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One of the main challenges in the numerical modeling of binary neutron-star mergers are long-term
simulations of the postmerger remnant over timescales of the order of seconds. When this modeling
includes all the aspects of the complex physics accompanying the remnant, the computational costs can
easily become enormous. To address this challenge in part, we have developed a novel hybrid approach in
which the solution from a general-relativistic magnetohydrodynamics (GRMHD) code solving the full set
of the Einstein equations in Cartesian coordinates is coupled with another GRMHD code in which the
Einstein equations are solved under the conformally flat condition (CFC). The latter approximation has a
long history and has been shown to provide an accurate description of compact objects in nonvacuum
spacetimes. An important aspect of the CFC approximation is that the elliptic equations need to be solved
only for a fraction of the steps needed for the underlying hydrodynamical/magnetohydrodynamical
evolution, thus allowing for a gain in computational efficiency that can be up to a factor of ∼6ð230Þ in
three-dimensional (two-dimensional) simulations. We present here the basic features of the new code, the
strategies necessary to interface it when importing both two- and three-dimensional data, and a novel and
robust approach to the recovery of the primitive variables. To validate our new framework, we have carried
out a number of tests with various coordinates systems and different numbers of spatial dimensions,
involving a variety of astrophysical scenarios, including the evolution of the postmerger remnant of a
binary neutron-star merger over a timescale of one second. Overall, our results show that the new code,
BHAC+, is able to accurately reproduce the evolution of compact objects in nonvacuum spacetimes and that,
when compared with the evolution in full general relativity, the CFC approximation reproduces accurately
both the gravitational fields and the matter variables at a fraction of the computational costs. This opens the
way for the systematic study of the secular matter and electromagnetic emission from binary-merger
remnants.
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I. INTRODUCTION

A new era of multimessenger astronomy combining the
detections of gravitational-wave (GW) signals with a variety
of electromagnetic counterparts has begun with the detec-
tion of the GW170817 event, revealing the merger of a
system of binary neutron stars (BNS) [1–3]. The availability
of multimessenger signals provides multiple opportunities
to learn about the equation of state (EOS) governing nuclear
matter, to explain the phenomenology behind short gamma-
ray bursts and the launching of relativistic jets [4–7], to
harvest the rich information coming from the kilonovae
signal [8–14], and to obtain information on the composition
ofmatter accreting aroundor ejected from theseBNSmerger
systems (see, e.g., [15,16], for some reviews). However, the
comprehensive understanding of the physical mechanisms

involved in these phenomena necessitates an accurate and
realistic description of the highly nonlinear processes that
accompany these events. Hence, self-consistent numerical
modeling encompassing accurate prescriptions of the
Einstein equations, general-relativistic magnetohydrody-
namics (GRMHD), radiation hydrodynamics to describe
neutrino transport, and the handling of realistic and temper-
ature-dependent EOSs, plays a fundamental role to achieve
this comprehensive understanding. These techniques are
crucial for capturing the intricate details and the nonlinear
dynamics of these systems and ultimately connect themwith
existing and future observational data.
Three aspects of the numerical modeling have emerged

as crucial now that a considerable progress has been
achieved in terms of the numerical techniques employed
and of the capability of the numerical codes to exploit
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supercomputing facilities. The first one is represented by
the ability to carry out simulations on timescales that are
“secular”, that is, significantly longer than the “dynamical”
timescale of the inspiral and postmerger. In fact, over
secular timescales, processes such as the ejection of matter,
the development of a globally oriented magnetic field, or
the launching of a jet from the merger remnant can take
place [14,17–21]. The second one is the need to have a
computational domain that extends to very large distances
from the merger remnant, i.e., extending at least to
102–103 km, so as to comprehensively understand the
dynamics of the jet and of the ejected matter [9,22–24].
Finally, achieving extremely high resolution is imperative
for accurately resolving MHD effects during the inspiral
[25] and the associated instabilities after the merger
[26–28]. The combination of these aspects clearly repre-
sents a major challenge in the modeling of BNS mergers
and calls for new approaches where efficiency in obtaining
the solution at intermediate time steps is optimized.
Essentially all of the numerical schemes that solve the

hyperbolic sector of the Einstein field equations require
updating the field variables (i.e., the three-metric tensor, the
extrinsic curvature tensor, the conformal factor, and the
gauge quantities) at each Runge-Kutta substep within a
single evolution step. However, an alternative approach
involves using a relatively efficient spacetime solver, such
as constraint-enforcing approaches with a conformally flat
condition (CFC), which do not necessarily require updates
at every Runge-Kutta substep or even evolution step. These
CFC approaches typically solve the elliptic sector of the
Einstein equations only every 3–100 steps of the under-
lying hydrodynamical/magnetohydrodynamical evolution,
thus allowing, for example, to capture of highest-frequency
pulsation modes in rapidly rotating neutron stars [29–32] at
a fraction of the computational cost. The CFC approxi-
mation has also been successfully used in core-collapse
supernovae [33–35], in rapidly rotating neutron stars
[29–31,36], and in BNS mergers [37–40]. These studies
have demonstrated that the CFC approximation achieves
good agreement with full general relativity (GR), especially
in isolated systems with axisymmetry. It can even repro-
duce a similar GW spectrum to simulations using full
general relativity for postmerger remnants following BNS
mergers [37].
Among our ultimate goals—but also that of much of the

community interested in binary mergers involving neutron
stars—is to investigate the long-term dynamical properties
of BNS postmerger remnants exploiting an efficient imple-
mentation that maintains high accuracy and a complete
description of the microphysics of the neutron-star matter
over a duration of approximately 1 to 10 seconds. In
addition, we need to accomplish this by employing a
coordinate system that is optimally adapted to the dynamics
of the postmerger object (be it a neutron stars or a black
hole), which is mostly axisymmetric (see, e.g., [41,42]) and

where the outflow is mostly radial and almost spherically
symmetric.
To this scope, we here present a novel hybrid approach in

which the full numerical-relativity GRMHD code FIL
[28,43,44] is coupled with the versatile, multicoordinate
(spherical, cylindrical or Cartesian) and multidimensional
GRMHD code BHAC+, which employs the CFC approxi-
mation for the dynamics of the spacetime. We recall that
BHAC [45–47] was specifically developed to explore black-
hole accretion systems with a stationary spacetime geom-
etry [48]. It possesses robust divergence-cleaning methods
[45] and constraint-transport methods [46] for the enforce-
ment of the divergence-free condition of the magnetic field.
We here present its further development, BHAC+, which
includes a dynamical-spacetime module using the CFC
approximation across three different coordinate systems
and an efficient and reliable primitive-recovery scheme that
is coupled with a finite-temperature tabulated EOS.We also
discuss how the coupling between FIL and BHAC+, which
employ different formulations of the equations and differ-
ent sets of coordinates, can be handled robustly and
reliably, either when restricting the simulations to two
spatial dimensions (2D) or in fully three-dimensional (3D)
simulations. More importantly, we show that the hybrid
approach provides considerable savings in computational
costs, thus allowing for accurate and robust simulations
over timescales of seconds in 2D and hundreds of milli-
seconds in 3D, at a fraction of the computational costs of
full-numerical relativity codes.
The paper is organized as follows. In Sec. II, we describe

the mathematical formulation of the GRMHD equations in
a 3þ 1 decomposition of the spacetime and the Einstein
field equations when expressed under the CFC approxi-
mation. Section III is also used to present the numerical
methods and implementation details. The results of a series
of benchmark tests in various dimensions and physical
scenarios are presented in Sec. IV, while we end with a
summary and discuss the future aspects in Sec. V.
Throughout this paper, unless otherwise stated, we adopt
(code) units in which c ¼ G ¼ M⊙ ¼ kB ¼ ϵ0 ¼ μ0 ¼ 1
for all quantities except coordinates. Greek indices indicate
spacetime components (from 0 to 3), while Latin indices
denote spatial components (from 1 to 3).

II. MATHEMATICAL SETUP

A. Einstein and GRMHD equations

As mentioned in Sec. I, we here present a hybrid
approach to BNS merger simulations by combining the
solutions obtained from the full numerical-relativity
GRMHD code FIL [28,43,44] with the multicoordinate
and multidimensional GRMHD code BHAC+ [45–47].
The main difference between the two codes is in the
way they solve the Einstein equations, which is performed
in FIL using well-known evolution schemes, such as
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BSSNOK [49,50], CCZ4 [51,52], or Z4c [53], while BHAC+

employs the CFC approximation with an extended-CFC
scheme (xCFC) [30] (see Sec. III for a short summary).
Another difference, but less marked, is in the way the two
codes obtain the solutions of the GRMHD equations, where
different numerical approaches are employed (again, see
Sec. III for additional details). In the interest of compact-
ness, we will not discuss here the spacetime solution
adopted by FIL, which is based on well-known techniques
reported in the references above. For the same reason, we
will not discuss here the details of the mathematical
formulation of the GRMHD equations, as these are also
well-known and can be found in the works cited above. On
the other hand, we will provide in the next section a brief
but complete review of the CFC approximation of the
Einstein equations.

B. The CFC approximation and extended-CFC scheme

Before discussing in detail the practical aspects of our
hybrid approach to the BNS-merger problem, it may be
useful to briefly recall the basic aspects of the CFC
approximation. In this framework, which has been devel-
oped over a number of years and has been presented in
numerous works (see, e.g., Refs. [29,30]), the spatial three-
metric γij is obtained via a conformal transformation of the
type

γij ¼ ψ4γ̃ij; ð1Þ

where ψ is the conformal factor and γ̃ij the conformally
related metric. As by the name, in the conformally flat
approximation, γ̃ij ¼ fij with fij being the flat spatial
metric, so that

∂tγ̃ij ¼ ∂tfij ¼ 0: ð2Þ

Indeed, because of this assumption, which de-facto
suppresses any radiative degree of freedom in the
Einstein equations, the CFC is also known as the “wave-
less” approximation. While this may seem rather crude at
first and forces the use of the quadrupole formula to
evaluate the GW emission from the compact sources that
are simulated, a number of studies have shown the robust-
ness of this approach at least when isolated objects that
possess a sufficient degree of symmetry are considered. In
particular, Ref. [34] has shown that the CFC approximation
works exceptionally well in simulations of multidimen-
sional rotating core-collapse supernovae in terms of the
hydrodynamical quantities as well as the gravitational
waveforms, and by means of the Cotton-York tensor
[54]. In fact, prebounce and early postbounce spacetimes
do not deviate from conformal flatness by more than a few
percent and such deviations reach up to only ∼5% in the
most extreme cases of rapidly rotating neutron stars [55],
while the frequencies of fundamental oscillation modes of

those models deviate even less when compared to full
general-relativistic simulations [56]. In addition, the dom-
inant frequency contributions in the GW spectrum of BNS
postmergers simulated with the CFC approximation deviate
at most of several few percent from the full general-
relativistic results obtained with different EOSs [37].
Imposing the CFC approximation, along with the maxi-

mal-slicing gauge condition K ≔ γijKij ¼ 0, where Kμν is
the extrinsic curvature, simplifies the Hamiltonian and
momentum-constraint equations of the ADM formulation
[57,58], reducing them to the following set of coupled
nonlinear elliptic differential equations

Δ̂ψ ¼ −2πψ5E −
1

8
ψ5KijKij; ð3Þ

Δ̂ðαψÞ ¼ 2παψ5ðEþ 2SÞ þ 7

8
αψ5KijKij; ð4Þ

Δ̂βi ¼ 16παψ4Si þ 2ψ10Kij∇̂jðαψ−6Þ

−
1

3
∇̂ið∇̂jβ

jÞ; ð5Þ

where Δ̂ and b∇i are the Laplacian and covariant derivative
with respect to the flat spatial metric, respectively.
Furthermore, Eqs. (3) and (4) employ the following
matter-related quantities

Sij ≔ γiμγjνTμν; ð6Þ

Sj ≔ −γjμnνTμν; ð7Þ

S ≔ γijSij; ð8Þ

E ≔ nμnνTμν: ð9Þ

Here, nμ is the unit timelike vector normal to the spatial
hyperspace, Tμν is the energy-momentum tensor, Sij its
fully spatial projection, S the trace of Sij, Si the momentum
flux, and E the energy density. Also appearing in Eqs. (3)
and (4) are the gauge functions α and βi—which are also
referred to as the lapse function and the shift vector,
respectively—so that the extrinsic curvature under the
CFC approximation reads

Kij ¼
1

2α

�
∇iβj þ∇jβi −

2

3
γij∇kβ

k

�
: ð10Þ

Due to the nonlinearity of the constraint equations, the
original CFC system of equations (3)–(10) encounters
problems of nonuniqueness in the solution, particularly
when the configuration considered is very compact.
Additionally, the original CFC system exhibits relatively
slow convergence due to the elliptic equation (3) for ψ that
relies on the values of Kij, which themselves depend on
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ψ and βi. Since the equations implicitly depend on each
other, this imposes the use of a recursive-solution pro-
cedure that typically requires a large number of iterations
before obtaining a solution with a sufficiently small error.
To avoid these shortcomings, a variant of the original CFC
approach, also known as the xCFC scheme, was firstly
introduced in Ref. [30] and since then widely used in
Refs. [31,36,59–64].
In the xCFC scheme, the traceless part of the conformal

extrinsic curvature Âij is expressed as

Âij ≔ ψ10Kij ¼ ðLXÞij þ Âij
TT; ð11Þ

where

ðLXÞij ≔ b∇iXj þ b∇jXi −
2

3
b∇kXkfij; ð12Þ

is the vector potential Xi acted by a conformal Killing
operator associated to the flat spatial metric L and Âij

TT is the
transverse traceless part under the conformal transverse
traceless decomposition. Because the amplitude of Âij

TT is
smaller than the nonconformal part of the spatial metric
hij ≔ γij − fij (see Appendix in Ref. [30]), Âij can be
approximated under CFC approximation expressed as

Âij ≈ b∇iXj þ b∇jXi −
2

3
b∇kXkfij; ð13Þ

where, the transverse traceless part of Kij is assumed to be
much smaller than hij [30]. The vector potential Xi satisfies
the following set of elliptic equations that explicitly depend
on the matter source terms

