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It is well established that the magnetic Penrose process (MPP) could be highly efficient (efficiency can
even exceed 100%) for extracting the energy from a Kerr black hole, if it is immersed in a mG order
magnetic field. Considering the exact solution of the magnetized Kerr spacetime, here we derive the exact
expression of efficiency (ηMPP) for MPP, which is valid for both the Kerr black hole (BH) as well as Kerr
superspinar (SS), and also from the weak magnetic field to an ultrastrong magnetic field (B) which can even
distort the original Kerr geometry. We show that although the value of ηMPP increases up to a certain value
of ultrastrong magnetic field (Bp), it decreases to zero for B > Bp, in case of the Kerr BHs. On the other
hand, ηMPP shows the opposite behavior in case of the Kerr SSs. One intriguing feature that emerges is,
ηMPP acquires the maximum value for the Kerr parameter a� ≈ 0.786 (unlike a� ¼ 1 for the ordinary
Penrose process), decreases for the range 0.786 < a� ≤ 1, and reaches to 20.7% for a� ¼ 1 with a few
limitations. This indicates that the BH starts to expel the effect of magnetic field for a� > 0.786, and is fully
expelled from the extremal Kerr BH due to the gravitational Meissner effect. As a special case of MPP, we
also study the ordinary Penrose process (PP) for the magnetized Kerr spacetime. We show that the
efficiency of PP decreases with increasing the magnetic field for the Kerr BH. In case of the Kerr SS, the
efficiency of PP decreases from 103% to 0 for increasing the value of magnetic field from 0 to a specific
value of ultrastrong magnetic field. Thus, the MPP for Kerr BHs, Kerr SSs and the ordinary PP for Kerr SSs
can be superefficient for the astrophysical applications to powering engines in the high-energy sources like
active galactic nuclei and quasars, in the weak magnetic fields. Our strong magnetic field result of MPP
could be important to the primordial BHs in the early Universe immersed in the primordial magnetic fields,
and to the transmuted BHs which are formed by collapsing and/or by merging of the magnetized
progenitors. It is almost impossible to extract the energy from a BH (SS) through MPP (PP) in the
ultrastrong magnetic fields.
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I. INTRODUCTION

The Penrose process (PP) is a mechanism by which the
rotational energy of a Kerr black hole (BH) can be extracted
[1]. As proposed by Roger Penrose in 1969, the energy
extraction is achieved when a parent particle gets split into
two fragments in the vicinity of the BH. In the idealistic
scenario the split would occur very close to the event
horizon. Out of the two fragments one would attain the
negative energy orbits inside the ergoregion and one would
escape to infinity. The escaping particle in this scenario
would carry more energy than its parent particle, because of
attainment of negative energy state by other particle. For a
successful energy extraction it is necessary that the split
should occur in the ergoregion, as there only negative

energy states are available. Maximum 29% [2] of the BH
energy can be extracted in this fashion from a maximally
rotating BH. Further investigations were conducted to test
its astrophysical viability [3–5], the conclusions of which
were not in favor of PP. The poor efficiency of only 20.7%
[2] for a maximally rotating BH, and the condition that the
relative velocity between two fragments should be of order
c=2, [3–5] become the Achilles heel of PP. Note that the
efficiency of PP depends only on the geometry of the
spacetime, and, it does not depend on the mass of the BH.
In 1985, the magnetic version of the PP was proposed by

Wagh et al. [6], which is known as the magnetic Penrose
process (MPP). This is almost similar to the PP with two
major modifications. The first one is, the Kerr BH should
be surrounded by the magnetic fields. The second one is,
the neutral particle should be split into two charged
fragments. One charged particle attains the negative energy,*chandrachur.c@manipal.edu
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and falls into the BH. Another charged particle escapes to
infinity with energy exceeding the energy of the incident
particle to conserve the total energy [6]. Later, it was shown
[7,8] that the efficiency of MPP could even exceed 100% if
a stellar mass Kerr BH is surrounded by a mG order
magnetic fields [2]. Note that the efficiency of MPP does
not only depend on the geometry of the spacetime, but it
also depends on the nonvanishing components of the four-
potential Aμ of the electromagnetic fields and some other
parameters. Remarkably, the condition of the relative
velocity between the two fragments c=2 (where c is the
speed of light in vacuum) for PP [3–5], is nicely circum-
vented in MPP. This is because the required energy could
now come from the electromagnetic fields leaving the
relative velocity between the two fragments to be free [2].
However, the formalism of MPP was developed [6–8]
based on the ordinary Kerr BH assuming the weak
magnetic field, and the components of Aμ was presumed
to be the linear order in B [2]. In another work, it is recently
proposed [9] that the accretion can happen in a superradiant
manner, and the angular momentum can be extracted from
the dyonic Kerr-Newman BH via Penrose process in an
enhanced rate due to the dipolar electric field created by the
rotating magnetic charge of the BH.
In reality, the magnetic field plays an important role to

explain the various astrophysical phenomena, e.g., the
magnetohydrodynamics (MHD) simulation for the accretion
mechanism [10], polarization of the BH shadow [11–13],
gravitational Larmor precession [14,15], gravitational
Meissner effect [16], MPP [2] etc. Although the magnetic
Penrose process was proposed assuming the magnetic field
to be asymptotically uniform [2], the Blandford-Znajek (BZ)
mechanism [17] is generally considered for the MHD
simulation. Due to the lacking of the proper measurements
of the exact shapes of the magnetic field configurations
around a collapsed object, many other numerical techniques
are used to show the strong connections between the shape of
magnetosphere and the characteristics of accretion mecha-
nism [18–20]. To derive the exact solution of MPP, here we
consider the Ernst [21] and/or Wald [22] solution of the
magnetizedKerr spacetime as this is the exact electrovacuum
solution of the Einstein-Maxwell equation following [13].
However, there was some drawback of the Ernst solution
[13], which was removed by [23] in order to obtain a
physically meaningful solution [24]. Later it was applied
to observe the magnetic precession [25] in BH systems with
magnetized accretion disks, the gravitational Faraday rota-
tion [13] etc. Note that the gravitational energy is generally
much greater than the electromagnetic energy, but they are
comparable if the strength of the magnetic field (B) around a
collapsed object with mass M is the order of [15,24]

B ≃ Bmax ∼ 2.4 × 1019
M⊙

M
Gauss ð1Þ

where M⊙ is the solar mass. The strength of the magnetic
field around a BH is considered to be much smaller than the
value of Bmax (i.e., B ≪ Bmax as considered in the original
formulation of MPP [2,6,7]) but the investigations suggest
that the surrounding spacetimes around aBHcould be highly
distorted for B ∼ Bmax. Thus, the magnetic field is important
as a background field testing thegeometry around a collapsed
object [26]. That is the reason, we do not make any
assumption and use any approximation on the field intensity
of the magnetic field.
In this paper, we consider the more general magnetized

Kerr spacetime which is the exact electrovacuum solution
of the Einstein-Maxwell equation with exact components
of the four-potential Aμ of the electromagnetic fields, and
derive the exact expression of the efficiency of the MPP,
without making any assumption on the intensity of the
magnetic fields, value of the Kerr parameter (a�) and Aμ.
Therefore, our result is valid for the (magnetized) Kerr BH
(0 < a� ≤ 1) as well as Kerr SS (a� > 1) [27–29], and also
from the weak magnetic fields to the ultrastrong magnetic
fields which can even distort the original Kerr geometry.
Our exact result of the efficiency of MPP in the magnetized
Kerr spacetime reduces to the result obtained in [2,6,7] for a
Kerr BH immersed in a weak magnetic field. Similarly, our
exact result for the efficiency of PP in the magnetized Kerr
spacetime reduces to the result obtained in [1] for an
ordinary (unmagnetized) Kerr BH. The paper is organized
as follows. The formalism of MPP and ordinary PP in a
general stationary and axisymmetric spacetime are dis-
cussed in Sec. II. Section III is devoted to describe the
magnetized Kerr spacetime and the properties of its
surrounding electromagnetic fields. We derive the exact
expressions of efficiencies for MPP and PP in the mag-
netized Kerr spacetime, and discuss our result for the
magnetized Kerr BHs and Kerr SSs in Sec. IV. Finally we
summarize and discuss the limitation of the formulation
in Sec. V.

