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Black hole spectroscopy is a clean and powerful tool to test gravity in the strong-field regime and to
probe the nature of compact objects. Next-generation ground-based detectors, such as the Einstein
Telescope and Cosmic Explorer, will observe thousands of binary black hole mergers with large signal-to-
noise ratios, allowing for accurate measurements of the remnant black hole quasinormal mode frequencies
and damping times. In previous work we developed an observable-based parametrization of the
quasinormal mode spectrum of spinning black holes beyond general relativity (ParSpec). In this paper
we use this parametrization to ask the following question: can next-generation detectors detect or constrain
deviations from the Kerr spectrum by stacking multiple observations of binary mergers from astrophysi-
cally motivated populations? We focus on two families of tests: (i) agnostic (null) tests, and (ii) theory-
based tests, which make use of quasinormal frequency calculations in specific modified theories of gravity.
We consider in particular two quadratic gravity theories (Einstein-scalar-Gauss-Bonnet and dynamical
Chern-Simons gravity) and various effective field theory-based extensions of general relativity. We find
that robust inference of hypothetical corrections to general relativity requires pushing the slow-rotation
expansion to high orders. Even when high-order expansions are available, ringdown observations alone
may not be sufficient to measure deviations from the Kerr spectrum for theories with dimensionful coupling
constants. This is because the constraints are dominated by “light” black hole remnants, and only few of
them have sufficiently high signal-to-noise ratio in the ringdown. Black hole spectroscopy with next-
generation detectors may be able to set tight constraints on theories with dimensionless coupling, as long as
we assume prior knowledge of the mass and spin of the remnant black hole.

DOI: 10.1103/PhysRevD.109.064060

I. INTRODUCTION

The LIGO-Virgo-KAGRA gravitational-wave (GW)
detector network has already observed about 100 events
produced by merging compact binaries [1]. This number is
expected to grow to several hundreds during the ongoing
fourth observing run (O4), and by orders of magnitude
when next-generation (XG) detectors, such as the Einstein
Telescope (ET) in Europe [2] and Cosmic Explorer (CE) in
the U.S. [3], will start taking data. The improved noise
power spectral density (PSD) and observing volume of
these detectors (see Fig. 1) will open the door to new and

exciting science, ranging from studies of the astrophysical
formation scenarios of compact object binaries to precise
tests of general relativity (GR) and cosmology [4–9].
A promising strategy to test gravity in the strong-field

regime and to check if the remnants of these mergers really
are the Kerr black holes (BHs) of general relativity is based
on “black hole spectroscopy.” The idea is that the entire
quasinormal mode (QNM) frequency spectrum of Kerr
BHs is uniquely determined by their mass M and dimen-
sionless spin χ [10–12]. The measurement of the frequency
and damping time of a single QNM yields the BH mass and
spin. At least in principle, the measurement of three or more
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quantities (either frequencies or damping times) in the
so-called ringdown signal following a binary BH merger
can be a test for consistency with the predictions of
GR [13–15]. In practice, precision BH spectroscopy will
probably require the detection of several ringdown events
with the large signal-to-noise ratios (SNRs) expected from
XG detectors, or from the space-based Laser Interferometer
Space Antenna [16–26].
Tests of modified gravity theories can be either “theory

agnostic” or “theory specific.”
Agnostic tests are similar in spirit to the Will-Nordtvedt

“parametrized-post-Newtonian” formalism [27]: the devia-
tions of observable quantities from the GR predictions are
described through a set of free parameters that can either
be constrained from the data, or measured if a deviation
is found. Theory-agnostic parametrizations are useful as
long as the parameters can be mapped to the predictions of
specific beyond-GR theories. In the parametrized-post-
Newtonian expansion, the parametrization involves the
spacetime metric [28]. In the so-called parametrized
post-Einsteinian framework, the parametrization involves
the amplitude and phase of the (inspiral) gravitational
waveform [5,29–34]: see, e.g., [35,36] for reviews.
In the theory-specific approach, the goal is to compute

the observable quantities (in our context, for example, the
QNM frequencies) within each modified gravity theory.
This is not always possible or practical. When it is, one can
place bounds (or measure) the parameters of the theory by
direct comparison with the data.
There have been several recent attempts at parametrizing

the ringdown waveform (see, e.g., [37–43]). The special
nature of the Kerr metric in GR implies that the perturbation
equations are “miraculously” separable [44], leading to
decoupled ordinary differential equations for the radial and
angular dependence of the perturbations (the “Teukolsky
equations” [45]). Separability is usually lost in beyond-GR
theories, and the calculation of QNM frequencies usually

proceeds in one of two ways. The most common procedure
is to first look for spherically symmetric BH solution,
and then consider rotational corrections to the background
metric and to the perturbation equations by working in a
small-spin expansion. This approach is fairly common in
GR [46,47], and it has recently been extended to theories
such as Einstein-scalar-Gauss-Bonnet (EsGB) gravity
[48,49], dynamical Chern-Simons (dCS) gravity [50–52],
and certain classes of effective field theory (EFT) mod-
ifications of GR [53,54]. Other approaches try to bypass the
small-spin expansion using either numerical or analytical
methods. For example, one can use spectral methods to find
the QNM spectrum by solving the (nonseparable) partial
differential equations that describe perturbations of the
Kerr-Newman metric in GR [55–58] (see also [59]).
More recently, various groups have developed perturbation
schemes leading to “modified Teukolsky equations” in
modified theories of gravity [60–65]. These schemes have
been applied to EFT modifications of GR in Ref. [66]; in
this case the small-spin expansion is performed on the
perturbations but not on the background.
The ParSpec parametrization of Ref. [67] is motivated, at

least in part, by the small-spin approach to the problem
of computing the QNM spectrum of BHs in modified
gravity theories, but both approaches have found appli-
cation in GW data analysis (see, e.g., [68] for an
application of the ParSpec formalism to GW data and [69]
for constraints on the Kerr-Newman QNMs computed via
spectral methods).
The ParSpec formalism also relies on the assumption that

modified gravity corrections can be treated perturbatively:
while one can contemplate the possibility of nonperturbative
corrections that can dramatically alter the spectrum [70],
there are two strong arguments for working within a
perturbative framework. The first argument is theoretical:
most modified theories of gravity only make sense as EFTs,
and a perturbative expansion around GR usually determines
their domain of validity (see, e.g., Refs. [71–73] for
discussions in the context of EsGB and dCS gravity,
respectively). The second argument is experimental: GR is
sowell constrained that the perturbative approach used in this
paper is general enough formost applications (see, e.g., [74]).
In this paper we focus on the observable-based ParSpec

parametrization of the QNM spectrum developed in
Ref. [67]. While the parametrization is theory agnostic,
specific theories can be mapped to a given subset of the
ParSpec parameters. In fact, in this paper we will discuss
the implications of a ParSpec-based analysis of XG data on
the three specific classes of theories listed above: EsGB,
dCS, and various EFT theories. Our goal is to assess
whether theory-agnostic and theory-specific BH spectros-
copy tests are feasible with XG detectors.
The plan of the paper is as follows. In Sec. II we briefly

review the ParSpec parametrization, our data analysis
framework, and the population models used in our forecast.

FIG. 1. Characteristic strain for ET and CE, compared to LIGO
and Virgo at design sensitivity, as well as to the space-based
interferometer Laser Interferometer Space Antenna (LISA).
For ET (CE), solid and dashed curves correspond to detector
configurations with 15 km (20 km) and 20 km (40 km) armlength,
respectively. In this work we assume a 40 km CE [8], and a
network of two L-shaped aligned 15 km ET [6].
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In Sec. III we describe our implementation of theory-
agnostic and theory-specific tests. In Sec. IV we present
the results of our analysis, and in Sec. V we summarize
our main conclusions. To improve readability, we relegate
to the Appendices some of the most technical aspects,
including the mapping between the ParSpec expansion and
the QNM frequencies in specific theories (Appendix A);
the remnant mass and spin accuracy achievable with
ringdown observations (Appendix B); differences in ring-
down SNR between ET and CE (Appendix C); and a list of
the Fisher matrix components used in our parameter
estimation calculations (Appendix D). Throughout the
paper we use geometrical units ðG ¼ c ¼ 1Þ.

II. THE PARAMETRIZED SPECTROSCOPY
PIPELINE

A. ParSpec

The key idea behind ParSpec is to express the QNM
frequencies and damping times of a set of N observed
ringdown events in terms of a two-parameter Taylor
expansion, such that the ðl; mÞ QNM frequency ωlm

i

and damping time τlmi of the ith source ði ¼ 1;…; NÞ read

Miω
lm
i ¼

Xn1
k1¼0

χk1i ω̄
ðk1Þ
lm þ

Xn2
k2¼0

χk2i ω̄
ðk2Þ
lm γiδω

ðk2Þ
lm ; ð1Þ

τlmi =Mi ¼
Xn1
k1¼0

χk1i τ̄
ðk1Þ
lm þ

Xn2
k2¼0

χk2i τ̄
ðk2Þ
lm γiδτ

ðk2Þ
lm ; ð2Þ

whereMi and χi are the remnant BH’s detector-frame mass

and dimensionless spin, and ω̄ðk1Þ
lm ; τ̄ðk1Þlm are the k1-order

dimensionless coefficients in a small-spin (χi ≪ 1) expan-
sion of the mode’s frequency and damping time for a
Kerr BH. Beyond-Kerr corrections at order k2 in the spin
expansion are specified by the ParSpec dimensionless

parameters δωðk2Þ
lm and δτðk2Þlm . Given some “fundamental”

modification of GR, these deviations are universal, i.e.,
they do not depend on the source.
We assume that the deviation from GR is characterized

by a fundamental coupling constant α, with dimensions
½α� ¼ ðmassÞp (p ≥ 0), which is considered as a small
expansion parameter. The dimensionless coupling con-
stants γi are linear in the coupling. They can depend on
the source i (e.g., they can scale with some power of the
remnant BH’s mass in theories of gravity where the action
is quadratic or of higher order in the curvature), but not on
the specific QNM. At leading order in our perturbative
scheme, they are given by

γi ¼
α

Mp
i
ð1þ ziÞp; ð3Þ

whereMi is the ADMmass of the BH in the detector frame,
and zi is the redshift of the source. We will focus on three
representative cases: p ¼ 0, p ¼ 4, and p ¼ 6.
Within this expansion, GR is recovered (by definition) in

the limit γi → 0. Assuming GR corrections to be perturba-

tive also requires that jγiδωðk2Þ
lm j≲ 1 and jγiδτðk2Þlm j≲ 1. Note

that the order of the spin expansion of the QNM frequen-
cies in GR, denoted by n1 in Eqs. (1) and (2), can be
different from the order of the spin expansion that allows
for deviations from GR, n2.
Consider N ringdown events in which we extract from

the signal the frequencies and damping times of q QNMs
for each source. This yields O ¼ 2N × q observables that
can be used, at least in principle, to determine the beyond-
GR parameters of the expansion in Eqs. (1) and (2), i.e., the

quantities ζ⃗ ¼ ðδωðk2Þ
lm ; δτðk2Þlm Þ. As discussed in Ref. [67],

there are two possible strategies to determine these quan-
tities: (i) we assume that the (unperturbed) masses and spins
of the sources, ðMi; χiÞi¼1…N , are known a priori, or (ii) we
extract these quantities from the ringdown signal by
considering them as part of the parameter set to be

determined, i.e., ζ⃗ ¼ ðδωðk2Þ
lm ; δτðk2Þlm ;Mi; χiÞ.

Of course, the first strategy is preferable whenever
possible, since it generally leads to smaller errors. This
approach requires a priori knowledge of the masses and
spins of the remnant. In GR, these quantities be obtained
(for example) by using the parameters of the binary
progenitors and semianalytical fits of numerical rela-
tivity simulations [75]. Going beyond GR, if we are
interested in tests of a specific gravity theory, numerical
relativity simulations in that theory would be necessary
in order to derive similar fits. For tests not based on
specific theories—hereafter, “agnostic” tests—and as
long as the deviations from GR are small, we can
assume ðMi; χiÞi¼1…N to be the GR masses and spins,
obtained for example from the inspiral signal through
the analytical fits derived within GR [75]. In this way,
the shifts between the “true” masses and spins of the
remnant and those obtained from the GR fits are

absorbed in the unknown parameters δωðk2Þ
lm (see the

discussion in Ref. [67]). In summary: when performing
theory-specific tests in a theory for which numerical
relativity simulations are not available, we are forced to
follow the second strategy, but the larger number of
parameters is expected to lead to larger errors.
If we know in advance the masses and spins of the

sources [strategy (i) above], then we can use the O ¼
2N × q observables to constrain 2ðn2 þ 1Þq parameters,
therefore we must haveN ≥ n2 þ 1. If, instead, we use only
the ringdown signal [strategy (ii) above], there are now
2ðn2 þ 1Þqþ 2N free parameters, and thus the minimum
number of sources is N > qð1þ n2Þ=ðq − 1Þ. Constraining
the GR modifications requires in this case at least two
modes, i.e., q > 1, since the first mode is used to determine
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the mass and spin. In this paper we will investigate both of
these methodologies, extending the analysis of Ref. [67].
To infer the beyond-Kerr corrections we adopt a

hierarchical inference scheme. For a given set of N
astrophysical sources we compute the corresponding
QNM frequencies and damping times, and assume they
are observed by a XG detector, which can be either ET or
CE. We compute the joint posterior probability distribution
associated with the mode measurements using a Fisher
Information Matrix (FIM) approach.
The observed values of ðωlm; τlmÞi¼1…N are interpreted

in terms of the ParSpec template by sampling the ζ⃗
parameters of Eqs. (1) and (2) through Markov chain
Monte Carlo (MCMC) simulations. Below we give more
details about each step of the analysis.

