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In this paper, light propagation in a pressure-free nonmagnetized plasma on Kerr spacetime is
considered, which is a continuation of our previous study [V. Perlick and O. Y. Tsupko, Light propagation
in a plasma on Kerr spacetime: Separation of the Hamilton-Jacobi equation and calculation of the shadow,
Phys. Rev. D 95, 104003 (2017).]. It is assumed throughout that the plasma density is of the form that
allows for the separability of the Hamilton-Jacobi equation for light rays, i.e., for the existence of a Carter
constant. Here we focus on the analysis of different types of orbits and find several peculiar phenomena
which do not exist in the vacuum case. We start with studying spherical orbits, which are contained in a
coordinate sphere r ¼ constant, and conical orbits, which are contained in a coordinate cone ϑ ¼ constant.
In particular, it is revealed that in the ergoregion in the presence of a plasma there can exist two different
spherical light rays propagating through the same point. Then we study circular orbits and demonstrate that,
contrary to the vacuum case, circular orbits can exist off the equatorial plane in the domain of outer
communication of a Kerr black hole. Necessary and sufficient conditions for that are formulated. We also
find a compact equation for circular orbits in the equatorial plane of the Kerr metric, with several examples
developed. Considering the light deflection in the equatorial plane, we derive a new exact formula for the
deflection angle which has the advantage of being directly applicable to light rays both inside and outside of
the ergoregion. Remarkably, the possibility of a nonmonotonic behavior of the deflection angle as a
function of the impact parameter is demonstrated in the presence of a nonhomogeneous plasma.
Furthermore, in order to separate the effects of the black hole spin from the effects of the plasma, we
investigate weak deflection gravitational lensing. We also add some further comments to our discussion of
the black hole shadow which was the main topic of our previous paper.
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I. INTRODUCTION

If a gravitating body is surrounded by a medium, the
trajectories of light rays are influenced not only by the
gravitational field but also by the medium. In realistic
astrophysical applications the medium is a plasma which
is a dispersive medium, i.e., the influence on light rays
depends on the photon frequency. Whereas this influence is
usually negligible for optical and higher frequencies, it may
be significant for radio frequencies if the plasma density
is sufficiently high. For estimates of the plasma influence in
the radio band see, e.g., [1–6]. The plasma density may be
high, in particular, in the vicinity of black holes. Together
with the strong bending effect from gravity, this leads
to a complex interplay of gravitation and dispersive
refraction.
The Hamilton formalism for light rays in a curved

spacetime in the presence of a dispersive medium is

detailed in a book by Synge [7]. Although not explicitly
mentioned by Synge, his equations include the case of light
propagation in a nonmagnetized pressure-free plasma, see
also [8–11]. For the plasma case, a rigorous derivation of
this Hamilton formalism from Maxwell’s equations on a
general-relativistic spacetime was given by Breuer and
Ehlers [12–14] who even allowed for a magnetized plasma.
In view of applications to astrophysics, a magnetized
plasma was also considered by Broderick and Blandford
[15–17].
If the gravitational field is weak and the deflection angle

of light is small, the effect of the plasma can be separated
from the effect of gravity. This case was first investigated,
for a nonmagnetized plasma, by Muhleman et al. [18] who
considered the deflection of light by the solar corona, see
also [19,20]. In the same approximation, Bliokh and
Minakov [21] studied the properties of lensed images
when a gravitational lens is surrounded by a plasma. A
detailed analytical description of gravitational lensing in
the presence of a plasma under the weak-deflection
assumption was presented in a series of papers by
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Bisnovatyi-Kogan and Tsupko [1,22,23]. On the basis of
Synge’s approach, they calculated the deflection angle in
different scenarios, including the correction to the vacuum
angle due to a homogeneous plasma. As a lens, a
Schwarzschild black hole and different extended spheri-
cally symmetric mass distributions were considered. The
images are predicted to blur into a “rainbow”, since
different deflection angles correspond to photons of differ-
ent frequencies. The study of Kerr lensing in a plasma in the
weak-deflection case was performed by Morozova et al.
[24] who considered a slowly rotating black hole and a
homogeneous plasma distribution. In a series of papers by
Crisnejo et al. [25–28], higher-order terms of weak
deflection in the presence of a plasma were found for
different spacetimes. In particular, Schwarzschild and Kerr
black holes were considered.
Without the weak-field approximation the combined

action of gravity and a plasma on light rays was first
studied by Perlick [29] who calculated the ray deflection in
the Schwarzschild metric and in the equatorial plane of the
Kerr metric in the presence of a plasma. Properties of
higher-order images in the case of gravitational lensing by a
Schwarzschild black hole in the presence of a plasma were
investigated analytically by Tsupko and Bisnovatyi-Kogan
[23]. In that paper, the strong deflection limit for the case
of a homogeneous plasma was derived. Moreover, ray
trajectories near compact objects (described by the
Schwarzschild metric) surrounded by a plasma were
studied in a series of works by Rogers [30–33]. In
particular, different power-law plasma distributions were
analyzed. For a discussion of the Kerr case beyond the
weak-deflection approximation see also Crisnejo, Gallo
and Jusufi [28].
In recent years, the interest in gravitational lensing in the

presence of a plasma increased considerably. There are
studies of strong lens systems with multiple images
[2,5,6,34,35], microlensing [3,4], spatial dispersion in
Kerr spacetime [36], wave effects for propagation near
the Sun [37,38], and time delay [2,6,19,34,35,39]. For
some other related studies see [40–47].
In particular, the influence of a (nonmagnetized) plasma

on the shadow of black holes has been studied by many
authors. In [48], the shadow of spherically symmetric black
holes (and other compact objects) surrounded by a plasma
was calculated analytically. In our previous work [49]
(hereinafter Paper I) we investigated the propagation of light
rays in the Kerr metric in the presence of a plasma without
approximation. The equations of motion were derived for a
photon that moves anywhere in the domain of outer com-
munication under an arbitrary inclination in a Kerr spacetime
with arbitrary spin parameter. One of the main results of this
workwas that theHamilton-Jacobi equation for the light rays
can be separated only for some class of plasma distributions.
Accordingly, for such plasma distributions the equations of
motion are reduced to first-order differential equations,

which greatly simplifies further calculations. In particular,
for this class of plasma distributions we could analytically
calculate the size and the shape of the black hole shadow for
an arbitrary position of the observer in the domain of outer
communication. On the basis of these analytical results we
constructed pictures of the shadow for various plasma
distributions.
These works were followed by many papers by different

authors who considered the shadow in the presence of a
plasma, see e.g., [50–56]. If the plasma distribution around
a Kerr black hole does not satisfy the separability condition,
the black hole shadow can only be calculated by a
numerical integration of the equations of motion which
has been done for some examples [57,58]. For the shadow
of a spherically symmetric black hole surrounded by a
medium with an arbitrary frequency-dependent index of
refraction see [59].
In this paper, we continue our investigation of ray

propagation in a plasma on Kerr spacetime started in
Paper I (Perlick and Tsupko [49]). Here we focus mainly
on the analysis of different types of orbits, filling some gaps
that have been left in the previous literature. As a result,
we reveal several peculiar phenomena which do not exist
in the vacuum case. We also add some comments on the
shadow and we discuss in some detail the deflection
angle of light, both exact and in the weak-deflection
approximation.
The paper is organized as follows. Starting out from the

equations of motion for light rays (Sec. II) on the Kerr
spacetime in a plasma that satisfies the separability con-
dition, we consider spherical and conical orbits (Sec. III).
Further, we investigate in detail the circular orbits on and
off the equatorial plane, for an arbitrary plasma distribution
that satisfies the separability condition and for a number of
particular examples (Sec. IV). In Sec. V we comment on
the shadow, discussing in particular the observability or
nonobservability of “fishtails” in the boundary curve of the
shadow found in Paper I. After specifying the equations of
motion for light rays in the equatorial plane, we derive an
exact formula for the deflection angle which is suitable for
all rays that come in from infinity and return to infinity,
including those that enter into the ergoregion (Sec. VI). Up
to this point no slow-rotation or weak-deflection approxi-
mation was involved. In the remaining two sections we still
allow for an arbitrary black hole spin but we assume weak
deflection. In Sec. VII we derive the deflection angle for a
light ray in the equatorial plane in this approximation. In
Sec. VIII we solve the lens equation for this case and
discuss the influence of the black hole spin and of the
plasma on the image positions. Then we end with some
Conclusions.

II. EQUATIONS OF MOTION FOR LIGHT RAYS

Recall that the propagation of light rays in a non-
magnetized pressureless plasma on a spacetime with metric
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gμνdxμdxν can be described by the Hamiltonian ([12], also
see [1,22,29])

Hðx; pÞ ¼ 1

2
ðgμνðxÞpμpν þ ωpðxÞ2Þ: ð1Þ

Here x ¼ ðx0; x1; x2; x3Þ are the spacetime coordinates,
p ¼ ðp0; p1; p2; p3Þ are the canonical momentum coordi-
nates, and

ωpðxÞ2 ¼
4πe2

me
NðxÞ ð2Þ

is the plasma frequency, where e and me are the electron
charge and mass, respectively, andN is the electron number
density. The light rays are the solutions to Hamilton’s
equations,

dxμ

ds
¼ ∂H

∂pμ
;

dpμ

ds
¼ −

∂H
∂xμ

; Hðx; pÞ ¼ 0; ð3Þ

where s is a curve parameter.
In this paper we assume that the spacetime metric is the

Kerr metric. In Boyer-Lindquist coordinates x ¼ ðt; r;ϑ;φÞ,
it reads

gμνdxμdxν ¼ −c2
�
1 −

2mr
ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dϑ2

þ sin2ϑ

�
r2 þ a2 þ 2mra2sin2ϑ

ρ2

�
dφ2

−
4mrasin2ϑ

ρ2
cdtdφ; ð4Þ

where

Δ ¼ r2 þ a2 − 2mr; ρ2 ¼ r2 þ a2 cos2 ϑ: ð5Þ

Here m is the mass parameter and a is the spin parameter,

m ¼ GM
c2

; a ¼ J
Mc

; ð6Þ

whereM is the mass and J is the angular momentum of the
black hole. The Kerr parameter a is restricted to the interval
0 ≤ a ≤ m. Here 0 ≤ a can be assumed without loss of
generality because we are free to make a coordinate trans-
formation φ ↦ −φ which has the same effect as changing
the sign ofa. The assumptiona ≤ m restricts us to the case of
a black hole, as opposed to a naked singularity. In the
following we want to discuss effects that are observable for
an observer who is outside of the black hole. Therefore, we
restrict to the domain of outer communication, i.e., to the
domain outside of the black hole horizon which is
at r ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
.