II. ENERGY EXTRACTION THROUGH THE
MAGNETIC PENROSE PROCESS FROM A

STATIONARY AND AXISYMMETRIC
SPACETIME

We consider a stationary and axisymmetric spacetime
with the line element

ds2¼ gttdt2þ2gtϕdtdϕþgϕϕdϕ2þgrrdr2þgθθdθ2: ð2Þ

Equation (2) should violate the time reflection symmetry
(t → −t) to satisfy the stationarity condition (see [22] for
details). In addition, the spacetime has to be symmetric
about an axis. gtt could vanish for some specific values of r,
and the biggest (smallest) root among them is r≡ re (ri).
Similarly, grr diverges for some specific values of r, and the
biggest root among them is r≡ Rh. The bounded region
between re and Rh is known as the (outer) ergoregion, as
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the extraction of energy might be possible from this
particular region by the Penrose process. If Rh is obtained
as imaginary (i.e., the event horizon does not exist) for any
special case, the bounded region between re and ri is
known as the ergoregion. For example, the ergoregion is
defined by the bounded region between the inner and outer
ergoradii in case of the Kerr naked singularity (see [27,28]
for details). If re is equal to Rh for all values of θ, the
ergoregion does not arise for that specific case, and the
energy extraction is impossible through the Penrose process
from that spacetime (e.g., Schwarzschild BH, Taub-NUT
BH [30]).
Let us consider an axisymmetric and stationary electro-

magnetic field superposed on the above-mentioned geom-
etry [Eq. (2)] that could be described by the 4-potential
Aμ ≡ ðAt; 0; 0; AϕÞ. The Lagrangian (L) of a test particle of
mass m and charge q (with the charge to mass ratio
λ ¼ q=m) moving in the above-mentioned electromagnetic
field is expressed as

L ¼ 1

2
mgμνẋμẋν þ qAμẋμ ð3Þ

where ẋμð≡UμÞ is the 4-velocity of the particle and the dot
represents the differentiation with respect to the proper time
(τ) of the corresponding particle. Since the metric and the
electromagnetic field both are stationary and axisymmetric,
the t and ϕ components of the generalized momentum (Pμ)
of the particle are conserved. Thus, we can write the
following integrals of motion [7]

Pt ¼
∂L
∂ṫ

¼ mUt þ qAt ¼ −mE ð4Þ

Pϕ ¼ ∂L

∂ϕ̇
¼ mUϕ þ qAϕ ¼ ml ð5Þ

or, equivalently we can define

Ut ¼ −ðE þ λAtÞ ¼ −E ð6Þ

Uϕ ¼ l − λAϕ ¼ L ð7Þ

where E and l are the energy and angular momentum per
unit mass of the test particle, respectively.
In the Penrose process, a neutral particle of mass m1

incident into a collapsed object is supposed to split into two
fragments, e.g., particle 2 of massm2 and particle 3 of mass
m3. At the point of split the energy (mE), the angular
momentum (ml), the linear momentum (mṙ) and the charge
(mλ) are conserved [2,7], respectively, i.e.,

E1 ¼ m2E2 þm3E3;

l1 ¼ m2l2 þm3l3;

ṙ1 ¼ m2ṙ2 þm3ṙ3;

λ1 ¼ m2λ2 þm3λ3: ð8Þ

In Eq. (8), we setm1 ¼ 1without the loss of generality, that
means we are measuring m2 and m3 in terms of m1 [7].
The subscripts 1, 2, 3 represent the corresponding physical
quantities of the incident particle and two fragments
respectively. In addition we restrict the sum of masses of
the fragments after split to m2 þm3 ≤ 1. Let particle 2
attains the negative energy [8] E2 < 0, and falls into the
event horizon, while particle 3 escapes to infinity with
higher energy E3ðE3 > E1Þ to conserve the total energy. To
achieve the maximum efficiency for the Penrose process,
one can set ṙ2 ¼ 0 which implies ṙ1 ¼ m3ṙ3. Thereby, no
kinetic energy is lost through the particle 2. In this way, the
energy of a collapsed object could be extracted. However,
the motion of a charged particle of unit mass is bounded by
the following effective potential [7]

V ¼ −λAt þ ωLþ
�
ð−ΨÞ

�
L2

gϕϕ
þ 1

��
1=2

ð9Þ

where Ψ ¼ gtt þ ωgtϕ < 0, and ω ¼ −gtϕ=gϕϕ ¼ dϕ=dt is
the angular velocity of a locally nonrotating observer.
At the point of splitting of the neutral particle, the

4-momenta Pi (i ¼ 1, 2, 3) of all the three particles
are timelike, and one can define the 4-velocity vector
as U ¼ ṫð1; v; 0;ΩÞ, where ṫ ¼ dt=dτ, v ¼ dr=dt and
Ω ¼ dϕ=dt. Therefore, one can write

U:ξ ¼ −ðE þ λAtÞ ¼ −E ð10Þ

where ξ≡ ð∂tÞ is the timelike Killing vector field, which
yields

ṫ ¼ −E=X ð11Þ

with X ¼ gtt þΩgtϕ. Using the 4-velocity U with
U:U ¼ −1, one can write

gtt þ 2gtϕΩþ gϕϕΩ2 þ grrv2 ¼ −ðX=EÞ2 ≤ 0: ð12Þ

There is a limit on Ω (say, Ωgen
� ),

Ωgen
� ¼ ω� 1

gϕϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ − gϕϕgrrv2

q
ð13Þ

(where ψ ¼ gttgϕϕ − g2tϕ) tending to which, U tends to a
null vector. It indicates that the allowed values of Ω at any
fixed ðr; θÞ are Ωgen

þ < Ω < Ωgen
− [28]. This follows from

Eq. (8)
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ϕ̇1 ¼ m2ϕ̇2 þm3ϕ̇3;

ṙ1 ¼ m2ṙ2 þm3ṙ3; ð14Þ

or, equivalently

Ω1ṫ1 ¼ m2Ω2 ṫ2 þm3Ω3 ṫ3;

v1ṫ1 ¼ m2v2ṫ2 þm3v3 ṫ3: ð15Þ

Let us now assume that a neutral particle splits, i.e., λ1 → 0.
As the astronomical bodies does not possess any charge,
this assumption is well justified [7]. This requires the
incident particle to be uncharged. Using Eqs. (8), (11), and
(15), one can obtain from Eq. (8), for m3E3:

m3E3 ¼ χE1 −m3λ3At ð16Þ

where

χ ¼
�
Ω1 −Ω2

Ω3 −Ω2

�
X3

X1

ð17Þ

¼
�
v1X2 − v2X1

v3X2 − v2X3

�
X3

X1

ð18Þ

with Xi ¼ gtt þ Ωigtϕ. One can also write down

v1ðΩ3 −Ω2Þ þ v2ðΩ1 − Ω3Þ þ v3ðΩ2 −Ω1Þ ¼ 0 ð19Þ

from Eq. (18), which is considered as the coplanarity
condition for the 3-momenta: P1 ¼ P2 þ P3. Finally, the
general expression for efficiency (ηgen) can be written as

