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In the past decade, we have seen an unprecedented progress in our ability of testing general relativity in
the strong field regime with black hole observations. Most studies have focused on the so-called tests of the
Kerr hypothesis: they have tried to verify whether the spacetime geometry around black holes is described
by the Kerr solution as expected in general relativity. One can follow either a theory-specific analysis or an
agnostic approach. Each strategy has its advantages and disadvantages. In this work, we study the ability of
agnostic x-ray tests of the Kerr hypothesis to discover new physics. We simulate x-ray observations
of bright Galactic black holes of specific theories of gravity and we analyze the simulated data with a
reflection model employing the correct theory of gravity and another reflection model for agnostic tests
of the Kerr hypothesis. Our results suggest that agnostic x-ray tests are valid tools to discover new physics,
but their constraining power may be lower than a theory-specific analysis.
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I. INTRODUCTION

Einstein’s theory of general relativity is one of the pillars
of modern physics and our current standard framework
for the description of gravitational interactions and of the
chronogeometrical structure of the spacetime. For decades,
the theory has been extensively tested in the weak field
regime with experiments in the Solar System and accurate
radio observations of binary pulsars [1]. Black holes
are ideal laboratories for testing general relativity in the
strong field regime [2–5]. The past eight years have seen
unprecedented progress in our ability of testing general
relativity in the strong field regime with black hole
observations, in particular with gravitational waves [6–9],
x-ray data [10–13], and black hole imaging [14–17].
In 4-dimensional general relativity, uncharged black

holes are described by the Kerr solution [18], which is
completely characterized by the black hole mass, M,
and the black hole spin angular momentum, J.
Deviations from the Kerr metric due to accretion disks,
nearby stars, or some initial nonvanishing electric charge
are normally completely negligible (see, for instance,
Refs. [19,20]). On the other hand, macroscopic deviations
from the Kerr geometry are possible in the presence of new
physics (see, for instance, Refs. [21–23]). Tests of the Kerr
hypothesis can thus be seen as the strong field counterpart

of the tests of the Schwarzschild metric in the weak field
limit with Solar System experiments.
Unlike Solar System experiments, there is no common

consensus on how to test the Kerr hypothesis with black
holes. As in many other contexts, we can think about two
possible strategies, which are normally referred to as top-
down (or theory-specific) approach and bottom-up (or
agnostic) approach.
The theory-specific strategy is the most logical one: we

want to test general relativity against some other specific
theory of gravity. In such a case, we can analyze some black
hole observations with a theoretical model in general
relativity and with the same theoretical model in the other
theory of gravity. With the use of some statistical tool we
can compare the two results and see if one of the two
models can explain the data better and if we can rule out
the other one. The main technical problem with top-down
tests of general relativity is that we need to have a good
understanding of the predictions of the other theory of
gravity, which is normally not the case. If we want to test
the Kerr hypothesis with x-ray data, we need to know the
rotating black hole solution of the other theory of gravity.
However, for most theories of gravity we only know their
nonrotating black hole solution, or at best the black hole
solution in the slow rotation approximation, while the
complete rotating solution is often unknown. This is just
because it is much easier to find spherically symmetric
solutions than axially symmetric ones and it was true even
in general relativity, where the nonrotating Schwarzschild*Corresponding author: bambi@fudan.edu.cn
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solution was found by Schwarzschild in 1916, immediately
after Einstein had presented his theory, while the rotating
Kerr solution was found by Kerr only in 1963. Another
unpleasant aspect of these theory-specific tests is that there
are many theories of gravity beyond general relativity, but
none of them is more promising than the other ones, so we
should repeat a test for every theory of gravity, which
would be extremely time-consuming.
Agnostic tests of the Kerr hypothesis rely on parametric