Δ̂Xi þ 1

3
b∇iðb∇jXjÞ ¼ 8πfijS̃j; ð14Þ

where S̃j ≔ ψ6Sj.
In practice, after evolving the conserved fluid variables

(D; Sj; τ) (see definitions in [58]), we first define the
rescaled conserved variables

Ẽ ≔ ψ6E; S̃j ≔ ψ6Sj; ð15Þ

where ψ here means the old solution (or first guess if we are
dealing with the initial data) of the conformal factor. Next,
we solve Eq. (14) to obtain the solution for Xi, which is
then used in solving Eq. (13) and to calculate a new
estimate for the conformal factor using the elliptic equation

Δ̂ψ ¼ −2πψ−1Ẽ −
1

8
ψ−7fikfjlÂ

klÂij: ð16Þ

In this step, with the updated value for ψ, we calculate the
variables and perform the primitive recovery to obtain the

primitive variables needed to evaluate S̃ij ¼ ψ6Sij with the
updated values of ψ . We then compute the trace S̃ ≔ γijS̃ij
to obtain the elliptic equations for the lapse function α and
the shift vector βi, namely

Δ̂ðαψÞ¼ðαψÞ
�
2πψ−2ðẼþ2S̃Þþ7

8
ψ−8fikfjlÂ

klÂij

�
; ð17Þ

Δ̂βiþ1

3
b∇iðb∇jβ

jÞ¼ 16παψ−6fijS̃jþ2Âijb∇jðψ−6αÞ; ð18Þ

An important advantage of the xCFC approach is that,
thanks to the introduction of the vector field Xi, it can be
cast in terms of elliptic equations without an implicit
relation between the metric components and the conformal
extrinsic curvature Âij. Moreover, since the equations
decouple in a hierarchical way, all variables can be solved
step by step with the conserved quantities, thus increasing
the efficiency of the algorithm compared to the original
formulation of CFC scheme (e.g., Ref. [39]). Finally, the
xCFC scheme ensures local uniqueness even for extremely
compact solutions [30].
Before concluding this section we should remark that the

set of CFC equations we have discussed so far ignores
radiation-reaction terms [65,66]. These terms have been
omitted mostly to reduce the computational costs, because
their contribution to the spacetime dynamics is very small
(see the migration test in Sec. IV C or the head-on
test in Sec. IV F), or because we perform the transfer of data
between the two codes tens of milliseconds after the
merger, when radiative GW contributions are already
sufficiently small (see the postmerger remnant test in
Sec. III C). However, including these terms can be impor-
tant in conditions of highly dynamical spacetimes and
would provide important information on the GW emission
from the scenarios simulated with BHAC+. Work is in
progress to implement these terms in the solution of the
constraints sector and a discussion will be presented
elsewhere [67].

III. NUMERICAL SETUP

A. Spacetime solvers

We briefly recall that, once the initial data has been
computed,1 the spacetime solution in FIL is carried out in
terms of the evolution sector of the 3þ 1 decomposition of
the Einstein equations [57,58] in conjunction with the
EinsteinToolkit [73,74], exploiting the Carpet
box-in-box AMR driver in Cartesian coordinates [75],
and the evolution code suite developed in Frankfurt,
which consists of the FIL code for the higher-order
finite-difference solution of the GRMHD equations and

1In FIL this is normally done using either the open-source
codes FUKA [68,69], LORENE [70] or the COCAL code [71,72].
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of the Antelope spacetime solver [43] for the evolution
of the constraint damping formulation of the Z4 formu-
lation of the Einstein equations [51,53].
On the other hand, building on the xCFC scheme

implemented in spherical, cylindrical and Cartesian coor-
dinates in the Gmunu code [31,36], BHAC+ carries out the
spacetime solution in terms of the constraints sector of the
3þ 1 decomposition of the Einstein equations [57,58] in
the xCFC approximation. In essence, we solve the set of
elliptic xCFC equations using a cell-centered multigrid
solver (CCMG) [31,36], which is an efficient, low-memory
usage, cell-centered discretization for passing hydrodynam-
ical variables without any interpolation or extrapolation and
can be coupled naturally to the open-sourcemultigrid library
octree-mg [76] employedbyMPI-AMRVAC [77] used by
BHAC+. We recall that multigrid approaches solve a set of
elliptic partial differential equations recursively, using
coarser grids to efficiently compute the low-frequency
modes that are expensive to compute on high-resolution
grids (see, for instance, Ref. [31] for more detailed infor-
mation). In addition, we employ the Schwarzschild solution
for the outer boundary conditions, using Eqs. (77)–(82) in
Ref. [36] and implementing Robin boundary conditions on
the cell-face for spherical polar coordinate and on the
outermost cell-center for cylindrical and Cartesian coordi-
nates (see Refs. [31,36,59] for details).
As with any iterative scheme for the solution of an elliptic

set of partial differential equations, an accurate solution of
metric variables is determined when the infinity normL∞ of
the residual of the metric equation, namely, the maximum
absolute value of the residual of the CFC equations, falls
below a chosen tolerance. However, we need to distinguish
the tolerance employed for the solution of the initial
hypersurface (which may or may not coincide with the
hypersurfaces imported from FIL) from the tolerance
employed in the actual evolution. More specifically, when
importing data from FIL at the data-transfer stage and in
order to minimize inconsistencies resulting from different
metric solvers or gauges used in the two codes, we set a
rather low tolerance, i.e., εtol;in ¼ 10−8 − 10−10, depending
on the type of initial data. During the actual spacetime
evolution, on the other hand,we strike a balance between the
computational costs and the accuracy of the solution of the
xCFC equations and increase the tolerance to εtol;ev ¼ 10−6.
As we will demonstrate later on, these choices provide
numerical solutions that are both accurate and computa-
tionally efficient.
It is also important to remark that we modify the metric

initialization proposed by Ref. [30] in which the values of ψ
are iterated from an initial value of ψ ¼ ψ0 (ψ0 ¼ 1 initially
for most of the cases) and the conserved variables are
obtained while keeping fixed the initial primitive variables.
However, this approach may fail to converge to a proper
value ψ for extremely strong gravity regions or for large
gradient of the Lorentz factor. Another disadvantage we

have encountered is that this approach will lead to large
deviations between the “handed-off” data from FIL and the
newly converged computed data by BHAC+. As a result, in
our approach we first import the gauge-independent quan-
tities

ffiffiffiffiffiffiffiffi
γ=f

p ðD; Sj; τ; DYe; BjÞ ¼ ψ6ðD; Sj; τ; DYe; BjÞ,
whereBj ismagnetic field observed by anEulerian observer,
Ye is the electron fraction, γ ≔ detðγijÞ and f ≔ detðfijÞ.
Next, we employ the xCFC solver to compute all of the
initial spacetime quantities. As we will show in Sec. IV, this
approach leads to initial data whose evolution in BHAC+

exhibits smaller deviations the corresponding evolution
from FIL (see, e.g., Fig. 11).

B. Matter solvers

As mentioned above, the solution of the GRMHD system
of equations is handled differently by the two codes in our
hybrid approach, although both of them follow high-
resolution shock-capturing (HRSC) methods [58,78].
More specifically, theFrankfurt/IllinoisGRMHD(FIL) code
is an extension of the publicly available IllinoisGRMHD
code [79],which utilizes a fourth-order accurate conservative
finite-difference scheme [80]. On the other hand, BHAC+ is a
further development of BHAC—which itself was built as an
extension of the special-relativistic code MPI-AMRVAC—to
perform GRMHD simulations of accretion flows in 1D, 2D
and 3D on curved spacetimes (both in general relativity and
in other fixed spacetimes [81–83]) using second-order finite-
volume methods and a variety of numerical methods
described in more detail in [45]. BHAC is publicly available
and has been employed in a number of applications to
simulate accretion on to supermassive black holes [84],
compact stars [85,86] and in dissipative hydrodynamics [87].
Differently from FIL, BHAC+ exploit much of

MPI-AMRVAC’s infrastructure for parallelization and
block-based automated AMR (see Refs. [45–47] for addi-
tional details) employing a staggered-mesh upwind con-
strained transport schemes to guarantee the divergence-free
constraint of the magnetic field [46,88]. These methods
represent an improvement over the original constrained-
transport scheme [89] and aim at maintaining a divergence-
free condition with a precision comparable to floating-point
operations, ensuring that the sum of the magnetic fluxes
through the surfaces bounding a cell is zero up to machine
precision. FIL, on the other hand, follows its predecessor
IllinoisGRMHD code in computing the evolution of the
magnetic field via the use of a magnetic vector potential,
whose curl then provides the magnetic field. However,
differently from Ref. [79], FIL implements the upwind
constraint-transport scheme suggested in Ref. [80], in
which the staggered magnetic fields are reconstructed from
two distinct directions to the cell edges. This approach
greatly minimizes diffusion and cell-centered magnetic
fields are always interpolated from the staggered ones
using fourth-order unlimited interpolation in the direction
in which the ith component of the magnetic field is
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continuous [88]. Overall, the two approaches implemented
in BHAC+ and FIL for handling the divergence-free con-
straint of the magnetic field are overall equivalent both on
uniformly spaced grids and in grids with AMR levels. At
the same time, a relevant difference between the two codes
in that BHAC+ implements a new and robust primitive
recovery scheme with a tabulated EOS module, error-
handling policy, atmosphere treatment and the evolution
equation of electronic lepton number in order to account for
an EOS that depends on temperature and composition (see
Sec. III D for more details).
Before concluding this section, an important remark is

worth making. A fundamental aspect of our hybrid
approach, and that leads to the single most important
advantage in terms of computational speed is that, unlike
typical free evolution schemes, the solution of the space-
time variables in a constrained approach does not need to be
performed on every spacelike hypersurface on which the
matter equations are solved. Indeed, because the spacetime
evolution takes place through the solution of a system
of elliptic equations, whose characteristic speed are not
defined, no stability constraint exists on the width of the
temporal step. This is to be contrasted with the solution of a
system of hyperbolic equations—such as those employed
for the evolution of the Einstein equations in FIL and more
generally for the matter sector in the two codes—whose
characteristic speed are defined in terms of the light cone
and where the time step is severely constrained by the
Courant-Friedrichs-Lewy (CFL) condition. As a result, the
spacetime and matter solvers in BHAC+ are de facto
decoupled, and their update frequencies need not coincide.
This brings in two distinct advantages. The first one can

be measured in terms of the “efficiency ratio”, ξeff ≔
Nspctm=Nmattr, that is the ratio of spacetime time steps over
the matter time steps, which is necessarily ξeff ¼ 1 in
typical numerical-relativity evolution codes (e.g., FIL) that
evolve the Einstein-Euler equations as system of hyperbolic
equations. On the other hand, this ratio can be much
smaller, i.e., ξeff ¼ 1 − 1=100 in codes evolving the
Einstein-Euler equations as mixed system of elliptic-
hyperbolic equations (e.g., BHAC+),2 with a gain in com-
putational costs that is inversely proportional to ξeff . The
second important advantage is that during the matter-only
evolution, the time step, which is constrained by the CFL
factor and inversely proportional to the largest propagation
speed, is bounded by the speed of sound rather than the
speed of light; given that cs=c ≃ 0.1–0.3, this fact alone

provides an additional and proportional reduction in
computational costs.
Of course, these savings also come at the expense of

some accuracy. For instance, an excessively small ξeff
ratio can lead to a slight diffusion of matter out of the
gravitational-potential well, which is not updated fre-
quently enough. A certain degree of experimentation is
needed to identify the optimal ξeff for a given scenario and
we will comment on this also later on. For the time being,
we just mention that in a 10 ms simulation of a 2D
axisymmetric rapidly rotating neutron star in spherical
coordinates, a value of ξeff ¼ 1=50 is sufficient to capture
most of the oscillation modes and even the high-frequency
ones [31].

C. Spacetime and matter “hand-off”

Of course, an essential aspect of the hybrid approach
discussed here is represented by the so-called “hand-off”
(HO), i.e., the export of a solution for the spacetime and
fluid variables from FIL to BHAC+ and, in principle, also in
the other direction, although we will not discuss the
latter here.
In essence, the HO procedure in our approach can be

summarized as follows:
(i) At any specific time, e.g., after the merger of a BNS

system, we extract the primitive variables, along with
the conformal factor, from the 3DFIL data in order to
to obtain the quantities

ffiffiffiffiffiffiffiffi
γ=f

p ðD; Sj; τ; DYe; BjÞ.
(ii) We transform the 3D data from the original Carte-

sian coordinates to a new coordinate system, which
can be Cartesian, spherical polar or cylindrical
depending on the system under investigation. In
the case of a postmerger evolution we employ
cylindrical coordinates as these are optimal for 2D
axisymmetric evolutions (indeed, the cylindrical
coordinates on a 2D constant-ϕ slice coincide with
the Cartesian coordinates on a 2D constant-x slice).

(iii) In the case of 2D BHAC+ simulations, all quantities
imported from FIL are interpolated on a 3D cylin-
drical grid using simple linear interpolation (note that
sinceFIL is a finite-difference code, at this stage both
metric and hydrodynamical numerical data can be
interpreted as representing point-wise values of the
respective fields at the grid coordinates). The data is
subsequently averaged over the ϕ-direction and vec-
tor and tensor variables are transformed to the
coordinate system used for the evolution in BHAC+.

(iv) Because the coordinates and grid-refinement struc-
ture used in BHAC+ are obviously different from
those in FIL, it is possible that a high-resolution
cell in FIL is mapped to a low-resolution cell in
BHAC+. To prevent this from happening, we always
ensure that the resolution in the spatial region with
ρ > 108 g cm−3 is either equal to or higher than that
of the imported data.

2Note that in constrained-evolution approaches, such as the
one implemented in BHAC+, the CFC equations are not solved at
each Runge-Kutta substep when transitioning from time-level n
to time-level nþ 1. While this is an approximation, a number of
studies have shown that the differences in the accuracy of the
solution, when not updating the spacetime at each substep, are
negligible (see Refs. [29,31,59]).
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(v) We use the handed-off data to initialize the metric
under the maximal-slicing gauge using the xCFC
solver (see Sec. III A), thus clearing any Hamiltonian
and momentum-constraint violations that may have
arisen due to the HO procedure.