B. Quasinormal mode templates

For a given multipolar component of the radiation with
angular indices (lm), the “plus” and “cross” polarizations
of the ringdown waveform are given by

hþðtÞ ¼
MAlmYlmþ

r
Re½e−t=τlmþiðωlmtþϕlm−mφÞ�; ð4Þ

h×ðtÞ ¼
MAlmYlm

×

r
Im½e−t=τlmþiðωlmtþϕlm−mφÞ�; ð5Þ

where the amplitude Alm and the phase ϕlm are real
quantities, we have defined

Ylmþ ðιÞ ¼ −2Y
lmðι; 0Þ þ ð−1Þl−2Yl−mðι; 0Þ; ð6Þ

Ylm
× ðιÞ ¼ −2Y

lmðι; 0Þ − ð−1Þl−2Yl−mðι; 0Þ; ð7Þ

ι is the inclination angle of the source with respect to the
detector, and −2Y

lmðι;φÞ are the spin-weighted spherical
harmonics of spin-weight −2 [22]. To compute the signal in
the frequency domain we follow the Flanagan-Hughes
convention, i.e., we assume that the waveform for t < 0
is found by reflection through the origin of the waveform
for t > 0, and then we divide the amplitude by a factor offfiffiffi
2

p
to compensate for the doubling [15,76]. Under this

approximation the Fourier transforms of Eqs. (4) and (5)
can be computed analytically, and they read

h̃þðfÞ ¼
MAlmffiffiffi

2
p

r
½Ŷlmþ eiϕlmbþ þ Ŷlm⋆þ e−iϕlmb−�; ð8Þ

h̃×ðfÞ ¼
MAlm

i
ffiffiffi
2

p
r
½Ŷlm

× eiϕlmbþ − Ŷlm⋆
× e−iϕlmb−�; ð9Þ

where Ŷlmþ;× ¼ Ylmþ;×e
−imφ and b� are the Breit-Wigner

functions,

b� ¼ 1=τlm
τ−2lm þ ðω� ωlmÞ2

: ð10Þ

The full waveform is then given by

h̃ðfÞ ¼ Fþh̃þðfÞ þ F×h̃×ðfÞ; ð11Þ

where Fþ;× are the pattern functions of the detector, which
depend on the source position in the sky and on the
polarization angle [77].
Given the Fourier-domain amplitude of Eq. (11), we can

compute the SNR ρ for a GW interferometer with noise
power spectral density SnðfÞ from the relation

ρ2 ¼ 4

Z
fmax

fmin

h̃ðfÞh̃⋆ðfÞ
SnðfÞ

df: ð12Þ

Hereafter we average over the detector and BH angular
variables. Making use of the identities

hF2þ;×i ¼
1

5
; hFþF×i ¼ 0; hðYþ

lmÞ2þðY×
lmÞ2i ¼

1

π
;

from Eq. (12) we find

ρ2 ¼ 2

5π

M2A2
lm

r2

Z
fmax

fmin

b2þ þ b2−
SnðfÞ

df: ð13Þ

The SNR can be expressed in terms of the GW energy
spectrum dE=df,

ρ2 ¼ 2

5π2r2

Z
fmax

fmin

1

f2SnðfÞ
dE
df

df; ð14Þ

which in turn is related to the radiation efficiency

ϵRD ¼ 1

M

Z
fmax

fmin

dE
df

df; ð15Þ

a measure of the amount of energy radiated by the ðl; mÞ
mode. From Eqs. (13) and (15) we find

ϵRD ¼ πMA2
lm

Z
fmax

fmin

dff2ðb2þ þ b2−Þ: ð16Þ

For a given choice of the source parameters ðM; r;ωlm;
τlm;ϕlmÞ, and of the efficiency ϵRD, we can numerically
solve Eq. (16) to find the signal amplitude Alm. We
compute ϵRD for a given ðl; mÞ multipolar component
from the semianalytic formula of Ref. [21]:

ϵRD ¼ ½alm þ blmχþ þ clmχ−�2; ð17Þ
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where alm; blm, and clm are functions of the binary mass
ratio q ¼ m1=m2 ≥ 1 and of two spin parameters,

χ� ¼ m1χ1 �m2χ2
m1 þm2

; ð18Þ

which in turn depend on the masses m1;2 and on the
dimensionless spins χ1;2 of the progenitors.

C. Parameter estimation of quasinormal
mode frequencies

To estimate the measurement accuracy of QNM frequen-
cies and damping times by XG detectors, we use the
waveform template of Eq. (11) and a FIM analysis [78].
The interferometer output sðtÞ ¼ hðt; θ⃗Þ þ nðtÞ is the

sum of the detector’s (stationary) noise nðtÞ and of the
actual signal. The probability distribution of the source
parameters θ⃗, up to a normalization constant, is

pðθ⃗jsÞ ∝ pð0Þðθ⃗Þe−1
2
ðhðθ⃗Þ−sjhðθ⃗Þ−sÞ; ð19Þ

where pð0Þðθ⃗Þ is the prior on the source parameters [79],
and we have introduced the inner product between two
waveforms

ðh1jh2Þ ¼ 2

Z
fmax

fmin

h̃1ðfÞh̃⋆2 ðfÞ þ h̃⋆1 ðfÞh̃2ðfÞ
SnðfÞ

df: ð20Þ

For GW signals with large SNRs, we expect pðθ⃗jsÞ to
be peaked around the true values ξ⃗. Therefore, we can
expand Eq. (19) as a Taylor series up to second order in
Δθ⃗ ¼ θ⃗ − ξ⃗, such that

pðθ⃗jsÞ ∝ pð0Þðθ⃗Þe−1
2
ΓijΔθiΔθj ; ð21Þ

where

Γij ¼
�
∂h
∂θi

���� ∂h
∂θj

�
ð22Þ

is the FIM, computed at θ⃗ ¼ ξ⃗. The covariance matrix Σij

of the waveform parameters is then given by

Σij ¼ ðΓ−1Þij; ð23Þ

where Γ−1 is the inverse of the FIM. In the single-mode
analysis, the waveform h̃ðfÞ is completely specified by
four parameters: θ⃗ ¼ ðĀlm;ϕlm;ωlm; τlmÞ, where we
have defined the effective amplitude Ālm ¼ MAlm=r.
Hereafter, following the conventions of Ref. [15], we fix
ϕlm ¼ 0. The components of Γij are listed in Appendix D.

For the two-mode study, we replace the polarizations (4)
and (5) with a sum over two multipolar components of the
form [15]

hþðtÞ ¼
X
lm

MAlmYlmþ
r

Re
h
e−

t
τlm

þiðωlmtþϕlmÞ
i
; ð24Þ

h×ðtÞ ¼
X
lm

MAlmYlm
×

r
Im
h
e−

t
τlm

þiðωlmtþϕlmÞ
i
: ð25Þ

Here we consider two scenarios in which, along with
the fundamental l ¼ m ¼ 2 mode, we include either the
ðl; mÞ ¼ ð21Þ or the ðl; mÞ ¼ ð33Þ component (note that
we do not include overtones in our analysis [26,80]). In this
two-mode model, the Fisher matrix (22) becomes an 8 × 8

matrix in the variables θ⃗ ¼ ðĀl1m1
;ϕl1m1

;ωl1m1
; τl1m1

;
Āl2m2

;ϕl2m2
;ωl2m2

; τl2m2
Þ. Since the two modes have

different harmonic indices ðl; mÞ, by angular averaging
and using the orthogonality of the spherical harmonics we
can decouple the two modes. This property simplifies our
calculations, since the FIM is block diagonal and can be

written as a combination of the matrices Γð1;2Þ
ij correspond-

ing to each mode:

Γij ¼
 
Γð1Þ
ij 0

0 Γð2Þ
ij

!
: ð26Þ

Similarly, the total SNR is given by the sum in quadrature

of the two modes ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2ð1Þ þ ρ2ð2Þ

q
. These considerations

are easily generalized to q modes with different values of
ðl; mÞ, as long as we do not consider overtones: in this
case, the FIM is simply the block-diagonal combination of
q matrices corresponding to the different QNMs.
In the evaluation of SNRs and Fisher matrix compo-

nents, we fix the integration limits to fmin ¼ 3 Hz and
fmax ¼ 5 kHz. For ET we consider a network of two
L-shaped aligned detectors with 15 km armlength [6],
while for CE we focus on single 40 km interferometer [8].

D. Sampling the beyond-Kerr parameters

From the covariance matrices for ωlm and τlm we can
infer the probability distribution of the beyond-Kerr
parameters using a Bayesian approach based on MCMC
simulations. In the most general case, given the set of
parameters

ζ⃗ ¼
�
δωðkÞ

ljmj
; δτðkÞljmj

;Mi; χi
� 8<

:
i ¼ 1;…; N

j ¼ 1;…; q

k ¼ 1;…; n2

; ð27Þ
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for a set d⃗ ofN ringdown observations consisting of 2N × q
frequencies and damping times, the posterior probability
distribution of ζ⃗ is given by

pðζ⃗jd⃗Þ ∝ Lðd̄jζ⃗Þp0ðζ⃗Þ; ð28Þ

where Lðd⃗jζ⃗Þ is the likelihood, which we choose to be a
Gaussian for each event:

Lðd⃗jζ⃗Þ ¼ N ðμ⃗i;ΣiÞ: ð29Þ

The vector μ⃗i is defined as

μ⃗i ¼ ðμ⃗ið1Þ;…; μ⃗iðqÞÞT: ð30Þ

Each μ⃗i
ðjÞ is a two-component vector that depends on

the difference between the observed mode frequencies
(j ¼ 1;…; q) and the parametrized templates in Eqs. (1)
and (2):

μ⃗ðjÞi ¼
2
4ω

ljmj

i − ω
ljmj

i;obs

τ
ljmj

i − τ
ljmj

i;obs

3
5: ð31Þ

In Eq. (29) Σi denotes the covariance matrix (23), which
includes errors on (and correlations between) the frequen-
cies and damping times of the ith source. For each value of
i, Σi is a block-diagonal ð4q × 4qÞ square matrix. Because
the covariance matrix is block diagonal, the likelihood
function for a q-mode analysis (neglecting the overtones)
can be recast as a product of Gaussian distributions:

N ðμ⃗i;ΣiÞ ¼
Yq
j¼1

N ðμðjÞi ;ΣðjÞ
i Þ: ð32Þ

Finally, since the N ringdown observations are all inde-
pendent, the combined likelihood function of the param-
eters can be factorized as

Lðd⃗jζ⃗Þ ¼
YN
i¼1

Liðd⃗jζ⃗Þ ¼
YN
i¼1

Yq
j¼1

N ðμðjÞi ;ΣðjÞ
i Þ: ð33Þ

We sample the posterior distribution using the EMCEE

algorithm with stretch move [81]. For each dataset, we
run n ≫ N walkers of 2 × 106 samples, discarding the first
half as burn-in and applying a thinning factor of 0.2 for the
remaining samples.

E. Astrophysical population models

We construct our binary black hole (BBH) population by
sampling the masses from the POWER LAW+PEAK phenom-
enological model favored by the latest LIGO/Virgo/
KAGRA catalog, GWTC-3 [82].

The primary massm1 follows a truncated power law with
the addition of a Gaussian peak and an exponential tapering
at low masses:

Pðm1Þ ∝ ½ð1 − λÞPlawðm1jγ1; mmaxÞ
þ λGðm1jμm; σmÞ�Sðm1jmmin; δmÞ: ð34Þ

Here, Plawðm1jγ1; mmaxÞ is a power-law distribution
with slope γ1 ¼ −3.40 and cutoff at mmax ¼ 86.85M⊙,
Gðm1jμm; σmÞ is a Gaussian distribution with mean
μm ¼ 33.73M⊙ and standard deviation σm ¼ 3.36M⊙,
and Sðm1jmmin; δmÞ is a smoothing function that rises
monotonically from 0 to 1 within ½mmin; mmin þ δm�, with
mmin ¼ 5.08M⊙ and δm ¼ 4.83M⊙.
The secondary mass m2 is obtained from the mass ratio

q ¼ m2=m1, sampled from a smoothed power law

PðqÞ ∝ qγqSðm1qjmmin; δmÞ; ð35Þ

with γq ¼ 1.08.
We sample the BBH population up to redshift z ¼ 10.

The BBH redshift distribution is assumed to follow
the Madau-Dickinson cosmic star-formation rate [83],
with parameters taken from the phenomenological fit of
Ref. [84]. The normalization is set by the local BBHmerger
rate Rm ¼ 28.3 Gpc−3 yr−1, which is favored by the
GWTC-3 catalog for the POWER LAW+PEAK model [82].
We assume BH spins aligned or antialigned with the

binary orbital angular momentum, and we sample their
magnitudes from two different distributions. In model I, the
dimensionless spin components χ1;2 follow a beta distri-
bution with parameters α ¼ 2 and β ¼ 5: this model is
meant to qualitatively reproduce the Default spin model of
the GWTC-3 catalog [82]. In model II, the individual
dimensionless spin magnitudes χ1;2 are uniformly sampled
within the range ½−1; 1�.