black hole spacetimes in which a finite or infinite set of
deformation parameters are introduced to quantify possible
deviations from the Kerr solution. In general, these metrics
are not solutions of specific field equations and they are
instead obtained by deforming the Kerr metric under
certain conditions (e.g., requiring the existence of a
Carter-like constant, that event horizons and Killing hori-
zons coincide, etc.). Ideally, one would like to have a metric
general enough to be able to describe any black hole
solution from any consistent theory of gravity. In practice,
this is not easy to achieve. Unlike in the case of Solar
System tests, it is not possible to perform an expansion in
M=r (where M is the black hole mass and r some radial
coordinate), because M=r is not a small parameter when
we probe the strong gravity region around black holes.
There is no natural way to deform the Kerr metric and
deformations often lead to pathological properties like
naked singularities, regions with closed time-like curves,
etc. Despite these issues, agnostic tests of the Kerr
hypothesis have been quite popular in the past years
because they can be seen as null experiments: we expect
that deviations from the Kerr solution vanish and we want
to check if observations can confirm it.
In the present work, we want to figure out if the

agnostic x-ray tests of the Kerr hypothesis are valid tools
for discovering new physics. This is quite a natural
question, as this is often the only strategy that we can
follow because (i) we do not know the actual spacetime
geometry around black holes (and despite the large
number of theories of gravity beyond general relativity
proposed in the literature, we may not yet know the correct
one), and (ii) we do not know the rotating black hole
solutions for most theories of gravity beyond general
relativity. To address our question, we adopt the following
approach. We consider some non-Kerr black hole solu-
tions from specific theories of gravity and we simulate the
observation of a bright Galactic black hole with strong
reflection features with NuSTAR [24], which is currently
the most suitable x-ray mission for testing general
relativity with black hole x-ray data. The reflection
features of the simulated spectra are analyzed both with
a reflection model employing the correct background
metric and with a reflection model employing a para-
metric black hole spacetime. We consider two specific
examples of black hole spacetimes from theories beyond
general relativity: black holes in conformal gravity [25]

and black holes in Einstein-Maxwell-dilaton-axion
gravity [26]. For the agnostic tests, our reflection model
employs the Johannsen spacetime [27], which has been
extensively used to test the Kerr hypothesis with x-ray
data (see [28–30] and references therein), black hole
imaging [15,16], and gravitational waves [31].
The manuscript is organized as follows. In Sec. II, we

briefly review x-ray reflection spectroscopy, which is the
leading technique to test the Kerr hypothesis with black
hole x-ray data. In Sec. III, we present our simulations and
spectral analyses: in Sec. III A we consider black holes in
conformal gravity and in Sec. III B black holes in Einstein-
Maxwell-dilaton-axion gravity. In both studies, we fit the
simulated data first with a model employing the correct
background metric and then with a model adopting the
Johannsen spacetime with nonvanishing deformation
parameter α13. Discussion and conclusions are reported
in Sec. IV. The metrics of black holes in conformal gravity,
of black holes in Einstein-Maxwell-dilaton-axion gravity,
and of the Johannsen spacetime are reported, respectively,
in Appendix A 1, A 2, and A 3.

II. X-RAY REFLECTION SPECTROSCOPY

X-ray tests of the Kerr hypothesis require the astro-
physical system shown in Fig. 1, which is normally referred
to as the disk-corona model (for more details on the disk-
corona model, see [32] and references therein). The black
hole can be either a stellar-mass black hole in an x-ray
binary or a supermassive black hole in an active galactic
nucleus. The key-point is that the black hole is accreting
from a geometrically thin and optically thick accretion disk.
Every point on the surface of the disk emits a blackbody-
like spectrum and the whole disk has a multitemperature
blackbody-like spectrum. The disk is “cold” because it can
efficiently emit radiation. Since the maximum temperature
scales as M−1=4 [33], the thermal spectrum of the disk
normally peaks in the soft x-ray band for stellar-mass black
holes and in the UV band for supermassive black holes.
Thermal photons of the disk can inverse Compton scatter
off free electrons in the “corona,” which is some “hot”

FIG. 1. Disk-corona model. See the text for the description of
the system. Figure from Ref. [34].