ηgen ¼ m3E3 − E1

E1

¼ χ − 1 −
m3λ3At

E1

ð20Þ

using Eq. (16). It is shown [7] that χ is maximized when all
the radial velocities are zero, i.e., v → 0 in Eq. (13), and
Ω2 ¼ Ω− and Ω3 ¼ Ωþ. In such a case, Ωgen

� reduce to
[8,28]

Ω� ¼ 1

gϕϕ
ð−gtϕ �

ffiffiffiffiffiffiffi
−ψ

p Þ ð21Þ

and, Ω1 reduces to [8]

Ω1 ¼
−gtϕð1þ gttÞ þ ð−ψð1þ gttÞÞ1=2

g2tϕ þ gϕϕ
: ð22Þ

Substituting all those above in Eq. (20), finally we obtain
the expression of the efficiency (η) as [2]

η ¼
��

Ω1 −Ω−

Ωþ −Ω−

��
gtt þ Ωþgtϕ
gtt þΩ1gtϕ

�
− 1

�
−
qAt

m
ð23Þ

where m3λ3 ¼ q3 ≡ q that is the charge of the outgoing
particle of mass m. In Eq. (23), E1 is taken as E1 ≈ 1
following [7] as the incident particle initially moves non-
relativistically in almost all realistic situations [7]. In
addition, for the realistic calculation, the last term of
Eq. (20) is replaced by qAt=m in Eq. (23) following [2]
[see also [7] and the discussion below Eq. (8)], so that it
becomes dimensionless in the geometrized unit (G¼ c¼ 1).
Note that the term in the square bracket of Eq. (23) is purely a
geometric factor which depends only on the metric compo-
nents, whereas the other term that remains outside of it, is not
a geometric factor. It depends on the mass and charge of the
outgoing particle, and At including the metric components,
whichwould be cleared aswe proceed. If q and/orAt vanish,
Eq. (23) gives the efficiency (η≡ ηPP) for the ordinary
Penrose process [1]. On the other hand, if a nonzero At
arises (with a nonzero q) due to the presence of a magnetic
field, Eq. (23) can provide the efficiency (η≡ ηMPP) of the
magnetic Penrose process [2].
However, now one can easily apply Eq. (23) to find the

efficiency for various axisymmetric and stationary space-
times. In this paper, we are going to apply it for the Kerr
spacetime which is immersed in a magnetic field. Thus, let
us first briefly discuss the magnetized Kerr spacetime in the
next section.

III. KERR SPACETIME IMMERSED IN A
UNIFORM MAGNETIC FIELD

The exact electrovacuum solution of the Einstein-
Maxwell equation for the magnetized Kerr spacetime is
written as [24,31,32]

ds2 ¼
�
−
Δ
A
dt2 þ dr2

Δ
þ dθ2

�
ΣjΛj2

þ A sin2 θ
ΣjΛj2 ðjΛ0j2dϕ −ϖdtÞ2 ð24Þ

where

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2 cos2 θ; ð25Þ

A¼ ðr2 þ a2Þ2 −Δa2 sin2 θ; ϖ ¼ α− βΔ
r2 þ a2

þ 3

4
aM2B4:

ð26Þ

M and a are the mass and spin parameter of the Kerr
spacetime (respectively) which is immersed in an uniform
magnetic field (B). Λðr; θÞ is a complex quantity and it has
two parts, the real part of Λ: ReΛ and the imaginary part of
Λ: ImΛ. Thus, one can express it as:
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Λ≡ Λðr; θÞ ¼ ReΛþ i ImΛ

¼ 1þ B2 sin2 θ
4

�
ðr2 þ a2Þ þ 2a2Mr sin2 θ

Σ

�
− i:

aB2M cos θ
2

�
3 − cos2 θ þ a2 sin4 θ

Σ

�
ð27Þ

where ið≡ ffiffiffiffiffiffi
−1

p Þ represents the imaginary unit. In the expression of ϖ [Eq. (26)],

α ¼ að1 − a2M2B4Þ ð28Þ

and;

β ¼ aΣ
A

þ aMB4

16

�
−8r cos2 θð3 − cos2 θÞ − 6r sin4 θ þ 2a2 sin6 θ

A
½2Ma2 þ rða2 þ r2Þ�

þ 4Ma2 cos2 θ
A

½ðr2 þ a2Þð3 − cos2 θÞ2 − 4a2 sin2 θ�
�
: ð29Þ

The term

jΛ0j2 ≡ jΛðr; 0Þj2 ¼ 1þ a2M2B4 ð30Þ

is introduced in the metric [Eq. (24)] to remove the conical
singularities on the polar axis [13,24,31]. Equation (24)
shows that the event horizon of the magnetized Kerr black
hole remains the same as that of a Kerr black hole, i.e.,

r� ¼ Mð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

q
Þ ð31Þ

where a� ¼ a=M. This indicates that the magnetic field B
does not have any effect on the event horizon.
Equation (31) also reveals that the radius (Rh ≡ rþ) of
the event horizon Rh ¼ Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ becomes imagi-

nary for a� > 1. This indicates that the horizon does not
exist, and the ring singularity (r → 0; θ → π=2) could be
visible from the infinity, in principle [28]. However, the
quantum gravity effects should be important in the region
where the spacetime curvature approaches the Planck scale,
i.e., very close to the ring singularity [33]. It is also widely
accepted that quantum gravity will resolve the singularity
resulting in an overspinning object with a boundary at a
positive value of r (say, r ¼ Rs), which is referred to as a
“superspinar” [28,29]. The value of Rs could be r ¼ Rs ¼
10−3M following [34]. Remarkably, it has recently been
proved that the superspinars are stable [35] (see also [34]).
However, the angular momentum (J) of the magnetized
Kerr spacetime is affected by B as [32]

J ¼ aMð1 − a2M2B4Þ≡ a�M2ð1 − a2�M4B4Þ ð32Þ

which vanishes for a� → 0 as well as a� → 1=ðB2M2Þ. This
indicates that the angular momentum of an extremal Kerr
BH (a� ¼ 1) vanishes if it is immersed in the ultrastrong
magnetic field B ¼ M−1. For BM ≪ 1, one can neglect the

second term and write J ≈ a�M2 using Eq. (32). The
ergoregion is also affected by B for the magnetized Kerr
spacetime. One can obtain two positive real roots (reo and
rei with reo > rei) as the radius of ergoregion (re) by
solving the following equation,

gtt ¼ −
ΔΣ
A

jΛj2 þϖ2A sin2 θ
ΣjΛj2 ¼ 0: ð33Þ

Although Eq. (33) cannot be solved analytically, it could be
solved numerically to get an impression of the structure of
the ergoregion in the presence of magnetic field (see [36]
for details). The solution of Eq. (33) for B → 0 reduces to

rejB→0 ¼ Mð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2� cos2 θ

q
Þ: ð34Þ

One should note here that although the event horizon does
not exist for a superspinar (SS), the ergoregion still exists
for it. In case of the Kerr naked singularity, the ergoregion
is defined by the bounded region between rei and reo (see
[27] for details). However, in case of the Kerr SS, we do not
bother about rei as it is inside Rs, and thus, the ergoregion
should be defined by the bounded region between Rs and
reo [29]. However, its structure would be significantly
different with and without magnetic fields. For example,
the ergoregion for a weakly magnetized (BM ≪ 1) Kerr SS
look like a torus, with openings along the axis of rotation
[29] (similar to Figs. 1 and 2 of [28]). Note that the energy
from the Kerr BH (Kerr SS) could be extracted from the
ergoregion bounded by Rh (rei) and reo [27,28].
Here the Kerr spacetime is immersed in a magnetic field

which has symmetries of stationarity and axial symmetry.
As the magnetic field is asymptotically uniform, the non-
vanishing components of the four-potential Aμ can be
written as [32]
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Aϕ ¼ Aϕ0 þ
BjΛ0j2
8ΣjΛj2 fa