The index of refraction of a plasma under consideration
is

nðx;ωðxÞÞ2 ¼ 1 −
ωpðxÞ2
ωðxÞ2 ; ð7Þ

where

ωðxÞ ¼ ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mr

ρ2

q ð8Þ

is the photon frequency measured at x by an observer on a
t-line. Here, and in the following,

ω0 ¼ −pt=c; ð9Þ

where we have chosen the sign such that ω0 is positive for
future-oriented light rays outside of the ergoregion. Inside
the ergoregion, Eq. (8) does not make sense because the
expression under the square root becomes negative; this
reflects the fact that there the t-lines are spacelike. Note
that, by (8), the constant of motion ω0 is to be interpreted as
the frequency at infinity. Of course, this interpretation
makes sense only for those light rays that actually reach
infinity.
In Paper I we found the necessary and sufficient

condition for separability of the Hamilton-Jacobi equation,
i.e., for the existence of a generalized Carter constant (see
also the discussion in the Introduction). We have shown
that separability requires the plasma frequency to be of the
form

ωpðr; ϑÞ2 ¼
frðrÞ þ fϑðϑÞ
r2 þ a2 cos2 ϑ

; ð10Þ

where frðrÞ is an arbitrary function of r and fϑðϑÞ is an
arbitrary function of ϑ.
If the separability condition (10) is satisfied, the equa-

tions of motion for light rays have the following form
(Paper I):

ρ2 ṫ ¼ ððr2 þ a2Þρ2 þ 2mra2sin2ϑÞω0 − 2mrapφ

cΔ
; ð11Þ

ρ2φ̇ ¼ 2mra sin2 ϑω0 þ ðρ2 − 2mrÞpφ

Δ sin2 ϑ
; ð12Þ

ρ4ϑ̇2 ¼ K −
�

pφ

sin ϑ
− a sinϑω0

�
2

− fϑðϑÞ; ð13Þ

ρ4ṙ2 ¼ −KΔþ ððr2 þ a2Þω0 − apφÞ2 − frðrÞΔ: ð14Þ

Here and in the following the overdot denotes the derivative
with respect to the curve parameter s from (3). Note that
we have changed the sign of ω0 in comparison to Paper I.
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The reason is that here we want to have ω0 positive for
future-oriented rays, as mentioned above. In Paper I we
found it convenient to have ω0 positive for past-oriented
rays because the main focus was on the calculation of the
shadow. The latter is usually done by considering light rays
that issue from the observer position into the past. In the
present paper, however, we also want to discuss the
deflection angle and for this purpose it would not be
natural to consider past-oriented rays.
In order to solve the equations of motion (11)–(14), one

has to specify the black hole parameters m and a, and
choose the functions characterizing the plasma distribution
frðrÞ and fϑðϑÞ. As usual, it is convenient to express all
lengths in units of m. Additionally, one has to specify
several constants of motion on the right-hand side of these
equations; the photon frequency at infinity ω0, the momen-
tum component pφ and the generalized Carter constant K.
It is important to emphasize that not all values of the

constants of motion are possible. As the right-hand side
of (7) must be non-negative, Eqs. (10) and (8) require

ðρ2 − 2mrÞðfrðrÞ þ fϑðϑÞÞ
ρ4ω2

0

≤ 1: ð15Þ

This condition restricts the possible values of ω0 outside of
the ergoregion: As the plasma density cannot be negative, we
have frðrÞ þ fϑðϑÞ ≥ 0, so the sign of the left-hand side of
(15) is determined by the sign of ρ2 − 2mr. This demon-
strates that inside the ergoregion, where ρ2 − 2mr < 0, the
condition (15) is satisfied for allω0 ≠ 0. As we restrict to the
domain of outer communication, whereΔ > 0, it is obvious
that ðρ4=ω2

0Þðϑ̇2 þ ṙ2=ΔÞ ≥ 0. Substituting for ϑ̇2 and ṙ2

from (13) and (14), respectively, and rearranging the terms a
little bit results in the following inequality:�
ðρ2 − 2mrÞpφ

ω0

þ 2mrasin2ϑ

�
2

≤ Δρ4sin2ϑ
�
1 −

ðρ2 − 2mrÞðfrðrÞ þ fϑðϑÞÞ
ρ4ω2

0

�
: ð16Þ

Note that, by (15), the right-hand side of this inequality is
non-negative for all allowed values of ω0. For each r, ϑ and
ω0, condition (16) restricts the possible values of pφ.

III. SPHERICAL AND CONICAL LIGHT RAYS

Of particular interest are spherical light rays, which are
contained in a coordinate sphere r ¼ const and conical
light rays, which are contained in a coordinate cone
ϑ ¼ const. In this section, we study these types of orbits.
The relevant equations for spherical light rays have

already been obtained in Paper I but we want to rewrite
them here in a different form that is more convenient. As
spherical light rays have to satisfy ṙ ¼ 0 and ̈r ¼ 0, one
finds from (14) that their constants of motion pφ=ω0 and

K=ω2
0 have to satisfy

K
ω2
0

−
1

Δ

�
r2 þ a2 −

apφ

ω0

�
2

þ frðrÞ
ω2
0

¼ 0; ð17Þ

�
r2 þ a2 −

apφ

ω0

�
2

−
2rΔ

ðr −mÞ
�
r2 þ a2 −

apφ

ω0

�

þ Δ2f0rðrÞ
2ðr −mÞω2

0

¼ 0: ð18Þ

Equation (18) is found by taking the derivative of (14) with
respect to s and then dividing both sides by ṙ. By
continuity, the resulting equation is true also at points
where ṙ ¼ 0.
Solving the quadratic equation (18) for apφ=ω0 gives

two solutions,

a
pφ

ω0

¼ r2þa2−
rΔ
r−m

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

f0rðrÞðr−mÞ
2ω2

0r
2

s !
: ð19Þ

From this equation we read that, for every given ω0,
spherical light rays can exist at a point with radial
coordinate r only if

f0rðrÞðr −mÞ
2ω2

0r
2

≤ 1 ð20Þ

and that there are at most two such light rays. With apφ=ω0

determined, Eq. (17) then gives the corresponding value of
the Carter constant K. The existence or nonexistence of
such a light ray is determined by the inequality (19). If we
multiply this inequality by a2 and insert (19), we find after
some elementary algebra:

− r2Δðρ2 − 2mrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

f0rðrÞðr −mÞ
2ω2

0r
2

s
2

� 2mrΔðr2 − a2cos2ϑÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

f0rðrÞðr −mÞ
2ω2

0r
2

s

≥ ðm2 − a2Þρ4 þ ðρ2 þ 2mrÞΔa2cos2ϑ

þ ðr −mÞ2a2sin2ϑ frðrÞ þ fϑðϑÞ
ω2

: ð21Þ

The inequality (21) determines the photon region, i.e., the
set of all points through which spherical light rays exist.
Note that in vacuum the left-hand side of condition (21)
with the minus sign is manifestly negative whereas the
right-hand side is manifestly positive. This demonstrates
that in vacuum condition (21) can hold only with the plus
sign. In a plasma, however, it is possible that it holds for
some coordinates r and ϑ with both signs. This means that
there are two spherical light rays through a point with these
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coordinates; for one ray the constant of motion pφ=ω0 is
given by (19) with the plus sign and for the other ray with
the minus sign.
Condition (21) is equivalent to condition (43) of Paper I,

but it is more convenient; as we consider the black hole case
(a2 ≤ m2) and restrict to the domain of outer communication
(Δ > 0), the right-hand side of (21) is manifestly positive.
Also, these assumptions imply that Δðr2 − a2 cos2 ϑÞ is
positive. Therefore, if (21) holds with the minus sign, then it
also holds with the plus sign. As the plus-minus sign in (21)
corresponds to the plus-minus sign in (19), this implies the
following. Through each point of the photon region there is
either exactly one spherical light ray, with constant of
motion pφ satisfying (19) with the plus sign, or there are
two spherical light rays, with pφ satisfying (19) for the first
onewith the plus sign and for the second onewith the minus
sign. Moreover, it is also obvious that (21) can hold with the
minus sign only if the first term on the left-hand side is
positive and dominates the second one. The first condition
requires that ðρ2 − 2mrÞ is negative and the second con-
dition requires that the square-root is bigger than 1. This
demonstrates that the case that there are two spherical light
rays through a certain point can happen only inside the
ergoregion and only if f0rðrÞ is negative.
It is also true that (19) and, thus (21) can hold with the

minus sign only if the plasma density is nondecreasing in
the radial direction. To prove this, let us assume that the
plasma density is decreasing,

∂

∂r
ωpðr; ϑÞ2 ¼

ρ2f0rðrÞ − 2rðfrðrÞ þ fϑðϑÞÞ
ρ4

< 0; ð22Þ

and that (18) and, thus, (21) hold with the minus sign. We
have just seen that the latter condition requires that the
square root in (19) and (21) is bigger than 1. Therefore,
inserting (19) into (17) demonstrates that

K þ frðrÞ <
Δf0rðrÞ
2ðr −mÞ : ð23Þ

On the other hand, (13) requires

−K þ fϑðϑÞ ≤ 0: ð24Þ

Adding these two inequalities together yields

frðrÞ þ fϑðϑÞ <
Δf0rðrÞ
2ðr −mÞ : ð25Þ

In combination with our assumption (22) this implies

ðr −mÞ
Δ

ðfrðrÞ þ fϑðϑÞÞ <
r
ρ2

ðfrðrÞ þ fϑðϑÞÞ ð26Þ

and thus, as ðfrðrÞ þ fϑðϑÞÞ=ðΔρ2Þ > 0,

ðr−mÞρ2−rΔ¼ðr−mÞðrmþa2cos2ϑÞþ rðm2−a2Þ< 0:

ð27Þ
As a2 ≤ m2 and m ≤ r, according to our general assump-
tions, this is the desired contradiction, so we have proven
that (19) and (21) can hold with the minus sign only if the
plasma density is nondecreasing.
If the horizon is approached, Δ → 0, the left-hand side of

(21) goes to 0. The right-hand side, however, is positive and
bounded away from zero, unless in the extreme case,
a2 ¼ m2, where Δ → 0 means r → m. So, if we exclude
the extreme case, the photon region is always separated from
the horizon by a finite interval of the radius coordinate.
In the Schwarzschild case, a ¼ 0, the inequality in (21)

reduces to an equality which can hold only with the upper
sign,

m ¼ ðr − 2mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0rðrÞ

ðr −mÞ
2r2ω2

0

s
: ð28Þ

So in this case the photon region becomes a photon sphere.
Note, however, that the light rays that are confined to this
photon sphere are not in general circles.
In the extreme case, a2 ¼ m2, inequality (21) simplifies

to

− r2ðρ2−2mrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−f0rðrÞ

ðr−mÞ
2r2ω2

0

s
2

�2mrðr2−m2cos2ϑÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−f0rðrÞ

ðr−mÞ
2r2ω2

0

s

≥m2cos2ϑðρ2þ2mrÞþfrðrÞþfϑðϑÞ
ω2
0

m2sin2ϑ: ð29Þ

To demonstrate that the condition for spherical light rays
can indeed hold with the minus sign, we give a specific
example: Consider an extreme Kerr black hole with a
plasma density that satisfies frð3m=2Þ þ fϑðπ=2Þ ¼ m2ω2

0

and f0rð3m=2Þ ¼ −216mω2
0. Then (29) is satisfied, with a

strict inequality sign, at r ¼ 3m=2 and ϑ ¼ π=2 for both
signs; this means that there are two spherical light rays
through each point of this circle, and by continuity also
through each point of a neighborhood of this circle.
We now turn to the conical light rays which are

determined by the equations ϑ̇ ¼ 0 and ϑ̈ ¼ 0. With the
help of (13) these two equations can be written as

K
ω2
0

¼
�

pφ

ω0 sin ϑ
− a sin ϑ

�
2

þ fϑðϑÞ
ω2
0

; ð30Þ

2
cosϑ
sin3ϑ

�
p2
φ

ω2
0

− a2sin4ϑ

�
¼ f0ϑðϑÞ

ω2
0

: ð31Þ
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If ϑ ≠ π=2, Eq. (31) can be solved for pφ=ω0,

pφ

ω0

¼ � sin ϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2ϑþ f0ϑðϑÞ sinϑ

2ω2
0 cos ϑ

s
: ð32Þ

Inserting this expression into (15) gives the region where
conical light rays exist outside of the equatorial plane,

ðρ2−2mrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2ϑþf0ϑðϑÞsinϑ

2ω2
0 cosϑ

s
2

�4mrasinϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2ϑþf0ϑðϑÞsinϑ

2ω2
0 cosϑ

s

≤ ðr2þa2Þρ2þ2mra2sin2ϑ−Δ
frðrÞþfϑðϑÞ

ω2
0

: ð33Þ

We see that, as for the spherical light rays, there are at most
two conical light rays through a point outside the equato-
rial plane.
If ϑ ¼ π=2, Eqs. (30) and (31) give the necessary

conditions for light rays to exist in the equatorial plane.
In other words, any equatorial ray is conical with ϑ ¼ π=2.
In this case Eq. (31) reduces to f0ϑðπ=2Þ ¼ 0 which is
equivalent to

∂ωpðr; ϑÞ2
∂ϑ

����
ϑ¼π=2

¼ 0: ð34Þ

If the plasma density does not satisfy this condition, a light
ray that starts tangentially to the equatorial plane will not
stay in this plane. In the following we assume that (34) is
satisfied and we write, for the sake of brevity, ωpðrÞ instead
of ωpðr; π=2Þ, i.e.,

ωpðrÞ2 ¼
frðrÞ þ fϑðπ=2Þ

r2
: ð35Þ

Then for light rays in the equatorial plane the equations of
motion (11)–(14) reduce to

r2ṫ ¼ ½ðr2 þ a2Þr2 þ 2mra2�ω0 þ 2mrapφ

cΔ
; ð36Þ

r2φ̇ ¼ 2mraω0 þ ðr2 − 2mrÞpφ

Δ
; ð37Þ

0 ¼ K − ðpφ − aω0Þ2; ð38Þ

r4ṙ2 ¼ −KΔþ ½ðr2 þ a2Þω0 − apφ�2 − ωpðrÞ2r2Δ: ð39Þ

By solving (38) for the Carter constant K and inserting the
result into (39) we find the equation for the r-coordinate in
the form:

r4ṙ2 ¼ −ðpφ − aω0Þ2Δþ ½ðr2 þ a2Þω0 − apφ�2
− ωpðrÞ2r2Δ: ð40Þ

The system of equations [(36), (37), and (40)] determines
the motion of light rays in the equatorial plane of the Kerr
metric surrounded by a plasma. Note that with ωpðrÞ ≠ 0
the constants of motion ω0 and pφ enter separately whereas
in the vacuum case the light rays are determined, up to
parametrization, by the quotient pφ=ω0. This reflects, of
course, the fact that a plasma is a dispersive medium.
Here we have derived Eq. (40) under the assumption that

the plasma density in three-dimensional space ωpðr; ϑÞ
satisfies the separability condition (10). Actually, the light
rays in the equatorial plane satisfy Eq. (40), with
ωpðr; π=2Þ abbreviated as ωpðrÞ, even if this separability
condition does not hold. It is only required that (34) holds
which guarantees that light rays remain in the equatorial
plane if they start tangentially to it. In particular, this is true
if the plasma density is symmetric with respect to the plane
ϑ ¼ π=2, i.e., if ωpðr; ϑÞ ¼ ωpðr; π − ϑÞ.