ZHAO, RIAZ, and BAMBI PHYS. REV. D 109, 064059 (2024)

064059-2



(with respect to the disk) plasma near the black hole and
the inner part of the accretion disk. The spectrum of the
Comptonized photons can be usually approximated well by
a power law component with an exponential high-energy
cutoff. A fraction of the Comptonized photons can illumi-
nate the disk: here we have Compton scattering and
absorption followed by fluorescent emission, which gen-
erate a reflection spectrum.
In the rest-frame of the plasma of the disk, the reflection

spectrum is characterized by narrow fluorescent emission
lines in the soft x-ray band and by a Compton hump with a
peak around 20–30 keV [35,36]. The most prominent line
in the reflection spectrum is usually the iron Kα complex,
which is a narrow line at 6.4 keV in the case of neutral or
weakly ionized iron atoms and shifts up to 6.97 keV in the
case of H-like iron ions. The relativistic reflection spec-
trum, which is the reflection spectrum of the whole disk as
seen by a distant observer, is blurred due to relativistic
effects (Doppler boosting and gravitational redshift). In the
presence of high-quality data and employing the correct
astrophysical model, the analysis of these relativistically
blurred reflection features is a powerful tool to probe the
strong gravity region around black holes, measure black
hole spins, and even test Einstein’s theory of general
relativity in the strong field regime [32].

III. SIMULATIONS AND SPECTRAL ANALYSIS

In this work, we use the reflection model relxill_nk
[37–39], which is an extension of the relxill model
[40–42] to non-Kerr spacetimes and is public on GitHub
[43].1 In particular, we use two versions of relxill_nk:
the version with black holes in conformal gravity [44,45]
and that with black holes in Einstein-Maxwell-dilaton-
axion gravity [46].
We simulate 30 ks observations of these black holes with

NuSTAR, assuming that the sources are bright Galactic
black holes (we set the flux of every source to
10−8 erg cm−2 s−1 in the energy band 1–10 keV). In
XSPEC language, the simulated model is simply

tbabs × relxill nk

where tbabs takes the Galactic absorption into account
[47] and relxill_nk describes both the continuum from

the corona and the relativistically blurred reflection
spectrum from the disk. tbabs has only one parameter,
the hydrogen column density nH, which is set to
6.74 × 1020 cm−2 in our simulations. The values of the
input parameters in relxill_nk are shown in Table I.
The values of the black hole spin parameter a� and of the
deformation parameter (L=M for the black holes in
conformal gravity and the dilaton parameter r2 for those
in Einstein-Maxwell-dilaton-axion gravity) are chosen
according to the specific properties of the black hole metric
(see below). In all our simulations, we assume that the
Comptonized spectrum from the corona is described by a
power law with an exponential high-energy cutoff, and we
set the photon index to Γ ¼ 1.7 (which is the typical value
of the photon index when a Galactic black hole is in a hard
state) and the high-energy cutoff to Ecut ¼ 300 keV. The
reflection fraction Rf , regulating the relative intensity
between the reflection component from the disk and the
continuum from the corona, is set to 2. The inner edge of
the disk is assumed to be at the innermost stable circular
orbit (ISCO), so it is not a free parameter but is determined
by the black hole spin and the deformation parameter. We
always assume that the inclination angle of the disk with
respect to the line of sight of the distant observer, i, is 60°,
that the emissivity profile of the reflection spectrum is
described by a power law with emissivity index q ¼ 8 (i.e.
the emissivity of the disk scales as 1=r8), that the ionization
parameter of the disk is ξ ¼ 100 erg cm s−1 (the actual
parameter appearing in relxill_nk is log ξ, so we set
log ξ ¼ 2), and that the disk has Solar iron abundance
(AFe ¼ 1). A detailed description of the parameters in
relxill_nk and of their physical meaning can be found
in Ref. [43]. The details of the specific simulations and the
corresponding spectra analysis is reported in the next
subsections.

A. Conformal gravity

As our first case study, we consider black holes in
conformal gravity. The metric is reported in Appendix A 1.
The spacetime is characterized by the black hole mass, M,
the dimensionless spin parameter, a� ¼ J=M2, and the
conformal parameter L (L ≥ 0). For L ¼ 0, we recover
the Kerr solution of general relativity while for L ≠ 0 the
metric describes the spacetime of a regular black hole
without singularities. It is often more convenient to use the
quantity L=M (instead of L) because it is dimensionless.