III. CASE STUDIES

We consider here different and complementary case
studies. The main purpose of these studies is to compare
“agnostic” null tests of the Kerr QNM spectrum against
theory-based approaches, which exploit direct calculations
of the frequencies and damping times of spinning BH
solutions in beyond-GR theories.

A. Agnostic tests

We focus first on agnostic null-hypothesis tests of GR,
with the goal of understanding the largest deviation in the
QNM spectrum compatible with Kerr predictions. In this

case we assume the injected values of ðωljmj

i;obs ; τ
ljmj

i;obsÞ in
Eq. (31) to be computed in GR, and interpret them in
terms of the ParSpec template. We consider two families of
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beyond-Kerr corrections, specified by different mass
dimensions of the fundamental coupling of the theory, α.
The simplest case we consider is that of a dimensionless

coupling constant, i.e., p ¼ 0 in Eq. (3). In this case, γi is
the same for all sources (γ ¼ α), and it can be reabsorbed in

the definitions of δωðk2Þ
ljmj

and δτðk2Þljmj
. This case includes

certain families of scalar-tensor theories of gravity [85], and
it was investigated in Ref. [67] under the assumption of a
random distribution of the mass and SNR of the ringdown
events (rather than the astrophysically motivated popula-
tion models used in this work).
As a second scenario we consider the case of a coupling

constant with dimensions ðmassÞ4, i.e., p ¼ 4 (3):

γi ¼
α

M4
i
ð1þ ziÞ4: ð36Þ

Again, α can be absorbed in the definitions of the frequency
and damping time deviation coefficients, so the number of
parameters that must be constrained is unchanged. This
case is particularly relevant because it includes notable
examples of beyond-GR theories, such as EsGB gravity
[48,49,86–88] and dCS gravity [50–52,73,89,90], as dis-
cussed in Sec. III B below.
For both parametrizations (p ¼ 0 and p ¼ 4), we

perform the Bayesian analysis discussed in Sec. II D.
We compare the inference of the ParSpec parameters in
the “optimistic” case in which the masses and spins of
the remnant BHs are inferred from the inspiral-merger
phase against the “pessimistic” case in which we only
use the ringdown phase, and therefore we need (at a
minimum) two modes to perform a test. For the latter
case, we will investigate in detail how the analysis
depends on the specific choice of the “secondary”
QNM used in the test.
In the p ¼ 0 case, we assume that the ParSpec param-

eters ðδωðk2Þ
lm ; δτðk2Þlm Þ are drawn from uniform priors in the

range ½−1; 1�. In the p ¼ 4 case, we use flat priors for

ðδωðk2Þ
lm ; δτðk2Þlm Þ in the range ½−3 × 104; 3 × 104� km4. We

also impose the conditions jγiðδωðk2Þ
lm ; δτðk2Þlm Þj ≲ 1, as

required by the perturbative character of the ParSpec
expansion. Finally, when masses and spins are allowed
to vary in the MCMC simulations, they are sampled
from uniform distributions in the ranges ½20; 500�M⊙ and
[0.5, 1], respectively.

B. Theory-specific tests

As a top-down approach, we study deviations from Kerr
ringdown waveforms focusing on three families of modi-
fied gravity theories: EsGB gravity, dCS gravity, and the
same class of EFT models considered in Ref. [66]. These
theories are particularly appealing in the context of our
study for two reasons: (i) the BH solutions in all of these
theories are different from those of GR (i.e., the no-hair

theorems do not apply), and (ii) the QNM frequencies of
these BH solutions have been explicitly computed in the
slow-rotation approximation at different orders in the slow-
rotation expansion, as we discuss below.
In EsGB and dCS gravity, strong-field, large-curvature

modifications are induced by a scalar field φ that is
nonminimally coupled to the gravitational sector. In both
classes of theories, the deviations from GR depend on a
fundamental coupling constant (αGB for EsGB gravity, αCS
for dCS gravity) with dimensions of ðmassÞ2.
The action of EsGB gravity is

SGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μφ∂

μφþ αGB
4

eφR2
GB

�
; ð37Þ

where R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2 is the Gauss-

Bonnet invariant, and Rμνρσ; Rμν; R are the Riemann tensor,
the Ricci tensor and the Ricci scalar, respectively [86].
The action of dCS gravity is

SCS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μφ∂

μφþ αCS
4

⋆RRφ

�
; ð38Þ

where ⋆RR ¼ ⋆Rμ
ν
κδRν

μκδ is the Pontryagin density, and
⋆Rμνκδ is the dual of the Riemann tensor [73]. In Eqs. (37)
and (38) we do not consider the matter sector of the theory,
because we are interested in astrophysical processes
involving BHs. For simplicity, we also neglect the pos-
sibility of a nonzero scalar field potential.
In both theories, corrections with respect to the BH

solutions in GR scale as βGB;CS ¼ αGB;CS=M2. In the limit
βGB;CS → 0 we recover the Kerr metric. The shifts in the
QNM frequencies are proportional to the square of βGB;CS,
i.e., to the square of the fundamental coupling constant.
Therefore, in both cases the parameter α appearing in
Eq. (3)—say, α ¼ α2GB for EsGB gravity, and α ¼ α2CS for
dCS gravity—has dimensions of ðmassÞ4.
The gravitational QNM spectrum in EsGB gravity was

computed in Ref. [91] for static BH solutions, and in
Ref. [49] for slowly rotating BHs at second order in a small-
spin expansion. For dCS gravity, the QNMs of static BHs
coincide with those of GR. The QNM spectrum of slowly
rotating BHs was computed in Refs. [50–52] at first order
in a small-spin expansion. These calculations also assume a
perturbative expansion in the coupling constant αGB;CS. In
the spirit of the ParSpec framework, we truncate this weak-
coupling expansion at leading order.
Following Ref. [66], for EFT gravity we consider the

most general extension of GR specified by the following
action:

SEFT ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ l4½λevnR3 þ λoddR̃
3�

þ l6½ϵ1C2 þ ϵ2C̃
2 þ ϵ3C̃C�Þ: ð39Þ
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The action contains up to eight derivatives, encoded
within the curvature scalars

R3 ¼ Rρσ
μνRρσ

δγRδγ
μν; R̃3 ¼ Rρσ

μνRρσ
δγR̃δγ

μν;

C ¼ RμνρσRμνρσ; C̃ ¼ RμνρσR̃μνρσ; ð40Þ

where R̃αβμν ¼ ϵαβδσRδσ
μν. Corrections to GR are controlled

by the length scale l ∼ Λ−1
cut, which is related to the

EFT cutoff, and by the dimensionless coefficients
fλevn;odd; ϵ1;2;3g.
The QNM frequencies for slowly rotating BH solutions

in these theories have recently been computed at high
order in a small-spin expansion, including terms up to
Oðχ12) [66]. For cubic and quartic theories, the deviations
from the Kerr spectrum depend on the coupling constants

βcubicq ¼ l4λq=M4 ¼ α4q=M4 q ¼ fevn; oddg;
βquarticq ¼ l6λq=M6 ¼ α6q=M6 q ¼ f1; 2; 3g: ð41Þ

The validity of the EFT approach requires that these
coupling constants satisfy the conditions βcubic;quarticq ≪ 1.
Within the ParSpec framework, the parameter α appearing
in the coupling (3) is mapped to α ¼ α4q and α ¼ α6q
for the cubic and quartic models, respectively. In this
work we consider eight different EFT gravity theories,
for which QNMs have been explicitly computed in
Ref. [66]. In particular, we focus on the following:
(i) two parity-violating models, identified by q ¼
foddþ; 3þg, and (ii) six parity-preserving theories, labeled
by q ¼ fevnþ; evn−; 1þ; 1−; 2þ; 2−g.
At variance with the agnostic, null test approach of

Sec. III A, for this analysis we assume that the injected

values of ðωljmj

i;obs ; τ
ljmj

i;obsÞ are given by the true values
obtained in EsGB, dCS, or EFT gravity for a given
combination of the BH mass, the BH spin, and the
coupling constant.
We map the numerical frequencies and damping times

computed in Refs. [49–52,66] to the template (1) and (2),

i.e., we determine the values of δωðk2Þ
ljmj

and δτðk2Þljmj
for each

theory (and for each GW source) by setting

γcubici ¼ βcubicq ¼ α4q
M4

i
; γquartici ¼ βquarticq ¼ α6q

M6
i
;

γGB;i ¼ β2GB ¼ α2GB
M4

i
; γCS;i ¼ β2CS ¼

α2CS
M4

i
: ð42Þ

The technical details of the mapping can be found in

Appendix A. With the shifts ðδωðk2Þ
ljmj

; δτðk2Þljmj
Þ fixed by the

theory, we recover the injected QNMs using the ParSpec
template by MCMC sampling on the coupling αGB;CS, and
also on ðMi; χiÞ. This is because, at variance with the

“agnostic” case—where Mi, χi in Eqs. (1) and (2) are the
GR masses and spin, and the shifts between those and the
“true” masses and spins of the remnant are absorbed in

the parameters ðδωðk2Þ
lm ; δτðk2Þlm Þ—in theory-specific tests the

BH mass and spin enter in Eqs. (1) and (2) with their
physical values.
For this reason we must infer Mi and χi directly from

each ringdown observation, through a two-mode analysis.
In other words, we are forced to follow the second strategy
discussed in Sec. II A. Fortunately, in this case the
inclusion of the secondary QNM introduces a smaller
set of parameters to be constrained compared to the
agnostic approach. This is because the shifts are fixed,
and the only free parameter beyond ðMi; χiÞ is the
coupling constant αGB;CS;q. We impose flat priors on
the coupling constants of the three theories in the range
αGB;CS ∼ U ½0;100� and αq ∼ U ½0;50�. Masses and spins are
sampled from uniform distributions within ½3; 150�M⊙
and [0.5, 1], respectively.

C. Numerical setup

With all the ingredients described in the previous
sections, we can now forecast the constraints on beyond-
Kerr QNMs according to the following procedure:
(1) We compute the mass and the spin of the remnant for

the binary systems of our catalog exploiting semi-
analytic relations derived from NR [75]. For each BH
we derive the fundamental mode (l ¼ m ¼ 2) and
the secondary modes (either l ¼ m ¼ 3 or l ¼ 2,
m ¼ 1) through the templates of Eqs. (1) and (2),
both in GR and in the gravity theories described in
Sec. III B. We choose independently the order of the
spin expansion for the GR (n1) and beyond-GR (n2)
coefficients. In particular we set n1 ¼ 12, as this is
sufficient to reproduce the QNMs of the full Kerr
solution for a typical merger remnant (χ ∼ 0.7) with
an accuracy better than 1% [67]: see also the
discussion in Appendix A. In the agnostic case we
vary n2 to study the constraints that can be inferred on
different spin-dependent ParSpec coefficients. In the
theory-specific study, n2 is necessarily limited by the
accuracy of the QNM calculations available so far,
i.e., n2 ¼ 2, n2 ¼ 1, and n2 ¼ 12 for EsGB, dCS,
and EFT gravity, respectively.

(2) We compute the radiation efficiency of all mode/
binary configurations (and hence the corresponding
amplitudes Alm) using Eq. (17). We then determine
the SNR of each multipolar component (lm), and
select only events for which the SNR of the (22)
QNM is larger than the detectability threshold
ρ ¼ 12, as measured by ET or CE. From now on,
we will refer to this subset as the “detectable” events.
We repeat this procedure for both spin distributions
(“model I” and “model II” of Sec. II E).
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(3) We compute the FIM for each of the selected
ringdown events, evaluating the joint likelihood
distribution of frequencies and damping times, in
both the single-mode and two-mode configurations.
For theory-based tests we apply the FIM approach to
QNMs computed in EsGB, dCS, and EFT gravity,
which are uniquely determined by the coupling
constant of the theory, together with the remnant’s
masses and spins. For simplicity, we select the same
ensemble of events—i.e., those for which the SNR
of the dominant mode in GR is larger than 12. This is
justified, as the SNR computed in these theories of
gravity typically differs by less than a percent from
the values computed in GR.

(4) We use the likelihood functions as seeds for our
Bayesian analysis to sample the ParSpec parameters
for the agnostic tests (with p ¼ 0 and p ¼ 4), and
the fundamental couplings αGB=CS for the theory-
based tests. The remnant masses and spins are kept
fixed in the single-mode analysis, while they can be
allowed to vary together with the beyond-GR
parameters in the two-mode approach.

When quoting constraints on all parameters of interest,
we refer to the 90% highest posterior density intervals,
except for distributions bounded by the prior, for which we
report the one-side 90% probability interval. We show
posterior distributions as histograms of the samples inferred
from the MCMC simulations (or kernel density estimations
of the latter, computed in Mathematica assuming a
Gaussian kernel).