(vi) we update the corresponding primitive variables
under the CFC approximation.

Note that both BHAC+ and FIL adopt a conservative
formulation of the GRMHD equations and hence the
conserved variables are preserved at the level of machine
precision. Violations of the conservation can only happen
during the import of the data from FIL to BHAC+ and as a
result of the coordinate remapping and interpolation. We
have verified that the maximum relative differences in the
import phase are below 0.4%.
While much of the procedure described above applies

also to the HO of 3D FIL data for a 3D BHAC+ simulation,
there are additional aspects—besides the obvious skipping
of the azimuthal averaging—that need to be taken into
account when passing the data over to a 3D BHAC+ grid to
ensure an optimal interpolation of all quantities and the
preservation of the divergence-free condition to machine
precision. For compactness, and because the HO presented
here is from 3D FIL to 2D BHAC+ (see Sec. IVG), we will
omit such details and postpone their discussion in a
forthcoming companion paper [67].
It should also be noted that the conformal factor ψ is a

gauge-dependent quantity and hence it exhibits differences
between the full numerical-relativity code FIL and the
CFC code BHAC+.3 Indeed the conformal factor defined
in a full numerical-relativity simulation assuming, say,
a 1þ log-slicing reduces to the conformal factor used in
the CFC scheme with a maximal-slicing gauge only for
systems for which the conformal flatness represents a good
approximation (e.g., the initial data for a BNS system). As
we will discuss in the analysis of a BNS postmerger in
Sec. IVG, the comparison of the values of ψ between the
two approaches for the spacetime solution shows behaviors
that are very similar so that the use of the conformal factor
represents a simple and efficient way to compare space-
times that approach conformal flatness. However, a more
rigorous and general approach could be offered by the
calculation and comparison of the values of the Cotton-
York tensor, which we will investigate in future analyses.

D. Primitive recovery scheme

Obviously, the ability to handle realistic, temperature-
and composition-dependent EOSs is essential in order to
achieve a realistic description of the secular postmerger
dynamics and hence arrive at accurate predictions for
multimessenger astronomical observables from merging
BNSs, e.g., GWs, gamma-ray burst signals, and kilonova

light-curves. Fully tabulated, nuclear-physics EOSs need to
be employed to this scope as they provide information on
the pressure p as a function of the temperature T, the
electron fraction Ye, and baryonic number (rest-mass)
density (ρ) nb, alongside with other essential thermody-
namic quantities, such as the baryon and lepton chemical
potentials, the speed of sound cs, the specific entropy, etc.
Despite playing only a secondary role in the hierarchy of
equations to be solved, the use of these tabulated EOSs is
far less trivial than it may appear at first sight. The reason
for this is the flux-conservative formulation of the matter-
evolution equations, which requires the introduction of
conserved variables that are distinct from the (physical)
primitive variables employed in the EOSs (see, e.g., [58,90]
for a discussion). The need to establish a bijective mapping
from one set to the other, and the nonlinear and nonanalytic
nature of this mapping, makes the operation of primitive-
recovery from tabulated EOSs a major hurdle in modern
codes, but also an important aspect of code improvement
and optimization.
In FIL this problem is solved through the Margherita

framework, a standalonemodernC++ code that takes care of
reading and interpolating the EOS tables, as well as of the
conservative to primitive conversion. The latter is achieved
in Margherita by different procedures depending on the
physical conditions at hand. For unmagnetized fluids, FIL
employs the well-known and robust primitive recovery
scheme by Ref. [91]. If magnetic fields are non-negligible
in the fluid, the inversion is performed with the one-
dimensional algorithm by Palenzuela et al. [92]. In case
of failure of any of the primary methods, the entropy is used
instead of the temperature to correctly recover the primitive
variables from the conserved ones. In BHAC+, on the other
hand, the inclusion of temperature-dependent EOSs has
been accomplished only recently, since BHAC only allowed
for the use of analytic EOSs (i.e., ideal-fluid, Synge gas,
isentropic flow [45]). Hence, considerable work has
been invested in extending the capabilities of BHAC+ to
handle generic EOSs and, more importantly, to obtain a
framework that provides a robust primitive-variable recov-
ery with finite-temperature tabulated EOSs. Currently,
BHAC+ can support tabulated EOS in either the format of
the StellarCollapse [93] or in that of the CompOSE
repository [94].
In essence, all the thermodynamic quantities Q are

assumed to be calculated under local thermodynamical
equilibrium and are expressed as functions of ρ; T; Ye in
CGS units (the temperature is normally expressed in MeV),
although they are transformed to code units for conven-
ience. Inevitably, these tables may contain unphysical
values and thus ensuring the validity of all the thermody-
namical quantities is crucial both to achieve stable evolu-
tion and for accurate estimates of neutrino opacities. To
address this issue, we have implemented checkers for every
table in order to identify and handle unphysical values

3Note however that the quantities
ffiffiffiffiffiffiffiffi
γ=f

p ðD; Sj; τ; DYe; BjÞ are
gauge independent.
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appropriately. For instance, we ensure that the sound speed
satisfies the obvious condition 0 ≤ c2s ≤ 1, but we also
determine for each tabulated quantity the corresponding
minimum and maximum bounds, i.e., ρmin=max, ϵmin=max,
Tmin=max, Ye;min=max, and hmin=max. As we comment below,
these bounds will be useful for a robust treatment of the
atmosphere and for an accurate primitive-recovery scheme.
In this context, various algorithms have been developed

over the years to ensure an accurate, efficient, and stable
primitive recovery, aiming at minimizing error accumula-
tion during the matter evolution. Comparisons of different
algorithms have been studied in Refs. [95,96] with spe-
cific focus on their accuracy and robustness. Among the
numerous primitive-recovery algorithms, the one devel-
oped by Kastaun [97] has been extensively investigated and
demonstrated several advantages in GRMHD simulations
with analytical EOSs. More specifically, it employs a
smooth, one-dimensional, continuous, and well-developed
master function that guarantees that a root is found within a
given interval and the uniqueness of the solution is ensured
even for unphysical values of the conserved variables. This
procedure does not require derivatives of the EOS or an
initial guess, thereby making it particularly efficient and
robust, showing high accuracy in regimes with high
Lorentz factors and strong magnetic fields, as well as
low-density environments where fluid-to-magnetic pres-
sure ratios can reach values as low as 10−4 (see [97] for
more details).
This approach has been successfully implemented in

GRMHD codes such as Gmunu [36,64,98], ReprimAnd
within the Einstein Toolkit [99], although only for
analytic EOSs, andmore recently within the GR-Athena++
code [100] to include tabulated EOSs, where the temperature
and electron fraction serves as additional independent vari-
ables. In what follows, we illustrate in detail and in a
sequential manner the adaptations of Kastaun’s algorithm
that are needed for its application in simulations with
tabulated EOSs. Furthermore, we present for the first time
a systematic assessment of its robustness and efficiency with
fully tabulated EOSs.
(i) We first calculate the electron fraction Ye using the

two conserved quantities D ≔ ρW, which is the conserved
rest-mass density, and DYe. In other words, we compute
Ye ¼ DYe=D and consider it within the specified bounds
given by Ye;min ≤ Ye ≤ Ye;max. If D falls below a defined
threshold value, i.e., D < Dthr ¼ ρthr, where ρthr denotes
the atmospheric threshold of rest-mass density (see
Sec. III F), we consider the corresponding numerical cell
as part of the atmosphere and skip the entire primitive-
recovery process to minimize computational costs.
(ii) We next introduce the rescaled conserved variables

defined as

q ≔
τ

D
; ri ≔

Si
D
; Bi ≔

Biffiffiffiffi
D

p ; ð19Þ

noting that in the ideal-MHD limit, the magnetic field
observed by an Eulerian observer Bi is either an evolved
variable or can be reconstructed from the evolved variables
without requiring knowledge of the fluid-related primitive
variables. We further decompose the rescaled momentum
into the components parallel and perpendicular to the
magnetic field, namely

rik ≔
Bjrj
B2

Bi; ri⊥ ≔ ri − rik: ð20Þ

(iii) We setup an auxiliary function defined as

faðμÞ ≔ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2min þ r̄2ðμÞ

q
− 1; ð21Þ

where hmin is the minimum value of specific enthalpy as
derived from the tabulated EOS (cf., Sec. III D). The
quantities r̄2ðμÞ, χðμÞ, and μ are instead defined as

r̄2ðμÞ ≔ r2χ2ðμÞ þ μχðμÞð1þ χðμÞÞðrjBjÞ2; ð22Þ

χðμÞ ≔ 1

1þ μB2
; ð23Þ

μ ≔
1

hW
; ð24Þ

where r2 ¼ riri and B2 ¼ BiBi, and μ is restricted to the
range 0 < μ ≤ 1=hmin. To find the root μþ of faðμÞ we
employ a Newton-Raphson root-finder method within the
interval μ∈ ð0; 1=hmin�. Since faðμÞ is a smooth function
and does not require calls to the tabulated EOS, its
derivative can be determined analytically. In this way,
we can efficiently obtain an useful initial bracketing of
the root of the master function [see Eq. (26)] in the interval
ð0; μþ� and ensure that the condition v ≤ v0 < 1 is satis-
fied, where

v ≔ μr̄; v0 ≔
r2

h2min þ r2
: ð25Þ

(iv) Next, we solve the one-dimensional master function
fðμÞ

fðμÞ ≔ μ −
1

maxðνA; νBÞ þ μr̄2ðμÞ ; ð26Þ

in the bracketed interval μ∈ ð0; μþ� using Brent’s method
[101]. The master function fðμÞ depends on the variables
listed below, which are calculated in the following order

q̄ðμÞ ¼ q −
1

2
B2 −

1

2
μ2χ2ðμÞðB2r2⊥Þ; ð27Þ

v̂2ðμÞ ¼ min ðμ2r̄2ðμÞ; v20Þ; ð28Þ
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ŴðμÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̂2ðμÞ

p ; ð29Þ

ρ̂0ðμÞ ¼
D

ŴðμÞ ; ð30Þ

ρ̂ðμÞ ¼ max½ρmin;minðρmax; ρ̂0Þ�; ð31Þ

ϵ̂0ðμÞ ¼ ŴðμÞðq̄ðμÞ − μr̄2ðμÞÞ þ v̂2ðμÞ Ŵ2ðμÞ
1þ ŴðμÞ ; ð32Þ

ϵ̂ðμÞ ¼ max½ϵ̂lowðρ̂; YeÞ;minðϵ̂highðρ̂; YeÞ; ϵ̂0Þ�; ð33Þ

p̂ ¼ pðρ̂; T̂ðρ̂; ϵ̂; YeÞ; YeÞ; ð34Þ

âðμÞ ¼ p̂
ρ̂ðμÞð1þ ϵ̂ðμÞÞ ; ð35Þ

νAðμÞ ¼ ð1þ âðμÞÞ 1þ ϵ̂ðμÞ
ŴðμÞ ; ð36Þ

νBðμÞ ¼ ð1þ âðμÞÞð1þ q̄ðμÞ − μr̄2ðμÞÞ: ð37Þ

In Eq. (31) we ensure that ρ̂ remains within the bounds of
the table during each iteration, while we define ϵ̂low=high ≔
ϵ̂ðρ̂; Tmin=max; YeÞ4 to guarantee that ϵ̂ is properly bracketed
for the root-finding inversion of ϵ̂ðρ̂; T̂; YeÞ to T̂ðρ̂; ϵ̂; YeÞ,
which is needed in Eq. (34). A value for T̂ is thus found by
solving for the root of the function

fðTiÞ ¼ 1 − ϵiðρ̂; Ti; YeÞ=ϵ̂; ð38Þ

within the interval Ti ∈ ½Tmin; Tmax� using Brent’s method.
We note that oscillating unphysical values of ϵ̂ within the
root-finding iteration of Eq. (26) can at times prevent the
determination of a root. When the number of iterations
exceeds a certain threshold (we set this to be 50), we return
ϵ̂¼ϵlowðρ̂;Tmin;YeÞ and T̂¼Tmin if ϵ̂ ≤ ϵlowðρ̂; Tmin; YeÞ or
ϵ̂¼ϵhighðρ̂;Tmax;YeÞ and T̂ ¼ Tmax if ϵ̂ ≥ ϵhighðρ̂; Tmin; YeÞ.
(v) The subsequent step involves using the converged

root μ obtained from Eq. (26), with a specified tolerance, to
determine the primitive variables as listed in the previous
step. For the calculation of the velocity v̂i, in particular,
we use

v̂iðμÞ ¼ μχðμÞðri þ μðrjBjÞBiÞ: ð39Þ

Once this stage is reached, we check for cells falling into
the atmosphere and to them apply the error-handling policy
presented below in Sec. III F.
(vi) Finally, with the updated values of ρ, T and Ye, we

can obtain c2s , p, as well as any other required thermody-
namic quantity by a EOS call without invoking one more
time of inversion of ϵ to T. At the end, we recalculate the
corresponding conserved variables to ensure they are
consistent with the updated primitive variables. This step
is important considering that the EOS routine, the atmos-
pheric treatment, or safety checks may have modified the
primitive variables.
We note that when following the steps (i)–(vi) in the

algorithm presented above, no restrictions are made on
negative values of the specific internal energy ϵ or on values
of the specific enthalpy being h < 1, which are possible
when the (negative) nuclear binding energy exceeds the
thermal or excitation energy. These values, however, could
pose a problem during the inversion between ϵ and T at
each intermediate step. More specifically, when ϵ does not
increase monotonically with T—which can be the case in
the low ϵ range of tabulated EOSs—incorrect values of T
can be obtained. Our approach to counter these cases is to
input an initial guess for temperature which is obtained
from the last result in the root-finding method and to update
this guess throughout the primitive-recovery procedure. For
achieving full consistency between BHAC+ and FIL in
the tests to be presented in the following sections, the
conservative to primitive conversion procedure outlined
above was also implemented in Margherita.