IV. CIRCULAR LIGHT RAYS ON AND
OFF THE EQUATORIAL PLANE

In this Section we investigate the existence of light rays
that are circular about the axis of symmetry. It is well
known that in vacuum there are only two such circular light
rays in the domain of outer communication of a Kerr black
hole with a ≠ 0. Both are in the equatorial plane and the
inner one is corotating with the black hole while the outer
one is counterrotating. In the Schwarzschild case a ¼ 0
these two circular light rays are both located at r ¼ 3m and,
because of the spherical symmetry, any axis through the
origin is a symmetry axis. (Beyond the horizon there are
three more circular lightlike geodesics in a Kerr spacetime
with a ≠ 0, one in the equatorial plane and two off the
equatorial plane, but they are of no relevance for observers
outside of the outer horizon.)
In a plasma, the situation is different; circular light rays

in the domain of outer communication may exist both in the
equatorial plane and off the equatorial plane. We will now
derive the necessary and sufficient conditions for the
existence of circular light rays on and off the equato-
rial plane.
As a circular light ray lies at the intersection of a

coordinate sphere r ¼ const and a coordinate cone
ϑ ¼ const, it has to satisfy Eqs. (17) and (18) for spherical
light rays and Eqs. (30) and (31) for conical light rays. If we
eliminate the Carter constant K from (17) and (30) and
introduce the quantity

ξ ¼ apφ

ω0

− a2 sin2 ϑ; ð41Þ

we get a quadratic equation for ξ:
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ξ2 ¼ −a2 sin2 ϑ
ρ2 − 2mr

ð2ρ2ξ − rFðr; ϑÞÞ: ð42Þ

Here we have introduced the abbreviation

Fðr;ϑÞ ¼ 1

r

�
ρ4 − Δ

frðrÞ þ fϑðϑÞ
ω2
0

�
ð43Þ

and we have used that Δ − a2 sin2 ϑ ¼ ρ2 − 2mr. We get a
second quadratic equation for the same quantity ξ from
(18). Expressing everything with the same function Fðr; ϑÞ,
we find after some algebra,

ξ2 ¼ 2ξ

�
ρ2 −

rΔ
r −m

�
− rFðr; ϑÞ

þ Δ
2ðr −mÞ

�
Fðr; ϑÞ þ r

∂Fðr; ϑÞ
∂r

�
: ð44Þ

Subtracting (44) from (42) results in a linear equation for ξ,

ξ ¼ 1

4m

�
Fðr;ϑÞ − ðρ2 − 2mrÞr

ðr2 − a2 cos2 ϑÞ
∂Fðr; ϑÞ

∂r

�
: ð45Þ

Reinserting this expression for ξ into (42) gives us an
equation that does not contain pφ or K,

8ma2sin2ϑ
�

ρ2r
ðr2 − a2cos2ϑÞ

∂Fðr; ϑÞ
∂r

− Fðr;ϑÞ
�

¼
�
Fðr; ϑÞ − ðρ2 − 2mrÞr

ðr2 − a2cos2ϑÞ
∂Fðr;ϑÞ

∂r

�
2

: ð46Þ

This is a necessary condition the coordinates r and ϑ of a
circular light ray have to fulfill, for given ω0. It is not
sufficient because we also have to take Eq. (31) into
account. Here we have again to distinguish the two cases
ϑ ≠ π=2 and ϑ ¼ π=2. In the first case (31) can be divided
by cosϑ which gives us another quadratic equation for ξ,

ξ2 ¼ −2ξa2 sin2 ϑþ a2 sin3 ϑf0ϑðϑÞ
2ω2

0 cosϑ
: ð47Þ

Subtracting this equation from (42) and inserting (45)
results in

r2 cos ϑ
ðr2 − a2 cos2 ϑÞ

∂Fðr; ϑÞ
∂r

¼ sin ϑf0ϑðϑÞ
2ω2

0

: ð48Þ

Equations (46) and (48) together are the necessary and
sufficient conditions the coordinates r and ϑð≠ π=2Þ of a
light ray off the equatorial plane have to satisfy.
For ϑ ¼ π=2 we know already that (31) holds if and only

if f0ϑðπ=2Þ ¼ 0. If this condition is not satisfied, there are
no light rays in the equatorial plane, in particular no circular
ones. If it is satisfied, (31) gives no further information.

Although (48) was derived under the assumption that
ϑ ≠ π=2, it is actually true that (46) and (48) give the
necessary and sufficient conditions for circular light rays in
the equatorial plane as well: By setting ϑ ¼ π=2 in (48) we
see that the resulting equation is satisfied if and only if
f0ϑðπ=2Þ ¼ 0, whereas (46) with ϑ ¼ π=2 simplifies to

8ma2ðrF0
0ðrÞ−F0ðrÞÞ¼ ðF0ðrÞ− ðr−2mÞF0

0ðrÞÞ2; ð49Þ

where

F0ðrÞ ¼ Fðr; π=2Þ ¼ r3 − rΔðrÞωpðr; π=2Þ2
ω2
0

: ð50Þ

We may summarize our findings in the following way:
Equations (46) and (48) together are the necessary and
sufficient conditions a circular light ray has to satisfy, both
on and off the equatorial plane. For light rays on the
equatorial plane these two equations simplify to Eq. (49)
and f0ϑðπ=2Þ ¼ 0.
With the coordinates r and ϑ of a circular light ray

known and ω0 given, (45) with (41) determines the
pertaining constant of motion pφ, provided that a ≠ 0,
and (17) or equivalently (30) determines the pertaining
constant of motion K. This is true for circular light rays on
and off the equatorial plane. This demonstrates that for a
Kerr black hole with a ≠ 0 the constants of motion pφ and
K of a circular light ray at ðr;ϑÞ are unique. In the
Schwarzschild case a ¼ 0 this is not true, as we will see
in Example 1 below.
Equation (49) is equivalent to Eq. (43) of Paper I, if the

latter is taken with the equality sign and simplified for the
equatorial plane:

a2r2Δ
ðr −mÞ2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0rðrÞ

ðr −mÞ
2r2ω2

0

s !
2

−
a2frðrÞ
ω2
0

¼
�
rða2 −mrÞ

r −m
� rΔ
r −m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0rðrÞ

ðr −mÞ
2r2ω2

0

s �2

: ð51Þ

In order to show the equivalence, it is necessary to write all
terms in (51) on a common denominator and then to take all
terms that are proportional to plus-minus the square-root on
one side. After squaring, the equation no longer contains
radicals. It becomes possible to extract the factor ðr −mÞ2
in the numerator, which cancels with the same factor in the
denominator. The resulting equation will be the same as
Eq. (49) if all terms are explicitly expanded.
Example 1. Schwarzschild black hole.
In the Schwarzschild spacetime (a ¼ 0) the separability

condition (10) simplifies to

ωpðr; ϑÞ2 ¼
frðrÞ þ fϑðϑÞ

r2
: ð52Þ

LIGHT PROPAGATION …. II. PLASMA IMPRINT ON … PHYS. REV. D 109, 064063 (2024)

064063-7



For determining the circular light rays in this spacetime we
observe that with a ¼ 0 Eq. (46) reduces to

r − 3m ¼ ðr − 2mÞ2f0rðrÞ
2ω2

0r
2

; ð53Þ

and that, with this equation at hand, (48) can be rewritten as

sinϑ
f0ϑðϑÞ
2ω2

0

¼ cos ϑ

�
r3

ðr − 2mÞ −
frðrÞ þ fϑðϑÞ

ω2
0

�
: ð54Þ

The pertaining constants of motion pφ and K are then
found by inserting this expression into (31) and (30),

p2
φ

ω2
0

¼ sin2 ϑ

�
r3

r − 2m
−
frðrÞ þ fϑðϑÞ

ω2
0

�
; ð55Þ

K
ω2
0

¼ r3

r − 2m
−
frðrÞ
ω2
0

: ð56Þ

When deriving (55) we have divided both sides of the
equation by tanϑ. However, by continuity the resulting
equation is valid also for ϑ ¼ π=2. Note that (53) is
independent of ϑ. This equation determines the possible
radius coordinate of circular light rays. If such a light ray
actually exists at this radius value depends on whether (54),
with this radius value, admits a solution 0 < ϑ < π. In
contrast to the Kerr case with a ≠ 0, where every circular
light ray comes with a unique pφ and a unique K, in the
Schwarzschild case pφ is unique only up to sign, which
demonstrates that a light ray may run through the circle
either in positive or in negative φ direction.
If fr and fϑ are identically zero, (54) requires cosϑ ¼ 0,

i.e., in vacuum circular light rays exist only in the equatorial
plane. However, aϑ-dependent plasma density can produce a
kind of “force” on light rays that makes circular orbits about
the symmetry axis off the equatorial plane possible. More
specifically, we read from (54) and (55) that a circular light
raymay exist above the equatorial plane if f0ϑ is positive there
and below the equatorial plane iff0ϑ is negative there. E.g., for
a plasma density ωpðr; ϑÞ2=ω2

0 ¼ 27
ffiffiffi
3

p
m2 sinϑ cosϑ=r2,

which satisfies the separability condition with frðrÞ ¼ 0 and
fϑðϑÞ=ω2

0 ¼ 27
ffiffiffi
3

p
m2 sin ϑ cos ϑ, there is a circular light ray

at r ¼ 3m and ϑ ¼ π=6.
In the equatorial plane, circular light rays exist provided

that f0ϑðπ=2Þ ¼ 0 and their radius coordinate is then given
by (53). At a colatitude coordinate ϑ ≠ π=2 the equation
f0ϑðϑÞ ¼ 0 can hold only for circular light rays with
pφ ¼ 0, as can be seen from (54) and (55). Such a light
ray must have φ ¼ const, as follows from (12) with a ¼ 0,
in addition to r ¼ const and ϑ ¼ const which are the
defining conditions for a circular light ray, so it does not
really go around in a circle but is rather static. For such
static light rays the right-hand side of Eq. (55) vanishes.