TABLE I. Summary of the input parameters in Simulations 1–4. ξ in units erg cm s−1.

Simulation a� L=M r2 i [deg] q Γ Ecut [keV] log ξ AFe Rf

1 0.99 0.25 60 8 1.7 300 2 1 2
2 0.99 0.15 60 8 1.7 300 2 1 2
3 0.2 1.4 60 8 1.7 300 2 1 2
4 0.2 1.2 60 8 1.7 300 2 1 2

1https://github.com/ABHModels.
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The implementation of this black hole spacetime in
relxill_nk was presented in Ref. [44].
To maximize the relativistic effects in the reflection

spectrum, the inner edge of the accretion disk should be as

close as possible to the black hole and the corona should
illuminate well the inner part of the disk. As in the case of
Kerr black holes, the ISCO of black holes in conformal
gravity is close to the black hole event horizon for high

TABLE II. Summary of the best-fit values for models 1a, 2a, 1b, and 2b. The reported uncertainties correspond to 90% confidence
level for one relevant parameter (Δχ2 ¼ 2.71).

Model 1a 2a 1b 2b

a� 0.9908þ0.0007
−0.0008 0.9902þ0.0004

−0.0004 0.9872þ0.0026
−0.005 0.9877þ0.0018

−0.002
L=M 0.212þ0.002

−0.005 0.1536þ0.0070
−0.0004

α13 −0.22þ0.07
−0.08 −0.16þ0.03

−0.04
Γ 1.700þ0.003

−0.002 1.704þ0.001
−0.002 1.702þ0.001

−0.002 1.700þ0.003
−0.005

i [deg] 62.6þ0.9
−0.9 59.9þ0.3

−0.1 63.5þ2.5
−0.3 61.4þ1.2

−0.5
q 8.81þ0.09

−0.07 7.97þ0.05
−0.09 8.32þ0.50

−0.24 8.01þ0.40
−0.06

log ξ [erg cm s−1] 1.98þ0.07
−0.07 1.95þ0.02

−0.04 2.00þ0.04
−0.03 2.02þ0.05

−0.01
AFe 0.996þ0.030

−0.009 1.01þ0.08
−0.02 1.00þ0.04

−0.01 1.046þ0.070
−0.006

Rf 1.98þ0.06
−0.06 1.99þ0.08

−0.02 2.01þ0.05
−0.05 2.0315þ0.0001

−0.0500
Norm 0.0337þ0.0004

−0.0005 0.0332þ0.0002
−0.0004 0.0336þ0.0004

−0.0001 0.0327þ0.0004
−0.0010

CFPMB 0.9993þ0.0007
−0.0007 0.9997þ0.0007

−0.0007 0.9993þ0.0007
−0.0007 1.0005þ0.0007

−0.0007

χ2=dof 541.05=580 ¼ 0.93284 515.48=578 ¼ 0.89183 549.71=580 ¼ 0.94778 565.2=578 ¼ 0.97785

FIG. 2. Constraints on the black hole spin parameter a� and the deformation parameters L=M and α13 from Fit 1a (top left panel), Fit
1b (top right panel), Fit 2a (bottom left panel), and Fit 2b (bottom right panel). The red, yellow, green, blue, and black curves represent,
respectively, the 1-, 2-, 3-, 4-, and 5-σ confidence level contours after marginalizing over all other free parameters. The horizontal red
solid lines at L=M ¼ 0 and α13 ¼ 0 correspond to the Kerr solution of general relativity. See the text for more details.

ZHAO, RIAZ, and BAMBI PHYS. REV. D 109, 064059 (2024)