IV. RESULTS

The two panels of Fig. 2 show the SNR distribution
as a function of the remnant mass for the events with a
detectable ringdown, assuming the spin distribution of
model I. Within the 105 BBH binaries of the catalog we
find N ¼ 13547 and N ¼ 11126 detectable events for ET
and CE, respectively. The mean SNR of observable events
is ρ ≃ 21 (ρ ≃ 19) for ET (CE). The qualitative behavior for
the model II population is similar, although the number of
selected events decreases: we find N ¼ 12487 for ET and
N ¼ 9021 for CE.
As shown in Fig. 3, different assumptions on the spins

(referred to as “model I” and “model II” above) lead to
significantly different mass-spin distributions of the BH
remnants, with mean spin values clustering around
χf ∼ 0.75 for model I and χf ∼ 0.9 for model II.
In Fig. 4 we show the distribution of the SNR for the two

detectors and for the two spin models. Note that model I
yields slightly larger values of the SNR for both ETand CE.
In the frequency range which is most relevant for ringdown
detection, CE and ET (in a single-detector configuration)
have similar SNR (see the discussion in Appendix C). The
difference in the number of events above the threshold is

mostly due to the fact that we consider a two-detector
network configuration for ET. This boosts the ET SNR by a
factor of

ffiffiffi
2

p
. In Table I we summarize some salient features

of these SNR distributions: for both detectors we estimate
thousands of ringdown events with ρ ≥ 25, but only a few
events with ρ ≥ 100.
The GW energy released in the different QNMs consid-

ered in our analysis is shown in Fig. 5. The component
spins directly affect the spin of the remnant, leading to
sensibly different results for the l ¼ m ¼ 2 mode ampli-
tude in models I and II (top panel).
The dependence of the effective amplitude on the spin is

quite mild for the (33) and the (21) QNM amplitudes,
because our astrophysical population is dominated by
comparable-mass binaries—cf. Eq. (35)—and odd-m mul-
tipoles of the radiation vanish by symmetry for equal-mass
binaries [92,93]. Unlike the (33) mode, the (21) mode is
quite sensitive to the binary component spins: see, e.g.,
Eq. (3) of Ref. [94]. This explains why the (21) mode
amplitudes for models I and II, shown in the bottom panel
of Fig. 5, are quite different. However, for our population
model the (33) mode generally yields larger values of the
ringdown efficiency ϵRD.

FIG. 2. SNR of the (22) mode as a function of the detector-
frame remnant mass for detectable events in ET (top panel) and
CE (bottom panel), assuming the model I population. “Detect-
able” events are those for which the SNR of the (22) QNM is
larger than the detection threshold, ρ ≥ 12. The inset in each
panel shows the SNR distribution of the whole catalog, before
applying the detection threshold cut. The SNR-Mf distribution
for model II is similar.
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The four panels of Fig. 6 show the percentage relative
errors on the frequency and on the damping time of the
fundamental mode with l ¼ m ¼ 2 inferred through the
FIM approach described in Sec. II C, for all detectable
ringdown events. For both ET and CE the mode frequency
can be measured with an accuracy better than 1%, while the
damping time is usually measured with less accuracy. Only
few observations (those with ρ≳ 100) have relative errors
on τ22 at the level of 2%–3%.
In Fig. 7 we show the corresponding errors for the

secondary modes. As expected from our discussion of
the effective amplitudes, the error histograms are almost
independent of the underlying astrophysical spin distribu-
tion, with the frequency and damping time of the (33) mode
being better measured than the frequency and damping time
of the (21) mode.

A. Agnostic inference

We start by exploring agnostic tests of GR, using simple
templates at first and then progressively complicating
the analysis. We follow the two strategies discussed in
Sec. II A: (i) we assume that the (unperturbed) masses and
spins of the sources, ðMi; χiÞi¼1…N , are known a priori; or
(ii) we extract these quantities from the ringdown signal by

FIG. 3. Distribution of the remnant detector-frame masses and
spins obtained from the binary population catalog for detectable
events. The color code identifies the redshift associated to the
binary, for a specific detector. Dashed lines correspond to the
mean values of the distributions. For reference, the top x axis in
each panel shows the frequency of the fundamental (22) mode for
a remnant BH with dimensionless spin χf ¼ 0.8, and mass
corresponding to the bottom x axis.

FIG. 4. Distribution of the SNR for the fundamental l ¼ m ¼ 2
mode, for the selected events observed by ET and CE above the
detectability threshold ρ ¼ 12.

TABLE I. Number of ringdown observations with signal-to-
noise ratio of the fundamental mode larger than (12, 25, 100) for
the two spin distributions we consider. The last column shows the
maximum SNR of each population.

ρ ≥ 12 ρ ≥ 25 ρ ≥ 100 max ρ

ET—model I 13547 2554 14 196
CE—model I 11126 1454 6 155
ET—model II 12487 1662 7 164
CE—model II 9021 754 2 119
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considering them as part of the parameter set to be

determined, i.e., ζ⃗ ¼ ðδωðk2Þ
lm ; δτðk2Þlm ;Mi; χiÞ.

1. Strategy (i): Mass and spin are known

No spin-dependent corrections (n2 ¼ 0), dimensionless
coupling (p ¼ 0). We consider QNM modifications at
zeroth order in the spin (n2 ¼ 0), assume that the under-
lying theory has a dimensionless coupling (p ¼ 0), and
investigate the constraints on this class of beyond-GR
modifications with the ParSpec template of Eqs. (1) and (2).
We perform a single-mode analysis, i.e., we use only
observations of the (22) mode, with both mass and spin
of the remnant being set equal to their GR values (see the
discussion in Sec. II A and in Ref. [67]).

In Fig. 8 we show how the posteriors of δωð0Þ
22 and δτð0Þ22

get tighter by stacking an increasing number of sources.
The probability distributions for beyond-GR corrections in
both the frequency and damping time are nearly symmet-
rical around zero (the GR value). For a given number
of observations, ET provides slightly stronger bounds

than CE, mainly because the ringdown SNR is typically
larger. The posterior densities get narrower as the number
of events, N, grows. For large N, the width of the
distribution at 90% credible level is well approximated
by a ∼N−1=2 scaling for both spin models (models I and II)
and for both detectors (ET and CE).
The joint posterior distributions (that we do not display

for brevity) show that the ParSpec parameters δωð0Þ
22 and

δτð0Þ22 are mostly uncorrelated with each other, and that δωð0Þ
22

is always better constrained than δτð0Þ22 . The constraints are
almost identical for models I and II, i.e., they are insensitive
to the spin prescription. This will be discussed in greater
detail below, when we will include spin-dependent correc-
tions in the analysis. By stacking all of the events for model I

we find jδωð0Þ
22 j≲ 1.8 × 10−4, jδτð0Þ22 j≲ 1.4 × 10−3 for ET

and jδωð0Þ
22 j≲ 2.1 × 10−4, jδτð0Þ22 j ≲ 1.7 × 10−3 for CE.

For model II the bounds are jδωð0Þ
22 j ≲ 1.5 × 10−4, jδτð0Þ22 j ≲

2.2 × 10−3 for ET and jδωð0Þ
22 j≲ 1.9 × 10−4, jδτð0Þ22 j≲

2.9 × 10−3 for CE, respectively.
Spin-dependent corrections (n2 ¼ 2), dimensionless

coupling (p ¼ 0). We now augment the ParSpec template
by including spin corrections up to second order in χf, i.e.,
we set n2 ¼ 2 in Eqs. (1) and (2). In Fig. 9 we show the

FIG. 5. Distribution of the energy released in the (22), (33), and
(21) modes for the ringdown events with signal-to-noise ratio of
the fundamental QNM larger than 12, as observed by ET and CE,
assuming both population models described in Sec. II E.

FIG. 6. Relative percentage errors on the frequency and the
damping time of the fundamental QNM with l ¼ m ¼ 2 for the
binary systems described in Sec. III C. The color scheme
identifies the SNR of the (22) mode as detected by ET (top
row) and CE (bottom row).
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68% and 90% credible regions of the joint posteriors of the
beyond-GR parameters that are constrained by the data.
For brevity we focus on ET, and we stack the full set of
detectable BH events. The results in Fig. 9 confirm that
there is a definite hierarchy among the ParSpec parameters:

the posterior distributions of δωð0Þ
22 ; δω

ð1Þ
22 , and δωð2Þ

22 are
informative with respect to the prior support, while all
spinning corrections to the damping time (with the excep-

tion of δτð0Þ22 ) are unconstrained. The coefficients that
control the frequency deviations are strongly correlated
with each other, while they are almost uncorrelated

with δτð0Þ22 .
These broad conclusions hold regardless of the detector

and population models, as shown by the first two columns of
Table II, where we list the 90% credible intervals of the
parameters for both ET and CE. Model II yields in general
looser constraints on all the ParSpec coefficients, because the
typical SNRs and the number of stacked events are lower

than those for model I. While the nonrotating corrections

ðδωð0Þ
22 ; δτ

ð0Þ
22 Þ are constrained with the tightest accuracy, their

bounds increase by more than two orders of magnitude
compared to the case shown in Fig. 8, due to correlations
among the spin-dependent ParSpec coefficients.
We have also studied how the constraints changewith the

total number of stacked ringdown observations. In Table II
we show the 90% credible levels for N ¼ 1000 and
N ¼ 500 events. The bounds on the parameters broaden
(as expected) as N decreases, and the posterior on some of
the frequency modifications becomes uninformative, or
almost as large as the prior.
Dimensionful coupling (p ¼ 4). We now consider agnos-

tic tests of GR for a coupling constant with dimensions
ðmassÞ4, i.e., p ¼ 4 in Eq. (3). In Fig. 10 we show the joint
posterior credible intervals for the nonspinning ParSpec

parameters ðδωð0Þ
22 ; δτ

ð0Þ
22 Þ, computed by assuming p ¼ 4 in

Eqs. (1) and (2). The results are rather insensitive to the

FIG. 7. Relative percentage errors on the frequency and the damping time of the secondary modes, ðl; mÞ ¼ ð33Þ and ðl; mÞ ¼ ð21Þ,
for ET and CE. The top and bottom panels refer to the two population models we considered.

FIG. 8. Posterior probability densities for the nonrotating corrections ðδωð0Þ
22 ; δτ

ð0Þ
22 Þ, inferred in the agnostic analysis assuming strategy

(i), as functions of the number of sources we analyzed. Results are derived following a single-mode analysis, in which only the
fundamental (22) mode is taken into account. Solid and dashed contours refer to the two population models adopted in this paper.
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chosen spin distribution model, and they mostly depend on
the mass distribution of the remnant. Since the QNM
corrections are (to a first approximation) proportional to the
coupling (3), which scales as ∼M−4

f , they are strongly
suppressed for heavy BHs, so the constraints shown in
Fig. 10 are dominated by the ∼400 (∼200) ET (CE) events
having Mf ≲ 50M⊙. As a rough estimate, our results
suggest that ET and CE may set bounds on the fundamental
coupling of a putative beyond-GR gravity theory of the

order α ∼ ½δωð0Þ
22 �1=4 ∼Oð10 kmÞ, at 90% credible level.

We have also studied how the constraints are affected
by the inclusion of spin-dependent terms in the ParSpec

template. We find that the bounds on the spin-dependent
corrections are not informative with respect to the prior,
and that the credible intervals on the nonspinning terms

ðδωð0Þ
22 ; δτ

ð0Þ
22 Þ deteriorate by about an order of magnitude,

possibly violating the small-coupling assumption implicit
in the ParSpec approach.

2. Strategy (ii): Mass and spin are unknown

No spin-dependent corrections (n2 ¼ 0), dimensionless
coupling (p ¼ 0). So far we have investigated the ability of
XG detectors to constrain beyond-Kerr deviations, assum-
ing that the remnant BH mass and spin are known (e.g.,
because they can be inferred from the full inspiral-merger-
ringdown waveform). This procedure [that we called
“strategy (i)” in Sec. II A] drastically improves the bounds,
because the observation of a single QNM—i.e., the
dominant (22) mode—is sufficient to perform BH spec-
troscopy tests. We now turn to the more conservative and
pessimistic approach [called “strategy (ii)” in Sec. II A] in
which we use information from the ringdown only. We now
need at least two modes in order to simultaneously
constrain the ParSpec parameters, as well as the final
BH mass and spin of each observed ringdown event.
For reasons that will be apparent soon, we perform the

analysis only for dimensionless couplings (p ¼ 0) and for
nonrotating corrections (n2 ¼ 0). We analyze the (22)
mode in combination with either a (33) or a (21) secondary
QNM.
In Fig. 11 we show the posterior distributions of the

ParSpec parameters as functions of the observed events for
models I and II, respectively. Different histograms corre-
spond to posteriors inferred by stacking a different number
of observations. In the first two rows of Fig. 11 we assume
that Mf and χf are fixed to their true values. While in this

case the posteriors of δωð0Þ
22 and δτð0Þ22 are correctly centered

around zero, and become narrower as N increases, the
panels in the third and fourth rows, where Mf and χf are
allowed to vary, change dramatically, and we observe a
significant bias in all parameters. In the majority of cases,
the GR null hypothesis is excluded at more than 90% of the
marginalized posterior distributions. Both the fundamental
and the secondary mode are affected: their probability
distribution can peak around the wrong value and rally
against the prior. These results are independent of the
choice of the secondary mode.
The systematic bias builds up due to correlations with

Mf and χf, which are partially degenerate with the ParSpec
parameters, and it can become more significant as N grows.
Note that for practical purposes here we consider only 50
events: this already requires more than 100 parameters—
i.e., 2 × 50masses and spins—to be sampled along with the
four ParSpec parameters for the fundamental and secon-
dary QNM.