E. Performance of the primitive-recovery scheme

We here evaluate the performance of our primitive-
recovery scheme presented in the previous section in terms
of accuracy and efficiency, and compare it to other schemes
used in GRMHD simulations and that are either referred to
as 1D [92,102,103], 2D [104,105], or 3D [106], depending
on the dimensionality of the master root-finding function.
Furthermore, to ensure a fair comparison with previous
primitive-recovery schemes that use tabulated EOS, we
adopt two of the tests mentioned in [95] and follow the
same criteria outlined there, which include considerations
of speed, accuracy, and robustness (see Sec. 4.1 of [95] for
additional information). In both tests considered here—and
for consistency with other previously published results—
we have used the LS220 tabulated EOS [107].
In the first test, we use ranges of ρ and T that cover the

valid regions of the EOS table. More specifically, we select
primitive variables with the following values: a Lorentz
factor of W ¼ 2, a ratio of magnetic-to-fluid pressure of
b2=ð2pÞ ¼ 10−3, and an electron fraction of Ye ¼ 0.1.
Figure 1 presents the average relative error as a function
of the number of iterations and EOS calls required for
convergence. More precisely, we compute the average
relative error as [95]

4Note that the adjectives “low/high” should not be confused
with the adjectives “min/max”. The latter refer to the ranges in the
table, while the former refer to the minimum and maximum
values within the iteration.

HYBRID APPROACH TO LONG-TERM BINARY NEUTRON-STAR … PHYS. REV. D 109, 064061 (2024)

064061-9



εrecov ≔
1

5

X5
i¼1

����1 − Pi;recov

Pi;orig

����; ð40Þ

where Pi;recov refers to the five recovered primitive variables
ðρ; vi; ϵ; Bi; YeÞ, while Pi;orig indicates the original values of
the primitives. Furthermore, we stop the iterations when a
residual error of ≤5 × 10−9 is obtained for the maximum
relative error in the iteration variables through our primi-
tive-recovery scheme. Overall, Fig. 1 illustrates that across
the entire parameter space encompassing ρ and T, the
average relative error εrecov, the average number of iter-
ations, and the average number of EOS calls are found to be
7.84 × 10−12, 7.989, and 135.8, respectively.
With these results, and before entering in the details of

the comparison, it is worth noting that multidimensional
recovery schemes tend to require fewer EOS calls (about
3–8 times less) compared to 1D schemes (this was
discussed also in [95]), but also a similar number of
iterations (5–9), in order to reach converge. The high
number of EOS calls in the effective 1D schemes is
primarily due to the additional inversion steps caused by
the use of the EOS table in terms of T instead of ϵ.
Therefore, the number of EOS calls, and the associated
computationally expensive interpolations, the table look-
ups, and the root-finding procedures for the inversion
of ϵ to T, can be taken as a direct proxy of the numerical
costs.
A similar behavior, i.e., few iterations, many EOS calls,

is found also with our recovery scheme, which is effectively
a 1D scheme with an additional inversion step from ϵ to T
using the table. However, when comparing our recovery
scheme with the other schemes discussed in Ref. [95], we
have found a clear improvement in terms of efficiency, as
our approach requires significantly fewer EOS calls. At the
same time, although our scheme requires a number of
iterations that is similar to that reported in Refs. [92,103],
the mean number of EOS calls is 135.8, which is to be
compared respectively with 836 for Ref. [92] and 331 for

Ref. [103]. In addition, our scheme exhibits a lower average
relative error when compared to all other schemes, in
particular within the regime relevant to realistic astrophysi-
cal problems, such as for rest-mass densities in the range
ρ∈ ½108; 1014� g cm−3 and for the entire range of temper-
atures Tmin=max of typical tabulated EOSs. More precisely,
the schemes in Refs. [103,106] yield the lowest average
relative error among all the schemes, with values of 1.3 ×
10−13 and 6.1 × 10−13, respectively. However, the accuracy
in these schemes is not homogeneous and much higher in
the upper-left corner of the parameter space, while the
relative error increases significantly for rest-mass densities
typical of neutron stars. On the other hand, our scheme
covers with high accuracy the entire parameter space with
fewer than 12 iterations, except for a few points that require
a larger number of iterations for convergence. Finally, no
failures are found in contrast to what experienced with
other schemes.
To further establish the robustness of our primitive-

recovery scheme, we again follow [95] and conduct a
second test that iterates over the parameter space of the
Lorentz factor W and the ratio of magnetic-to-fluid pres-
sure b2=2p, while maintaining fixed the values of
ρ ¼ 1011 g cm−3, T ¼ 5 MeV, and Ye ¼ 0.1. Figure 2
illustrates the number of iterations required for convergence
in this second test and shows that the maximum number of
iterations in this parameter space is 51; the white spaces
indicate areas where the recovery process failed or the
desired tolerance could not be achieved with the corre-
sponding parameter sets. In full analogy with the perfor-
mance of other schemes considered in [95], also our
recovery scheme fails when the fluid becomes ultra-
magnetized, i.e., when b2=2p≳ 108, or when the flow is
ultra relativistic, i.e., W ≳ 103. However, our recovery
scheme performs better than all other schemes, which
either failed during recovery or required more than 25
iterations to achieve a recovery when W > 10 − 100.
In terms of robustness, our scheme exhibits a similar

performance to that reported in Ref. [103], successfully

FIG. 1. Average relative error εrecov (left panel), number of iterations (middle panel), and EOS calls (right panel) required to reach the
desired tolerance in recovering the primitive variables from the conserved ones. The example shown employs the LS220 EOS [107] with
parameter valuesW ¼ 2 and Ye ¼ 0.1. The magnetic field is nonzero and set so that the pressure ratio is b2=2p ¼ 10−3, with b2 ≔ bibi

being the strength of the magnetic field in the fluid frame.

HARRY HO-YIN NG et al. PHYS. REV. D 109, 064061 (2024)

064061-10



recovering the primitive variables at W ¼ 1000, except
when b2=2p > 10−2. In such cases, the efficiency slightly
degrades, and the number of iterations increases to 20–25
for W > 10. However, since it does not require initial
guesses, or thermodynamic derivatives, or an initial bracket
for the root μþ in Eq. (21), and guarantees the existence and
uniqueness of the root [97], our recovery scheme can be
employed reliably over a larger parameter space when
compared to most other recovery schemes.
In summary, on the basis of the battery of sets performed,

we conclude that the primitive-recovery scheme presented
in Sec. III D provides higher robustness and accuracy when
compared to other 1D and multidimensional schemes
reported in Ref. [95] and requires the smallest number
of EOS calls among all the effective 1D schemes. As a
consequence of its robustness, no fail-safe strategy in the
case of failed primitive recovery is needed in BHAC+. We
also note that Ref. [100] has very recently presented a
primitive-recovery algorithm that is rather similar to the one
presented here, with the main difference that the total
energy density e is used instead of the specific internal
energy ϵ for the iteration.

F. Atmosphere treatment and error-handling policy

In analogy with other codes, the “atmosphere”—i.e., the
spatial region of very low rest-mass density needed to avoid
the failure of the solution of the GRMHD equations—is
characterized by two basic parameters; the rest-mass
density threshold, denoted as ρthr, and the ratio between
the density threshold and the atmosphere density
ξ ≔ ρatm=ρthr. In all simulations conducted with BHAC+,
these parameters are typically set to ρthr ¼ 10−14 and
ξ ¼ 0.9, respectively. Furthermore, all cells with ρ < ρthr

are identified as atmosphere and the corresponding values
of the primitives variables are set as follows:

ρ ¼ ρatm; W ¼ 1; vi ¼ 0;

ϵ ¼ ϵatm; Ye ¼ Ye;atm; p ¼ patm;

T ¼ Tatm; c2s ¼ c2s;atm; B ¼ Batm:

Since a cell falling in the atmosphere is set to have zero
velocity, the induction equation in the ideal-MHD limit
prevents the evolution of the corresponding magnetic field.
Hence, apart from changes due to the shift, Batm can change
only if the cell is pushed out of the atmosphere conditions
via a nonzero velocity, or an increase in the rest-mass
density above ρatm.
When considering the atmosphere treatment in BHAC+,

we need to distinguish the situation in which an analytical
EOS is used from that in which the EOS is tabulated. In the
former case, the polytropic EOS is applied to describe the
properties of the atmosphere, so that the pressure is given by

patm ¼ KρΓatm; ð41Þ

with K ¼ 100 and Γ ¼ 2 for the polytropic constant and
polytropic index, respectively. On the other hand, the
specific internal energy and the square of the sound speed
in the atmosphere can be obtained analytically as (see,
e.g., [58])

ϵatm ¼ KρΓ−1atm

Γ − 1
;

c2s;atm ¼ patmΓðΓ − 1Þ
ρatmðΓ − 1Þ þ patmΓ

:

A different approach needs to be adopted when utilizing
a tabulated EOS, in which case the neutrinoless β equi-
librium condition is employed. More specifically, at
the beginning of the simulation, after setting ρatm and
Tatm ¼ Tmin, a root-finding process is performed to deter-
mine the value of the electron fraction Yβ

e that satisfies the
neutrinoless β equilibrium condition

0 ¼ μeðYe;iÞ þ μpðYe;iÞ − μnðYe;iÞ; ð42Þ

where we employ Brent’s method within the interval
Ye;i ∈ ½Ye;min; Ye;max� and with μe=p=n representing the
chemical potentials accounting for the rest-mass of elec-
trons, protons, and neutrons, respectively. Once Yβ

e is
determined, it is adopted as the electron fraction value
for the atmosphere, Ye;atm. The remaining atmospheric
quantities, namely ϵatm, patm, and c2s;atm, can be obtained
through the EOS using ρatm, Tatm, and Ye;atm for neutrino-
less β-equilibrium matter.

FIG. 2. Number of iterations required to reach the desired
tolerance in recovering the primitive variables from the con-
served ones when using the LS220 EOS with parameters values
ρ ¼ 1011 g cm−3, T ¼ 5 MeV ¼ 5.8 × 1010 K, and Ye ¼ 0.1.
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G. Error-handling policy

It is not uncommon in modern relativistic GRMHD
codes that physical conditions of low rest-mass density and
high magnetization may lead to the generation of unphys-
ical values of the matter quantities, especially in regions
that are treated as atmosphere, or where round-off errors
may develop, e.g., near the surface of compact objects or in
ultra-relativistic flows. In order to ensure stable long-term
simulations and maintain accurate evolutions, error-
handling procedures play a crucial role in determining
the criteria to be followed first to flag a problematic cell and
second to correct its physical representation. In our strategy
for treating problematic fluid cells, we incorporate some of
the prescriptions described in Ref. [91] and adopt the
following list of error-handling policies:
(1) If ρ > ρmax, then mark as a fatal error.
(2) If ϵ < ϵmin, then set ϵ ¼ ϵmin.
(3) If ϵ > ϵmax, then mark as a fatal error.
(4) If T < Tmin, then set T ¼ Tmin.
(5) If T > Tmax, then mark as a fatal error.
(6) If Ye < Ye;min, then set Ye ¼ Ye;min.
(7) If Ye > Ye;max, then set Ye ¼ Ye;max.
(8) If ϵ ≤ ϵlowðρ; Tmin; YeÞ, then within the inversion of

ϵ to T set ϵ ¼ ϵlow and T ¼ Tmin.
(9) If ϵ ≥ ϵhighðρ; Tmax; YeÞ, then within the inversion

step of ϵ to T set ϵ ¼ ϵhigh and T ¼ Tmax.
(10) If W > Wmax, then, only in relatively low rest-mass

density regions (i.e., for ρ ≤ 1011 g cm−3), we limit
W ¼ Wmax and set v ¼ vmax ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=W2

max

p
. The

conserved density D is kept fixed and we calcu-
late ρ ¼ D=Wmax.

Finally, while these policies are fully generic, they are
systematically applied in the following five different
scenarios:
(1) After importing initial data;
(2) Before the inversion from ϵ to T;
(3) After primitive recovery;

(4) After reconstruction from the left and right-hand
sides;

(5) After restriction or prolongation steps following the
mesh refinement.

IV. RESULTS

We next present a series of numerical tests aimed at
assessing not only the accuracy and stability of BHAC+, but
also its ability to import a time slice from a fully numerical-
relativity simulation provided by FIL and evolve it stably
for timescales up to one second. These representative tests
simulate various astrophysical systems with increasing
degree of realism and complexity, hence, starting from
oscillating nonrotating stars, to go over to rapidly rotating
stars, magnetized and differentially rotating stars, the head-
on collision of two neutron stars, and to conclude with the
long-term BNS postmerger remnants. The tests span across
different spatial dimensions, ranging from 1D to 2D and
3D, employing either spherical, cylindrical, or Cartesian
coordinates, and different types of EOSs, from analytical to
tabulated, as well as with varying spacetime conditions,
including both fixed and dynamical spacetimes. Table I
provides a summary of the parameters, dimensions, coor-
dinate systems, and grid information for each set of initial
data used in the various tests.

A. Tests setup and initial conditions

In all simulations performed using FIL, the time inte-
gration of the full system of Einstein-Euler equations is
performed using a method of lines (MOL) [58], with a third-
order Runge-Kuttamethod and a fixedCFL factor of CCFL ¼
0.2 [see Eq. (8.41) of Ref. [58] for a definition]. The
GRMHD equations are solved with a two-wave Harten-
Lax-van Leer-Einfeldt (HLLE) Riemann solver [108,109],
and aWENO-Z (weighted essentially nonoscillatory with Z
characteristic) reconstruction [110] coupled to an HLLE
Riemann solver [108] (see Refs. [28,43,44] for additional

TABLE I. Summary of the simulations discussed in the paper and performed by BHAC+. The different columns report the name of the
test, the number of spatial dimensions and the coordinates employed, the evolution of the spacetime, the EOS, the number of refinement
levels (Nref ), the number of cells on the coarsest level (N1 × N2 × N3), the effective number of cells given the refinements
(ðN1 × N2 × N3Þeff ), the finest-cell sizes in the first, second, and third dimension ðΔximinÞ; depending on the coordinate system the units
are either solar masses or radians), the maximum coordinate in the first, second, and third dimension ximax (domain), and the code
providing the initial data. Information on the simulations run by FIL are reported in the main text.