From Eq. (7) we see that the refractive index of the plasma at
the location of such a light ray is equal to zero, n ¼ 0. This
means, in particular, that the group velocity is zero:
vgr ¼ cn ¼ 0. We may say that at points of the medium
where n > 0, a ray propagates with nonzero group velocity;
at points of the medium where n ¼ 0, the ray stands (at least
momentarily) still; points where n < 0 cannot be reached by
a ray. Static light rays, for which the gravitational attraction is
exactly balanced by a “force” produced by the plasma,
actually exist for some plasma densities. Here is an example;
for a plasma density ωpðr; ϑÞ2=ω2

0 ¼ 54m2 sinϑ cosϑ=r2,
which satisfies the separability condition with frðrÞ ¼ 0 and
fϑðϑÞ=ω2

0 ¼ 54m2 sinϑ cos ϑ, there are static light rays at
r ¼ 3m and ϑ ¼ π=4.
In the spherically symmetric case, i.e., if the separability

condition (52) holds with fϑðϑÞ identically zero, (54)
demonstrates that circular and nonstatic light rays exist
only in the equatorial plane. As in this case any coordinate
plane through the origin can be considered as the equatorial
plane, this implies that all great circles (orthodromes) of the
photon sphere are light rays. The radius rp of the photon
sphere is given by (53). As an alternative, we can determine
this radius by setting a ¼ 0 in Eq. (49). This results in

F0ðrÞ − F0
0ðrÞðr − 2mÞ ¼ 0; ð57Þ

with the function F0ðrÞ in the form

F0ðrÞ ¼ r3 − r2ðr − 2mÞωpðrÞ2
ω2
0

ð58Þ

which is indeed equivalent to (53). The case of a spherically
symmetric plasma density on the Schwarzschild spacetime
was already treated in our earlier paper [48] where we have
written the equation of the photon sphere in the compact
form

d
dr

hðrÞ2 ¼ 0; ð59Þ

where

hðrÞ2 ¼ r2
�

r
r − 2m

−
ωpðrÞ2
ω2
0

�
: ð60Þ

Again, it is easy to check that this is equivalent to (53).
From Eq. (53), it follows that if f0rðrÞ ¼ 0 (in particular,

in the vacuum case when frðrÞ≡ 0), then

rp ¼ 3m: ð61Þ

Correspondingly, for a plasma with plasma frequency

ωpðrÞ2 ¼
Const
r2

; ð62Þ
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the radius of the photon sphere is exactly the same as in
vacuum, regardless of the magnitude of the constant
in Eq. (62).
In our paper [48] we found the linear plasma corrections

to the vacuum value of the photon sphere radius for power-
law density distributions, ω2

p ¼ C0=rk with k > 0. We
revealed that the linear correction is negative for k > 2
and positive for k < 2. In the borderline case, k ¼ 2, the
linear correction is equal to zero. Interestingly, as shown
above, in this specific case the radius is exactly equal to 3m,
even if we do not restrict to small densities.
Example 2. Kerr black hole in vacuum.
We now briefly check that our equations reproduce the

well-known equations for circular vacuum light rays in the
Kerr spacetime. If frðrÞ and fϑðϑÞ are identically zero,
Eq. (48) simplifies to

ρ2ð3r2 − a2 cos2 ϑÞ cos ϑ
r2 − a2 cos2 ϑ

¼ 0; ð63Þ

hence, either a2 cos2 ϑ ¼ 3r2 or ϑ ¼ π=2. In the first case
substituting this expression for a2 cos2 ϑ into (46) results in

−8ma2r3 sin2 ϑ ¼ 16r6; ð64Þ

which can hold only for a negative value of r. This
demonstrates that circular lightlike geodesics off the
equatorial plane do not exist in the domain of outer
communication of a Kerr black hole.
If ϑ ¼ π=2, we may use (49). With ωpðrÞ≡ 0, we write

F0ðrÞ ¼ r3; F0
0ðrÞ ¼ 3r2; ð65Þ

and obtain

4a2m ¼ rðr − 3mÞ2 ð66Þ

or, in the form of Bardeen, Press and Teukolsky [60],
Eq. (2.17) there,

r3=2 − 3mr1=2 � 2am1=2 ¼ 0: ð67Þ

This cubic equation has two solutions in the domain of
outer communication which give the well-known corotat-
ing and counterrotating circular lightlike geodesics.
Example 3. Kerr black hole and plasma with decreasing

density with k ¼ 2 power-law index.
As another example we will now determine the

circular light rays in the equatorial plane if the plasma density
satisfies the separability condition with frðrÞ ¼ C0. The
function fϑðϑÞ is left arbitrary except for the condition that
f0ϑðπ=2Þ ¼ 0 to make sure that light rays in the equatorial
plane exist.Wemay then absorb the constant fϑðπ=2Þ into the
constant C0, i.e., we may assume that ωpðr; π=2Þ2 ¼ C0=r2.
This case is of particular interest, because then the plasma

correction for a Schwarzschild black hole is zero, see above.
Therefore, here a plasma correction to the circular photon
orbit,which is at3m in theSchwarzschild case, canoccuronly
together with corrections due to the black hole rotation. We
will now calculate this correction for the case that the spin
parameter a is small.
We use f0rðrÞ ¼ 0 in Eq. (51). Also, as demonstrated

above, the plus sign has to be used for decreasing density
profiles. We obtain

4a2r2Δ
ðr −mÞ2 −

a2C0

ω2
0

¼
�
r2ðr − 3mÞ þ 2ra2

r −m

�
2

; ð68Þ

which simplifies finally to

rðr − 3mÞ2 − 4a2mþ a2C0ðr −mÞ2
ω2
0r

3
¼ 0: ð69Þ

This is a sixth-order equation for r which cannot be solved
analytically. Therefore, we seek an approximate solution by
linearizing with respect to a, i.e., we set

r ¼ 3mþ ar1; a ≪ m: ð70Þ

We find that, to within this approximation, the counter-
rotating and the corotating circular light rays in the
equatorial plane are at

rp ¼ 3m� a
2
ffiffiffi
3

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

C0

27m2ω2
0

s
: ð71Þ

V. COMMENTS ON THE BLACK HOLE
SHADOW

In this section we return to the main topic of Paper I and
give an additional discussion of the black hole shadow.
First, we remind the reader that for the construction of the
shadow the photon region, as given in (21), is crucial. In
general, both signs in (21) have to be taken into account.
However, we have now proven that the minus sign can
occur (i) only inside the ergoregion, (ii) only if f0rðrÞ < 0,
and (iii) only if the plasma density is nondecreasing with
respect to the radial coordinate, see the discussion below
(21). Moreover, in Paper I we have shown that the minus
sign can be eliminated for a low-density plasma (see
Sec. VI of Paper I) and for power-law distributions [see
Eq. (79) in Sec. VIII of Paper I].
Here we want to use this opportunity for correcting an

inaccuracy in Paper I. There we gave, in Eq. (72) the angular
radius θ of the shadow of a Schwarzschild black hole in a
plasma density ωpðr; ϑÞ2 ¼ ðfrðrÞ þ fϑðϑÞÞ=r2 as
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sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3pðrO − 2mÞ
r3Oðrp − 2mÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðfrðrpÞ þ fϑðϑOÞÞ rp−2mr3pω2

0

1 − ðfrðrOÞ þ fϑðϑOÞÞ rO−2mr3Oω
2
0

vuuut :

ð72Þ

Here rp is the radius coordinate of the photon sphere and rO
andϑO are the coordinates of the observer position. From this
equation, which is correct, we then concluded that the
shadow is increased, in comparison to the vacuum case, if
and only if

ωpðrp; ϑOÞ2
�
1 −

2m
rp

�
< ωpðrO; ϑOÞ2

�
1 −

2m
rO

�
; ð73Þ

i.e., if and only if the second square-root in (72) is bigger than
1. This conclusion is not quite correct because in (72) the
variable rp denotes the radius of the photon sphere in
the plasma which, in general, is different from that in the
vacuum, i.e., from 3m. As the shadow radius θvac in vacuum
is given by

sin θvac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27m2

ðrO − 2mÞ
r3O

s
; ð74Þ

we have

sinθ
sinθvac

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3p
27m2ðrp−2mÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðfrðrpÞþfϑðϑOÞÞ rp−2mr3pω2

0

1− ðfrðrOÞþfϑðϑOÞÞ rO−2mr3Oω
2
0

vuuut ;

ð75Þ

where the first square-root on the right-hand side is in general
different from 1.However, if the plasma density is so low that
we can linearize all equations with respect to fr, fϑ and f0r,
we find from (28) that the radius of the photon sphere in the
plasma can be approximated as

rp ¼ 3mþ f0rð3mÞ
18ω2

0

…: ð76Þ

This implies that, except for quadratic and higher-order
terms, the first square root in (75) equals 1, hence

sin θ
sin θvac

¼ 1 −
ωpðrp; ϑOÞ2

2ω2
0

�
1 −

2m
rp

�

þ ωpðrO; ϑOÞ2
2ω2

0

�
1 −

2m
rO

�
…: ð77Þ

So in the linear approximation it is indeed true that the
shadow is increased if and only if (73) holds. In the general
case, however, one has to consider both square roots in (75).

In Paper I we have observed that the boundary curve of
the shadow may form “fishtails” if the plasma density is
sufficiently big (see Fig. 6 there). We now add some
comments on this situation. We reconsider the case of a
constant plasma density, which is nonrealistic in view of
applications to astrophysics, but mathematically the sim-
plest case for illustrating how the fishtails come about. As
shown in Fig. 5 of Paper I, in this case we have unstable
spherical light rays (orange) between radii rmin and rmax
and stable spherical light rays (hatched green) between
radii rs;min and rs;max. For a ¼ 0.999m and ω2

p ¼ 1.085ω2
0,

the numbers are rmin ≈ 1.0002m, rmax ¼ rs;min ≈ 8.4m and
rs;max ≈ 12m, see the middle panel of Fig. 5 in paper I. Note
that the marginally stable spherical light ray at rmax ¼ rs;min

is not circular, in contrast to the spherical light ray at rmin.
For our fishtail shadow in Fig. 6 of Paper I we chose the

observer at rO ¼ 5m in the equatorial plane, i.e., the
observer is inside the unstable photon region. In Fig. 1
below we have decomposed the curve from Fig. 6 in Paper I
into several parts: Red for the part on one hemisphere,
0 < θ < π=2, and blue for the other hemisphere,

–2 –1 1 2 3 X

Y

–3

–2

–1

1

2

3

FIG. 1. Part of the shadow curve presented in Fig. 6 of Paper I,
see blue color curve with “fishtails” there. Here this curve is
decomposed into several segments indicated by different colors
and different styles of line plotting (red/blue solid, red/blue
dotted, red/blue dashed), see the definitions in the text. The actual
appearance of the shadow crucially depends on the location of the
light sources. For the case that the light sources are distributed
according to assumption (b) the shadow is shown below in Fig. 2.
However, independently of the position of the light sources, in no
case the observer can see such fishtails in the sky; see discussion
in the text.
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π=2 < θ < π. For either case, the boundary curve consists
of three parts:

(i) Solid, where the constants of motion are the same as
for an unstable spherical light ray at radius rp
with rmin < rp < rO;

(ii) Dotted, where the constants of motion are the same
as for an unstable spherical light ray at radius rp
with rO < rp < rmax ¼ rs;min;

(iii) Dashed, where the constants of motion are the same
as for a stable spherical light ray at radius rp
with rmax ¼ rs;min < rp < rs;max.

For all our shadow images we use dimensionless
Cartesian coordinates, X and Y, which are related to the
celestial angle coordinates θ and ψ by stereographic
projection,

X ¼ −2 tan
�
θ

2

�
sinψ ; ð78Þ

Y ¼ −2 tan
�
θ

2

�
cosψ ; ð79Þ

see Eq. (57) of Paper I.
Note the difference between the trapping mechanisms;

unstable spherical light rays are approached by other light
rays from one side in an asymptotic spiral motion. Stable
spherical light rays have trapped light rays in their
neighborhood that oscillate about them.
The solid part of the boundary curve corresponds to light

rays that approach an unstable spherical light ray from
above, either directly (red) or after going through a
maximum radius (blue). The dotted part corresponds to
light rays that approach an unstable spherical light ray from
below, either directly (blue) or after going through a
minimum radius (red). The tips of the fishtails correspond
to the light rays that approach the marginally stable light
ray at rmax ¼ rs;min from below.
In this situation we have two types of light rays issuing

from the observer position into the past; those which go to
the horizon and those which oscillate between a minimum
radius and a maximum radius forever. (For this choice of
parameters there are no light rays going out to infinity.) For
deciding about assigning darkness or brightness to a certain
point on the observer’s celestial sphere it is now of crucial
relevance where the light sources are. There are several
possibilities:
(a) We may stick with the rule to associate darkness with

all light rays that go to the horizon. Then we have to
assume that there are no light sources in the region
crossed by those light rays, in particular not in the
region filled with stable spherical light rays. We are
then forced to associate darkness also with all light
rays that oscillate between a minimum and a maxi-
mum. This would mean that for our observer placed
inside the unstable photon region the entire sky is dark.