FIG. 9. Joint posterior samples for the ParSpec parameters in
the agnostic analysis using strategy (i), including quadratic spin
corrections (n2 ¼ 2) and dimensionless coupling (p ¼ 0). The
color scheme identifies the probability of the samples, with red
(blue) regions corresponding to low (high) probabilities. We stack
the full set of events observable by ET and assume the spin
distribution of model I, but results for model II are qualitatively
similar.
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In order to clarify the impact of the remnant BH

properties on the reconstruction of δωð0Þ
lm and δτð0Þlm,

we repeat the analysis, but this time we replace the “true”
mass and spin by “mock” values that are shifted by some
fixed amount:

Mf ¼ Mf þ ΔMf; χ̄f ¼ χf þ Δχf: ð43Þ

For simplicity, we assume ΔMf=Mf ¼ Δχf=χf ¼ ϵ. We
then sample over the ParSpec parameters only.
In Fig. 12 we show the posterior distributions inferred

with the (22)–(33) multimode analysis for ET and model I.
We stack N ¼ 50 events and we consider values of ϵ
ranging between 0.001 and 0.04. The probability densities
drawn in the four panels demonstrate how the bias evolves
as a function of the relative shift in mass and spin. An
accuracy of ∼1% in the masses and spins seems to be
required in order for the GR limit to return within the
posterior support.

The masses and spins of the remnant inferred from XG
ringdown observations alone are expected to have ∼10%
accuracy [95], about an order of magnitude worse than the
∼1% accuracy estimated above. However, the uncertainty
in the remnant’s properties could be improved using
different data analysis techniques (for example, by using
the full inspiral-merger-ringdown information).
The origin of this bias can be traced back to the

degeneracy between ðMf; χfÞ and the fundamental mode
frequency and damping time [96]. In the case of the
ParSpec expansion, for small changes ΔMf, Δχf, this
degeneracy leads to a shift in the beyond-Kerr parameters
of the following form:

δωðk2Þ
ljmj

→ δωðk2Þ
ljmj

− ΔMf þ k2Δχf; ð44Þ

δτðk2Þljmj
→ δτðk2Þljmj

þ ΔMf þ k2Δχf; ð45Þ

Equations (44) and (45) suggest that, to avoid large

systematics in the inference of δωðk2Þ
ljmj

and δτðk2Þljmj
, the

deviations in the mass and spin should be small enough
to satisfy the condition

���δωðk2Þ
ljmj

���≫ jΔMf − k2Δχfj; ð46Þ
���δτðk2Þljmj

��� ≫ jΔMf þ k2Δχfj: ð47Þ

Note that the two-mode analysis discussed above focuses
on the p ¼ 0 case. In general, we expect the bias to be
worse for dimensionful corrections (e.g., p ¼ 4). This is
because the mismodeling of the mass would also affect the
coupling parameter γi, which also controls deviations from
the Kerr spectrum. For this reason we do not show results

FIG. 10. Two-dimensional posterior distribution of the spin-
independent ParSpec parameters ðδωð0Þ

22 ; δτ
ð0Þ
22 Þ, assuming that

Kerr deviations are controlled by a dimensionful coupling with
p ¼ 4. We perform an agnostic analysis using strategy (i). Solid
and dashed lines identify the 68% and 90% credible intervals,
while light-purple and red regions correspond to different
population models.

TABLE II. We list the 90% credible intervals for the marginalized distribution of the ParSpec parameters with quadratic spin
corrections (n2 ¼ 2) and dimensionless coupling (p ¼ 0). We stack a different number N of sources for the two models. Dotted entries
correspond to parameters for which the posterior is not informative with respect to the prior.

Model I Model II Model I Model II Model I Model II
All All N ¼ 1000 N ¼ 1000 N ¼ 500 N ¼ 500

CE-40 km δωð0Þ
22

½−0.0234; 0.0237� ½−0.0341; 0.0363� ½−0.0282; 0.0273� ½−0.0485; 0.0509� ½−0.0312; 0.0312� ½−0.0602; 0.0586�
δωð1Þ

22
½−0.178; 0.175� ½−0.222; 0.213� ½−0.193; 0.196� ½−0.257; 0.246� ½−0.204; 0.205� ½−0.276; 0.277�

δωð2Þ
22

½−0.853; 0.834� ½−0.978; 0.780� � � � � � � � � � � � �
δτð0Þ22

½−0.0343; 0.0337� ½−0.0667; 0.0709� ½−0.0534; 0.0529� ½−0.210; 0.201� ½−0.0725; 0.0746� ½−0.279; 0.277�
ET-15 km δωð0Þ

22
½−0.0217; 0.0225� ½−0.034; 0.0366� ½−0.0266; 0.0281� ½−0.0448; 0.0464� ½−0.0311; 0.0316� ½−0.0541; 0.057�

δωð1Þ
22

½−0.169; 0.161� ½−0.229; 0.212� ½−0.197; 0.188� ½−0.255; 0.243� ½−0.204; 0.203� ½−0.273; 0.258�
δωð2Þ

22
½−0.807; 0.771� ½−1.00; 0.741� � � � � � � � � � � � �

δτð0Þ22
½−0.0323; 0.0324� ½−0.0561; 0.0569� ½−0.0526; 0.0508� ½−0.169; 0.159� ½−0.0751; 0.0742� ½−0.25; 0.249�
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for the case p ¼ 4, and we do not include spin-dependent
corrections (n2 > 0) in this part of the analysis.

B. Theory-specific inference

We first focus on the quadratic theories of gravity
discussed in Sec. III B. Both theories (EsGB and dCS)
are characterized by a dimensionful coupling constant,
bounded by astrophysical observations either in the gravi-
tational or electromagnetic band. The maximum values
currently allowed for the parameters αGB;CS are

ffiffiffiffiffiffiffiffi
αGB

p ≃
6.3 km and

ffiffiffiffiffiffiffi
αCS

p ≃ 8.5 km [97] (due to different normal-
izations, the EsGB coupling constant in this work is larger
than the one defined in Ref. [97] by a multiplicative factor of
4π1=4). Note however for such values of the couplings,
deviations from GR can become nonperturbative, with
βGB;CS ¼ αGB;CS=m2

1;2 ∼ 1 for low-mass BHs of our cata-
logs. This is problematic because both EsGB and dCS
gravity should be seen as effective field theory, valid in the
limit βGB;CS ≪ 1. To be consistent with the perturbative
character of ParSpec, in this work we inject signals for both
EsGB and dCS gravity assuming a coupling such that
βGB;CS ¼ αGB;CS=min½m1; m2�2 ¼ 0.1, with min½m1; m2�

being the smallest mass of the binary BHs within our
population models that yield an observable ringdown signal.
For both models I and II, this leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αGB;CS

p ∼ 2.5 km.
Before assessing the capability of XG detectors to

constrain the coupling parameter, it is instructive to
estimate the order of magnitude of the expected deviations
from the Kerr predictions for the frequencies and damping
times. In Fig. 13 we show the cumulative distributions of
the changes in the (22) mode predicted by EsGB gravity
(top row) and dCS gravity (bottom row) relative to the
(slowly rotating) Kerr predictions. These corrections are
computed using the “beyond GR” part of the sum in
Eqs. (1) and (2), truncated at the order in the slow-rotation
expansion at which the corrections are currently known:
second order for EsGB and first order for dCS (see
Appendix A). The cumulative distribution function is
computed by considering all of the events that have an
observable ringdown signal. For completeness, in Figs. 28
and 30 of Appendix A we compare the relative changes in
the dominant mode to the relative changes in the subdomi-
nant (33) and (21) mode frequencies.
For EsGB gravity, all systems lead to changes in the

frequency smaller than ∼0.01%, regardless of the adopted

FIG. 11. Distribution of the ParSpec deviation parameters as a function of the number of observed events in the agnostic analysis. We
assume a two-mode template that includes the (22) and either the (33) or the (21) QNM, and we use the model I population. The top two
rows (labeled by “fixed”) correspond to posteriors obtained by keeping the BH masses and spins fixed to their injected values in the
MCMC simulations. The bottom rows are derived by sampling the ParSpec parameters as well as the mass and spin of the remnant.
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spin distribution model. Events observed by CE have
slightly smaller corrections compared to ET, because the
catalog observed by CE includes a smaller number of light
BHs. The maximum expected shifts in the damping times
are of the same order of magnitude as the frequency shifts.
For dCS gravity, deviations with respect to Kerr are

generally larger by one order of magnitude. Interestingly,
the shifts in the damping time are bigger than the
frequency shifts.
To understand how these estimates translate into actual

constraints on the coupling constants, we first run our
MCMC pipeline assuming that the mass and spin of the
remnants are fixed to their injected values. We consider a
single-mode and a two-mode analysis. In the two-mode
analysis we only use the frequency (and not the damping
time) of the secondary QNM. The main reason behind this
choice is that the damping time of the secondary mode is
never well measured.

1. Einstein-scalar-Gauss-Bonnet gravity

In Fig. 14 we plot the posterior of the EsGB coupling
constant αGB inferred by stacking the entire set of events
observed by ET and CE. Unshaded and shaded curves
correspond to the (22) and to the (22)–(33) templates,
respectively. In both cases our results do no show any
particular preference for the injected value of the coupling:
the injected value does fall within the 90% credible
intervals of the distributions, but the posteriors are fully

FIG. 12. Posterior density distributions of the ParSpec param-
eters for the p ¼ 0 case, inferred in the agnostic analysis with
strategy (ii), assuming that the BH masses and spins, fixed within
the MCMC simulation, are shifted by a fixed amount (indicated
on the x axis) with respect to their “true” values. Colors closer to
yellow (green) correspond to higher (lower) probability. Results
are obtained by stacking N ¼ 50 events of the model I catalog.

FIG. 13. Cumulative distribution for the changes in the
frequencies and damping times of the (22) mode with respect
to their Kerr values predicted by EsGB gravity (top row) and dCS
gravity (bottom row), for detectable events. QNMs beyond GR
are computed by assuming coupling constants αGB;CS that
saturate the current upper bounds from astrophysical observations
[97]. The vertical lines mark 0.01% changes in frequency and
damping time, while the horizontal lines mark the 50% and
90% confidence intervals of the distribution.

FIG. 14. Posterior distributions of the EsGB coupling constant
αGB. Bounds on αGB are obtained by stacking the whole set of
observations for ET and CE, and by fixing both the masses and
the spins of the BH remnants. The vertical dashed lines mark the
injected value of the coupling. Unshaded (shaded) regions are the
bounds from a one-mode (two-mode) analysis, respectively.
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consistent with the GR hypothesis, and only allow to infer
an upper bound on αGB. As expected, ET provides tighter
constraints, mainly due to the larger number of observable
ringdown events. The posteriors in the (22)–(33) case have
a sharp cutoff around αGB ∼ 30 km2. This cutoff is imposed
by the requirement that the ParSpec parameters must be

perturbative in nature, i.e., jγiδωðk2Þ
lm j≲ 1 and jγiδτðk2Þlm j≲ 1

(see also the discussion in Appendix 28). This choice
imposes a tight upper bound on the frequency of the (33)
mode, because the coefficients of the dCS expansion (as
shown in Appendix A) are such that deviations from Kerr
are larger as the BH mass decreases. We have also run our
Bayesian pipeline assuming the (22)–(21) combination (not
shown here): in this case the results are very close to
the single-mode analysis, confirming that most of the
information comes from the dominant (22) multipole.
The numerical values of the ParSpec coefficients for the
(21) QNM make it possible to sample a wider range of
values for αGB, so the (22)–(21) posteriors do not have the
sharp cutoff observed in the (22)–(33) case.
Our results are only mildly dependent on the chosen

model for the binary spins. Focusing on the single-mode
strategy, the 90% credible interval derived using ET is
αGB ∼ ½0; 40� km2 and αGB ∼ ½0; 41� km2 for models I
and II, respectively. The 90% credible interval derived
using CE is αGB ∼ ½0; 41� km2 and αGB ∼ ½0; 47� km2 for
models I and II, respectively. The top panel of Fig. 15
summarizes the 90% credible intervals on the EsGB
coupling for different detector configurations and spin
models. All constraints are close to the current upper
bound for the EsGB coupling. Given the mass dependence
of the EsGB corrections [see Eq. (42)] we expect our results

to be dominated by low-mass systems. As a check, we have
repeated the analysis by considering only BH remnants
with Mf ≲ 50M⊙, and the results are very similar to those
shown in Fig. 14.
Spin-dependent corrections to the QNM frequencies in

EsGB gravity are known up to quadratic order in the spin.
In Fig. 16 we investigate how these corrections affect the
posteriors on αGB. For simplicity we focus on a single-
mode analysis of ET observations. We show the posterior
probabilities obtained by fixing n2 ¼ 0 (purple), n2 ¼ 1
(red), and n2 ¼ 2 (black) in the recovering templates of
Eqs. (1) and (2), while the injected QNM signals always
include all corrections in the spin (up to and including the
second-order terms). Including only first-order or zeroth-
order spin corrections in the template flattens the posterior
distribution, which becomes uninformative with respect to
the prior. Results for the two-mode analysis, assuming
either the (33) or the (21) component as the secondary
QNM, are qualitatively similar. These results suggest that
spin corrections play a dominant role in the Bayesian
inference. This can be understood by looking at the
magnitude of quadratic terms in the frequency expansion,
which are about one order of magnitude larger than the
zeroth-order term for χf ∼ 0.7 (see Appendix A, and in
particular Fig. 26). Therefore pushing the spin expansion to
higher orders is very important to perform tests that are not
dominated by systematic errors.
To further clarify the role of rotational corrections, we

repeat the analysis by assuming that both the injected signal

FIG. 15. Ninety percent credible intervals around the median
for the coupling constants of EsGB and dCS gravity inferred
using different combinations of detectors and population models.
The bounds are obtained by stacking all events in a single-mode
analysis, and assuming that the masses and spins of the remnants
are fixed to their injected values. Vertical lines correspond to the
current upper bound for αGB;CS.