Test Dimension Coordinate Spacetime EOS Nref N1×N2×N3 ðN1 × N2 × N3Þeff Δximin (10−2) ximax ID

BU0-cow 1D Spherical Fixed Γ-law 1 640 640 [7.81] [50] XNS

BU0-dyn 1D Spherical Dynamical Γ-law 1 640 640 [9.38] [50] XNS

migration 2D Spherical Dynamical Γ-law 1 640 × 32 640 × 32 [9.38,5.33] [60; π=2] RNS

magnetized-DRNS 2D Spherical Dynamical Γ-law 3 64 × 64 256 × 256 [39.10,0.61] [100; π=2] XNS

DD2RNS-mr 2D Cylindrical Dynamical HSDD2 5 32 × 32 512 × 512 [19.53,19.53] [þ100;þ100] RNS

DD2RNS-hr 2D Cylindrical Dynamical HSDD2 5 64 × 64 1024 × 1024 [9.77,9.77] [þ100;þ100] RNS

head-on 3D Cartesian Dynamical HSDD2 5 128×128×64 2048×2048×1024 [19.53,19.53,19.53] [�200;�200;þ200] FUKA

DD2BNS-HO@20ms 2D Cylindrical Dynamical HSDD2 10 16 × 16 8192 × 8192 [9.77,9.77] [þ800;þ800] FIL
DD2BNS-HO@50ms 2D Cylindrical Dynamical HSDD2 10 16 × 16 8192 × 8192 [9.77,9.77] [þ800;þ800] FIL
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details). On the other hand, all the simulations performed
with BHAC+ employ the Harten-Lax-van Leer (HLL)
Riemann solver [108], a piecewise parabolic method
(PPM) [111], and a third-order Runge-Kutta (RK3) time
integrator.A second-order Lagrange interpolation is used for
the metric interpolation and the divergence-free constraint is
enforced by using upwind constrained transport [46].
Information on the coordinates used, the computational
domain, the resolution on the coarsest level, and the number
of refinement levels employed is presented in Table I for
each simulation. For the adaptivity in the mesh-refinement
process, we employ a Löhner error estimator [112] based on
the values of the rest-mass density.
Special and different care needs to be paid depending on

the type of coordinates used for the simulations in BHAC+.
In particular, in the case of cylindrical coordinates, the
highest refinement level is set to be within a spherical
region of radius R < Rin ¼ 30M⊙ ≃ 44.3 km and this is
always sufficient to resolve the high-density region of the
studied systems. In the case of spherical coordinates,
however, a different strategy is necessary.
This is because the very small spatial size Δx of the

computational cells near the center of the coordinate system
sets challenging constraints on the size of a CFL-stable time
step (we recall that Δt ∝ CCFLΔx). For this reason, in the
case of spherical coordinates we employ a single grid
block covering an inner spherical region of radius
Rcore < 1 − 2M⊙ ≃ 1.48–2.95 km, which is not the first
(highest) refinement level but the second one; this allows us
to have good resolution near the coordinate center but not to
be penalized by an excessively small time step. The first
refinement level is instead set within the spherical shell with
Rcore < R < Rin ¼ 30M⊙ ≃ 44.3 km, while the third (low-
est) refinement levels covers the region with Rin<R<Rout,
where Rout is the maximum value of the radial coordinate
(see Table I where Rout ¼ xrmax), and thus contains the outer
boundaries. This setup, while not fully exploiting the
adaptive-mesh capabilities of BHAC+, results in a reasonable
time step constraint. Additionally, one of our tests (i.e., the
3D head-on in Table I) requires a particular refinement
structure in Cartesian coordinates. More specifically,
we introduce five nested rectangular regions with the inner-
most having the highest refinement level, characterized by a
volumeof90 × 40 × 40M3

⊙ ≃ 133 × 59 × 59 km3) andcon-
taining both stars at all times. Each side of outer refinement
boxes having ðx; y; zÞ extents in solar masses given by
(10, 10, 10), (20, 30, 30), (110, 30, 30), and (160, 180, 180).
Note that whenever importing initial data in BHAC+, we

check the Löhner refinement criterion to establish whether
to refine or coarsen the grid blocks and refill the initial data
to the refined grids before the evolution in order to reduce
the error induced by prolongation and restriction for the
initial data. During the evolution, instead, we evaluate
the Löhner refinement criterion every 10 iterations to
determine new refinement levels for all blocks.

Finally, for all simulations performed with BHAC+, the
values of the CFL factor and of the efficiency parameter
depend on the coordinate employed, so that CCFL ¼ 0.3,
0.3, and 0.4, while ξeff ¼ 1=10, 1, and 1=50 for for
cylindrical, Cartesian, and spherical coordinates, respec-
tively. The only exceptions are represented by the tests
involving the 3D head-on collision of two neutron stars and
the 2D long-term evolution of the BNS remnant; in
particular, for the head-on test we employ a Cartesian
coordinate and a CFL factor 0.3, while for the 2D long-term
evolution the cylindrical coordinate and a CFL factor of
0.25 are used. In both cases, different values of ξeff ¼
1; 1=3; 1=10 are employed to determine the optimal balance
between computational costs and accuracy (see discussion
in Secs. IV F and IVG).

B. TOV star with an ideal-fluid EOS

We start our validation of BHAC+ with a rather simple but
complete test: the long-term oscillation properties of a
nonrotating star. This test was first employed in a fully
general-relativistic spacetime already in Ref. [113] and
has been explored systematically in Ref. [56]. Hence,
we consider a nonrotating neutron-star model with a
polytropic EOS having Γ ¼ 2 and K ¼ 100, a gravitational
mass of 1.40M⊙, and a central rest-mass density of
ρc ¼ 1.28 × 10−3 ¼ 7.91 × 1015 g cm−3. This model was
first introduced in Ref. [114] and is there referred to as
“BU0”, and is also a reference model for the open-source
code XNS [59,115]. Given the symmetry of the problem and
the flexible dimensionality of BHAC+, we carry out this first
test in 1D spherical coordinates and an ideal-fluid (Γ-law)
EOS, i.e., p ¼ ρϵðΓ − 1Þ, with Γ ¼ 2. The spacetime is
either kept fixed in what is otherwise referred to as the
“Cowling approximation”, (test BU0-cow) or evolved with
the xCFC scheme (test BU0-dyn); in both cases the
evolution is carried out for 10 ms.
The upper panel of Fig. 3 shows the relative difference in

the evolution of the central rest-mass density ρcðtÞ with
respect to the initial rest-mass central density, i.e., ρcð0Þ, for
both the models BU0-cow and BU0-dyn. The lower panel
of Fig. 3, on the other hand, shows the same but for the
central value of the lapse function αcðtÞ. Since no explicit
perturbation is introduced in both stars, the small oscil-
lations are triggered by round-off errors and they remain
harmonic and small in amplitude (i.e.,≲10−3) over the time
of the solution.
The evolutions in Fig. 3 report a well-known behavior

(see, e.g., [56,113,116]), namely, that the oscillations are
more rapidly damped in the case of a fixed spacetime,
simply because the dynamical coupling between the
evolution of matter and the gravitational field is broken
and a larger amount of mass is lost at the surface. Stated
differently, in the Cowling approximation the gravitational
fields cannot react to the local under or overdensities
caused by oscillations and matter is more easily lost from
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the stellar surface at each oscillation. When the spacetime is
evolved, on the other hand, the amplitude of the oscillations
is damped because of a small but nonzero numerical bulk
viscosity [117,118].
What matters most in this test is that the frequencies of

the numerical oscillations match the expected oscillation
eigenfrequencies computed perturbatively, either in a fixed
or in a dynamical spacetime. To this scope, Fig. 4 reports
the power spectral density (PSD) of the Fourier transform
of the function ρcðtÞ over the 10 ms evolution of model
BU0-dyn and compares it with the perturbative frequen-
cies of the fundamental radial-oscillation mode (F-mode),
its first overtone (H1) and second overtone (H2) [113]. The
relative difference between the two frequencies is −0.07%
for the F-mode, −0.43% for the H1-mode, and −0.61% for
the H2-mode, respectively, with the numerical mode being
systematically smaller, as expected from a nonlinear
solution in a linear regime. Overall, the high accuracy of
these results provide us with the first evidence of the correct
implementation of the CFC approximation in BHAC+.

C. Migration test

Stepping up in complexity, we now consider a test that
simulates a fully nonlinear scenario in which both the field
and the matter variables undergo very rapid changes. The
test in question, which is commonly referred to as the
“migration test” was first introduced in Ref. [113] and
has since been employed to test a variety of codes
[30,59,116]. In essence, this test studies the evolution of a
nonrotating neutron star placed on the unstable branch of
equilibrium configuration and which is triggered to
“migrate” on the stable branch where it will find a stable

configuration with the same rest mass after undergoing a
series of large-amplitude oscillations. In this process, the star
essentially expands very rapidly, converting its binding
energy into kinetic energy, and then, via shock-heating, into
internal energy.
Since this is purely a numerical test, we choose the

neutron star to have a central rest-mass density of ρc ¼
7.993 × 10−3 ≃ 4.937 × 1015 g cm−3, and employ a poly-
tropic EOS with Γ ¼ 2 and K ¼ 100, thus leading to an
initial radius R ¼ 4.06M⊙ ¼ 6.29 km. The evolution, on
the other hand, is carried out with an ideal-fluid EOS with
the same adiabatic index. The stellar model is then evolved
in 2D employing spherical polar coordinates within a
dynamical spacetime and its dynamics compared with that
obtained with FIL.
Figure 5 illustrates the evolution of the central rest-mass

density normalized by its initial value at t ¼ 0, while the
black dotted line represents the central rest-mass density of
the neutron star on the stable branch with ρc ¼ 1.346 ×
10−3 having the same gravitational mass as the initial model
(this value is higher than the asymptotic solutions since it
does not account for the matter lost in the nonlinear shocks
at the stellar surface). Overall, our results are qualitatively
consistent with previous studies, either in full general
relativity [113,116], or employing the CFC approximation
[30,59], and exhibit the well-know behavior in terms of
peak amplitudes, density at the first and second maxima,
the nonharmonic nature of the density oscillations, etc.
However, for a more quantitative comparison, we present in
Fig. 5 also a direct comparison of the corresponding
evolution carried out by FIL in full general relativity

FIG. 3. Top panel: Relative difference in the evolution of the
central rest-mass density ρcðtÞ when normalized to the initial one
for two nonrotating stars when evolved in either the Cowling
approximation (BU0-cow, red solid line) or with a dynamical
spacetime within the CFC approximation (BU0-dyn, blue solid
line). Bottom panel: the same as in the top one but for the central
value of the lapse function αcðtÞ.

FIG. 4. PSD of the evolution of the normalized central rest-
mass density ρcðtÞ=ρcð0Þ of the BU0-dyn test computed over a
timescale of 10 ms as in the top panel of Fig. 3. Two clear peaks
are visible in the PSD and show a very good match with the
expected eigenfrequencies of the fundamental mode (F-mode,
red dashed line), of its first overtone (H1-mode; blue dashed line)
and second overtone (H2-mode; green dashed line) computed
from perturbative studies [113].
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and with very similar spatial resolution. Notwithstanding
the intrinsic approximations associated with the CFC
approach, the similarities between the two curves, espe-
cially in the most nonlinear part of the evolution (i.e.,
t≲ 2 ms) is quite remarkable; the similarities between the
two evolutions persist up to t≲ 5 ms, after which the more
dissipative features of the CFC approximation appear and
phase differences emerge in the evolution. We should
recall, in fact, that, in addition to the less accurate spacetime
evolution, BHAC+ utilizes a second-order accurate finite-
volume scheme for the solution of the GRMHD equations,
while FIL employs a fourth-order accurate—and hence
less diffusive—finite-difference method. Overall, however,
also this migration test provides an important validation
of the correct implementation of the CFC solver in a 2D
scenario.

D. Magnetized and differentially rotating star

All of the tests presented so far referred to configura-
tions with a zero magnetic field. In order to validate the
ability of BHAC+ to properly solve the GRMHD equations
in a dynamical spacetime, we consider the evolution
of a magnetized and differentially rotating star [36,59].
To this scope, we again use XNS [59] to generate a
self-consistent magnetized star with a purely toroidal
magnetic field and in differential rotation. In particular,
the initial stellar model was modeled as following
the j-constant rotation law [119] with central angular
velocity Ωc ¼ 2.575 × 10−2 and differential-rotation
parameter A2 ¼ 70, and a polytropic EOS with Γ ¼ 2

and K ¼ 100 (this test is referred to as magnetized-
DRNS in Table I). The resulting initial central rest-mass
density is ρcð0Þ ¼ 1.28 × 10−3 ¼ 7.91 × 1015 g cm−3 and
we prescribe the magnetic-field strength B ≔

ffiffiffiffiffiffiffiffiffi
BiBi

p
with

the law [120]

B ≔
�
Kmðα2ϖ2ρhÞm=ðαϖÞ; for ρ > 10−9

0; for ρ ≤ 10−9
ð43Þ

where ϖ ≔ ψ2r sin θ is the generalized cylindrical radius,
with r and θ being the spherical radial and polar coordinates;
in practice, we set m ¼ 1 and Km ¼ 3. As remarked in
Refs. [36,59], the magnetic field in this star reaches a
maximum value of ∼5 × 1017 G, thus accounting for
∼10% of the total internal energy of the star and providing
a non-negligible change in the underlying equilibrium.
Once the initial stellar model is imported in BHAC+, we

evolved the system in 2Dusing spherical coordinates and the
same ideal-fluid EOS employed in the previous test for a
duration of 10 ms. The left panel of Fig. 6 shows the 2D
slices of the rest-mass density and of the rotational velocity,
vϕ, at two different times, t ¼ 0 (upper part) and t ¼ 10 ms
(lower part). Clearly, a direct and qualitative comparison of
the two 2D slices shows the ability of the code to retain an
accurate description of the stellar model over more than
eight spinning periods. The right panel of Fig. 6 shows
instead a more quantitative comparison of the radial profiles
of the rest-mass density, the linear rotational velocity vϕ, and
toroidal magnetic fieldBϕ at t ¼ 0 and t ¼ 10 mswhich are
normalized by their maximum values. Furthermore, the
upper part of the panel refers to the diagonal direction
(θ ¼ π=4), while the lower panel to the equatorial one
(θ ¼ π=2). We note that there on both angles there are minor
distortions in the rotational velocity vϕ around r ≈ 17 km,
where the low-density atmosphere interfaces with the high-
density neutron star. The sharp gradient introduced by the
stellar surface oscillates as a result of the roundoff pertur-
bations exhibiting a behavior consistent with the findings of
Ref. [59]. Overall, the results of this test further demonstrate
that BHAC+ is capable of stably simulating a rapidly
configuration stellar configuration with a strong magnetic
field and over several rotation periods.