064059-4



values of a� and therefore in our simulations we assume
a� ¼ 0.99. As discussed above, we set the emissivity index
to q ¼ 8 to meet the requirement that the corona illuminates
well the inner part of the accretion disk. In Simulation 1, we
set L=M ¼ 0.25. In Simulation 2, we have L=M ¼ 0.15.
First, we analyze Simulation 1. We fit the simulated

spectrum with the model

constant × tbabs × relxill nk

where constant is a cross-calibration constant to account
for the difference between the two NuSTAR detectors,
FPMA and FPMB. We set the constant for FPMA,
CFPMA, to 1, and leave the constant for FPMB, CFPMB, free
in the fit. We start by fitting the simulated spectrum with the
version of relxill_nk used for the simulations and
therefore correctly assuming that the spacetime metric is
described by the black hole metric in conformal gravity. This

is Fit 1a. In the fit, we leave free the following parameters:
a�, L=M, Γ, i, q, log ξ, AFe, Rf , the normalization, and
CFPMB. Ecut is frozen to the input value 300 keV because its
impact is in any case weak, since NuSTAR covers the energy
band 3 to 79 keV. The estimates of the model parameters
from our fit are reported in Table II (second column). As
expected we recover the correct input parameters and the fit
is good. The top left panel in Fig. 2 shows the 1-, 2-, 3-, 4-,
and 5-σ confidence level curves on the plane spin parameter
vs deformation parameter after marginalizing over all other
free parameters of the model. As we can see, from a similar
analysis we could safely rule out the Kerr solution, which is
at L=M ¼ 0 and is marked by the horizontal red solid line in
Fig. 2. The top left panel in Fig. 3 shows the residuals of this
fit and we do not see particular features, namely the fit
is good.
Let us now assume that we have observed such a black

hole in conformal gravity with NuSTAR, but we do not

FIG. 3. Data to best-fit model ratios for Fit 1a (top left panel), Fit 1b (top right panel), Fit 2a (bottom left panel), and Fit 2b (bottom
right panel). Red and blue data are, respectively, for FPMA and FPMB, which are the two detectors onboard NuSTAR. See the text for
more details.
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know it is a black hole in conformal gravity and therefore
we follow an agnostic strategy. This time we fit the
simulated data with the version of relxill_nk
employing the Johannsen metric with nonvanishing

deformation parameter α13, whose line element is reported
in Appendix A 3. So far this has been the most widely used
metric for x-ray tests of the Kerr hypothesis. This is Fit 1b.
As in the case of Fit 1a, we have 10 free parameters in the

TABLE III. Summary of the best-fit values for models 3a, 4a, 3b, and 4b. The reported uncertainties correspond to 90% confidence
level for one relevant parameter (Δχ2 ¼ 2.71).

Model 3a 4a 3b 4b

a� 0.329þ0.014
−0.013 0.23þ0.29

−0.13 0.987þ0.002
−0.001 0.56þ0.10

−0.07
r2 1.22þ0.07

−0.14 1.12þ0.27
−0.59

α13 −0.42þ0.02
−0.02 −1.52þ1.52

−0.63
Γ 1.701þ0.003

−0.002 1.701þ0.001
−0.001 1.717þ0.002

−0.002 1.705þ0.003
−0.003

i [deg] 59.9þ2.5
−1.7 59.4þ0.9

−0.9 65.2þ0.8
−0.1 58.2þ1.2

−0.8
q 9.2−0.7 7.7þ0.5

−0.4 10.0−0.1 8.5þ0.8
−0.7

log ξ ½erg cm s−1� 1.98þ0.04
−0.06 2.000þ0.008

−0.060 1.91þ0.04
−0.04 1.95þ0.05

−0.04
AFe 0.968þ0.012

−0.024 1.014þ0.012
−0.018 0.864þ0.004

−0.004 0.978þ0.011
−0.012

Rf 1.98þ0.04
−0.04 2.00þ0.01

−0.02 1.95þ0.02
−0.03 1.97þ0.04

−0.02
Norm 0.0346þ0.0003

−0.0003 0.0355þ0.0002
−0.0002 0.0332þ0.0003

−0.0002 0.0353þ0.0002
−0.0003

CFPMB 0.9992þ0.0007
−0.0007 0.9994þ0.0007

−0.0007 0.9992þ0.0007
−0.0007 0.9994þ0.0007

−0.0007

χ2=dof 610.31=582 ¼ 1.04864 552.61=589 ¼ 0.93822 633.37=582 ¼ 1.08826 562.58=589 ¼ 0.95514