FIG. 16. Posterior distribution of the EsGB coupling constant
inferred from ET observations with a single-mode analysis.
Samples are obtained by injecting QNM signals in EsGB gravity
that include second-order corrections in the spin. The black
histogram corresponds to recovery templates which include
Oðχ2Þ spin terms in the beyond-Kerr parametrization. Red and
purple histograms refer to a template that includes only non-
rotating terms or first-order spin corrections, respectively.
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and the recovery template contain either nonrotating or
linear-in-spin corrections beyond-Kerr corrections. We
basically follow the procedure described in Sec. III C,
but now we compute FIM errors by omitting higher-order
in spin corrections to the EsGB frequencies and damping
times. The results are shown in Fig. 17 and support our
previous analysis. When we neglect quadratic terms in the
spin the posterior distribution of the coupling is fully
consistent with the uniform prior, suggesting that Oðχ2Þ
terms dominate the reconstruction of αGB. It is possible, and
even likely, that bounds inferred by truncating at quadratic
order are affected by a bias due to ignoring higher-order
coefficients in the QNM expansion, which are currently
unknown. We remark that, even in the most optimistic case,
the ringdown-only EsGB upper bounds of Fig. 14 are
weaker than the bounds expected from XG observations
of binary inspirals, which could be as small as αGB ∼
10−3 km2 in the absence of systematic errors (see, e.g.,
Fig. 20 of Ref. [5]).
It is interesting to investigate what constraints can be

placed on the EsGB coupling if we allow αGB to be
nonperturbatively large. In Fig. 18 we show the posteriors
of αGB found with ET by injecting signals such that βGB ¼
αGB=min½m1; m2�2 ¼ 0.5, which yields αGB ≃ 30 km2.
As expected, the detectability of beyond-Kerr deviations
improves significantly: the distributions now have a clear
peak around the injected value of the coupling. Note
however that, even in this extreme case, the posteriors
also support the GR hypothesis. Similar conclusions apply
also to CE.
It is worth asking how the bounds would change if we

allowed the BH masses and spins to be sampled together
with αGB. To limit the computational cost coming from the
inclusion of a larger number of parameters in the MCMC
simulations, we restrict our analysis to ringdown events
such that (i) the remnants have masses Mf ≤ 50M⊙ and

(ii) the relative error on the damping time of the secondary
QNM is σω33

=ω33 ≤ 50% [and similarly for the (21)
component]. For concreteness we focus on ET. Within
all observable events in model I, we find 100 and 69 events
which satisfy the two requirements above for the (22)–(33)
and (22)–(21) templates, respectively (for model II, there
are 92 and 50 events satisfying these conditions).
Among these events, we select the 50 lightest-mass
BHs, which are expected to yield the largest deviations
from the Kerr spectrum.
In Fig. 19 we focus for simplicity on model II and on

the (22)–(21) combination (other configurations lead to
similar results). As expected, the ability of XG detectors to
constrain αGB worsens dramatically. For comparison we
also plot PðαGBÞ when M and χ are kept fixed. When the
masses and spins are sampled together with αGB the
posteriors become less informative. However the MCMC
can still correctly infer the injected values of ðMf; χfÞ, and

FIG. 17. Posterior of the EsGB coupling constant for ET
observations of BHs with Mf ≤ 50M⊙. Black histograms are
obtained by assuming that both the injected frequencies and the
recovery template include quadratic beyond-GR corrections in
the spin. Red and purple histograms are obtained by MCMC
simulations in which both the injected frequencies and recovery
templates contain only nonrotating terms or only first-order spin
corrections, respectively.

FIG. 18. Posterior distributions of the EsGB coupling param-
eter found by stacking all events observed by ET with a single-
mode strategy. The injected signals assume a value of the
coupling αGB=min½m1; m2�2 ¼ 0.5 that violates the perturbative
assumption. The shaded region identifies the parameter space
ruled out by astrophysical observations.

FIG. 19. Posterior histograms for the GB coupling parameter
inferred by stacking different sets of events observed by ET. Here
we use a two-mode analysis in which the mass and spin of the
remnant are sampled together with αGB. The vertical dashed lines
identifies the injected value of the coupling, and the current upper
bound. For sake of comparison we show as solid black curve the
posterior distribution obtained by fixing mass and spin to their
injected values, and stacking N ¼ 50 events. The normalization
constant of such distribution has been scaled for visualization
purposes.
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masses are in general reconstructed with better accuracy
than spins.

2. Dynamical Chern-Simons gravity

The constraining power of XG detectors improves only
mildly for dCS gravity compared to EsGB, as shown in the
two panels of Fig. 20. Even in this case the posteriors of
αCS, obtained by stacking the full sets of BH remnants and
keeping first-order spin corrections (the only corrections
available so far), show full support for the GR value.
From a single-mode analysis based on the (22) dominant

mode we infer that ET may be able to bound the dCS
coupling to the range αCS ∼ ½0; 16.4� km2 and αCS ∼
½0; 16.3� km2 (90% confidence level) for models I and II,
respectively. For CE, the forecast values have a slightly
larger spread: αCS ∼ ½0; 16.6� km2 and αCS ∼ ½0; 17.2� km2

for models I and II, respectively. For completeness, we have
repeated the analysis with the (22)–(21) combination of
QNMs. We find that the inferred bounds are only mildly
dependent on the choice of the secondary mode.
A comparison of the 90% credible intervals on αCS for

different detector configurations and spin population mod-
els is shown in the bottom panels of Fig. 15. Unlike EsGB
gravity, forecasts from both detectors are tighter than the
current upper bound by a factor ∼5. As in the case of EsGB,
the constraints on αCS are dominated by observations of
low-mass sources with Mf ≤ 50M⊙.
We have further assessed the relevance of spin cor-

rections by studying how bounds on the dCS coupling
change if we adopt a recovery template that only includes
nonrotating coefficients in the beyond Kerr expansion.
The results are shown in Fig. 21 for ET observations and
model I. At variance with EsGB gravity, spin corrections
seem to play a less dominant role for dCS: the posteriors
obtained using zeroth-order terms in χ are roughly a factor
of 2 broader, and still informative over the prior. Results
for other detector configurations and BH populations are
similar. While the analysis is limited by our current

knowledge of higher-order spin terms in the dCS QNM
spectrum, our findings seem to suggest that quadratic and
higher-order corrections in χ may not dramatically affect
our conclusions.
In EsGB gravity, including masses and spins within the

sampling parameters yields uninformative posteriors on the
coupling constants. The results for dCS shown in the four
panels of Fig. 22 are more promising. Here we follow the
same strategy discussed in Sec. IV B 1 in the context of
EsGB gravity, and we focus on BHs with masses smaller
than 50M⊙. Green, red, and purple histograms are the
marginalized distributions of αCS, obtained by stacking an
ever larger set of events observed by ET. For comparison
we also show (in black) the posterior obtained by fixingMf

and χf to their true values and assuming N ¼ 50 events:
this posterior is consistent with zero, but it usually peaks
around the injected value of the dCS coupling (marked by a
vertical dashed line).
The inferred value of αCS is quite sensitive to the spin

distribution of the population and only mildly affected by
choice of the secondary mode, even if dCS corrections to
the (33) Kerr frequencies and damping times are always
one order of magnitude larger than the corresponding
corrections to the (21) component (compare Fig. 30).
This confirms that the bulk of information comes from
the fundamental QNM, as we discussed earlier in the
context of Fig. 20. For the model I population (left panels of
Fig. 22) the posterior distributions shift to the wrong value
of αCS, peaking far from the injected value of the coupling
as the number of observations grows. The origin of this
systematic bias can be traced to the degeneracy between
the source parameters (i.e., Mf, χf) and the beyond-GR
deviation parameter (in this case, the dCS coupling) that
we also observe in the agnostic two-mode analysis
(cf. Sec. IVA 2). Indeed, the bias in Fig. 22 is slightly
larger when we consider the (21) mode (which leads to
smaller changes in the Kerr spectrum) as the secon-
dary mode.
For the model II population (right panels of Fig. 22) the

bias is less evident. In this case, the posterior become wider

FIG. 20. Same as Fig. 14, but for dCS gravity.

FIG. 21. Posteriors of the dCS coupling constant inferred from
ET observations by injecting single-mode QNM signals. Black
histograms correspond to recovery templates which include OðχÞ
spin terms, while purple histograms refer to templates that include
only nonrotating terms in the beyond-Kerr parametrization.
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that those obtained by fixing the BH masses and spins,
with the upper bound on αCS being a factor two bigger. As
for EsGB gravity, the remnant mass and spin posteriors
are always correctly centered around the “true” injected
values: see Fig. 32 in Appendix B. It is also clear
from Fig. 32 that the mass and spin inference is generally
better for large-SNR systems. These are usually large-
mass systems: unfortunately, the degeneracy between
mass, spin, and coupling constants is less relevant
precisely for those systems for which beyond-GR cor-
rections are suppressed.

3. Effective field theory

We now discuss how well ringdown observations by XG
detectors could constrain the EFT gravity models of
Ref. [66]. Once again, we first assume that BH masses
and spins are fixed to their injected values, and only sample
over the coupling constant αq for each of the eight EFT
models we consider. We inject signals with three different
values of αq such that γcubicq ¼ α4q=min½m1; m2�4 ¼ ð0.1;
0.2; 0.5Þ and γquarticq ¼ α6q=min½m1; m2�6 ¼ ð0.1; 0.2; 0.5Þ,
where min½m1; m2� is the smallest mass among all binary
components that yield an observable ringdown signal
within each of our population models.
The posterior distributions for both cubic and quartic

couplings are shown in Fig. 23, where we stack all BH
remnants observed by ET and we assume the model I spin
distribution. Each panel shows results obtained by either a
single-mode or a two-mode analysis. As we observed for
EsGB gravity, the hard cut in the posteriors inferred from
the (22)–(33) combination for some of the models corre-
sponds to imposing the requirement that the ParSpec
coefficients remain in the perturbative regime.

All of the EFT gravity theories we analyze display a
common trend: for γq ≤ 0.2 (first and second column) the
inferred posteriors are poorly informative, yielding upper
bounds on αq of the order ofOð10Þ km, which depend only
mildly on the mass scaling of the coupling (either γq ∝ M−4

or γq ∝ M−6) and on the specific gravity theory. All
distributions rail against zero, showing support for the
GR hypothesis.
At the highest value of γq we consider (third column in

Fig. 23), the posteriors for some of the models narrow,
peaking around the injected value of αq. Note however that
all posterior distributions still rail against the GR value
within the 90% credible interval. These results imply that
ringdown observations may be able to mildly constrain the
coupling constant of these EFT gravity models only when
the coupling constants are very large, possibly violating
the domain of validity of the theory. For signals with
γcubicq ¼ 0.5 (top-right panels) we only show results for the
single-mode inference: in the two-mode inference, the
coupling (which is outside the EFT domain of validity)
is such that we always find a BH mass in our catalog that
violates the perturbative character of the ParSpec correc-
tions. As usual, including the mass and spins of the remnant
within the MCMC sampling introduces additional corre-
lations among the parameters, thus widening the posteriors.
The high-order expansion of the QNM frequencies

derived in Ref. [66] allows us to test the relevance of
different contributions in the spin expansion to the QNM
spectrum. To this end, in Fig. 24 we repeat the previous
analysis with a ParSpec template that includes spin terms
only up to a given order. For concreteness we show the
constraints on the coupling parameter of the 1þ model,
and we inject signals corresponding to large coupling

FIG. 22. Posterior distributions of the dCS coupling constant αCS obtained by stacking different sets of events observed by ET in a
two-mode analysis. The vertical dashed lines identifies the injected value of the coupling. The mass and spin of the remnants are sampled
together with αCS. For comparison we also show the posterior of the coupling obtained by stacking the largest set of events considered,
and fixing Mf and χf to their true values, with N ¼ 50 (solid black line). The left and right panels refer to different spin population
models.
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FIG. 23. Posterior probability distributions for the coupling parameters of the eight EFT models we consider. Bounds are obtained by
stacking all of the model I signals observed by ET. Left, middle, and right panels refer to a different injected value of αq, corresponding
to γq ¼ ð0.1; 0.2; 0.5Þ in each specific theory. The injected values are marked by vertical lines.