E. Rapidly and uniformly rotating star
with tabulated EOS

Next, we validate our new code by evolving a rapidly and
uniformly rotating neutron star with a rotation rate close to
the mass-shedding limit and described by a tabulated,
finite-temperature EOS, specifically the HSDD2 EOS
[121]. Our initial data is computed as an axisymmetric
equilibrium model using the RNS code [122] with angular
velocity Ω ¼ 2.633× 10−2 ¼ 850.85 2π Hzand is assumed
to be in a neutrinoless β-equilibrium state with T ¼ Tmin.
The evolution in BHAC+ is performed in 2D with cylindrical

FIG. 5. Evolution of the central rest-mass density normalized to
the initial value in the migration test. Reported with solid lines
of different color are the evolution by BHAC+ (blue line) and by
FIL (red line). Note the excellent agreement especially over the
first few oscillations; the black dotted line represents the central
rest-mass density of the star on the stable branch having the same
gravitational mass, which is higher than the asymptotic solutions
since it does not account for the matter lost in the nonlinear
shocks at the stellar surface.
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coordinates and z-symmetry while, at the same time, we
carry out an analogous evolution with FIL in Cartesian
coordinates with the same resolution over the star (this is
the test DD2RNS-mr in Table I). To quantify the resolution
dependence of BHAC+, we perform an additional simulation
with BHAC+ having a resolution that is twice that used in
FIL (this is the test DD2RNS-hr in Table I).
The left panel of Fig. 7 illustrates the profiles on the

equatorial plane (i.e., z ¼ 0) of the rest-mass density ρ (top
panel), of the angular velocity Ω (middle panel), and of
conformal factor ψ (bottom panel) at the initial time (black
dotted line) and at t ¼ 10 ms, both for BHAC+ (blue solid
line, case DD2RNS-mr) and FIL (red solid line).
Remarkably, after eight rotation periods, all the matter
quantities in the stellar interiors (i.e., x≲ 12 km) are well-
preserved, with only small deviations from the initial data
despite the very extreme properties of the stellar model.
This is true both for the data obtained with BHAC+ and with
FIL; an even better agreement is found in the conformal
factor, where the relative differences are less than ≃0.15%.
The right panel of Fig. 7, on the other hand, reports the

relative differences in the evolution of the central rest-mass
density ρc and of the conformal factor ψc when compared
to their initial values. Note also that in the case of the
simulations carried out by BHAC+, we report evolutions
with two different resolutions. This shows that as the
resolution of BHAC+ is increased, the differences to the
evolution in FIL decreases and the small dephasing
observed in the case of the medium-resolution simulation
decreases significantly. The oscillations in ρc and ψc show
relative variations in the high-resolution simulations that

are less than 10−2 and 10−4, respectively. Note that we have
performed an extra simulation with medium resolution and
with ξeff ¼ 1 that is not shown in the right panel of Fig. 7.
As expected, in this case we find a damping timescale that
is longer than that measured in the case of DD2RNS-hr
with ξeff ¼ 1=10, and a solution that is less diffusive than in
both of the cases of DD2RNS-hr and DD2RNS-mr.
Overall, bearing in mind that FIL uses high-order

methods and the full evolution of the spacetime, the agree-
mentwith BHAC+, already at comparatively small resolutions
and in simulating a rather challenging stellar model, con-
firms the ability of BHAC+ and of the CFC approximation to
accurately reproduce in 2D results from a full 3D numerical-
relativity code. In the following section wewill demonstrate
that this is also the case in full 3D simulations.

F. Head-on collision of two neutron stars

We next discuss the head-on collision of two neutron
stars as a 3D test to validate the full implementation of the
set of equations and explore conditions of spacetime
curvature and matter dynamics that are very similar to
those encountered in a binary merger from quasi-circular
orbits [123], but that can be tested at a fraction of the
computational cost (this test is indicated as head-on in
Table I). Indeed, the head-on collision of two stars has a
long history and has been in the past employed to actually
study the dynamics of critical phenomena [124] or the
formation of black holes for ultrarelativistic initial speeds
[125,126]. Furthermore, because of the minimal influence
of gravitational waves, this scenario is also particularly

FIG. 6. Left panel: 2D distributions of the rest-mass density (left column) and of the rotational velocity (right column) of a magnetized
and differentially rotating star (test magnetized-DRNS in Table I). The top row refers to the initial time t ¼ 0, while the bottom row to
the final time t ¼ 10 ms, corresponding to about eight rotational periods, and showing a very good preservation of the axisymmetric
equilibrium. Right panel: Indicated with different symbols are the 1D profiles of the rest-mass density, of the angular velocity, and of the
toroidal magnetic field, all normalized to their maximum values for the same test in the left panel. The top row displays the profiles at a
polar angle θ ¼ π=4, while the bottom row shows them on the equatorial plane θ ¼ π=2. For all quantities, the dashed lines represent the
initial profiles, which are well preserved even after eight rotational periods. The inset in the bottom row reports log10½ρ�=log10½ρcð0Þ� and
shows that the surface of the star is captured with a couple of cells only.
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suited for assessing codes utilizing the CFC approximation
and allows us to compare once again the solutions obtained
with FIL and BHAC+.
The initial data of FIL is generated using the FUKA code

[127–129], which computes the initial data timeslice by
solving the eXtended Conformal Thin Sandwhich (XCTS)
system of equations [128,130]. The initial data is obtained
by first computing the isolated 3D solutions of the stars
prior to constructing a spacetime representing the binary
system. However, unlike the implementation discussed in
Refs. [128,129], we approximate the solution by super-
imposing two isolated solutions and re-solving the XCTS
constraint equations where, however, some care must be
taken as we will discuss shortly.
The initial guess of the head-on is generated by super-

imposing the isolated stellar solutions such that, for a given
spacetime or source field X, the initial guess in the binary is
constructed as [129]

XbinðxÞ ≔ Ξþ κ1ðX1ðx̂1Þ − ΞÞ þ κ2ðX2ðx̂2Þ − ΞÞ; ð44Þ

κ1;2 ≔ exp

�
−
�

r1;2
d0=2

�
4
�
; ð45Þ

x̂1;2 ≔ x − xc1;c2; ð46Þ

where Ξ is the asymptotic value for a given field (e.g.,
ψ ¼ α ¼ 1, βi ¼ 0, etc.), d0 is the initial separation, xc1;c2
are the location of the neutron-star centers, and κ1;2
represent the “decay parameters” centered about the

respective neutron-star solution, such that the solution is
exactly the isolated solution near the neutron star and then
decays to flat spacetime further away. The decay behavior
of the solutions is controlled by the 4th power in the
exponential, while the decay distance is controlled by the
weight factor d0. This approach is analogous to that
employed in Ref. [131] for the head-on collision of boson
stars and was inspired by previous works [132,133], though
the application was focused on fixing background metric
quantities instead of generating an initial guess for
obtaining an initial-data solution.
Since the initial timeslice is not (quasi)stationary and we

no longer have a notion of conservation along fluid lines,
we are not able to strictly enforce hydrostatic equilibrium
by solving the Euler equation. Instead, we adopt an
approach similar to that used in Ref. [128], where we
relax this constraint and simply rescale the fluid quantities
by a constant fixed by enforcing a fixed rest-mass. Thus,
the fluid description of each neutron star will systematically
scale as a function of the Lorentz factor W due to the
presence of the companion object. For this reason, we set
the initial separation between the two stars to d0 ¼ 60M⊙ ≃
89.4 km, such that the solutions are minimally rescaled
while still resulting in a computationally efficient setup. It
is important to note that relaxing the hydrostatic equilib-
rium is also a necessary step to obtain eccentricity reduced
initial data, the effects of which have been discussed
previously [128,134].
To further test the interfacing of FIL with BHAC+, the

initial data from FUKA is first imported from FIL and then

FIG. 7. Left panel: 1D profiles at θ ¼ 90° and at t ¼ 10 ms of the rest-mass density (top row), of the angular velocity (middle row), and
of the conformal factor (bottom row) for a rapidly and uniformly rotating neutron star (test DD2RNS-mr in Table I). Solid lines of
different color refer to the evolutions carried out by BHAC+ (blue line) or FIL (red line) showing a very good preservation of the
equilibrium in the high-density regions of the star. The deviations from the initial profiles at t ¼ 0 ms (black dashed lines) are comparable
in the two codes and are typical of simulations of rapidly rotating stars (note the logarithmic scale employed here). Right panel: Evolution
of the relative difference in the central rest-mass density (top row) and of the conformal factor (bottom row) for the same model reported
in the left panel and the same convention for the line types. In addition, each row contains also the data of a high-resolution simulation
(DD2RNS-hr, green solid line), highlighting how the differences with FIL can be decreased by a higher spatial resolution.
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“handed-off” to BHAC+ so that the two codes have initial
data that is equivalent to the one they exchange in a typical
HO situation. The initial velocity of two neutron stars is set
to zero, and their mass is set so as to avoid black-hole
formation, i.e., they have an ADM mass MADM ¼ 0.91M⊙
[123], and are described by the HSDD2 EOS [121]. The
finest refinement level of the two codes contain both of the
neutron stars, have a grid resolution of ≃0.2M⊙ ≃ 298 m;
for simplicity and a closer comparison, both the resolution
and the grid structure is not varied during the evolution.
Figure 8 reports the evolution of the maximum rest-mass

density normalized to its initial value as obtained by BHAC+

(blue solid line) and by FIL (red solid line). Note the very
good agreement despite the very different set of field
equations solved. In particular, it is remarkable that not
only the time of the collision (i.e., when the central rest-
mass density deviates most significantly from its initial
value5) differ by ≲1.3%, but also that the maximum and
minimum changes in the maximum rest-mass density are
very similar and differ by ≲4.9% at most, while the
differences in the asymptotic equilibrium values of the
collision remain below ≃0.4%. Note also that the variations
in the fluid variables in this case are much more severe and
extreme than what simulated in the case of the migration
test (compare Fig. 8 with Fig. 5).
Also shown in Fig. 8 are examples of evolutions with

different efficiency ratios and hence different computa-
tional efficiency. More specifically, while the blue solid line

refers to ξeff ¼ 1, the black and gray solid lines refer to
ξeff ¼ 1=3 and 1=10, respectively. Note that, as expected,
the comparison with the FIL evolution are worse in these
cases, but also that the differences remain ≲10% in the
maximum variation of the central density, while the actual
fundamental frequency of oscillation or the final central
rest-mass density of the collision remnant differ by ≲3%.
These differences—which are measured in the most
extreme conditions of spacetime curvature expected in
BNS mergers and are therefore to be taken really as upper
limits—need to be contrasted with the corresponding gain
in computational costs. More specifically, given similar
resolution between two codes, considering that BHAC+ is
about 3.5 (4.6) [6.3] times faster than FIL for comparable
resolutions when setting ξeff ¼ 1 ð1=3Þ ½1=10�, it becomes
clear that a systematic error of a few percent can be
tolerated over timescales of seconds when it comes with
a gain of about a factor four to six in computational costs.
Furthermore, additional gains can come from a better
coordinate system and mesh refinement structure, by the
use of even smaller values of ξeff at later times as the
spacetime dynamics is much less severe, and, more
importantly, by the considerable difference in the CFL
constraint when considering the sound speed in place of the
speed of light. Note that it is not difficult to show
analytically that the computational gain γ̄, i.e., the ratio
of operations in a fully general-relativistic code (e.g., FIL)
and of constraint-solving code (e.g., BHAC+), is
γ̄ ¼ ð1þ ξeffcs=cÞ=½ð1þ ξeffÞcs=c�. Hence, γ̄ → c=cs in
the limit of ξeff → 0. Furthermore, because ξeff can be
decreased with increasing spatial resolution, the computa-
tional gain actually increases when performing simulations
with higher resolutions.
Figure 9 offers a comprehensive comparison of the 2D

rest-mass density and temperature distributions of BHAC+

(depicted in the left part of each principal plane) and FIL
(depicted in the right part of each principal plane). The
different panels refer to different and representative times
during the collision and the top-left panel in Fig. 9, in
particular, reports the instant when the two neutron stars
start colliding at t ≃ 1.89 ms. The comparison reveals a
high degree of similarity between the two codes, although
small differences do emerge. In particular, and as expected,
the atmosphere surrounding FIL is hotter and denser than
that of BHAC+. This discrepancy is mostly attributed to
the different order at which the GRMHD equations are
solved in the two codes with high-order schemes being
normally more sensitive to small shocks at the stellar
surface and hence to very small mass losses [see, e.g.,
Refs. [116,135,136] for a discussion]. Note also that in this
pre-merger phase both codes suffer from small failures in
the temperature near the stellar surface and once again these
are produced by the small rest-mass density fluctuations
near the surface, which, in turn, are amplified by the high-
power dependence of the temperature on these oscillations;

FIG. 8. Evolution of the maximum rest-mass density normal-
ized to the initial value in the 3D head-on collision test. The red
line represents the result of FIL, while the blue line shows the
evolution in BHAC+. Also shown with a black and gray solid line
are the evolutions with different efficiency ratios, namely ξeff ¼
1=3 and 1=10, respectively. The blue solid line is obtained with
ξeff ¼ 1 and is obviously the closest to the FIL evolution.