(b) We may assume that, among all light rays that go to the
horizon, only those do not meet a light source that
have either no turning point or a turning point below
rmax ¼ rs;min. In agreement with this assumption we
would have to assume that there are light sources in the
region of stable spherical light rays and above, but not
below. The resulting shadow is shown in Fig. 2. It
looks similar to the ordinary Kerr shadow in vacuo.
The boundary of this shadow corresponds to light

rays that spiral towards unstable spherical light rays
(red solid and blue dotted curves), and of light rays
that have their maximum radius exactly at
rmax ¼ rs;min. Note that both on the upper half and
on the lower half of the fishtail-curve there are two
points corresponding to the same radius value of the
limiting spherical light ray. The shadow of Fig. 2
singles out one of them; the point on the solid curve for
0 < θ < π=2 (red) and the point on the dotted curve
for π=2 < θ < π (blue).

(c) We may assume that the region with light sources is
not exactly bounded by rmax ¼ rs;min but rather by
some other value rlimit. As long as rlimit is bigger than
rO, the red solid curve is still part of the boundary of
the shadow, as in Fig. 2, but the other part of the
boundary is shifted either inwards or outwards. If rlimit
is smaller than rO, the entire sky is bright.

So the situation is rather complicated; the shadow very
strongly depends on where the light sources are placed, and
there is no general rule which assumption on the light

–2 –1 1 2 3
X

–3

–2

–1

1

2

3

Y

FIG. 2. Actual appearance of the shadow (shaded area in the
picture) for the curve shown in Fig. 1. This plotting is based on
the assumption (b) of the distribution of light sources; see the text
for more details.
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sources is “right” and which is “wrong”. As long as
consistency is respected, mathematically one can choose
any rule. However, whatever choice for the position of the
light sources is made, in no case the observer will actually
see the fishtails in the sky.
We emphasize that all six parts of the fishtail-curve (red/

blue solid, red/blue dotted, red/blue dashed) correspond to
light rays that have the same constants of motion K and pφ

as a spherical light ray. We now want to investigate which
of the six parts correspond to light rays that actually
approach a spherical light ray. To that end, we introduce
for each K and pφ the effective potential

VðrÞ ¼ K −
1

Δ
ððr2 þ a2Þω0 þ apφÞ2 þ frðrÞ: ð80Þ

Then Eq. (14), which is the same as Eq. (32) of Paper I up
to the changed sign convention for ω0, may be rewritten in
the form of an energy conservation law,

ρ4

Δ
ṙ2 þ VðrÞ ¼ 0: ð81Þ

As the first term (the “kinetic energy”) is non-negative,
only the region where VðrÞ ≤ 0 is allowed. The boundary
of this region gives a turning point if it is not an extremum
and a spherical light ray otherwise; at a maximum, the
spherical light ray is unstable and can be approached
asymptotically by other light rays.
In Figs. 3–5 we plot the effective potential (80) for the

case of a constant plasma density and different values of pφ

and K. We discuss what can be learned from this potential
about the shadow as it is seen by an observer at rO ¼ 5m,
i.e., about Figs. 1 and 2. Figure 3 shows the potential for
values of K and pφ that correspond to an unstable spherical
light ray at a radius rp with rmin < rp < rO. The potential

has a local maximum at rp. We see that from the observer
position at rO ¼ 5m there are two light rays with the chosen
values of K and pφ; one that goes directly towards the
unstable spherical light ray at rp (red solid curve in Figs. 1
and 2) and another one that first moves outwards, has a
turning point and then goes towards the unstable spherical
light ray at rp (blue solid curve in Figs. 1 and 2). If we
perturb the potential a bit, so that the maximum goes either
up or down, we see the following; the red solid curve
separates light rays that go directly towards the horizon

3m rp 6m 9m 12m 15m 18m
r

– 3

– 2

– 1

1

2

3

V(r)

FIG. 3. Graph of the effective potential (80) for a constant
plasma density. Here the values of the constants of motion K and
pφ are chosen such that an unstable spherical light ray is located
at a radius rp with rmin ≈ 1.0002m < rp < rO ¼ 5m.
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FIG. 4. Graph of the effective potential (80) for a constant
plasma density. Here the values of the constants of motion K and
pφ are chosen such that an unstable spherical light ray is located
at a radius rp with rO ¼ 5m < rp < rmax ¼ rs;min ≈ 8.4m. In
contrast to Fig. 3, where rp is closer to the black hole than the
observer, here rp is farther from the black hole than the observer.
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FIG. 5. Graph of the effective potential (80) for a constant plasma
density. Here the values of the constants of motion K and pφ are
chosen such that a stable spherical light ray is located at a radius rp
with rO ¼ 5m < rmax ¼ rs;min ≈ 8.4m < rp < rs;max ≈ 12m. In
contrast to Figs. 3 and 4, the potential now has a local minimum,
rather than a local maximum, at rp and the value rp is farther away
from the black hole than both the observer position and the
rmax value.
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from light rays that oscillate between a maximum and a
minimum. According to assumption (b) above we assign
darkness to the first and brightness to the latter, so the red
solid curve is part of the boundary curve of the shadow.
Similarly, from the perturbed form of the potential we see
that the blue solid curve separates light rays that have a
turning point and then go to the horizon from light rays that
oscillate between a maximum and a minimum. In any case,
these neighboring light rays pass through the region of
stable light rays. According to assumption (b) above we
assign brightness to all of them, so the blue solid curve is
not part of the boundary of the shadow.We repeat, however,
that it corresponds to light rays that spiral towards an
unstable spherical light ray.
Figure 4 shows the effective potential for values ofK and

pφ that correspond to an unstable spherical light ray at
radius rp with rO < rp < rmax. In this case, only the blue
dotted curve corresponds to light rays that spiral towards
the unstable spherical light ray at rp. Points on the red
dotted curve correspond to light rays with the same
constants of motion; however, they go directly towards
the horizon, so the red dotted curve is not part of the
boundary curve of the shadow. Note that here it is essential
that the potential has no zeros between the horizon and rp.

Figure 5 shows the effective potential for values ofK and
pφ that correspond to a stable spherical light ray at radius
rp with rs;min < rp < rs;max. In this case, the potential has a
local minimum at rp. Again, there are two light rays from
the observer position with these constants of motion,
corresponding to the red dashed and the blue dashed curve,
respectively. The light ray on the red dashed curve goes
directly towards the horizon, the light ray on the blue
dashed curve has a turning point at a radius between rO and
rmax ¼ rs;min. Neither of them comes close to rp. According
to assumption (b) we assign darkness to both of them.

VI. EXACT DEFLECTION ANGLE OF LIGHT
RAYS IN THE EQUATORIAL PLANE

The equations of motion of a light ray in the equatorial
plane of the Kerr metric in the presence of a nonhomo-
geneous plasma are given by Eqs. (36), (37), and (40),
where it is assumed that (34) holds and ωpðr; π=2Þ is
abbreviated as ωpðrÞ. In this section, we derive the
expression for the deflection angle of such a light ray.
Dividing (40) by the square of (37) yields, after

some elementary rearrangements, the orbit equation in
the form

�
dr
dφ

�
2

¼
ΔðrÞ2fr3 − rΔðrÞ ωpðrÞ2

ω2
0

− ðpφ

ω0
− aÞ½2arþ ðr − 2mÞðpφ

ω0
− aÞ�g

r½arþ ðr − 2mÞðpφ

ω0
− aÞ�2 : ð82Þ

This equation agrees with Eq. (8.53) of Perlick [29]. More
generally, Crisnejo, Gallo and Jusufi [28] have presented
the orbit equation of a light ray in the equatorial plane of a
stationary and axisymmetric spacetime surrounded by a
pressure-free nonmagnetized plasma, see Eq. (106) there. If
the Kerr metric coefficients [Eqs. (85)–(88) of their paper]
are substituted, the resulting equation also agrees with our
Eq. (82).
As an alternative, Eq. (82) can be rewritten as

�
dr
dφ

�
2

¼ ΔðrÞ2
rðr − 2mÞ

�r2ΔðrÞ½1 − ωpðrÞ2
ω2
0

ð1 − 2m
r Þ�

½arþ ðr − 2mÞðpφ

ω0
− aÞ�2 − 1

�
;

ð83Þ

as can be easily verified by putting the two terms inside the
bracket of (83) on a common denominator and then pulling
out a factor of ðr − 2mÞ from the numerator.
Equation (82) is more involved than (83), but it has the

advantage of being directly applicable to light rays inside
and outside of the ergoregion. Equations (83) and (82) are
equivalent if r ≠ 2m, but for light rays that cross the
boundary of the ergoregion it is more convenient to use (82)

because it can be immediately applied whereas (83)
requires invoking the Bernoulli-l’Hôpital rule or an analytic
extension.
Either of the two equations [(82) and (83)] determines

the geometric shape of all light rays in the equatorial plane
that are not radial (i.e., for which φ is not a constant). In
particular, either of these equations gives us the deflection
angle for any light ray in the equatorial plane that comes in
from infinity, reaches a minimum radius value r ¼ R and
then goes out to infinity again. For such a light ray, the
relation between the minimum radius R and the constant of
motion pφ=ω0 can be found from the condition that the
right-hand side of (83) must vanish at r ¼ R, i.e.,

pφ

ω0

− a ¼ w�ðRÞ; ð84Þ

where

w�ðRÞ¼
R

R−2m

(
−a�

ffiffiffiffiffiffiffiffiffiffiffi
ΔðRÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ωpðRÞ2
ω2
0

�
1−

2m
R

�s )
:

ð85Þ
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Here and in the following, the upper sign is for rays with
φ̇=ω0 > 0 and the lower sign is for rays with φ̇=ω0 < 0, as
can be read from (37). As we assume that a ≥ 0, i.e., that
the black hole is rotating in the positive φ direction, this is

equivalent to saying that the upper sign is for rays that are
corotating and the lower sign is for rays that are counter-
rotating with respect to the black hole. Inserting this
expression for pφ=ω0 into (83) yields,

�
dr
dφ

�
2

¼
ΔðrÞ2fr3 − rΔðrÞ ωpðrÞ2

ω2
0

− w�ðRÞð2arþ ðr − 2mÞw�ðRÞÞg
rðarþ ðr − 2mÞw�ðRÞÞ2

: ð86Þ

Solving for dφ and integrating over the entire light ray gives us the angle Δφ swept out by the light ray on its way from
infinity to the minimum radius and back to infinity,

Δφ ¼ �2

Z∞
R

fðrÞ dr; ð87Þ

where

fðrÞ ¼
ffiffiffi
r

p ðarþ ðr − 2mÞw�ðRÞÞ
ΔðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − rΔðrÞ ωpðrÞ2

ω2
0

− w�ðRÞð2arþ ðr − 2mÞw�ðRÞÞ
r : ð88Þ

[This function fðrÞ should not be confused with the
function frðrÞ from Eq. (10).] Δφ immediately gives us
the deflection angle α̂ which is defined by

α̂ ¼ �Δφ − π ¼ 2

Z∞
R

fðrÞ dr − π: ð89Þ

So α̂ is positive if the light ray is deflected towards the
center, independently of whether the ray is corotating or
counterrotating.
Our new formula for Δφ should be compared with an

earlier formula that was given already in [29]. After
correcting a misprint [there was a spurious square in
Eq. (8.55) that carried over into Eq. (8.57) of [29] ], this
previous formula reads