6B2x2Δ2
x þ r4Δxð4þ B2r2ΔxÞ þ a2r½4B2M2rx2ð3 − x2Þ2 þ 4MΔ2

xð2þ B2r2ΔxÞ

þ r½4 − 4x4 þ B2r2ð2 − 3x2 þ x6Þ�� þ a4½4x2Δx þ B2½4MrΔ3
x þ 4M2ð1þ x2Þ2 þ r2ð1 − 3x4 þ 2x6Þ��g ð35Þ

and,

At ¼ At0 −ϖ

�
Aϕ −Aϕ0

jΛ0j2
�
− aMB3

�
2rþ 1

A

�
4a2M2r − rðr2 þ a2ÞΔΔx −

1

4
ðr3 − 3a2rþ 2Ma2ÞΔΔ2

x

��
ð36Þ

for A ¼ AtdtþAϕdϕ, where Δx ¼ ð1 − x2Þ and
x ¼ cos θ. The two gauge additive constant Aϕ0 and At0

[32] could be fixed depending on requirement. In the linear
order in B, Eqs. (35) and (36) reduce to

Aϕ ¼ Aϕ0 þ
AB sin2 θ

2Σ
þOðB2Þ ð37Þ

and

At ¼ At0 −
aMrB sin2 θ

Σ
þOðB2Þ ð38Þ

respectively. For choosing vanishing Aϕ0 and At0,
Eqs. (37) and (38) are not only resemble to Eq. (3.4) of
[24] but it is also accordance with the gauge
Atðr → ∞Þ ¼ 0, as described in [24,31]. This gauge is
more suitable to describe the charged particle ergospheres
around a magnetized black hole [31]. However, in order to
ensure the regularity of the electromagnetic field on the
rotation axis of the magnetized Kerr spacetime [Eq. (24)],
Aϕ0 of the exact expression of Aϕ [Eq. (35)] has to be
gauge fixed such that Aϕ ¼ 0 at x ¼ �1 [32]. Thus, one
obtains Aϕ0 ¼ −2a2M2B3 following [32].

The magnetic flux (FB) through the upper hemisphere of
the event horizon is an important parameter in the theory of
the electromagnetic extraction of energy from a Kerr black
hole [17]. The general expression of FB for the magnetized
(Kerr-)Newman spacetime was derived in [24], which
reduces to [24]

FB ¼ 4πBM2
1 − a2B2

1þ B2M2
ð39Þ

for the magnetized Kerr spacetime. FB vanishes only for
a ¼ 1=B, not necessarily for the extremal Kerr black hole.
For the noncharged magnetized solution in the linearized
approximation (in B) corresponds to the electric charge
Q ¼ −2aMB, the magnetic flux vanishes [see Eq. (4.5) of
[24]] for the extremal Kerr black hole, which resembles to
the result obtained in [37] (see also [16,38,39] and
references therein) within the test field approximation.
This result leads to obtain the expression of At in
Eq. (2) of [2], which vanishes on the horizon of an extremal
Kerr black hole. Thereby, to satisfy Eq. (2) of [2], we
choose At0 ¼ aB for θ → π=2. Using the concept of
comoving potential, we replace At with −At following
[40]. Considering all those above, finally we obtain

Atjθ→π=2 ¼ aB

�
M
2

�
5B2M þ 3B2r −

a2B2

r
þ 2½4þ B2ða2 − 3r2Þ�
4rþ B2½r3 þ a2ð2M þ rÞ�

�
− 1

�
ð40Þ

for θ → π=2. Equation (40) reveals that At vanishes at θ →
π=2 in the linear order of B for the extremal Kerr BH, as
mentioned in [2,24], whereas it does not vanish if one
considers the exact expression or the higher orders of B.

IV. ENERGY EXTRACTION FROM MAGNETIZED
KERR SPACETIME THROUGH (MAGNETIC)

PENROSE PROCESS

Using the results obtained in Secs. II and III, we deduce
the efficiency of (magnetic) Penrose process for the

magnetized Kerr spacetime in this section. For the mag-
netized Kerr spacetime [Eq. (24)], one can write

gtt ¼ −
�
ΔΣjΛj2

A
−
Aϖ2 sin2 θ
ΣjΛj2

�
;

gtϕ ¼ −
ϖAjΛ0j2 sin2 θ

ΣjΛj2 ; gϕϕ ¼
ϖAjΛ0j4 sin2 θ

ΣjΛj2 : ð41Þ

Note that Ωþ and Ω− achieve the same value at the event
horizon (r ¼ Rh), i.e.,
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Ωh ¼
dϕ
dt

����
r¼Rh

¼ −
gtϕ
gϕϕ

����
r¼Rh

¼ a
2MRh

�
1 − a2M2B4

1þ a2M2B4

�
þ 3

4

�
aM2B4

1þ a2M2B4

�
ð42Þ

which reduces to ΩKerr
h ¼ a=ð2MRhÞ [41] for B → 0.

Substituting Eqs. (40) and (41) in Eq. (23), one can obtain
the exact expression of the efficiency ðηMPPÞ of MPP at a
specific r for the magnetized Kerr spacetime. Setting q → 0
in ηMPP, one can obtain the exact expression of the
efficiency ðηPPÞ of the PP at a specific r for the magnetized
Kerr spacetime. However, in this paper, our aim is to
calculate the maximum efficiency which is obtained if the
split occurs close to the boundary of the BH (event horizon:
Rh) and boundary of the SS (∶Rs). Therefore, we substitute
r → Rh for a BH and r → Rs for a SS in the exact
expressions of ηMPP and ηPP, and obtain the useful
expressions and plots in the next section. However, we
do not show here the exact expressions of ηMPP and ηPP, as
those are very big in size.1 The expressions of ηMPP and ηPP
are important only for the numerical calculations, which we
use to plot the curves presented in this paper. Thus, we only
mention the (approximate) expressions of the efficiency in
the next section for the various special cases to understand
how the efficiency is affected by the physical parameters in
the weak magnetic fields (B ≪ M−1). Note that ηMPP
depends on the various physical parameters, such as, mass
(M) and Kerr parameter (a) of the collapsed object, the
intensity of the magnetic field (B) around it and the charge
by mass ratio (λ ¼ jq=mj) of the outgoing fragment. All of
these play an influential role regarding the magnitude and
nature of the efficiency. In this paper, we only consider
jqe=mej of the electron (i.e., λe ¼ jqe=mej ¼ 7.24 × 1021)
following [2], and compare it with the jqp=mpj of the
proton (i.e., λp ¼ jqp=mpj ¼ 3.94 × 1018) in some inter-
esting cases. Note that almost all the curves in this paper are
plotted for λe, if it is not stated specifically.