5Note that a less frequent spacetime update has the conse-
quence that the spacetime evolves “less rapidly” and this
obviously leads to a systematic delay in the time of collision.
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when comparing the behavior of the internal specific
energy, in fact, these oscillations are essentially absent.
The top-right panel of Fig. 9 shows instead the same
quantities at the instant of maximum compression at t ≃
2.26 ms (see also the first peak in Fig. 8). At this time,
matter experiences extreme compression in the x-axis

direction (the collision is along the x-axis), leading to a
peak temperature of approximately 50 MeV in the central
region as a result of the collision of the two strong shocks
fronts. The rest-mass density and temperature profiles in
both codes exhibit striking similarity and some differences
appear only in the very low-density regions of the FIL

FIG. 9. 2D comparison on the principal planes of the rest-mass density and temperature between in the head-on collision of two
neutron stars (test head-on) as computed by BHAC+ (left part of each plane) and FIL (right part of each plane). In each column, the top
part of each panel reports the rest-mass density, while the bottom part shows the temperature. Finally, the four panels refer to four
different times, namely, the instant when the two neutron stars start colliding (top-left panel, t ≃ 1.89 ms), that of the maximum
compression (top-right panel, t ≃ 2.26 ms), that of the minimum compression (bottom-left panel, t ≃ 2.47 ms), and that of the late-time
evolution (bottom-right panel, t ≃ 6.47 ms). Note that the color bars are different in the four panels and the use of negative-z regions is
done for visualization purposes only since the simulations actually employ a symmetry across the z ¼ 0 plane. Finally, note the very
good agreement between the two evolutions despite the difference in coordinate systems, truncation order in the solution of the GRMHD
equations, and different treatment of the spacetime evolution.
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evolution, which is absent in the BHAC+ results. The
bottom-left panel refers instead to the instant of minimum
compression at t ≃ 2.47 ms (see also the first minimum in
Fig. 8), and shows that as a result of the bounce and change
of sign in the bulk linear momentum, matter is expelled
back in the x-axis direction producing a strong reverse
shock at the surface of the merged object, so that the
remnant has a low-density, low-temperature core produced
by the induced rarefaction wave. Finally, the bottom-right
panel shows to the stable remnant at t ≃ 6.47 ms, which
exhibits a high-temperature mantle relative to the shocked
material and a comparatively cooler core.
In summary, the remarkably good agreement between

the two fully 3D evolutions despite the difference in
coordinate systems, truncation order in the solution of
the GRMHD equations, and different treatment of the
spacetime evolution6 provides very convincing evidence
for the ability of the CFC approximation to effectively
model gravitational effects, particularly when the non-
diagonal terms of the spatial metric tensor in the system
are anticipated to be negligible, as it is the case during the
free-fall stage preceding the collision.

G. Long-term evolution of a postmerger remnant

The next and final test we present is related to the 2D
long-term (i.e., for about one second) evolution of the
remnant of a BNS merger. Although the evolutions in BHAC

+ are only in 2D, this test is actually more challenging than
the previous one in 3D, as it stress-tests the evolution on
very long timescales, over which instabilities or numerical-
dissipation effects may manifest.
A number of recent studies (see, e.g., [41,42,137]) have

shown that the BNS postmerger remnant relaxes into a
nearly axisymmetric and quasistationary state after a few
tens of milliseconds after the merger event. Furthermore,
after approximately 50 ms after the merger, the absolute
magnitude of the nondiagonal components of γ̃ij from FIL
become very small, with relative differences with respect to
the corresponding flat components that is ≲2%. Under
these conditions, a more efficient and less expensive
treatment of the spacetime evolution is particularly useful,
especially for long-term evolutions at high resolutions. Of
course, in order for BHAC+ to perform such an evolution it
requires a consistent initial data and this can only be
provided by a full-numerical relativity code, such a FIL,
and the HO procedure described in Sec. III C.
In practice, after constructing the initial data for a binary

system of neutron stars with equal masses ofM ¼ 1.40M⊙
in irrotational quasicircular equilibrium and zero magnetic
field with FUKA, we evolve the system with FIL well past
the merger. The evolution is handled using five levels of

mesh refinement and with the highest-resolution level
having a spacing of 0.2M⊙ ≃ 0.295 km. Defining t and
tmer respectively as the times since the start of the
simulation and the merger time,7 we define the retarded
time as t̄HO ≔ t − tmer and fix the HO time from FIL to
BHAC+ to a specific value of t̄. Since the time of HO
represents an important (and to some extent arbitrary)
aspect of the long-term evolution, and in the spirit of
assessing its impact, we have carried out two distinct
simulations with HO at tHO;1≔20ms and tHO;2 ≔ 50 ms,
respectively.
We start our comparison by showing in Fig. 10 the 2D

slices of the conformal factor ψ (left part of each panel) and
of the rest-mass density ρ (right part of each panel) at two
representative times, i.e., t̄ ¼ 50 ms (left panel) and t̄ ¼
100 ms (right panel) respectively. Furthermore, for each
panel, the top parts report the solutions from BHAC+ when
the HO is made at tHO;1 (left panel) or tHO;2 (right panel),
while the bottom part shows the solution relative to the FIL
evolution restricted to the slice at y ¼ 0. Overall, the eight
subpanels shown in Fig. 10 indicate that, at least qualita-
tively, the solutions coming from the two codes are
remarkably similar despite the differences in the approaches
for the evolution of the spacetime and the different dimen-
sionality (3D for FIL and 2D for BHAC+). Of course, there
are two main reasons for this very good match. First, the
gravitational fields characterising the remnant are compa-
ratively weak and rather slow-varying, so that the CFC
approximation provides a very good description. Second, by
the time the HO is made at tHO;1, the remnant is significantly
axisymmetric, so that the azimuthally averaged description
of the remnant made by BHAC+ matches very well the fully
3D solution computed with FIL.
Figure 11 goes from the qualitative description of Fig. 10

to a more quantitative one by reporting the 1D slices at
z ¼ 0 for the solution obtained by BHAC+ and by FIL (in
this case the data is extracted at y ¼ z ¼ 0; red solid lines)
and at three representative times, namely, t̄ ¼ 20 ms (top
row), t̄ ¼ 50 ms (middle row), and t̄ ¼ 100 ms (bottom
row) and for three different quantities, the rest-mass density
(left column), the specific internal energy (middle column),
and the conformal factor (right column). Note that in the
case of the BHAC+ evolutions, we distinguish the data
coming from tHO;1 (blue solid lines in the top and middle
rows) from that obtained when the HO is instead done at
tHO;2 (green solid lines in the middle and bottom rows).
Note also that simulation by FIL is carried out till
t̄ ¼ 100 ms, while the BHAC+ simulation with tHO;1 till
t̄ ¼ 50 ms, and that with tHO;2 is performed till t̄ ¼ 1.0 s.
Finally, shown instead with an orange solid line in the
bottom row is the solution from BHAC+ at the final time of
1000 ms.

6Similar level of differences can be found also when compar-
ing the evolution of the same full numerical-relativity code with
slightly different hydrodynamical treatments (see, e.g., [136]).

7As customary, we define the merger time as the time of the
global maximum of the GW strain amplitude [138].
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Let us first compare the behavior of the rest-mass density
(left column) in the three different snapshots. Overall, it is
clear that BHAC+ can reproduce the structure of the binary
merger remnant very well, especially in the inner regions
(i.e., r≲ 10 km) and quite independently of the HO time.
Obviously, since the BHAC+ simulations are in 2D only, the
corresponding profiles are smoother than those from FIL
but the differences are apparent only when reported in a
logarithmic scale, as we do in Fig. 11. Note also that the
rest-mass profile in the remnant does not change consid-
erably between t̄ ¼ 100 ms (which represents the last time
of the solution from FIL) and t̄ ¼ 1000 ms, with the
structure of the remnant from BHAC+ being only slightly
more diffused than that from FIL (cf., different profiles
from 10≲ r≲ 20 km).
Similar considerations apply also to the specific internal

energy (middle row), where the BHAC+ solution with tHO;2
(red solid line) shows a better agreement with the reference
FIL solution as compared to that with tHO;1 (blue solid line).
The evolution of the temperature profile, on the other hand,
can show more visible differences and is more sensitive on
the HO time (not shown in Fig. 11). More specifically, the
BHAC+ solution with tHO;1 shows larger values of the
temperature in the region 5≲ r≲ 20 km, and smaller values

in the more internal regions of the remnant, i.e., for
r≲ 5 km; furthermore the temperature profile in BHAC+

in this inner core also exhibits oscillations that have small
amplitude and short wavelengths. The origin of these
differences can be attributed to three main origins. First,
the initialization of the CFC field variables on the initial slice
inevitably introduces fluctuations that are magnified in the
behavior of the temperature. This is due to the fact that the
gauges undergo a sudden change upon import and that
the given HO data is not purely conformally flat. In turn, the
metric initialization induces slight differences in the values
of ρ; Ye; ϵ. Second, the initial differences in ϵ and Ye
between FIL and BHAC+ are of the same order as those
in ρ and, especially after metric initialization, such initial
differences become larger when the new constraints are
satisfied. As a result, the accuracy of the calculation of the
temperature as a function T ¼ Tðρ; ϵ; YeÞ—which already
suffers from a poor resolution of the tabulated EOS at these
regimes and from a high-power dependence of T from ϵ in
regions of high rest-mass density—is further affected. Third,
the small fluctuations in the temperature produced in the
conversion from ϵ to T in the table are more easily averaged
in a 3D simulation (where every cell has six neighbors to
average with) than in a 2D simulation. Moreover, the time

FIG. 10. Left panel: 2D slices of the conformal factor (left) and of the rest-mass density (right) for a BNS postmerger remnant at
t̄ ¼ 50 ms as evolved by BHAC+ (top part of the panel) and by FIL (bottom part); the data has been handed-off at tHO;1 ¼ 20 ms. Right
panel: The same as on the left but at t̄ ¼ 100 ms and evolved with data handed-off at tHO;2 ¼ 50 ms (see Fig. 11 for a quantitative
comparison in 1D). The white (gray) solid, dashed and dotted contours in the left (right) part of each panel refer to rest-mass densities of
1013 g=cm3 (solid lines), 1012 g=cm3 (dashed lines), and 1011 g=cm3 (dotted lines), respectively. The colormap for the conformal factor
is tuned to highlight the location of rest-mass densities of the order of the 1013 g=cm3, which may be taken as reference for the location
of the surface of the HMNS.
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slice where we perform HO of the 3D head-on simulation
is generated by FUKA at t ¼ 0, is nearly conformally flat, and
this drastically reduces the differences induced by
differences in the gauges between FIL and BHAC+.
Indeed, we observe that these oscillations are absent in
the 3D head-on simulation presented in Sec. IV F or when
evolving the postmerger data from FIL in 3D [67].
Finally, the right column of Fig. 11 reports the profiles of

the conformal factor following the same convention in terms
reported times and of HO times as in the left and middle
columns. The comparison in this case is even simpler to
describe and it is clear that the differences are very small for
all the configurations considered. More specifically, the
largest absolute relative differences in the rest-mass density
[conformal factor] at t̄ ¼ 20 ms (FIL vs BHAC+ with tHO;1),
t̄ ¼ 50 ms (FIL vs BHAC+ with tHO;1), and t̄ ¼ 100 ms
(FIL vs BHAC+ with tHO;2) are respectively 1.18% [0.05%],
0.17% [0.13%], and 1.13% [0.20%]. Even when comparing
the FIL solution at t̄ ¼ 100 ms with the corresponding
BHAC+ solution with tHO;2 and at time t̄ ¼ 1000 ms, the
relative difference in the rest-mass density is 1.39% (similar
relative differences, i.e., 0.37% are measured for the
conformal factor). Adding the radiation-reaction terms in
theCFC scheme that have been here ignored can only further
decrease the differences measured in the two evolutions.
We conclude this section on the long-term evolution of a

postmerger remnant by presenting in Fig. 12 a much more
precise comparison between the different evolutions. In
particular, we report in Fig. 12 the evolution of the

FIG. 11. 1D slices at z ¼ 0 of the rest-mass density (left column), of the specific internal energy (middle column) and of the conformal
factor (right column) for a BNS postmerger remnant at different times, i.e., t̄ ¼ 20 ms (top row, test DD2BNS-HO@20ms), t̄ ¼ 50 ms
(middle row, test DD2BNS-HO@50ms) and t̄ ¼ 100 ms (bottom row, test DD2BNS-HO@50ms). While the FIL data is always indicated
with a red line, the BHAC+ data is shown with different colors depending on the HO time, i.e., with a blue solid line in the top row for
tHO;1 and with a green solid line in the middle and bottom rows for tHO;2. Also reported with an orange solid line in the bottom row is the
BHAC+ evolution at t ¼ 1000 ms (see Fig. 10 for a more qualitative comparison in 2D).