BLACK HOLE SPECTROSCOPY BEYOND KERR: … PHYS. REV. D 109, 064060 (2024)

064060-21



(α6
1þ=min½m1; m2�6 ¼ 0.5). While a zero-spin template

introduces a significant bias in the posterior distribution,
a sixth-order expansion in χ is sufficient to recover the
“true” injected value of α1þ . Note that the quadratic
expansion is remarkably good in this case. However the
convergence of the series may well be asymptotic, and this
is probably just a coincidence. The results for the other
families of EFT gravity models are similar: depending on
the specific model, including between the sixth and the
ninth order is typically sufficient to infer the injected
coupling parameter without significant bias.

V. CONCLUSIONS

In this paper we employ the ParSpec parametrization of
the QNM spectrum of spinning BHs beyond GR developed
by some of us in previous work [67] to address the
following question: can future ringdown observation with
XG detectors detect (or constrain) deviations from the Kerr
spectrum by stacking multiple observations of binary
mergers? We use astrophysically motivated populations
and address this question for two different families of
spectroscopy tests: (i) agnostic (null) tests and (ii) theory-
based tests, which make use of QNM frequency calcu-
lations in EsGB gravity, dCS gravity, and various
EFT-based extensions of general relativity. When we inject
beyond-GR signals in the data, we generally assume the
coupling constant of specific beyond-GR theory to saturate
current experimental bounds.
We find that robust inference of hypothetical corrections

to GR requires pushing the slow-rotation expansion to high
orders. Even when high-order expansions are available,
ringdown observations alone may not be sufficient to
measure deviations from the Kerr spectrum for theories
with dimensionful coupling constants because the con-
straints are dominated by “light” black hole remnants, and
only few of these light remnants have sufficiently high SNR
in the ringdown.

For theory-agnostic tests with dimensionless couplings
(p ¼ 0) that include spin corrections to the QNM spectrum
we find a hierarchy among the beyond-GR parameters,
with the nonrotating terms providing the tightest con-
straints. This confirms some of the main results of
Ref. [67]: spin corrections to the damping time may be
unmeasurable, even when stacking thousands of events.
For theory-agnostic tests where couplings have dimen-

sions of ðmassÞ4 (p ¼ 4), we can only constrain non-
rotating corrections to the QNM spectrum. The inferred
bounds on the ParSpec parameters imply bounds on the
fundamental coupling of a putative beyond-GR theory of
the order of Oð10Þ km.
For EsGB gravity, the constraints inferred by XG

detectors are strongly dependent on the accuracy of the
beyond-GR spin expansion (cf. Figs. 16 and 17). When we
include second-order terms in the small-spin expansion we
can better constrain the EsGB coupling constant, but there
is still support for the GR hypothesis (αGB ¼ 0). The
analysis suggests that the constraints may change when
we include the unknown Oðχ3Þ terms in the beyond-GR
spin expansion. Moreover, even the most optimistic con-
straints inferred with the inclusion of second-order spin
terms are still weaker than current bounds from LIGO/
Virgo/KAGRA inspiral observations (Fig. 15). All of the
bounds discussed above are optimistic, because they are
found assuming that the masses and spins of the remnants
are known (e.g., from the full inspiral-merger-ringdown
waveform) and fixed to their injected values. When we
allow the mass and spin to vary in the MCMC simulations,
the posteriors on αGB become uninformative.
Our findings for dCS are slightly more optimistic: by

stacking ringdown observations with ET and CE we may
constrain the dCS coupling constant αCS with an accuracy
about five times better than current bounds (Fig. 15),
at least when we assume that the masses and spins of
the remnants are known. In any case, ringdown-only
constraints on αCS would still be about two orders of
magnitude worse than those achievable by XG observations
of post-Newtonian corrections in the inspiral [5].
All of the EFT models that we consider lead to

uninformative posteriors for cubic and quartic GR mod-
ifications, even when we consider values of the coupling
so large that they would violate the domain of validity of
the EFT. Constraining quartic models is particularly diffi-
cult because of the 1=M6

f suppression of the beyond-Kerr
deviations. The QNMs computed in EFT gravity include
high-order terms in the spin expansion up to Oðχ12Þ. The
inclusion of these contributions is useful to understand the
convergence properties of the small-spin expansion, but it
does not significantly improve the bounds.
In conclusion, it is difficult to set constraints on theories

with a dimensionful coupling—like those modifying GR in
the large curvature regime—using ringdown observations
alone. This is because constraints on any dimensionful

FIG. 24. Posterior distribution of the EFT coupling parameter
α1þ . Different colors correspond to recovery templates that
include spin effects at different orders, as indicated in the legend.
The vertical dashed line marks the injected value of the coupling.
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coupling constants are dominated by low-mass black holes,
i.e., by higher frequency signals, for which ET and CE are
less sensitive (at least, with the currently planned configu-
ration). For both ET and CE, we find that the bounds
obtained by stacking ∼100 events with Mf ≲ 50M⊙ are
comparable to the bounds found by stacking the full dataset.
It should be possible to achieve better constraints

on theories with dimensionful coupling constants by exploit-
ing the full inspiral-merger-ringdown waveform. This is a
more ambitious, ongoing research program that will require
a combination of numerical simulations (see, e.g., [98–111]),
post-Newtonianandeffective-one-bodymodels[71,112–119],
and parametrizations of the full inspiral-merger-ringdown
waveform [109,120–123]. The constraining power of ring-
down observations is better for theories with a dimension-
less coupling, for which suppression of beyond Kerr
deviations due some energy scale is not effective. In this
case the analysis we carried out in the agnostic, dimension-
less scenario suggests that we may be able to set bounds at
leaston the leading-order (nonrotating) termsof thebeyond-
GR contribution to the QNM frequencies.
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APPENDIX A: QUASINORMAL MODE
FREQUENCIES FOR MODIFIED THEORIES

OF GRAVITY

In this appendix we map the frequencies and damping
times computed in specific modified theories of gravity

to the ParSpec parameters defined in Eqs. (1) and (2).
As discussed in Sec. III, we consider two models of
quadratic gravity for which QNM frequencies have been
computed in a slow-rotation expansion (EsGB and dCS
gravity) and on eight models of EFT gravity.
The expansion coefficients for a slowly-rotating Kerr

background can be found (in principle, to arbitrary order
in the small-spin expansion) by fitting the numerical values
computed, e.g., in Ref. [15]. For consistencywith the highest-
order expansion computed in Ref. [66], we fit the frequencies
and damping times by a 12th order polynomial in χ using the
NonlinearModelFit routine in Mathematica:

MωK;s
lm ¼

X12
k1¼0

ω̄ðk1Þ
lm χk1 ; ðA1Þ

τK;slm=M ¼
X12
k1¼0

τ̄ðk1Þlm χk1 : ðA2Þ

We further impose that ðω̄ð0Þ
lm; τ̄

ð0Þ
lmÞ are fixed to match exactly

their Schwarzschild value. The resulting fitting coefficients
are listed in Table III.
It would be interesting to consider alternative fitting

procedures proposed in the literature (see, e.g., Ref. [69], in
particular their Fig. 5), but the Taylor series presented here
is sufficiently accurate for our present purposes. As shown
in Fig. 25, the expansion reproduces the numerical QNM
spectrum with a relative accuracy better than 1% in both
frequency and damping time, as long as χ ≲ 0.95.

1. Einstein-scalar-Gauss-Bonnet gravity

The EsGB QNM spectrum at second order in a small-
spin expansion was computed in Ref. [49]. In terms of the
dimensionless spin χ ¼ J=M2 and of the coupling constant
βGB ¼ αGB=M2 it reads

MΩlm ¼ �ΩA
0 þ β2GBΩB

0 Þ þmχðΩA
1 þ β2GBΩB

1

	
þ χ2


ðΩA
2a þ β2GBΩB

2aÞ þm2ðΩA
2b þ β2GBΩB

2bÞ
�
;

ðA3Þ

where Ωlm ¼ ωlm − i=τlm and the subscripts “A” and “B”
refer to the GR and beyond-GR contributions, respectively.
We can recast this expression into the ParSpec framework
by identifying γ ¼ α2GB=M

4 ¼ β2GB, such that

ωlm ¼ 1

M

h
ω̄ð0Þ
lm

�
1þ β2GBδω

ð0Þ
lm

�
þ χω̄ð1Þ

lm

×
�
1þ β2GBδω

ð1Þ
lm

�
þ χ2ω̄ð2Þ

lm

�
1þ β2GBδω

ð2Þ
lm

�i

þ 1

M

X12
k1¼3

ω̄ðk1Þ
lm ; ðA4Þ
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τlm ¼ M
h
τ̄ð0Þlm

�
1þ β2GBδτ

ð0Þ
lm

�
þ χτ̄ð1Þlm

×
�
1þ β2GBδτ

ð1Þ
lm

�
þ χ2τ̄ð2Þlm

�
1þ β2GBδτ

ð2Þ
lm

�i

þM
X12
k1¼3

τ̄ðk1Þlm ; ðA5Þ

where the quantities with an overbar identify the GR
coefficients up to 12th order in the spin. We determine
the beyond-GR parameters in Eqs. (A4) and (A5) by fitting
them against the analytical expressions provided in
Ref. [49] up to Oðχ2Þ and Oðα6GBÞ. We perform the fit
in a range of spins and coupling constants where the QNM
frequencies are well described by Taylor expansions
according to Ref. [49], i.e., χ ∈ ½0; 0.2�; αGB=M2 ∈ ½0; 0.2�.
The values of the EsGB fitting coefficients found in this

way are listed in Table IV. In Fig. 26 we plot the linear and
quadratic spin corrections to the frequency and damping
time of the (22), (33), and (21) modes, normalized to the
nonrotating term, as functions of χ. Bullets mark values of χ

for which the linear or quadratic correction becomes larger
(in absolute value) than the nonrotating contribution. For
example, the second-order corrections to the frequency and
damping time of the (22) mode become larger than the
nonrotating contribution for χ ≳ 0.2. This highlights the
importance of pushing the spin expansion to higher orders.
To further clarify the relevance of spin corrections, we

study the mass dependence of the ParSpec coefficients
γδωk2

lm and γδτk2lm for EsGB gravity. In Fig. 27 we plot the
nonrotating, linear, and quadratic spin terms as a function
ofM, assuming

ffiffiffiffiffiffiffiffi
αGB

p ≃ 2.5 km, as discussed in Sec. IV B.
Empty circles in each panel correspond to the minimum
observable component mass among all binary BHs present

FIG. 25. Relative errors between the frequencies and damping
times in GR computed by solving the Teukolsky equation and
their slow-rotation approximations at twelfth-order in a Taylor
expansion in the spin, with coefficients given in Table III.

TABLE III. Values of the GR coefficients for the ParSpec spin
expansion for the modes with ðlmÞ ¼ ð22Þ; ð33Þ; ð21Þ modes up
to order 12 in the spin.

k1 ω̄ðk1Þ
22 τ̄ðk1Þ22 ω̄ðk1Þ

33 τ̄ðk1Þ33 ω̄ðk1Þ
21 τ̄ðk1Þ21

0 0.37368 11.241 0.59946 10.787 0.37367 11.241
1 0.12947 0.98133 0.2065 0.95996 0.062929 0.4055
2 −0.017526 −19.094 0.0046294 −19.021 0.049757 −6.8293
3 0.80811 184.11 0.91245 185.08 −0.057124 70.950
4 −2.8392 −766.01 −3.0061 −769.48 0.46321 −292.17
5 4.3651 1434.2 4.1145 1441.7 −1.1694 534.65
6 1.0487 −608.63 2.9075 −614.3 1.4399 −182.24
7 −8.1789 −1337.3 −10.535 −1340.6 −0.27864 −566.17
8 −0.21522 594.52 −1.51 599.45 −1.0989 190.92
9 11.546 1730.8 15.248 1734.2 0.72622 749.45
10 2.5717 −111.70 4.3535 −114.94 0.9947 4.3652
11 −18.135 −2473.0 −24.505 −2476.4 −1.6423 −1098.0
12 9.4186 1387.6 12.54 1390.2 0.71601 604.36

TABLE IV. Values of the EsGB coefficients for the ParSpec
spin expansion of the ðlmÞ ¼ ð22Þ, (33), (21) modes.

k2 δωðk2Þ
22 δτðk2Þ22 δωðk2Þ

33 δτðk2Þ33 δωðk2Þ
21 δτðk2Þ21

0 −0.05062 −0.10606 −0.10432 −0.08524 −0.04227 −0.08179
1 0.51999 9.6119 0.22466 4.0986 0.11534 9.7028
2 47.388 2.1226 −250.52 0.97981 −5.4561 2.7290

FIG. 26. Linear (k2 ¼ 1) and quadratic (k2 ¼ 2) corrections to
the EsGB QNM frequency (top) and damping time (bottom) as a
function of χ, normalized to the nonrotating term, for selected
values of (lm). Bullets mark values of χ for which the linear or
quadratic correction becomes larger (in absolute value) than the
nonrotating contribution.
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in our catalogs. For EsGB gravity, both frequencies and
damping time coefficients remain much smaller than one in
the whole range of BH remnant masses.
In Fig. 28 we show the distributions of the relative

change with respect to the slow-rotation expansion of the
Kerr QNM frequencies and damping times ðωK;s

lm; τ
K;s
lmÞ,

given by Eqs. (A1) and (A2), due to the EsGB corrections:

ΔωGB
lm ¼ β2GB

ωK;s
lm

h
ω̄ð0Þ
lmδω

ð0Þ
lm þ χω̄ð1Þ

lmδω
ð1Þ
lm þ χ2ω̄ð2Þ

lmδω
ð2Þ
lm

i
;

ðA6Þ

ΔτGBlm ¼ β2GB
τK;slm

h
τ̄ð0Þlmδτ

ð0Þ
lm þ χτ̄ð1Þlmδτ

ð1Þ
lm þ χ2τ̄ð2Þlmδτ

ð2Þ
lm

i
; ðA7Þ

As discussed before we fix the EsGB coupling to
ffiffiffiffiffiffiffiffi
αGB

p ∼
2.5 km and we evaluate ΔωGB

lm and ΔτGBlm for all BHs of the
two populations (models I and II) that have a detectable

ringdown in ET, i.e., those for which (22) mode SNR
ρ ≥ 12. The fundamental (22) mode leads to the largest
deviations, but deviations in the (33) and (21) components
are comparable in order of magnitude. Note however that
the SNR, and therefore the uncertainties on frequency and
damping times, depend on the energy released in each
mode, ϵRD (or, equivalently, on the mode amplitudes).
As discussed in Sec. IV (see in particular Fig. 5), the values
of ϵRD for the (22) QNM are more than one order of
magnitude larger than those of the (33) and (21) modes, and
therefore the (22) mode is the most important for Bayesian
inference.