A. Efficiency of magnetic Penrose process for the
magnetized Kerr black hole

Figure 1 shows the nature of ηMPP for the various values
of a� and B (in the unit of M−1) for2 λe ¼ 7.24 × 1021. As
the chosen scale is very large, all the curves seems to be
originating from the origin at (0, 0). However, in reality,
depending on the values of Kerr parameter the curves
originate from different values of the Y-axis. This is clear
from Fig. 2 which is plotted for the weak magnetic field
(mG order). Note that Fig. 2 is exactly similar to Fig. 1 of
[2] except the new feature of decreasing ηMPP for

a� > 0.786 ≈ 0.79, which shows that our exact result is
consistent with the earlier result (in the weak magnetic field
limit: B ≪ M−1) obtained in [2] as the efficiency of MPP.
Figure 2 shows that ηMPP can be more than 100% even in
the mG order magnetic field. Remarkably, Fig. 1 shows that
the energy extraction could be much higher (∼1022%) if the
Kerr BH is surrounded by an ultrastrong magnetic field
[B ∼M−1, see also Eq. (1)]. The enormous energy which is
extracted from the magnetized Kerr BH, may not only

FIG. 1. ηMPP versus B for the Kerr BHs surrounded by an
ultrastrong magnetic field. It shows that the peak (ηmax) of ηMPP
starts to decrease for a� > 0.79, and ηMPP ≤ 20.7% for a� ¼ 1, as
seen from Fig. 3. As the value of ηMPP is very low for a� ¼ 1
compared to the values shown along the Y-axis in the present plot,
we draw Fig. 3 separately. See Sec. IVA for details.

FIG. 2. ηMPP versus B for the Kerr BH of M ¼ 10M⊙
surrounded by a mG order magnetic field. The solid red line
represents ηMPPð≈20.7%) for a� ¼ 1. This figure is similar to
Fig. 1 of [2] except the new feature of decreasing ηMPP for
a� > 0.79. See Sec. IVA for details.

1The exact expressions (ηMPP and ηPP) of the same can be
available upon request.

2We do not consider λ ¼ q=m ¼ 1, as it seems to be
unphysical.
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come from the rotational energy of the BHs, but it could
also come from the energy of the electromagnetic fields.
This is because the ultrastrong magnetic field itself could be
act as an energy reservoir [42], and it can release enormous
amount of energy in many cases [42,43]. However, Fig. 1
reveals that the efficiency increases upto a particular value of
Bð≡BpÞwith increasing the magnetic field, attains a peak at
B ¼ Bp and then decreases to zero at a particular value of
B (≡B0). Intriguingly, the efficiency at Bp increases for
increasing the value of a� from 0 to a� ¼ 0.786 ≈ 0.79,
and, then decreases for 0.786 < a� ≤ 1. The efficiency
(ηexBHMPP ) for the extremal Kerr BH is almost invisible in
Fig. 1, because it first remains constant at ηexBHMPP ¼ 20.7%
(≪ the values of Y-axis in Fig. 1), and, then vanishes atB0 ∼
2.43 × 10−8M−1 (for electron) which is clear from Fig. 3. If
the outgoing particle is a proton, B0 ∼ 2.97 × 10−7M−1 for
the extremal Kerr BH.

Note that the exact expression of the efficiency (ηMPP) of
MPP for the extremal magnetized Kerr BH (a → M;
r → M) is deduced as

ηexBHMPP ¼ 1

4

�ð8þ 8B2M2 þ 8B4M4 þ B8M8Þ1=2
1þ B2M2

− 2

�

−
qB3M3

2m
:
ð4þ 7B2M2Þ
ð1þ B2M2Þ : ð43Þ

For BM ≪ 1, if one considers up to the linear order in B of
Eq. (43), the efficiency becomes exactly the same (20.7%)
to the unmagnetized extremal Kerr BH case, as predicted in
[2], and also seen from Eq. (45). For BM ¼ 1, the
efficiency [Eq. (43)] would be

ηexBHMPP jBM→1 ¼
1

8
−
11q
4m

: ð44Þ

Equation (44) reveals that the efficiency becomes negative
for q=m > 1=22which is much less than λe and λp. Thus, it
is almost impossible to extract the BH energy through MPP
in this special case.
The similar pattern in the efficiency curves of Fig. 1 in

the mG order magnetic field can also be noticed in Fig. 2,
i.e., ηMPP increases with the increasing the value of B and
0 < a� < 0.786, but decreases for 0.786 < a� ≤ 1. The
efficiency becomes exactly same to the efficiency of the
regular extremal Kerr BH, i.e., 20.7% which is represented
by the solid red line in Fig. 2 even in the presence of
magnetic fields. This is the well-known gravitational
analogue of Meissner effect in superconductor, where a
conductor turns to a superconductor and all fields are
expelled out [2]. Therefore, the effect of magnetic fields
vanishes (due to Rh → M) from the dominating second
term (linear order in B) of the following efficiency
expression,

ηBHMPP ¼
1

2

 ffiffiffiffiffiffiffi
2M
Rh

s
− 1

!
þ q
m
aB

�
1 −

M
Rh

�
−
a2B2

2
ffiffiffi
2

p
�
M
Rh

�
3=2

þ q
m
aMB3

R2
h

½4Ma2 þ Rhða2 − 7M2Þ� þOðB4Þ: ð45Þ

Equation (45) is similar to Eq. (9) of [2], if one considers up
to the terms linear order in B. Note that we obtain Eq. (45)
from our exact expression of ηMPP which reduces to
Eq. (45) for BM ≪ 1 and r → Rh. The term q=m which
is responsible for the MPP, appears for the odd orders in B.
This is clear from the second and fourth terms of Eq. (45).
Interestingly, the gravitational analogue of the Meissner
effect can diminish the efficiency to zero for the further
increment of the magnetic field for a� ¼ 1, which is clear
from Fig. 3 as well as the third term of Eq. (45). This does

not reflect in Eq. (9) of [2], as they considered the terms
linear in B. Hence, we obtain the additional contribution
shown in Fig. 3 in terms of the gravitational Meissner
effect. One should note here that the BH slowly starts to
expel the magnetic field around a� ∼ 0.786 and it is fully
expelled for a� ¼ 1. That is why, the efficiency of MPP
starts to decrease from a� ¼ 0.786 and is continued until
a� ¼ 1 which is clear from Figs. 1–3.
A close observation of Fig. 4 reveals that ηmax for

a�ηmax
≈ 0.786, and the decreasing trend of ηMPP for the

FIG. 3. ηexBHMPP versus B for an extremal Kerr BH (a� ¼ 1)
surrounded by a magnetic field of B ∼ 10−7M−1. It shows that the
efficiency for an extremal Kerr BH remains constant (as seen
from the solid red line of Fig. 2), then decreases and vanishes in
the comparatively stronger magnetic field shown in Fig. 1. See
Sec. IVA for details.
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range 0.786 < a� ≤ 1 remains unchanged for the BH mass
M ≳ 10M⊙ and its surrounding magnetic fields B >
10 mG including the ultrastrong magnetic fields (see
Figs. 1 and 3). For B < 10 mG, the value of a�ηmax

depends
on the mass of the BH as seen from the solid red curve of
Fig. 4. Similarly, it also holds for the BHs of M > 105M⊙
surrounded by a B > 1 μG, represented by the dashed blue
curve in Fig. 4. The dotted orange curve of the same (Fig. 4)
shows that a�ηmax

≈ 0.786 and the range remains almost
unchanged for a supermassive BH ofM ¼ 1010M⊙ even in
the extremely weak magnetic field. The orange curve
indicates that ηMPPð≡ηmaxÞ becomes maximum for
a� ¼ 0.786, whereas the upper portion of the curve indicates
ηMPP < ηmax. Similarly, the range (0.786 < a� ≤ 1) remains
unchanged for a BH ofM ¼ 105M⊙ withB > 0.01 mG, but
the range decreases (e.g., 0.87 < a� ≤ 1 valid for
B > 10−4 mG) if the magnetic field decreases further.
This can be seen from the dashed blue curve of Fig. 4. A
particular point in a specific curve of Fig. 4 indicates that
ηMPP becomes maximum for that specific value of a� ≡
a�ηmax

and B. For a� > a�ηmax
for that particular value of

magnetic field, ηMPP < ηmax. The value of a�ηmax
in the weak

magnetic field can be obtained by setting ∂ηBHMPP=∂a ¼ 0 for
the terms linear in B of Eq. (45), and solve for a. Note that if
the outgoing particle is considered as a proton, the value
a�ηmax

≈ 0.786 remains same, but the curves of Fig. 4 shifts
toward right (i.e., away from theY-axis). For example, the red
curve of Fig. 4 starts to move upward at a valueB ∼ 104 mG
instead of B ∼ 10 mG.
Note that all of the above-mentioned conclusions remain

unchanged if we calculate the efficiency for a supermassive
BH (SMBH) of massM ¼ 1010M⊙ which surrounded by a

μG order magnetic field. For example, Fig. 5 shows that the
efficiency of MPP is much greater than 100%, and an
enormous amount of energy can be extracted from that
SMBH. This could explain why the AGNs are so luminous
during their active phase.