FIG. 12. Evolution of the central rest-mass density (top) and of
central conformal factor (bottom) as obtained from different
evolutions. In particular, the red solid line refers to the FIL
simulation carried out till t ¼ 112 ms, the blue solid line shows
the BHAC+ evolution with HO at tHO;1, while the green solid line
shows the BHAC+ evolution with HO at tHO;2 and continued till
t ¼ 1000 ms. Also shown with a light-blue solid line is the
BHAC+ evolution with HO at tHO;1 but with a rescaling of the
conformal factor ψ̃ ¼ 1.00038ψ to account for the slightly
different spacetimes in FIL and BHAC+.
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maximum values of the rest-mass density ρc (top part) and
of the conformal factor ψc (bottom part). Note that, as done
so far in other figures, we show with red solid lines the
evolutions coming from FIL, while we indicate with either
a blue or a green solid line the evolutions from BHAC+ with
HOs at tHO;1 and tHO;2, respectively. We should also remark
that the main purpose of Fig. 12 is to show that the
evolution in BHAC+ does not suffer from stability problems
and that, once provided with a matter configuration that is
stable in the absence of gravitational radiation, it preserves
this equilibrium for timescales that are ∼10 times larger
than those normally explored in full numerical-relativity
codes. On the other hand, because gravitational radiation-
reaction terms are neglected in BHAC+, the evolution over
such long timescales can differ (even qualitatively) from
that obtained with full numerical-relativity codes.
The first piece of information that can be readily appre-

ciated from Fig. 12 is that the differences in the evolution of
the two quantities are of the order of ∼1–2% over the whole
timescale in which the FIL evolution is carried out, i.e.,
t̄ ¼ 100 ms (see insets). Hence, this figure provides a strong
and reassuring evidence that the use of the CFC approxima-
tion does not yield to large quantitative differences in either
the gravitational fields or the matter variables even in the
regions of strongest curvature. The second piece of informa-
tion is also quite self-evident; the central rest-mass density
and the conformal factor grow linearly with time in the FIL
evolution, while they remain essentially constant in the
evolutions with BHAC+ (in practice the central rest-mass
density increases of þ1.8% from t̄ ¼ tHO;2 to 1 s) This is
not surprising and reflects the fact that the emission ofGWs in
FIL, and the consequent loss of energy and angular momen-
tum in the remnant, leads to an increase of its compactness
and hence of the central rest-mass density and conformal
factor [138]. Since these losses are neglected in the present
implementation of the xCFC equations, the evolutions with
BHAC+ can only show a slight increase in the central rest-mass
density, as shown by blue and green solid lines.
The third and final piece of information in Fig. 12 comes

from noting that while the differences in the evolutions with
FIL and BHAC+ are minute and much smaller than the
uncertainties that accompany the evolution of the post-
merger remnant when all the physical and microphysical
effects are taken into account, these differences can be
reduced through a simple but artificial rescaling of the
conformal factor at tHO;1. In particular, the inset in the
bottom panel of Fig. 12 reveals that the value of ψc at HO
drops by a factor ∼0.1% (compare red and blue solid lines)
as a result of the mismatch between the different descrip-
tions of the spacetime in the two codes. This mismatch,
however, can be easily compensated by a global rescaling
of the conformal factor by a constant coefficient 1.00038
and is shown by the evolutions indicated with light-blue
solid lines. When comparing these lines with the corre-
sponding evolutions without the rescaling (blue solid lines)

it becomes apparent that the match with FIL can be easily
improved, albeit rather artificially.
As a concluding remark, we note that while the

differences in the FIL and BHAC+ evolutions of the
postmerger remnant are of the order of a couple of percent,
the corresponding computational costs differ by a factor
∼65. In particular, while the evolution in FIL between the
HO time tHO;2 and the end of the simulation at t̄ ¼ 100 ms
implied a computational cost of ∼2.75 × 105 CPU hours,
the same evolution with BHAC+ incurred in ∼4.25 × 103

CPU hours. Furthermore, the whole computational cost in
BHAC+ from tHO;2 till the end of the simulation at t̄ ¼
1000 ms corresponded to ∼8.59 × 104 CPU hours; assum-
ing a stable remnant, an evolution to one second with FIL
would have corresponded to a computational cost of
∼5.8 × 106 CPU hours, thus making it prohibitive if
employed for a large number of binaries.
Finally, as mentioned in Sec. III B, the computational

costs relative to BHAC+ can be further and easily be reduced
by a factor 2–3 if less frequent solutions of the CFC
equations are performed; in the comparison presented
above, in fact, we have solved the CFC equations with
the same frequency as the matter evolution and hence with a
spacetime slicing that is similar to that in FIL. On the other
hand, this was not strictly necessary and the top panel of
Fig. 13 reports the BHAC+ postmerger evolution from from

FIG. 13. Top panel: Comparison of the evolutions of the central
rest-mass density of the BNS remnant when different efficiency
ratios are employed. In particular, the top panel reports the
evolution with data at tHO;2 when ξeff ¼ 1 (green solid line; this is
the same as in the top panel of Fig. 12), ξeff ¼ 1=3 (blue dashed
line) and ξeff ¼ 1=10 (cyan dotted line). The bottom panel reports
instead the relative difference with respect to the ξeff ¼ 1
reference evolution (blue and cyan solid lines for ξeff ¼ 1=3
and 1=10, respectively) and shows that the variance is ≲0.01%
even for the most extreme case of ξeff ¼ 1=10; the latter
simulation was performed with a computational gain of a factor
3.6 with respect to the corresponding ξeff ¼ 1 simulation.
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tHO;2 till the end of the simulation at t̄ ¼ 1000 ms when
using ξeff ¼ 1; 1=3 and 1=10 (solid green, dashed blue and
dotted cyan lines, respectively). Clearly, the three evolu-
tions are extremely similar and the differences reported in
the bottom part of Fig. 13 are always ≲0.01% even in the
extreme case of ξeff ¼ 1=10. When exploiting this addi-
tional speed-up, it is clear that the computational costs at
this resolution can be decreased by a factor 2.1 and 3.6 for
ξeff ¼ 1=3 and 1/10, respectively. As a result, the 2D BHAC+

simulation with ξeff ¼ 1=10 has an effective gain over the
corresponding 3D simulation in FIL of a factor ≃230. This
computational saving can only increase when considering
higher resolutions and opens the way to the systematic
study in 2D of the secular matter and electromagnetic
emission from binary-merger remnants.

V. CONCLUSIONS AND OUTLOOK

One of the main challenges to be faced when modeling
BNS mergers is the accurate long-term evolution of the
postmerger remnant over timescales of the order of sev-
eral seconds. When this modeling is made including all
the relevant aspects of the complex physics accompany-
ing the remnant—and which includes the proper treatment
of magnetic fields, of realistic EOSs, and of neutrino
transport—the computational costs can easily become
enormous. To address this challenge in part, we have
developed a novel hybrid approach that couples the full
numerical-relativity GRMHD code FIL [43] with the
versatile, multicoordinate and multidimensional GRMHD
code BHAC, which possesses robust divergence-cleaning
methods [45] and constraint-transport methods [46] for the
enforcement of the divergence-free condition of the mag-
netic field. However, because BHAC as developed to solve
the equations of GRMHD on arbitrarily curved but fixed
spacetimes, we have extended the code capabilities by
constructing BHAC+, which employs the CFC approxima-
tion of the Einstein equations. More specifically, by
assuming a locally flat conformal metric, such an approxi-
mation simplifies the Einstein equations reducing them to a
set of elliptic equations that can be solved to compute the
evolution of the spacetime as a response to the changes in
the energy-momentum tensor. A number of applications in
core-collapse simulations, but also in the study of merging
neutron-star binaries, have shown that the CFC approxi-
mation achieves good agreement with full general-
relativistic simulations, especially in isolated systems with
axisymmetry. The most important advantage of the CFC
approximation is however that the corresponding elliptic
equations need to solved only every 3–100 steps of the
underlying hydrodynamical/magnetohydrodynamical evo-
lution, thus allowing to the capture even the highest-
frequency modes of a fluid compact object at a fraction
of the computational cost.
We have therefore presented in detail the basic features

of the new code BHAC+, illustrating both the numerical

setup for the solution of the Einstein and GRMHD
equations, and the strategies necessary to interface BHAC+

with a fully general-relativistic code, such as FIL, when
importing both 2D and 3D data. Furthermore, we have
methodically described our implementation of an efficient
and reliable primitive-recovery scheme coupled with a
finite-temperature and tabulated EOS, demonstrating not
only its robustness under a large variety of physical
regimes, but also its efficiency, which is comparable to
(if not higher than) the best reported in the literature so far.
In addition to describing our new methodology, we have

also shown the results of a series of standard and non-
standard benchmark tests that have been carried out to
validate the various parts of the code. These tests have been
carried out with various coordinates systems and different
numbers of spatial dimensions, from 1D to fully 3D
simulations, and for timescales ranging from 5 to 1000 mil-
liseconds. More specifically, our tests have considered the
simulation of oscillating spherical stars with either a fixed
or dynamical spacetime, the dynamics of an unstable
spherical star migrating over to the branch of stable
configurations, the simulation of a differentially rotating
star endowed with a strong toroidal magnetic field, as well
as the long-term stability of an unmagnetized but rapidly
rotating star near the mass-shedding limit. In many of these
tests, the evolution carried out with BHAC+ has been
compared with the equivalent one carried out with FIL,
finding always a very good agreement.
Our list of benchmarks has been completed by two

additional and challenging tests. The first one has involved
the head-on collision of two equal-mass stars obeying a
temperature-dependent EOS, whose dynamics has been
compared in detail with the corresponding one obtained
with FIL revealing a remarkable agreement despite the very
different handling of the spacetime. The second one, instead,
has explored in the detail the hand-off procedure of data
from FIL to BHAC+ in the 2D long-term evolution of a
BNS merger remnant. In particular, we have demonstrated
BHAC+’s ability of importing—even at different times—
matter and spacetime data from FIL describing the merger
remnant and further evolving it for hundreds of milliseconds
and up to one second after merger. While the evolution with
BHAC+ cannot by construction reproduce the small changes
observed in FIL’s remnant as a result of the emission of
GWs, the agreement between the two evolutions is very
good and below a couple of percent. More importantly, the
computational costs between the 3D FIL evolution and
the 2D BHAC+ evolution differ by a factor up to 230 even at
the modest resolutions considered here, with the computa-
tional gain becoming larger as the resolution is increased.
This substantial difference opens the way to a much more
systematic exploration of the long-term evolution of post-
merger remnants, that is no longer restricted to considering a
single specific case, but can includevariations inmass, EOS,
magnetic-field properties, etc.

HARRY HO-YIN NG et al. PHYS. REV. D 109, 064061 (2024)

064061-24



Overall, the results presented here provide two main
evidences. First, BHAC+ is able to accurately reproduce the
evolution of compact objects in nonvacuum spacetimes and
the use of the CFC approximation reproduces accurately
both the gravitational fields and the matter variables even
in the regions of strongest curvature. Second, a hybrid
approach in which a short-term but full numerical-relativity
treatment of the dynamics of merging binaries is coupled to
a long-term but CFC approximation for the evolution of the
postmerger remnant has great potential to obtain an
accurate description of the secular electromagnetic and
matter emission from binary mergers.
At the same time, a number of improvements can to be

implemented to achieve an even more accurate and physi-
cally realistic description of these scenarios. These include
the addition of radiation-reaction terms in the CFC
approximation, of the coupling of the GRMHD equations
with those of neutrino radiative transfer, and the handling of
scenarios of black-hole formation. We will report about
these improvements in future works.
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APPENDIX: ON THE COORDINATE
TRANSFORMATIONS BETWEEN

FIL AND BHAC+

The HO procedure of data from FIL to BHAC+ presented
in the main text requires the transformation of quantities
expressed in Cartesian coordinates xμ ¼ ft; x; y; zg within
FIL to cylindrical coordinates x̄μ ¼ ft; r;ϕ; zg within in
BHAC+. While the relevant transformations between these

sets of coordinates is elementary, we repeat it here for
completeness.
Since the transformation is performed on a fixed time-

slice (i.e., t ¼ const.) it is sufficient to consider here
only the transformation laws of the spatial components.
Furthermore, the z-coordinate, which coincides with the
rotation axis in the cylindrical coordinate system, does
not change when going from Cartesian to cylindrical
coordinates and vice versa. This leaves the following,
nontrivial relations that implement the coordinate change.
More specifically, the Cartesian x and y coordinates can be
written in terms to the cylindrical radius r and angle
coordinate ϕ at fixed z as

xðr;ϕÞ ¼ r cosðϕÞ; yðr;ϕÞ ¼ r sinðϕÞ: ðA1Þ

The transformations of the metric and of a generic vector
field B, e.g., the magnetic field, components follow then
from the usual tensor transformation laws

ḡμνðx̄δÞ¼
∂xρ

∂x̄μ
∂xσ

∂x̄ν
gρσðxδÞ; B̄μðx̄δÞ¼ ∂x̄μ

∂xρ
BρðxδÞ; ðA2Þ

where the Jacobian and its inverse are given by

Jμν ¼ ∂xμ

∂x̄ν
¼

0
B@

cosðϕÞ −r sinðϕÞ 0

sinðϕÞ r cosðϕÞ 0

0 0 1

1
CA; ðA3Þ

Jνμ ¼
∂x̄ν

∂xμ
¼

0
B@

cosðϕÞ sinðϕÞ 0

− sinðϕÞ=r cosðϕÞ=r 0

0 0 1

1
CA: ðA4Þ

The spatial components of the Cartesian metric gij and of
the vector field Bi can then be expressed in terms of
cylindrical coordinates as follows:

ḡrr ¼ cosðϕÞ2gxx þ sinð2ϕÞgxy þ sinðϕÞ2gyy; ðA5Þ

ḡrϕ ¼ r cosð2ϕÞgxy þ r sinðϕÞ cosðϕÞðgyy − gxxÞ; ðA6Þ

ḡrz ¼ cosðϕÞgxz þ sinðϕÞgyz; ðA7Þ

ḡϕϕ ¼ r2ðcosðϕÞ2gyy − 2 sinðϕÞ cosðϕÞgxy
þ sinðϕÞ2gxxÞ; ðA8Þ

ḡϕz ¼ rðcosðϕÞgyz − sinðϕÞgxzÞ; ðA9Þ

ḡzz ¼ gzz; ðA10Þ
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and

B̄r ¼ cosðϕÞBx þ sinðϕÞBy; ðA11Þ

B̄ϕ ¼ cosðϕÞBy − sinðϕÞBx

r
; ðA12Þ

B̄z ¼ Bz: ðA13Þ

In general, when handing over variables from one code
to the other, the location of the gridpoints in the two
coordinate systems do not coincide and need to be
interpolated, which we do with a standard first-order
interpolation. Furthermore, since FIL is a higher-than-
second-order accurate finite difference code, the interpo-
lations are performed on pointwise values of both metric
and hydrodynamic variables at the gridpoint locations.
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