Δφ ¼ �2

Z∞
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2mÞp

r2 − 2mrþ a2

×

�
hðrÞ2

ð 2ma
r−2m − 2ma

R−2m � hðRÞÞ2 − 1

	−1=2
dr; ð90Þ

where

hðrÞ ¼
�
rðr2 − 2mrþ a2Þ

r − 2m

�
r

r − 2m
−
ωpðrÞ2
ω2
0

�	
1=2

: ð91Þ

The main advantage of the new formula is in the fact that
it can also be used for light rays that enter into the

ergoregion, R < r < 2m; in [29] such light rays were
excluded from the outset and the final formula (90) can
be used inside the ergoregion only by analytic extension.
Below we will plot the exact deflection angle, for some

special plasma densitites, both as a function of the mini-
mum radius coordinate R and as a function of the impact
parameter bwhich is often preferred for characterizing light
rays that come in from infinity. To that end we need to
establish the relation between the impact parameter and the
constants of motion pφ and ω0.
In the vacuum case, for a light ray that comes in from

infinity in an asymptotically flat spacetime, the impact
parameter is known to be equal to jpφ=ω0j. To find out the
physical meaning of pφ=ω0 in the presence of a plasma, we
consider the orbit equation in the form of Eq. (83) in the
situation that the light ray is still far away from the center.
Assuming that the plasma density approaches a finite value
for r → ∞, (83) can be written as

�
dr
dφ

�
2

¼ r4

ðpφ=ω0Þ2
�
1 −

ωpð∞Þ2
ω2
0

�
ð1þOðm=rÞÞ: ð92Þ

Integration yields

lim
r→∞

ðr2ðφðrÞ − φð∞ÞÞ2Þ ¼ ðpφ=ω0Þ2
�
1 −

ωpð∞Þ2
ω2
0

�−1
:

ð93Þ

The left-hand side is equal to the squared impact parameter
b2 of the light ray, so we find finally,
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�
pφ

ω0

�
2

¼ b2
�
1 −

ωpð∞Þ2
ω2
0

�
; ð94Þ

or

�
pφ

ω0

�
2

¼ b2nð∞Þ2: ð95Þ

Formula (95) agrees with the result of [28], see the text after
their Eq. (106). If ωpðrÞ → 0 for r → ∞, then the impact
parameter has its usual relation with the constant of motion
ðpφ=ω0Þ: ����pφ

ω0

���� ¼ b: ð96Þ

We exemplify our new version (87) with (88) of the
deflection formula by Figs. 6 and 7 which show Δφ in the
Schwarzschild and in the extreme Kerr spacetime, respec-
tively, for vacuum and for two different plasma densities.
From Fig. 6 we see that for large R the presence of the

plasma with a decreasing density profile makes the deflec-
tion smaller in comparison to the vacuum case. This can be
easily explained by the refractive effect of a nonhomo-
geneous plasma. We will further discuss this issue below
for the case of weak deflection. At the same time, Figs. 6
and 7 reveal that for small enough R the presence of the
plasma can make the total deflection bigger in comparison
with the vacuum case, even for a decreasing plasma density
profile. Note that the deflection angle diverges if the light
ray asymptotically approaches a circular light ray in the
equatorial plane. If one takes this into account, one sees that
for the Schwarzschild spacetime the above observation is in

agreement with analytical results obtained earlier, see
formulas (57) and (58) in [48]. In vacuum the radius of
the photon sphere in the Schwarzschild metric equals 3m.
In [48] we have found analytically the linear correction to
this radius due to the presence of a small-density plasma. It
has been shown that, depending on the index k of a power-
law density profile, the radius of the photon sphere may
become smaller (k > 2) or bigger (k < 2) than 3m. This
agrees with the behavior of the curves in Fig. 6 for small R.
With the help of (84) the angle Δφ (and, thereby, the

deflection angle) can also be viewed as a function of the
constant of motion jpφ=ω0j, rather than as a function of
the minimum radius R, see Figs. 8 and 9. We have already
demonstrated that in the case that ωpðrÞ falls off to zero for
r → ∞ this constant of motion equals the impact parameter
b. In Figs. 8 and 9 we see an important difference in
comparison to the case where the minimum radius R was
plotted on the horizontal axis; now there is no crossing of
the graphs for different density profiles.
Qualitatively new features arise if the plasma is very

dense or, equivalently, if ω0 is very small. We illustrate this
in Figs. 10 and 11 with another example on the
Schwarzschild spacetime. We see that the wide-dashed
plot shows a nonmonotonic dependence of Δφ on R and
also on b. Moreover, Δφ is smaller than π for some values
of R and b, i.e., it shows a negative deflection angle which
means that the light ray is not attracted towards the center

2m 4m 6m 8m 10m 12m
R

2

3

4

FIG. 6. Δφ in the Schwarzschild spacetime as a function of the
minimum radius coordinate R, for light rays in vacuum (solid)
and in a plasma with ωpðrÞ2 ¼ 7ω2

0ðm=rÞ3 (wide-dashed),
ωpðrÞ2 ¼ 7ω2

0ðm=rÞ2 (dotted) and ωpðrÞ2 ¼ 7ω2
0ðm=rÞ3=2

(narrow-dashed). The vertical line marks the horizon.
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FIG. 7. Δφ in the extreme Kerr spacetime, a ¼ m, as a function
of the minimum radius coordinate R, for light rays in vacuum
(solid) and in a plasma with ωpðrÞ2 ¼ 7ω2

0ðm=rÞ3 (wide-dashed),
ωpðrÞ2 ¼ 7ω2

0ðm=rÞ2 (dotted) and ωpðrÞ2 ¼ 7ω2
0ðm=rÞ3=2

(narrow-dashed). The vertical solid line marks the (outer) horizon
and the vertical dotted line marks the boundary of the ergoregion.
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but rather repelled. In the narrow-dashed plot in Figs. 10
and 11, which refers to an even denser plasma, Δφ even
goes to zero for b → 0which means that the light ray which
aims directly at the center is reflected back in the same
direction from which it came. At the point of reflection
the index of refraction is zero and the light ray stands

momentarily still. This phenomenon is well-known e.g.,
from Earth’s ionosphere where rays of very low frequency
are reflected back.
Without a plasma [ωpðrÞ ¼ 0] Eq. (89) reduces to

α̂vac ¼ �Δφvac − π; ð97Þ

where

Δφvac ¼ �2

Z∞
R

fvacðrÞdr ð98Þ

with

fvacðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2mÞp

r2 − 2mrþ a2

� ðR − 2mÞ2r2ðr2 − 2mrþ a2Þ
ðr − 2mÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 2mRþ a2

p ∓ ð2maðr − RÞÞ2 − 1

�
−1=2

: ð99Þ
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FIG. 9. Δφ in the extreme Kerr spacetime, a ¼ m, as a function
of the impact parameter b, for light rays in vacuum (solid) and in a
plasma with ωpðrÞ2 ¼ 7ω2

0ðm=rÞ3 (wide-dashed), ωpðrÞ2 ¼
7ω2

0ðm=rÞ2 (dotted) andωpðrÞ2 ¼ 7ω2
0ðm=rÞ3=2 (narrow-dashed).
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FIG. 10. Δφ in the Schwarzschild spacetime, a ¼ 0, as a
function of the minimum radius R, for light rays in vacuum
(solid) and in a plasma with ωpðrÞ2 ¼ 6.6ω2

0m=r (wide-dashed),
ωpðrÞ2 ¼ 8ω2

0m=r (narrow-dashed). The vertical line marks the
horizon.
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FIG. 11. Δφ in the Schwarzschild spacetime, a ¼ 0, as a
function of the impact parameter b, for light rays in vacuum
(solid) and in a plasma with ωpðrÞ2 ¼ 6.6ω2

0m=r (wide-dashed),
ωpðrÞ2 ¼ 8ω2

0m=r (narrow-dashed).
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FIG. 8. Δφ in the Schwarzschild spacetime as a function of the
impact parameter b, for light rays in vacuum (solid) and in a plasma
with ωpðrÞ2 ¼ 7ω2

0ðm=rÞ3 (wide-dashed), ωpðrÞ2 ¼ 7ω2
0ðm=rÞ2

(dotted) and ωpðrÞ2 ¼ 7ω2
0ðm=rÞ3=2 (narrow-dashed).

VOLKER PERLICK and OLEG YU. TSUPKO PHYS. REV. D 109, 064063 (2024)

064063-16



Then

α̂pl ¼ α̂ − α̂vac ¼ �Δφ ∓ Δφvac ð100Þ

gives the contribution to the deflection angle that is
produced by the effect of the plasma. If the frequency
ω0 is big in comparison with the plasma frequency ωpðrÞ
everywhere along the ray, we may be satisfied with
linearizing with respect to ωpðrÞ2=ω2

0 for all R < r < ∞.
This results in

α̂pl ¼ 2

Z∞
R

fplðrÞdrþ…; ð101Þ

where

fplðrÞ ¼
−fvacðrÞ3ΔðrÞ3ðR − 2mÞ2r

2m½ðr − 2mÞR ffiffiffiffiffiffiffiffiffiffiffi
ΔðRÞp ∓ 2maðr − RÞ�3

×

�
½ðr − 2mÞR

ffiffiffiffiffiffiffiffiffiffiffi
ΔðRÞ

p ∓ 2maðr − RÞ�ωpðrÞ2
ω2
0

−
ffiffiffiffiffiffiffiffiffiffiffi
ΔðRÞ

p
ðR − 2mÞRωpðRÞ2

ω2
0

�
: ð102Þ

VII. WEAK DEFLECTION OF LIGHT RAYS
IN THE EQUATORIAL PLANE

In this section we obtain the weak deflection approxi-
mation for the deflection angle α̂ introduced in (89).
In the situations considered above, the effects from the

black hole spin and from the plasma environment of
the black hole are mixed together. In order to separate
the contributions of these two effects and to compare them
with each other, we consider light rays flying past the black
hole with big impact parameters which results in weak
gravity effects on the ray. Additionally we assume that the
plasma effects on the paths of such light rays are also small.
As a light ray with a big impact parameter stays far away
from the center, the latter is true if the plasma density falls
off to zero if infinity is approached. This causes the
deflection angle to be small, and the contributions to the
deflection angle from gravity and from the plasma can then
be separated from each other.
For calculation of the deflection angle in the case of

weak deflection we use the formula (90). We denote the
integrand of Eq. (90) by fðrÞ. For further convenience, we
also introduce the abbreviation βpðrÞ ¼ ω2

pðrÞ=ω2
0. We

assume that the values of the dimensionless quantities
m=r, a=r and βpðrÞ are small. Then, the trajectory of a light
ray is almost a straight line, i.e., α̂ ≪ 1.
We expand the expression fðrÞ keeping terms propor-

tional to m, m2, am, a2 and also βpðrÞ and βpðRÞ.

We obtain,

fðrÞ¼ f0ðrÞþfmðrÞþfm2ðrÞþfaðrÞþfa2ðrÞþfωðrÞ;
ð103Þ

where

f0ðrÞ ¼
R

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p ; ð104Þ

fmðrÞ ¼
mðR2 þ rRþ r2Þ
r2ðrþ RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p ; ð105Þ

fm2ðrÞ ¼
3m2ðR2 þ rRþ r2Þ2

2r3Rðrþ RÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p ; ð106Þ

faðrÞ ¼ ∓ 2am

Rðrþ RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p ; ð107Þ

fa2ðrÞ ¼
a2ðr2 − 2R2Þ
2Rr3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p ; ð108Þ

fωðrÞ ¼
rR½βpðrÞ − βpðRÞ�

2ðr2 − R2Þ3=2 : ð109Þ

By integration of these terms [see Eq. (90)], we find the
contributions of different effects to the total light deflection,

2

Z∞
R

f0ðrÞdr ¼ π; ð110Þ

2

Z∞
R

fmðrÞdr ¼
4m
R

; ð111Þ

2

Z∞
R

fm2ðrÞdr ¼
m2ð15π − 16Þ

4R2
; ð112Þ

2

Z∞
R

faðrÞdr ¼ ∓ 4am
R2

; ð113Þ

2

Z∞
R

fa2ðrÞdr ¼ 0: ð114Þ

Note that, although the terms proportional to a2 are present
in the integrand [see Eq. (108)], they do not contribute to
the total deflection [see Eq. (114)]. It is known that in the
vacuum deflection formula of a Kerr black hole, terms with
a2 appear only in terms which are of third order altogether,
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as ma2=R3 or ma2=b3, see, e.g., Refs. [61–63]. Integration
of the term fωðrÞ gives the refractive deflection of a photon:

α̂refr ¼ 2

Z∞
R

fωðrÞdr: ð115Þ

This expression can be transformed (see Appendix B in
[64]) into

α̂refrðRÞ ¼
RKe

ω2
0

Z∞
R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p dNðrÞ
dr

dr; Ke ≡ 4πe2

me
;

ð116Þ

where NðrÞ is the number density of electrons in the
equatorial plane. As a result, we obtain the deflection angle
as a function of R:

α̂ðRÞ ¼ 4m
R

þ
�
15π

4
− 4

�
m2

R2
∓ 4ma

R2
þ α̂refrðRÞ: ð117Þ

Here the first three terms describe the vacuum gravitational
deflection. More precisely, the first term is the first-order
Schwarzschild deflection, sometimes called the Einstein
angle, and the second term is the second-order contribution
of the Schwarzschild deflection. It makes sense to take this
second-order term into account, as the rotation term is of
second order as well. The third term describes the deflec-
tion due to the rotation of the black hole, cf. e.g., [65,66]. In
the presence of rotation, the deflection angle becomes
smaller for direct orbits (corotation, upper sign), and
becomes larger for retrograde motion (counterrotation,
lower sign), cf. [65–70]. (Note that some authors incor-
porate the plus-minus sign into the spin parameter a with
the convention that positive a corresponds to corotation and
negative a corresponds to counterrotation. However, we do
not adopt this convention; as indicated above, we choose
a ≥ 0 throughout.) The last term in (117) is the refractive
deflection, α̂refrðRÞ, given by Eq. (116).
For the gravitational lens equation, it is necessary to have

the deflection angle not as a function of the distance of
closest approach R but of the impact parameter b. Up to
quadratic terms, the gravitational deflection angle in
vacuum is (see, for example, [61,62,69])

α̂ðbÞ ¼ 4m
b

þ 15π

4

m2

b2
∓ 4ma

b2
: ð118Þ

In turn, the refractive deflection α̂refr can also be rewritten
as a function of b (see Appendix B in [64] for details of the
transformation),

α̂refrðbÞ ¼
Ke

ω2
0

Z∞
0

∂N
∂b

dz: ð119Þ

To link up with the notation of [64], here we have written
the electron number density in the equatorial plane as N ¼
NðrÞ where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
, with z denoting the coordinate

along the axis parallel to the incoming ray. For more details
about calculations with formulas (116) and (119) see, e.g.,
[6,64]. Formula (119) was also derived in [22,1].
Calculations of refractive deflection for power-law plasma
distributions can be found, e.g., in [1,6,21,22,64], see
also [28].
Finally, we obtain the total deflection angle as a function

of the impact parameter b:

α̂ðbÞ ¼ 4m
b

þ 15π

4

m2

b2
∓ 4ma

b2
þ α̂refrðbÞ; ð120Þ

where the first three terms describe vacuum gravitational
deflection up to second order in m and first order in a, and
the last term is the refractive deflection, α̂refrðbÞ, given by
Eq. (119). Note that in the following, when writing α̂ð…Þ,
we will always mean the functional dependence on b as in
(120), rather than on R as in (117).
With our definition of α̂, the gravitational (i.e., vacuum)

deflection angle is positive, as it is usually considered. The
refractive deflection α̂refrðbÞ can have either sign, depend-
ing on the specific plasma distribution. In view of appli-
cations to astrophysics it is realistic to assume that the
plasma density decreases with the radial coordinate
(dN=dr < 0). In this case, in the weak-deflection approxi-
mation the refractive deflection is negative; [α̂refrðbÞ < 0],
see [1]. The total angle α̂ can be either positive and
negative, remaining small. Recall that a positive value of
α̂ means that the light ray is bent towards the center.
For the sake of completeness we conclude this section by

giving some further references where higher-order terms
for vacuum deflection in the equatorial plane of a Kerr
black hole can be found [61,62,71]. Exact expressions for
the vacuum deflection angle in the Kerr spacetime are
examined in [63,72]. The vacuum deflection angle by a
Kerr black hole when the incoming trajectory is parallel to
the rotation axis was found already in [73], see also [68,74].
Gravitational lensing by a Kerr black hole in vacuum
(derivation and solution of lens equation, calculation of
image properties) was also investigated in the following
works: [21,62,68,70,75–85].

VIII. INFLUENCE OF THE BLACK HOLE SPIN
AND OF A PLASMA ON IMAGE POSITIONS

In this section, we consider primary and secondary
images of point sources produced by gravitational lensing
of a Kerr black hole surrounded by a plasma. We study the
influence of the black hole spin and of the plasma on the
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position of these images, assuming that the observer and
the light sources are in the equatorial plane and working in
the regime of weak deflection.
It should be noted that, in general, both the black-hole

rotation and the presence of a plasma can lead to the
appearance of additional images. Recall that in the
Schwarzschild spacetime without a plasma, in the weak
deflection approximation there are two images, a primary
one where the azimuthal coordinate sweeps out an angle
between 0 and π and a secondary one where the azimuthal
angle sweeps out an angle between π and 2π. In the
following we stick with the weak-deflection approximation
and we calculate the correction to the position of these two
images as they are produced by the spin of the black hole
and by the plasma density, both of which are assumed to be
small. A similar approach was used in [6] where linear
plasma corrections to the time delay of primary and
secondary images in the Schwarzschild spacetime were
calculated. We mention that the appearance of additional
images due to the presence of a plasma is crucial for
microlensing phenomena, see [3,4] for the influence of a
plasma on microlensing.
In this section we use the standard lens equation for weak

deflection gravitational lensing [86,87]. It relates the
angular position of a source β to the angular positions θ
of images:

β ¼ θ −
Dds

Ds
α̂: ð121Þ

In this lens equation, several assumptions are used. Both
the observer and the source are situated very far from the
black hole; Dds is the distance between the lens and
the source, and Ds is the distance between the observer
and the source (Fig. 12). All light sources are located in the
source plane. The gravitational field is weak, and light rays
are bent only in a lens plane. Deflection angles are small, as
well as all other angles involved: β; θ; α̂ ≪ 1. It is supposed
that the angle β is positive, while the angle θ can be either
positive or negative. (The angle β should not be confused
with the function βp used earlier in Sec. VII.) Different
forms of a lens equation, based on various approximations,
are known in the literature [62,85–92].
Here we assume that both the observer and the light

source are in the equatorial plane of the Kerr metric
(Fig. 12). As the Kerr metric is asymptotically flat, this
implies that the light rays are asymptotically straight lines.
In the presence of a plasma the lens equation can be applied
in the usual form only if we assume that the plasma density
goes to zero as the radial coordinate goes to infinity.
Note that in Eqs. (119) and (120) the argument b is

considered as positive. Therefore, in order to allow negative
θ, the lens equation for the spherically symmetric case can
be rewritten as [e.g., Eq. (17) of [93], Eq. (13) on p. 104 of
[87], Eq. (19) of [6] ]:

β ¼ θ − αðjθjÞ θ

jθj ; ð122Þ

where

αðjθjÞ ¼ Dds

Ds
α̂ðjDdθjÞ: ð123Þ

Here we have used the approximate relation b ¼ Ddjθj,
which is valid for small θ. The angle α̂ can be decomposed
into a contribution from the gravitational field in vacuum
and a contribution from the plasma which was denoted α̂refr
in the preceding section. For practical purposes, the main
interest is in density profiles that are everywhere decreasing
with the radial coordinate, which implies α̂refr < 0. Since it
is more convenient to work with positive values, we
introduce a function BωðjθjÞ by (cf. [3,6])

Dds

Ds
α̂refr ¼ −BωðjθjÞ: ð124Þ

We mean here that after substituting b ¼ Ddjθj into
Eq. (119) we obtain some function of jθj which, after
multiplication by distances and changing sign, is then
denoted BωðjθjÞ. The function BωðjθjÞ is positive for
density profiles decreasing with the radial coordinate.

FIG. 12. Lensing in the equatorial plane of a Kerr black hole
surrounded by plasma in the weak-deflection approximation. The
angular position of the source is given by β > 0. The angular
positions of the images are given by θ. The primary image is the
image located on the same side of the lens as the source (θþ > 0),
and the secondary image is the image on the opposite side
(θ− < 0). The light ray in the left part of the picture corotates with
the black hole, whereas the one in the right part counterrotates.
The angles β, θ, α̂ are assumed to be small. The source and the
observer are assumed to be far from the black hole, Di ≫ m.
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Now we use Eq. (120) with b ¼ Ddjθj and find

αðjθjÞ ¼ θ2E
jθj þ

θ2E
jθj2 εm ∓ θ2E

jθj2 εa − εωBωðjθjÞ: ð125Þ

Here θE is the vacuum angular Einstein radius,

θ2E ¼ 4m
Dds

DdDs
; ð126Þ

and we have introduced the parameters

εm ¼ 15π

16

m
Dd

; εa ¼
a
Dd

: ð127Þ

For consistency, on the right-hand side of (125) we have
also introduced a bookkeeping parameter εω which will be
set equal to unity after all equations have been linearized
with respect to it.
With (125), the lens equation (122) finally becomes:

β ¼ θ −
�
θ2E
jθj þ

θ2E
jθj2 εm ∓ θ2E

jθj2 εa − εωBωðjθjÞ
	
θ

jθj : ð128Þ

We remind the reader that the upper sign in Eq. (125) and in
the lens equation (128) corresponds to corotation, and the
lower sign corresponds to counterrotation.
Now wewill solve the lens equation (128) perturbatively,

in the approximation that εm, εa and εω are so small that
only terms of linear order with respect to these parameters
have to be taken into account. Then the solution of zeroth
order represents the Schwarzschild case with the deflection
term θ2E=θ, whereas the second-order Schwarzschild deflec-
tion, the deflection due to the black-hole rotation and the
plasma refraction are linear perturbations independent of
each other. We will consider the case shown in Fig. 12,
where the primary image is formed by a ray that is
counterrotating with respect to the black hole, and the
secondary image is formed by a ray that is corotating. As
throughout this paper, we assume that a ≥ 0. If the black
hole rotates in opposite direction compared to the picture,
we will just need to change a sign in front of all terms with
a. Perturbative solutions of the lens equation were also
determined for strong lens systems with a singular iso-
thermal ellipsoid model of the lens in [5] and for a singular
isothermal sphere model in [6].
Let us begin with considering the primary image, for

which the corresponding ray is counterrotating and θ > 0,
jθj ¼ θ, see Fig. 12. Therefore, the lens equation (128)
takes the form,

β ¼ θ −
θ2E
θ
−
θ2E
θ2

εm −
θ2E
θ2

εa þ εωBωðθÞ: ð129Þ

We will seek the solution in the following form:

θ ¼ θð0Þ þ εmθ
ðmÞ þ εaθ

ðaÞ þ εωθ
ðωÞ: ð130Þ

Here θð0Þ, θðmÞ, θðaÞ and θðωÞ are unknown functions: θð0Þ is
the zeroth-order term, and the other terms are first-order
corrections associated with the second-order Schwarzschild
deflection, the black hole spin and the plasma, respectively.
Substituting expression (130) into Eq. (129) and keeping

the terms linear in εðmÞ, εðaÞ and εðωÞ, we obtain

β¼ θð0Þ þ εmθ
ðmÞ þ εaθ

ðaÞ þ εωθ
ðωÞ

−
θ2E
θð0Þ

þ εmθ
ðmÞ θ2E

ðθð0ÞÞ2þ εaθ
ðaÞ θ2E

ðθð0ÞÞ2þ εωθ
ðωÞ θ2E

ðθð0ÞÞ2

−
θ2E

ðθð0ÞÞ2 εm−
θ2E

ðθð0ÞÞ2 εaþ εωBðθð0ÞÞ: ð131Þ

The zeroth-order equation

β ¼ θð0Þ −
θ2E
θð0Þ

ð132Þ

for positive θð0Þ gives the position of the primary image for
the point-mass Schwarzschild lens:

θð0Þþ ¼ β

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4θ2E

q
: ð133Þ

Combining the terms containing εm, we obtain the first-
order equation for the Schwarzchild correction θðmÞ,