2. Dynamical Chern-Simons gravity

For dCS gravity we use the analytical fits provided in
Ref. [50], which are valid up to first order in the spin and
up to second order in the coupling constant αCS.

1 For
simplicity we focus on the axial sector, which is more
strongly affected by the dCS modification with respect to
the polar sector.

FIG. 27. ParSpec coefficients γðδωk2
lm; δτ

k2
lmÞ, with γ ¼ β2GB ¼

α2GB=M
4 for EsGB gravity, as a function of the BH mass. Solid,

dashed and dotted curves refer to nonrotating, linear, and
quadratic coefficients. Empty dots correspond to the smallest
observable binary component mass in our population models.
Vertical shaded regions identify the lightest remnant BH mass
among all events with an observable ringdown. The top, center,
and bottom rows show values of the coefficients for the (22), (33),
and (21) mode, respectively.

FIG. 28. Distributions of the relative change (A6) and (A7) in
frequencies and damping times induced by EsGB gravity with
respect to GR. White horizontal lines in each colored box mark
the median over all events with ringdown observable by ET (top)
and CE (bottom); the edges of the box identify the upper and
lower quartiles, while the ends of the whiskers are the maximum
and minimum value in the distribution. Labels in the top x axis of
the panels refer to the spin model used in the astrophysical
population (models I or II). The value of the EsGB coupling
constant is fixed to

ffiffiffiffiffiffiffiffi
αGB

p ≃ 2.5 km [97].

1Reference [51] provides terms at leading order in the dCS
coupling constant which were missing in Ref. [50]. However
Ref. [51] does not list values for l ¼ 3. Therefore, for consistency,
we only use results from Ref. [50].
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At this order, defining γ ¼ α2CS=M
4 ¼ β2CS, the ParSpec

mapping becomes

ωlm ¼ 1

M

h
ω̄ð0Þ
lm

�
1þ β2CSδω

ð0Þ
lm

�

þ χω̄ð1Þ
lm

�
1þ β2CSδω

ð1Þ
lm

�i
þM

X12
k1¼2

τ̄ðk1Þlm ; ðA8Þ

τlm ¼ M
h
τ̄ð0Þlm

�
1þ β2CSδτ

ð0Þ
lm

�

þ χτ̄ð1Þlm

�
1þ β2CSδτ

ð1Þ
lm

�i
þM

X12
k1¼2

τ̄ðk1Þlm : ðA9Þ

We find the beyond-GR parameters with a procedure
analogous to the EsGB case. We fit Eqs. (A8) and (A9),
with the GR coefficients fixed to the values listed in
Table III, to the expressions provided in Ref. [50] in the
range where the authors find their expansion to be reliable,

i.e., χ ∈ ½0; 0.04�; αCS=M2 ∈ ½0; 0.1�. The dCS axial coef-
ficients of the ParSpec expansion determined in this way
are listed (up to first order in the spin) in Table V.
In Fig. 29 we show the behavior of γδωk2

lm and γδτk2lm as a
function of the BH mass, for

ffiffiffiffiffiffiffi
αCS

p ≃ 2.5 km. Compared to
EsGB gravity (Fig. 27) the values of the dCS parameters
are, in general, larger.
Figure 30 is the dCS equivalent of Fig. 28 for EsGB

gravity. Most of the considerations we made for EsGB
gravity apply also in this case. Note, however, that devia-
tions in the (33) component are now always larger than
deviations in the (22) and (21) modes.

3. Effective field theory

For EFT gravity we use the numerical fits provided in
Ref. [66], where beyond-Kerr QNM corrections are written
in the form

Mω ¼ Mωkerr
lm þ αqδω

fit; ðA10Þ

where

δωfit
lm ¼

X12
n¼0

cnχn: ðA11Þ

The numerical coefficients cn for the (22) and (33)
QNMs—but not for the (21) QNM, which therefore is
not included in this analysis—are given in Tables I and II
of Ref. [66].
Equation (A10) can be straightforwardly mapped to

the ParSpec coefficients in Eqs. (1) and (2) once we are
given the GR part of the expansion, Eqs. (A1) and (A2).

TABLE V. Values of the beyond-GR coefficients for the
ParSpec spin expansion for the axial modes with ðlmÞ ¼
ð22Þ, (33), (21) in dCS gravity, as computed from the fits
provided in Ref. [50].

k2 δωðk2Þ
22 δτðk2Þ22 δωðk2Þ

33 δτðk2Þ33 δωðk2Þ
21 δτðk2Þ21

0 2.4182 4.8493 6.3807 −32.535 2.4569 4.8768
1 20.499 173.56 113.02 −3792.9 −22.421 −47.561

FIG. 29. Same as Fig. 27, but for dCS gravity.

FIG. 30. Same as Fig. 28, but for dCS gravity. We assume the
maximum value of the dCS coupling constant allowed by GW
observations,

ffiffiffiffiffiffiffi
αCS

p ≃ 2.5 km [97].
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Note that for EFT gravity the beyond-GR component
of the spin expansion is known to much higher order
(n1 ¼ n2 ¼ 12) than for EsGB and dCS gravity. The
distributions of deviations from the Kerr frequencies and
damping times in the eight EFT models we consider are
shown in Fig. 31. In all panels we assume a value of the
coupling such that γq ¼ 0.1, and (for brevity) we only
consider ringdown observations with ET.

APPENDIX B: BLACK HOLE MASS
AND SPIN MEASUREMENTS

The main purpose of this appendix is to show that the
remnant BH’s mass and spin are generally recovered with
remarkable accuracy. For illustration, in Fig. 32 we plot the

probability distributions for the masses and spins inferred
from a two-mode analysis for dCS gravity. Black and green
contours correspond to constraints derived by stacking
together two different sets of ringdown events (compare
Fig. 22), while red dots identify the injected values of Mf

and χf.
The constraints are strongly dependent on the SNR of the

fundamental mode, shown on the top horizontal axis of
each panel. The figure illustrates four key features common
to the (22)–(33) and the (22)–(21) analysis: (i) the con-
straints onMf and χf are almost independent of the number
of events that we stack, (ii) masses are always better
measured than spins, and (iii) measurement accuracies
are slightly worse for model II, which exhibits long tails
in the posterior distributions of the spins.

FIG. 31. Same as Figs. 28 and 30, but for the eight EFT gravity models of Ref. [66] considered in this work. We only show ringdown
signals detectable by ET. The results for CE are qualitatively similar.
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FIG. 32. Posterior densities for the BH masses and spins inferred from a (22)–(33) and (22)–(21) analysis for dCS gravity. All
constraints are inferred from ringdown observations made by ET for BHs following either the models I or II spin distributions. Black
(green) violins are obtained by stacking the largest (second largest) set of observations available in the population model (see also
Fig. 22). Red bullets are the injected values. Labels on the top horizontal axes identify the values of the SNR of the fundamental mode.

ANDREA MASELLI et al. PHYS. REV. D 109, 064060 (2024)

064060-28



APPENDIX C: SNR AND DETECTOR
CONFIGURATIONS

In this appendix we analyze the dependence of the
ringdown SNR on the remnant BH mass Mf and on the
progenitor binary mass ratio q. We also study how the SNR
changes for ET and CE detectors with different armlengths.
Note that in this case we consider a single ET, at variance
with the network configuration of two L-shaped detectors
used in the rest of the paper. To compute the SNR we
uniformly sample the primary mass in the range
m1 ∈ ½10; 100�M⊙ and the mass ratio in the range
q ¼ m1=m2 ∈ ½1; 3�. For simplicity we assume the compo-
nent spins to be equal and aligned, with magnitude
χ1 ¼ χ2 ¼ 0.6. This choice leads to BH remnants with
spins in the range χf ∼ ½0.78; 0.86�, but we have checked
that our conclusions are only mildly dependent on the
magnitude of the progenitor BH spins. For concreteness,
and without loss of generality, we assume all sources to be
located at luminosity distance dL ¼ 1 Gpc. We compute
the amplitude of the (22) mode and the resulting SNR as
described in Sec. III C.
In Fig. 33 we show constant-SNR contours for ET and

CE computed in this way. The two configurations we
considered in this paper, the 15 km ET and the 40 km CE,
have similar performances, with the latter yielding slightly
larger SNRs. A 20-km armlength CE would yield lower
values of the ringdown SNR, with differences with respect
to ET increasing as the remnant BH mass grows.
To further clarify what frequency range is most relevant

for ringdown tests, we have computed the accumulated
SNR for ET (single detector) and CE as a function of the
upper integration limit fmax in Eq. (14). We focus on BH

remnants from four selected binary systems with primary
mass m1 ¼ ð10; 50; 80; 200ÞM⊙, mass ratio q ¼ 2, aligned
spins χ1 ¼ χ2 ¼ 0.6, and luminosity distance dL ¼ 1 Gpc.
In the four panels of Fig. 34 (one for each binary) we see

some common trends: the SNR for CE is always larger than
for ET when ffmax ≲ 50 Hz, since the PSD of CE is better
between 3 and 50 Hz. As fmax increases, ET “catches up”
and yields an overall similar value of the SNR. Indeed, for
f ≳ 50 Hz, the ratio of the two PSDs is similar, with CE
being less than a factor of 2 better than ET. Note also
that for the mass range of interest, i.e., for BHs with
Mf ∼ 100M⊙, the two interferometers yields almost iden-
tical results.

APPENDIX D: FISHER MATRIX COMPONENTS

Here we list explicit expressions for the components of
the FIM (22), averaged over the source orientation in the
sky. The FIM is computed from the ringdown waveform
model of Eqs. (9)–(11). For a given multipolar component
(lm) it depends on the parameters θ⃗ ¼ ðĀlm;ϕlm;ωlm;
τlmÞ, where Ālm ¼ MAlm=r is the effective amplitude.
Denoting partial derivatives by commas, the ten indepen-
dent components of the FIM are given by

ΓĀlmĀlm
¼ b2þ þ b2−

10π
; Γϕlmϕlm

¼ Ā2
lm

10π
½b2þ þ b2−�;

Γωlmωlm
¼ Ā2

lm

10π
½b2þ;ωlm

þ b2−;ωlm
�; ðD1Þ

FIG. 33. Curves of constant SNR for the (22) mode as a function
of the remnant BH mass Mf and of the binary progenitor’s mass
ratio q for ET (solid) and CE (dashed). Dot-dashed curves identify
configurations with a specific (22) frequency.

FIG. 34. Accumulated SNR as a function of the maximum
integration frequency fmax for four different BH binaries, all at
luminosity distance dL ¼ 1 Gpc (see text). The vertical dashed
and dot-dashed lines in each panel mark the frequency of the
fundamental (22) mode and a reference frequency of 50 Hz,
respectively.
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Γτlmτlm ¼ Ā2
lm

10π
½b2þ;τlm þ b2−;τlm �;

ΓĀlmϕlm
¼ Ālm

10π
½−ib2þ þ ib2−�; ðD2Þ

ΓĀlmωlm
¼ Ālm

10π
½bþbþ;ωlm

þ b−b−;ωlm
�;

ΓĀlmτlm
¼ Ālm

10π
½bþbþ;τlm þ b−b−;τlm �; ðD3Þ

Γϕlmωlm
¼ iĀ2

lm

10π
½bþbþ;ωlm

− b−b−;ωlm
�;

Γϕlmτlm ¼ iĀ2
lm

10π
½bþbþ;τlm − b−b−;τlm �; ðD4Þ

Γωlmτlm ¼ Ā2
lm

10π
½bþ;ωlm

bþ;τlm þ b−;ωlm
b−;τlm �: ðD5Þ
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