
coordinates (RðrÞ ¼ r), varying b0 or b1 has no effect
here.
While these characteristic spacetime features are not

directly observable, they play an important role in shaping

our understanding of the physics of black holes. In each
panel, we only vary, between �1, the metric deviation
parameters that are shown on the axes (all others are set to
zero). It is easy to see that the most sensitive variations
occur due to changes in ϵ, i.e., due to changes in the horizon
size. The hatched regions correspond to those that are ruled
out by recent EHT observations, as discussed above.
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