0 ¼ θðmÞ þ θðmÞ θ2E
ðθð0ÞÞ2 −

θ2E
ðθð0ÞÞ2 ; ð134Þ

and its solution

θðmÞ ¼ θ2E
θ2E þ ðθð0ÞÞ2 : ð135Þ

Analogously, we obtain

θðaÞ ¼ θ2E
θ2E þ ðθð0ÞÞ2 ; ð136Þ

θðωÞ ¼ −
ðθð0ÞÞ2Bωðθð0ÞÞ
θ2E þ ðθð0ÞÞ2 : ð137Þ

Finally, we get the following expression for the position of
the primary image,
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θþ ¼ θð0Þþ þ 15π

16

m
Dd

θ2E

θ2E þ ðθð0Þþ Þ2

þ a
Dd

θ2E

θ2E þ ðθð0Þþ Þ2
−
ðθð0Þþ Þ2Bωðθð0Þþ Þ
θ2E þ ðθð0Þþ Þ2

; ð138Þ

where θð0Þþ is defined in Eq. (133).
Let us also present this solution as an explicit function

of β. After some algebra we get

θþ ¼ θð0Þþ þ 15π

32

m
Dd

wð−ÞðβÞ þ a
2Dd

wð−ÞðβÞ

−
1

2
wðþÞðβÞBωðθð0Þþ Þ; ð139Þ

where we have introduced the function

wð�ÞðβÞ ¼ 1� βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4θ2E

p : ð140Þ

Note that the plus-minus sign in wð�ÞðβÞ is unrelated to the
plus-minus sign that distinguishes between primary and
secondary images.
Now let us consider the secondary image. Here we have

θ < 0, jθj ¼ −θ and the light ray is corotating (Fig. 12).
Therefore, the lens equation (128) takes the form

β ¼ θ −
θ2E
θ
þ θ2E

θ2
εm −

θ2E
θ2

εa − εωBωð−θÞ: ð141Þ

Analogously to the primary image considered above, we
obtain the solution,

θ− ¼ θð0Þ− −
15π

16

m
Dd

θ2E
θ2E þ ðθð0Þ− Þ2

þ a
Dd

θ2E
θ2E þ ðθð0Þ− Þ2 þ

ðθð0Þ− Þ2Bωð−θð0Þ− Þ
θ2E þ ðθð0Þ− Þ2 ; ð142Þ

where θð0Þ− is the zeroth-order solution for the secondary
image,

θð0Þ− ¼ β

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4θ2E

q
< 0: ð143Þ

or, as an explicit function of β,

θ− ¼ θð0Þ− −
15π

32

m
Dd

wðþÞðβÞ þ a
2Dd

wðþÞðβÞ

þ 1

2
wð−ÞðβÞBωð−θð0Þ− Þ; ð144Þ

where wð�ÞðβÞ is defined in (140).
The second-order Schwarzschild corrections in (139),

(144) agree with the results of [94–96]. Both second-order

terms (second-order Schwarzschild and first-order Kerr)
agree with [62] [see formula (32) there and non-numbered
formulas further], see also [81,70].
The expressions (139) and (144) for the image positions

can be significantly simplified if we additionally assume
that β ≪ θE. In this case, the angular positions of the two
images are close to an Einstein ring. The zeroth-order
solutions are

θð0Þþ ¼ θE þ β

2
; θð0Þ− ¼ −θE þ β

2
< 0: ð145Þ

If β is so small that it can be neglected in all the linear
corrections derived above, we obtain for the primary image:

θþ ¼ θE þ β

2
þ 15π

32

m
Dd

þ 1

2

a
Dd

−
1

2
BωðθEÞ; ð146Þ

and for the secondary image,

θ− ¼ −θE þ β

2
−
15π

32

m
Dd

þ 1

2

a
Dd

þ 1

2
BωðθEÞ: ð147Þ

The angular separation between the two images is

Δθ ¼ θþ − θ− ¼ 2θE þ 15π

16

m
Dd

− BωðθEÞ: ð148Þ

The first two terms on the right-hand side give the
separation of the two images for a Schwarzschild lens
with second-order corrections taken into account. The last
term is due to the presence of the plasma. We see that, in the
approximation of Eq. (148), neither a shift of the source nor
an increase of the black hole spin leads to a change of the
angular separation: in first order, the corresponding terms
cancel each other. Only the presence of the plasma leads to
a change, namely to a decrease, of the angular separation.
On the basis of Eqs. (145)–(148) we can compare the

influence of different corrections on the image positions,
see Fig. 13.
In Fig. 13(a), there is a Schwarzschild lens in the case of

perfect alignment of source, lens and observer (β ¼ 0). In
this case the observer will see a circular image known as an
Einstein ring. For purposes of vizualization, we have
arbitrarily chosen the equatorial plane of this black hole,
and have shown only two light rays in this plane which give
two points of the Einstein ring. Now we discuss how the
positions of these two images are changed due to different
effects.
The second-order Schwarzschild correction makes the

photon deflection angle bigger, i.e., it leads to a slight
increase of the size of the Einstein ring. This effect is not
drawn separately in the picture.
In Fig. 13(b), we show the Schwarzschild lens in the case

that the source is shifted relative to the observer-lens line
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(β > 0). In this case, the rotational symmetry is broken, so
the observer does not see a ring but rather two images. They
are shifted in the direction of the source position. As
follows from Eqs. (145)–(147), in the first order of angular
shift β of the source, the displacements of images are equal
by absolute value which means that the angular separation
between the two images remains the same as in the case of
perfect alignment shown in panel (a).

Figure 13(c) shows a Kerr lens in the case of perfect
alignment of source, lens and observer with the source and
the observer in the equatorial plane. Similarly to panel (b),
the Einstein ring of panel (a) breaks into two images, but
now because of the rotation of the lens. In the case of
corotation (left ray), the rotation of the black hole reduces
the gravitational deflection angle, i.e., a ray with the same
impact parameter is deflected by a smaller angle as

FIG. 13. Comparison of different effects on the position of primary and secondary images. The case of a Schwarzschild lens in vacuum
with perfect alignment of source, lens and observer is shown in panel (a). In this case the observer would see an Einstein ring. The
equatorial plane with two rays is chosen arbitrarily in this picture. A shift β of the source relative to the observer-lens line, see panel (b),
leads to a breaking of the Einstein ring. Now there are two images which are shifted in the direction of the source position. To within first
order in β, the displacements of images are equal, i.e., the angular separation between the two images is the same as the diameter of the
Einstein ring in panel (a). The rotation of the black hole, see panel (c), also leads to a shift of both images. To within first order with
respect to the spin parameter a, both images are shifted equally. Thus, also in this case the angular separation between the two images
equals the diameter of the Einstein ring in panel (a). By contrast, the presence of a plasma with decreasing density profile around a
Schwarzschild black hole, see panel (d), leads to a shift of both images towards the lens. Therefore, the angular separation between them
is smaller than the diameter of the Einstein ring in panel (a), already in the first order of the plasma correction; see the last term on the
right-hand side of (148). See more details in the text.
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compared to the Schwarzschild case. Therefore, the light
ray is forced to go closer to the black hole in order to reach
to the observer at the same location, i.e., it must have a
smaller impact parameter than the corresponding ray in the
Schwarzschild case. Therefore, the left image is shifted
towards the lens. In the case of counterrotation (right ray),
the rotation of the black hole increases the angle of
deflection. As a result, the ray forming the image passes
the lens at a greater distance, i.e., its impact parameter is
bigger than the corresponding ray in the Schwarzschild
case. Therefore, the right image is shifted away from
the lens.
As follows from Eqs. (145)–(147), to within first order

with respect to the spin parameter a, both images are shifted
by the same amount. Thus, the angular separation between
the two images in this case also does not change, i.e., it
remains equal to the diameter of the Einstein ring in the
Schwarzschild case.
It is easy to see that the influence of the spin parameter a

on the image positions is equivalent (in the first-order
approximation) to the angular shift of the source from the
observer-lens line by the angle β ¼ a=Dd, see [68] and
references there, and also [70]. Therefore, even if the
observer knows the position of the lens and knows that
the shift of both images takes place, the shift due to the
black-hole rotation is indistinguishable from the shift of
images due to a shift of the source.
In Fig. 13(d), we show the Schwarzschild black hole

surrounded by a plasma with a density that is decreasing
with increase of the radial coordinate. The presence of the
plasma reduces the total angle of deflection. Therefore, to
reach the observer, both light rays in the picture come
closer to the lens in comparison to the vacuum case. As a
result, the observed images are closer to the lens, and the
angular separation between them is smaller. The magnitude
of this effect depends, of course, on the ratio of the plasma
density and the photon frequency.

IX. CONCLUSIONS

(i) In this paper, light propagation in a nonmagnetized
pressure-free plasma in the domain of outer com-
munication of a Kerr black hole is considered, which
is a continuation of our previous study (Paper I [49]).
We assume throughout that the plasma density
depends on the coordinates r and ϑ according to
(10) which allows for separability of the Hamilton-
Jacobi equation for the light rays, i.e., for the
existence of a Carter constant. The necessary and
sufficient condition for separability was derived in
Paper I. Here we have focused on the analysis of
different types of orbits and have found several
phenomena which do not exist in the vacuum case.

(ii) Starting from the equations of motion for a light ray
in the Kerr metric in the presence of a plasma that
satisfies the separability condition, Eqs. (11)–(14),

we have investigated spherical and conical orbits in
Sec. III. It is revealed that there can exist two spherical
light rays travelling through the same point, but that
this can happen only inside the ergoregion. We have
also shown that, as for the spherical light rays, there
are at most two conical light rays through a point
outside the equatorial plane. In the same section, we
give the condition for the existence of light rays in the
equatorial plane, see Eq. (34), and their equations of
motion, see Eqs. (36)–(40).

(iii) In Sec. IV we have derived the necessary and
sufficient conditions for the existence of circular
light orbits on and off the equatorial plane, see
Eqs. (46) and (48). In contrast to the vacuum case,
where circular light rays off the equatorial plane do
not exist in the domain of outer communication, in a
plasma with a ϑ-dependent density such orbits are
possible. This was already briefly mentioned in
Paper I but is discussed in more detail, with
examples, here. Moreover, in the same section the
equation for circular light rays in the equatorial
plane is written in a compact form, see Eq. (49), and
several particular cases are discussed.

(iv) In Sec. V we have continued our discussion of the
influence of a plasma on the shadow of a Kerr black
hole, which was the main topic of Paper I, in
particular the appearance of “fishtails” in the boun-
dary curve of the shadow, see Fig. 6 in Paper I. We
have found that the actual appearance of the shadow
strongly depends on the location of light sources and
that in no case the observer will actually see the
fishtails in the sky.

(v) We have given an exact formula for the deflection
angle of a light ray in the equatorial plane in Sec. VI,
see Eqs. (89), (88), and compared it to an earlier
formula derived by Perlick [29]. The main advantage
of the new formula is that it is suitable for all rays
that come in from infinity and return to infinity,
including those that enter into the ergoregion. We
have also discussed the notion of impact parameter
in relation to other constants of motion in the
presence of a plasma. In particular, the expressions
(94) and (95) are found.

(vi) For several examples we have graphically inves-
tigated the exact dependence of the deflection angle
on the distance of closest approach, and then also on
the impact parameter (Sec. VI). Remarkably, it is
found that the dependence can be nonmonotonic, see
Figs. 10 and 11.

(vii) We have studied and compared the effects of the
black hole spin and of the plasma on gravitational
lensing in the weak-deflection approximation, see
Secs. VII and VIII. We have calculated the deflec-
tion angle of light rays in the equatorial plane of
the Kerr metric with arbitrary value of the spin
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parameter and in the presence of an arbitrary spheri-
cally symmetric plasma distribution. The lens equa-
tion is solved perturbatively and angular positions of
primary and secondary images are found, see
Eqs. (139) and (144). Whereas the presence of the
black hole spin does not lead, in first order of a, to a
change of the angular separation between two
images in comparison with the Schwarzschild case,
the plasma presence does, already in the first order
of the function ω2

p=ω2
0, see Fig. 13.

(viii) In this paper we have considered in more depth the
questions raised in Paper I, and also addressed a
number of other issues related to light propagation in
a plasma on Kerr spacetime. In the future, it would
be worthwhile to consider some of the issues (for
example, the separability condition) in a more
general isotropic medium. Another direction of

research may be an attempt to obtain analytical
results for a magnetized plasma, which is an
anisotropic medium.
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