B. Efficiency of Penrose process for the
magnetized Kerr black hole

As we mentioned in Sec. IV, one can easily obtain the
exact expression of ηPP of the ordinary PP for the
magnetized Kerr BH, if q → 0 and r → Rh are substituted
in the exact expression of MPP. For the weak magnetic
field, the even order terms (e.g., first and third terms) of B
of Eq. (45) can be considered for the approximate expres-
sion of efficiency for the ordinary PP, i.e.,

ηBHPP ¼ 1

2

 ffiffiffiffiffiffiffi
2M
Rh

s
− 1

!
−
a2B2

2
ffiffiffi
2

p
�
M
Rh

�
3=2

þOðB4Þ: ð46Þ

Although the two terms of Eq. (46) are purely geometric,
the second term is responsible for decreasing the efficiency
of PP with increasing the magnetic field satisfied by
BM ≪ 1. This could be clear from the starting part of
the curves of Fig. 6.
However, the curves of this figure are plotted with the

exact expression of ηPP. It indicates that ηBHPP decreases with
increasing the magnetic field, but it can increase further in
the ultrastrong magnetic field depending on the value of
Kerr parameter which is clear from Fig. 6.
In case of the ordinary Penrose process for the magnet-

ized extremal Kerr BH, we obtain the exact expression of
efficiency as

FIG. 4. a�ηmax
versus B in the weak magnetic field for the

different BHs. The orange curve indicates that ηMPPð≡ηmaxÞ
becomes maximum for a� ¼ 0.786 ≈ 0.79, whereas the upper
portion of the curve indicates ηMPP < ηmax. In a similar manner,
the red/blue curve stands for ηmax for the respective BHs, whereas
the right side of the same curve ηMPP < ηmax. See Sec. IVA for
details.

FIG. 5. ηMPP versus B for a Kerr BH of M ¼ 1010M⊙
surrounded by a μG order magnetic field. ηMPP for a� ¼ 1 is
so small ð≈20.7%Þ compared to the values mentioned along the
Y-axis, that it cannot be seen in this plot (see Fig. 3). The feature
of all curves is qualitatively similar to Fig. 2 including a�ηmax

≈
0.79 (see Fig. 4). See Sec. IVA for details.
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ηexBHPP ¼ 1

4

�ð8þ8B2M2þ8B4M4þB8M8Þ1=2
1þB2M2

−2

�
ð47Þ

by substituting q → 0 in Eq. (43). The above equation
shows that the efficiency of the extremal Kerr BH decreases
from 20.7% to 1=8 ∼ 12.5% for the ordinary Penrose
process in the presence of strong magnetic field. The
minimum efficiency (∼12%) in this case is obtained for
B¼ð ffiffiffi

3
p

−1Þ1=2M−1≈0.8556M−1. Intriguingly, very close
to B → M−1, the value of ηPP of the following range:
0.96 < a� ≲ 0.99 increases, which is slightly greater than
even ηexBHPP ¼ 12.5%. However, the efficiency decreases for
0.99 < a� ≤ 1. This could also be an indication of the
trailing part of gravitational Meissner effect which is
similar to the trailing part of the curves shown in Fig. 3.
This feature is not very clear from Fig. 6. Although the red
and blue solid curves of Fig. 6 are seem to be overlapped, in
reality, the blue curve crosses the red curve close to
B → M−1. If one extends the x-axis further, the feature
would be visible.

C. Efficiency of magnetic Penrose process
for the magnetized Kerr superspinar

In case of the magnetized Kerr SS, a huge energy
extraction could be possible from the vicinity of the
boundary of the superspinar even in the absence of the
magnetic field. Note that the energy extraction from r → 0
(very close to the singularity) is not feasible. The quantum
gravity effects should be important in the region where the
spacetime curvature approaches the Planck scale, i.e., very
close to the ring singularity [33]. It is also widely accepted
that quantum gravity will resolve the singularity resulting
in an overspinning object with a boundary at a positive

value of r, which is referred to as a superspinar [28,29].
Therefore, we restrict our probe for r ≥ 0 [28], and the limit
of the point of split is considered at the boundary (Rs) of the
SS: Rs ¼ 10−3M following [34], as already discussed in
Sec. II. This radius (Rs) is still conservative

3 in this aspect
that the curvature of the spacetime as an astrophysical
object is tiny (in the Planck unit) at the distance 10−3M
from r ¼ 0 [34]. Thus, r could be replaced by Rs in the
exact expression of ηMPP (as mentioned in Sec. IV) to
calculate the efficiency of MPP in case of the Kerr SS.
For the weak magnetic fields (BM ≪ 1), the exact

expression of ηMPP reduces to

FIG. 6. ηPP versus B for the Kerr BHs surrounded by an
ultrastrong magnetic field. Very close to B → M−1, the value of
ηPP of the following range: 0.96 < a� ≲ 0.99 increases, which is
slightly greater than ηexBHPP ¼ 12.5%. For 0.99 < a� ≤ 1, the
efficiency decreases. See Sec. IV B for details.

FIG. 7. ηMPP versus B for the Kerr SSs surrounded by an
ultrastrong magnetic field. Although ηMPP increases with both B
and a� in this figure, very close to the Y-axis (B ≪ M−1) it
behaves in a opposite way, which is depicted separately in Fig. 8.
See Sec. IV C for details.

FIG. 8. ηMPP versus B for a Kerr SS of M ¼ 10M⊙ surrounded
by a mG order magnetic field. It shows that ηMPP decreases with
both B and a�, which is opposite (see Fig. 7) to the behavior in the
ultrastrong magnetic field. See Sec. IV C for details.

3The value of Rs could be up to the Planck length, i.e.,
Rs > 1.6 × 10−35 meter.
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ηSSMPP ¼
1

2

 ffiffiffiffiffiffiffi
2M
Rs

s
− 1

!
þ q
m
aB
�
1 −

M
Rs

�
−

B2

8
ffiffiffiffiffiffiffiffiffiffiffiffi
2MR3

s

p ½R3
sðRs − 2MÞ þ a2ð4M2 þ R2

sÞ�

þ q
m
aMB3

2R2
s

½a2ðM þ RsÞ − R2
sðRs þ 5MÞ� þOðB4Þ ð48Þ

for r → Rs. The efficiency profile plotted using the exact
expression of ηMPP is given in Figs. 7 and 8 for the
ultrastrong and mG order magnetic fields, respectively.
In the case of a SS surrounded by an ultrastrong magnetic
field, Fig. 7 shows a rather deceiving nature of a monotonic
increase in efficiency with increasing the value of a�. On
initial inspection, besides extremely high ηMPP value
nothing seems that different, but by further zooming into
the origin we observe a rather interesting feature of the plot
(see Fig. 8). It shows that ηMPP suffers a drastic drop for a
very small increment in the magnetic field, e.g., although
ηMPP ≈ 2186% [see Eq. (48)] for B → 0, it vanishes at B ∼
0.005 mG for a� ¼ 5. Figure 8 reveals that the initial rate
(in the mG order magnetic field) of dropping in efficiency
with higher value of Kerr parameter is higher, whereas the
rising rate of efficiency with higher value of Kerr parameter
is also higher in the ultrastrong magnetic fields (see Fig. 7).
As seen from Fig. 7, the rise in ηMPP is observed in the
ultrastrong magnetic field at which a very large efficiency
could be obtained. The MPP efficiency of the magnetized
Kerr SS is larger (Fig. 7) than the efficiency attained by a
magnetized Kerr BH (Fig. 1). Moreover, the feature of the
curves of Fig. 7 is completely different form the feature of
the curves of Fig. 1.