FIG. 4. Constraints on the black hole spin parameter a� and the deformation parameters r2 and α13 from Fit 3a (top left panel), Fit 3b
(top right panel), Fit 4a (bottom left panel), and Fit 4b (bottom right panel). The red, yellow, green, blue, and black curves represent,
respectively, the 1-, 2-, 3-, 4-, and 5-σ confidence level contours after marginalizing over all other free parameters. The horizontal red
solid lines at r2 ¼ 0 and α13 ¼ 0 correspond to the Kerr solution of general relativity. See the text for more details.
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fit. The best fit values are reported in Table II (fourth
column). The top right panel in Fig. 2 shows the 1-, 2-, 3-,
4-, and 5-σ confidence level curves on the plane spin
parameter vs deformation parameter after marginalizing
over all other free parameters. Now the Kerr solution
corresponds to α13 ¼ 0 and, as we can see from the plot,
we can rule out the Kerr metric at more than 5-σ. The
residuals of this fit are shown in the top right panel in Fig. 3:
even in this case the fit looks good.
We proceed as in the case of Simulations 1 and we

analyze Simulation 2, which is characterized by a lower
value of L=M; i.e., it is closer to the Kerr solution. First, we
fit the simulated data with the version of relxill_nk
for black holes in conformal gravity. This is Fit 2a. The
estimates of the model parameters are reported in Table II
(third column) and the bottom left panel in Fig. 2 shows the
1-, 2-, 3-, 4-, and 5-σ confidence level curves on the plane
spin parameter vs deformation parameter after marginal-
izing over all other free parameters of the model. The

bottom left panel in Fig. 3 shows the residuals of this fit.
There are no surprises: the fit is good and we can still rule
out the Kerr solution at more than 5-σ.
Last,we fit Simulation 2with theversion ofrelxill_nk

employing the Johannsen metric with nonvanishing defor-
mation parameter α13. This is Fit 2b. The results are shown in
the last column in Table II (last column) and in the bottom
right panels in, respectively, Fig. 2 and Fig. 3. While the fit is
still good as we do not see significant features in the residual
plot, we cannot rule out the Kerr solution at 4- or 5-σ any
longer. We can still rule out the Kerr solution at 3-σ.

B. Einstein-Maxwell-dilaton-axion gravity

As our second case study, we consider black holes in
Einstein-Maxwell-dilaton-axion gravity. The metric is
reported in Appendix A 2. The spacetime has three param-
eters: the mass of the object, M, the dimensionless spin
parameter, a�, and the dimensionless dilaton parameter, r2.

FIG. 5. Data to best-fit model ratios for Fit 3a (top left panel), Fit 3b (top right panel), Fit 4a (bottom left panel), and Fit 4b (bottom
right panel). Red and blue data are, respectively, for FPMA and FPMB, which are the two detectors onboard NuSTAR. See the text for
more details.
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The Kerr solution is recovered when the dilaton parameter
vanishes, r2 ¼ 0. The allowed range of r2 is

0 ≤ r2 ≤ 2ð1 − ja�jÞ: ð1Þ

The implementation of this black hole spacetime in
relxill_nk was presented in Ref. [46].
As in the case of the simulations in conformal gravity, we

want to consider sources in which the relativistic effects are
strong, which, in turn, requires that the inner edge of the
accretion disk is very close to the black hole event horizon.
As shown in Fig. 1 of Ref. [46], we should choose black
holes with the value of r2 close to the its maximum value
rmax
2 ¼ 2ð1 − ja�jÞ. Deviations from general relativity turn
out to be larger for low values of the spin parameter a� and
high values of the dilaton parameter r2. For our simulations,
we choose a� ¼ 0.2 and r2 ¼ 1.4 (Simulation 3) and 1.2
(Simulation 4).
We proceed as in the spectral analysis of the black

holes in conformal gravity. First, we fit the spectrum of
Simulation 3 with the correct model, so we use the version
of relxill_nk in which the spacetime metric is
described by the black hole solution in Einstein-
Maxwell-dilaton-axion gravity. This is Fit 3a. The results
of the fit are reported in Table III (second column). The top
left panel in Fig. 4 shows the 1-, 2-, 3-, 4-, and 5-σ
confidence level curves on the plane spin parameter vs
deformation parameter after marginalizing over all other
free parameters of the model. The Kerr solution is ruled out
at more than 5-σ. The residuals of the fit are shown in the
top left panel in Fig. 5.
We fit the spectrum of Simulation 3 with the version of