D. Efficiency of Penrose process
for the magnetized Kerr superspinar

The efficiency profile of the ordinary PP for the
magnetized Kerr SS is plotted using the exact expression
of ηPP, and is given in Fig. 9.
In the weak magnetic field (BM ≪ 1), one can obtain the

efficiency of PP as

ηSSPP ¼ 1

2

 ffiffiffiffiffiffiffi
2M
Rs

s
− 1

!
−

B2

8
ffiffiffiffiffiffiffiffiffiffiffiffi
2MR3

s

p
× ½R3

sðRs − 2MÞ þ a2ð4M2 þ R2
sÞ� þOðB4Þ ð49Þ

by substituting q → 0 in Eq. (48). In case of the ordinary
(unmagnetized) Kerr superspinar (i.e., B → 0), the exact
expression of ηMPP reduces to

ηSSPPjB→0 ¼
1

2

 ffiffiffiffiffiffiffi
2M
Rs

s
− 1

!
ð50Þ

that does not depend on the value of mass and spin
parameter of SS. It only depends on the value of Rs=M.
For example, ηSSPPjB→0 ≈ 2186% for Rs ¼ 10−3M. This
shows that a huge energy extraction could be possible
from an ordinary Kerr SS through the ordinary PP, even in
the absence of magnetic field.
This suggest that the SSs are also likely to be very

luminous during their active phase [29] like BHs. This
could explain why the AGNs are so luminous [29]. In case
of the SSs, the ergoregion fills a torus [27] with an opening
angle [27,29] along the axis of rotation for a� > 1. This
phenomenon could facilitate the formation of relativistic jets.
The particles falling in from the innermost stable circular
orbit (ISCO) are trapped by the gravitational well. This
produces so much high pressure in the central region that the
natural escape route for the particles along the rotation axis as
they cannot overcome the frame dragging of the ergoregion
[29]. As the accretion disks are full of charged particles, a
magnetized accretion disk with a weak magnetic field (e.g.,
1 μG) could be able to explain the relativistic jets from the
view of MPP and PP in the case of Kerr SS.
Now lets put forth some efficiency (ηMPP) comparisons

for the particles where magnitude of q=m resembles that of
particles such as electrons and protons. Panel (a) of Fig. 10
shows that, the particles with higher q=m are much more
efficient as compared to the particles with lower q=m
(ηMPP ≈ 0.6%), in the case of magnetized Kerr BH. In the
case of magnetized Kerr SS, the particles with higher q=m

FIG. 9. ηPP versus B for the Kerr SSs surrounded by an
ultrastrong magnetic field. It shows that ηPP decreases with both
B and a�, the feature of the curves are opposite to the curves of
Fig. 7. See Sec. IV D for details.
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suffers a sudden efficiency drop with increase in magnetic
field and possesses comparatively lower efficiency than the
particles with lower q=m value. In addition to having
higher efficiency, they can hold onto that efficiency for
longer ranges of magnetic field. So a SS can accelerate a
higher mass particle much more efficiently than a com-
paratively lower mass one and a BH can accelerate a lower
mass particle much more efficiently than a heavier one, for
the given range of magnetic fields.

V. SUMMARY AND DISCUSSION

Several important and interesting results have been
presented in this paper. Below we summarize it as follows:
(1) Considering the exact solution of the magnetized

Kerr spacetime, we have derived the exact expres-
sion of MPP and PP which are valid for the
magnetized Kerr BH as well as magnetized Kerr SS.

(2) Our result is applicable from the weak magnetic field
to the ultrastrong magnetic field (i.e., 0 to any
arbitrary value of B) which can even distort the
original Kerr geometry. Unlike the earlier works, we
have not assumed the weak-field approximation in
B, and still our results are consistent with the
previous studies carried out with the similar moti-
vation.

(3) We have shown that although the efficiency of MPP
increases (much more than 100%) up to a certain
value of ultrastrong magnetic field (Bp), it decreases
to zero after crossing that particular value (Bp), in
case of the magnetized Kerr BHs. This indicates that
a ultrastrong magnetic field could resist the extrac-
tion of energy from a Kerr BH. On the other hand,
ηMPP shows the monotonically increasing behavior
in case of the magnetized Kerr SSs in the ultrastrong
magnetic fields.

(4) One intriguing feature that emerges is, ηMPP acquires
the maximum value (∼1022%) for a� ≈ 0.786 (unlike

a� ¼ 1 which occurs for the ordinary PP in the
unmagnetized Kerr BH case), and ηMPP decreases for
the range 0.786 < a� ≤ 1, if the Kerr BH surrounded
by an ultrastrong magnetic field. This is also true for
theweakmagnetic fields (see Fig. 2), but there is some
limitations as discussed in Sec. IVA. This indicates
that the BH starts to expel the magnetic field around
a� ∼ 0.786 and it is fully expelled for a� ¼ 1 due to
the gravitational Meissner effect.

(5) MPP efficiency for the extremal Kerr BH was earlier
predicted to be remain constant (20.7%) with B, as it
was obtained only up to the linear order in magnetic
field B. From our exact calculation, it is shown that
the MPP efficiency remains constant up to a specific
value of B (see Fig. 3). After that, the MPP
efficiency decreases to zero. This is an additional
effect on top of the gravitational Meissner effect.

(6) For the first time, we provide an equivalent mecha-
nism of MPP/PP by which the energy from a Kerr SS
(if it exists in nature) could be extracted. To the best
of our knowledge, the magnetic Penrose process for
a Kerr SS has not been formulated so far.

(7) We show that a particle with higher q=m (charge to
mass ratio) is much more efficient as compared to
the particle with lower q=m, in case of the MPP for a
magnetized Kerr BH. In case of the MPP for a
magnetized Kerr SS, the particles with higher q=m
suffer a sudden efficiency drop with increase in
magnetic field and possesses comparatively lower
efficiency than the particles with lower q=m value.

(8) As a special case of MPP, we have also derived the
exact expression of the ordinary PP for the magnet-
ized Kerr spacetime. We have shown that the
efficiency of PP for the magnetized Kerr BHs
decreases with increasing the magnetic field, but
it can slightly increase close toB ∼M−1 depending on
the value of Kerr parameter. In case of the Kerr SS

(a) (b)

FIG. 10. ηMPP versus B with different λ is of the order of a particle like electron and a proton in the vicinity of two different Kerr
collapsed objects (BH and SS) withM ¼ 10M⊙. See Sec. IV D for details. (a) BH: a� ¼ 0.3. Red curve indicates ηMPP ∼ 0.6% with λp.
(b) SS: a� ¼ 2.
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(with Rs ∼ 10−3M), the efficiency of PP decreases
from 2186% to 0 for increasing the value of magnetic
field from 0 to some ultrastrong magnetic field.

(9) Based on our results we also conclude that for a
given mass of a collapsed object, a Kerr SS provides
higher ηMPP comparing to a Kerr BH in the ultra-
strong magnetic field. In a similar manner, a Kerr SS
provides higher ηPP comparing to a Kerr BH, i.e.,
ηSSPP > ηBHPP for a mG order magnetic field. Note that
the Kerr SS has not been detected yet.

(10) In the ultrastrong magnetic field, it is almost
impossible to extract the energy from a Kerr BH
throughMPP (for B > 0.36M−1) and from a Kerr SS
through PP (for B > 0.25M−1). Thus, an ultrastrong
magnetic field could stop the energy extraction from
the Kerr collapsed objects. In these cases, the mag-
netic fields could act as a shield [20], and does not
produce outflows from the active galactic nuclei
(AGN) in the form of astrophysical jets. In other
words, it may prevent any charged and neutral
particles [15] escaping to infinity, and, thereby, refrain
to produce any outflows from a collapsed object.

(11) If a B ∼ 10 mG can help to reach ηMPP > 100% (as
shown in [2]), it is not very surprising to reach
ηMPP ∼ 1022% for a B ∼M−1 [see Eq. (1)]. This
enormous energy which is extracted from the mag-
netized Kerr spacetimes, does not only come from
the rotational energy of the collapsed objects, but it
could also come from the surrounded electromag-
netic fields. For instance, the second term of Eq. (45)
consists of qB=m (≡ωL which is related to the
Larmor precession [44]) multiplied by a (spin
parameter of the Kerr BH). The coupling between
a very large value of ωL in the ultrastrong magnetic
field and the spin of the BH could play an important
role for producing such an enormous energy for
MPP. It could also be useful to note here that a strong
magnetic field could be act as an energy reservoir
[42], and it can release enormous amount of energy
in many cases [42,43,45].

Although the upper limit of the magnetic fields in the x-
ray corona of the BH Cygnus X-1 rises to 107 G [46],
emission models of Sagittarius A* and M87* provide B ∼
30–100 G [47] and B ∼ 1–30 G [11] respectively, the
ultrastrong magnetic fields [∼ Eq. (1)] around a BH has
not been detected yet. It is still unclear whether such a
ultrastrong magnetic fields (B > 0.36M−1) exist in the
Universe. If the ultrastrong magnetic field even exists
around a collapsed object, it may not be detectable due
to the magnetic shielding [20]. However, our result could
be verified if such a ultrastrong magnetic field is discovered
around a collapsed object in future.
The ordinary PP is not enough for its astrophysical

viability for Kerr BH (even in the presence of magnetic
field), as its efficiency is very low (ηPP < 20.7%). On the
other hand, based on the efficiency produced for a low

value of magnetic fields, it is clear that MPP is a astrophysi-
cally viable mechanism for producing high energy particles
in the weak (e.g., mG, μG order) magnetic fields. Recent
astronomical observations suggests that a collapsed object
is generally surrounded by the radiative matters, ionized
particles, hot gases and all of these together around the
same object constitutes the accretion disc, and this could
create a magnetic habitat around it. Blandford and Znajek
proposed a mechanism [17] to extract the rotational energy
of a BH through the electromagnetic interaction. The BZ
mechanism requires B≳ 105 G for it to be even operative.
For example, the maximal BZ power was calculated [2] as
1.7 × 1046 erg=s for M ¼ 109M⊙ and B ¼ 104 G. On the
other hand, a mG order magnetic field can generate
enormous energy from a Kerr collapsed object through
MPP. It indicates that the MPP is much more efficient than
the BZ mechanism [2]. Therefore, in recent years serious
efforts have been made to directly explain the origin of jets
[48,49] and ultrahigh-energy cosmic rays [45] using MPP.
The production mechanisms of ultrahigh-energy (e.g.,

EeVorder) cosmic rays which we receive on Earth from the
outer space, remains unclear. Almost all the currently
available mechanisms are based on the electromagnetic
interaction between the accelerated charged particles.
Intriguingly, the highest energy of a detected cosmic ray
is 3 × 1020 eV [50]. Our result shows that ηMPP could reach
maximum upto ∼3 × 1022% (note that the number is
independent of the mass of the BH; see Fig. 1) in case of
a magnetizedKerr BH andmuchmore for a magnetizedKerr
SS. For example, Fig. 1 shows that a charged particle of 1 eV
could escape to infinity with the energy 1020 eV from a
magnetized Kerr BH of a� ∼ 0.79, which is surrounded by
B ∼ 0.2M−1. Thus, the existence of any ultrastrong magnet-
ized BHs in reality4 could have explained the production
mechanism of EeV range energy cosmic rays.
A ultrastrongmagnetic field in the order of 1020 Gmay be

originated (see [51,52] and references therein) in the early
Universe, and the primordial black holes (PBHs) could be
immersed in that magnetic fields. Our exact result of MPP in
the presence of ultrastrong magnetic fields could be appli-
cable to those strongly magnetized PBHs. Our result could
also be important to those BHs which are formed by collapse
induced5 by an endoparasitic BH through capturing of dark

4It is not realistic to expect such a high magnetic field
(B ∼ 0.2M−1) around a SMBH as of now, because B ∼ 0.2M−1

is equivalent to 1010 G for a SMBH of M ∼ 109M⊙, and such a
strong magnetic field around a SMBH has not been detected yet.

5These BHs are generally known as the transmuted BHs [53].
If a BH is formed by collapse induced by an endoparasitic BH
through capturing of dark matter in a magnetar ofM ∼ 2M⊙, one
may expect a comparable strong magnetic field (B ∼ 0.2M−1

equivalent to 1018 G in this case) around that BH, or the BH
formed by merging of several such strongly magnetized progeni-
tors. Note that such a strongly magnetized BH and/or a near-solar
mass BH has not been detected yet (but, see [53–55]).
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matter into a neutron star [53,56] (or, white dwarf [43],
magnetar etc.) with magnetic field, and by merging of a BH
with one (or multiple) magnetized neutron star(s) or mag-
netar(s) [20,57,58]. In such cases, themagnetic field could be
prevented from sliding off the newly formed BH as shown in
[57,59] (but see [60]), and one can calculate ηMPP of such
magnetized BHs by using our exact expression of MPP.
As there is a huge discrepancy in the MPP efficiency of

Kerr BH and SS for the similar value of magnetic fields,
one could distinguish between them by studying the power
output from a collapsed object, if the Kerr SS, in fact, exists
in nature. The SS and BH could also be distinguished
theoretically based on another parameter and that is the
energy carried by the lighter particle (e.g., electron) as
compared to that of heavier particle (e.g., proton). In fact, if
and when a split occurs in ergoregion producing oppositely
charged particles, the electrons are generally accelerated
outward [61] and come out from the polar region [45,61].
Thus, we have discussed our result focusing on the
efficiency of MPP using electron.
Although the original magnetized Kerr metric dealt with

in this paper is not asymptotically flat and the magnetic field
is considered to be asymptotically uniform following [2], it

is an exact electrovac solution of Einstein-Maxwell equa-
tion. This is also a standard practice to consider a uniform
magnetic field around a collapsed object (BH or SS) to
explain the several astrophysical phenomena (e.g., see
[2,13,45,62–67] and so on), as it is easier to handle. The
lacking of the proper measurements of the exact shapes of
the magnetic field configurations [18,19] around a collapsed
object is also the another reason for assuming the uniform
magnetic fields in this paper. Finally, the MPP formalism
could be improved by considering the varying magnetic
field, which could be more realistic.
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