relxill_nk employing the Johannsen spacetime with
deformation parameter α13 (Fit 3b). The estimates of the
model parameters are reported in Table III (fourth column).
The constraints on a� and α13 are shown in the top right
panel in Fig. 4 and the residuals of the fit are reported in the
top right panel in Fig. 5. The quality of the fit is good and
we can rule out the Kerr metric at more than 5-σ.
We move to the spectral analysis of Simulation 4 and

we fit the spectrum with the correct model (Fit 4a). The
estimates of the model parameters are reported in Table III
(third column). The constraints on a� and r2 are shown in
the bottom left panel in Fig. 4 and the residuals of the fit are
reported in the bottom left panel in Fig. 5. Now we can rule
out the Kerr solution at 4-σ but not at 5-σ even if we use the
correct background metric. As discussed in Ref. [46], it is
very challenging to distinguish black holes in Einstein-
Maxwell-dilaton-axion gravity from the Kerr black holes in
general relativity and eventually we can do it only for near
extremal objects.
Last, we fit the spectrum of Simulation 4 with the

version of relxill_nk employing the Johannsen
spacetime with deformation parameter α13. This is Fit 4b.
The best-fit values are reported in Table III (last column).

The constraints on a� and α13 are shown in the bottom right
panel in Fig. 4 and the residuals of the fit are reported in the
bottom right panel in Fig. 5. As in Fit 4a, we can rule out the
Kerr solution at 4-σ but not at 5-σ. The quality of the fit is
good and we do not see large residuals in the bottom right
panel in Fig. 5.

IV. DISCUSSION AND CONCLUSIONS

Most of the tests of the Kerr hypothesis reported in the
literature, and in particular most of the x-ray tests of the
Kerr hypothesis, follow an agnostic approach in which one
considers some parametric black hole spacetime (which is
not a solution of any gravity theory and is simply obtained
by deforming the Kerr metric under certain requirements)
and tries to constrain the value(s) of its deformation
parameter(s) by comparing theoretical predictions with
observations. The spirit of this strategy is to perform a
null experiments in which we expect to recover the
predictions of general relativity but we can potentially
measure even deviations from Einstein’s gravity. The
question is whether such an approach is indeed suitable
to discover new physics.
We cannot have a universal answer to this question

because it certainly depends on the particular spacetime
metric around the source, on our choice of the parametric
black hole spacetime and of the deformation parameter for
our data analysis, and, last but not least, on the specific
values of the parameters of the source (like inclination
angle of the disk, metallicity of the disk, ionization of the
disk, etc. which have nothing to do with gravity). In this
work, we have presented the results for two case studies,
black holes in conformal gravity and black holes in
Einstein-Maxwell-dilaton-axion gravity, and we have used
the Johannsen spacetime for the agnostic tests. In all our
simulations, we have considered systems in which the inner
edge of the accretion disk is very close to the black hole and
the corona illuminates mainly the very inner part of the
disk. These are the requirements to get accurate and precise
measurements from the analysis of relativistically blurred
reflection features, not only in the case of tests of the Kerr
hypothesis but even for spin measurements that assume
general relativity.
In our work, we have not considered the systematic

uncertainties related to the astrophysical model. There are a
number of studies published in the literature supporting the
conclusion that, if we select properly the sources and the
observations to analyze, the analysis of relativistic reflec-
tion features in the available x-ray data with current
reflection models can provide precise and accurate mea-
surements (see, for instance, the discussion in [30] and
references therein). The uncertainties in current measure-
ments are dominated by statistical errors, while systematic
errors due to the reflection model are subdominant. With
this spirit, our work has only investigated if an agnostic
approach has the ability to discover new physics. If we do
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not employ the correct astrophysical model or we do not
select properly the sources and the observations to analyze,
the final measurements can be strongly biased even if we
use the correct background metric [48].
From the analysis of the spectra of black holes in

conformal gravity, we can argue that agnostic tests can
still discover new physics but they are likely somewhat less
powerful than theory-specific tests employing the correct
background metric. However, it is worth pointing out that
there are many theories of gravity and it would be certainly
unlikely to use the correct one for our tests. We also note
that we can get very good fits even with an incorrect metric
(as we can see from the residual plots), so an evaluation of
the quality of the fit cannot help to discover new physics.
On the other hand, from the analysis of the spectra of

black holes in Einstein-Maxwell-dilaton-axion gravity, we
have not found a clear difference in the constraining power
of the theory-specific and agnostic tests. Even in this case,
the quality of the best-fits is always good and therefore it
does not give any hint on the fact we are using the correct
metric or an incorrect one.
In our simulations, we have assumed the observation of a

bright Galactic black hole with NuSTAR. The next gen-
eration of x-ray missions (eXTP [49], Athena [50], HEX-P,
etc.) promise to provide unprecedented high-quality data,
which can potentially permit more precise tests of general
relativity. With such high-quality data, it should be easier to
break the parameter degeneracy and therefore the gap of
the constraining power between theory-specific and agnos-
tic tests may be reduced. On the other hand, they will
introduce new challenges because they will necessary
require more accurate synthetic spectra than those avail-
able today and it may be more difficult to distinguish a
different astrophysical environment from a deviation from
general relativity without the development of sufficiently
advanced models.
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APPENDIX: BLACK HOLE METRICS

For convenience, we report below the black hole metrics
used in this work. More details can be found in the original

papers. We employ natural units in which c ¼ GN ¼ 1 and
metrics with signatures ð−þþþÞ.

1. Black holes in conformal gravity

In Boyer-Lindquist coordinates, the line element of the
black holes in conformal gravity discussed in Ref. [25] is

ds2 ¼
�
1þ L2

Σ

�
2

ds2Kerr;

where L is the conformal parameter and ds2Kerr is the
standard line element of the Kerr metric in Boyer-Lindquist
coordinates. L is non-negative and for L ¼ 0 we recover
the Kerr solution. In our manuscript, we use the quantity
L=M because it is dimensionless.

2. Black holes in Einstein-Maxwell-dilaton-axion
gravity

In Boyer-Lindquist coordinates, the line element of
the black holes in Einstein-Maxwell-dilaton-axion gravity
is [46]

ds2 ¼ −
�
1 −

2Mr

Σ̃

�
dt2 þ Σ̃

Δ
ðdr2 þ Δdθ2Þ

−
4aMr

Σ̃
sin2θdtdϕ

þ sin2θ

�
rðrþ r̃2Þ þ a2 þ 2Mra2sin2θ

Σ̃

�
dϕ2;

where

Σ̃ ¼ rðrþ r̃2Þ þ a2cos2θ;

Δ ¼ rðrþ r̃2Þ − 2Mrþ a2;

M is the mass of the object, a is its specific spin angular
momentum, and r̃2 is the dilaton parameter. The condition
for the existence of an event horizon is

�
M −

r̃2
2

�
2

− a2 ≥ 0:

The dimensionless spin parameter is a� ¼ a=M and the
dimensionless dilaton parameter is r2 ¼ r̃2=M.

3. Johannsen metric

In Boyer-Lindquist coordinates, the line element of
Johannsen spacetime is [27]
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ds2 ¼ −
Σ̃ðΔ − a2A2

2sin
2θÞ

B2
dt2

þ Σ̃
ΔA5

dr2 þ Σ̃dθ2

−
2a½ðr2 þ a2ÞA1A2 − Δ�Σ̃sin2θ

B2
dtdϕ

þ ½ðr2 þ a2Þ2A2
1 − a2Δsin2θ�Σ̃sin2θ

B2
dϕ2;

where

Σ̃ ¼ r2 þ a2cos2θ þ f;

Δ ¼ r2 − 2Mrþ a2;

B ¼ ðr2 þ a2ÞA1 − a2A2sin2θ: ðA1Þ

The functions f, A1, A2, and A5 are defined as

f ¼
X∞
n¼3

ϵn
Mn

rn−2
;

A1 ¼ 1þ
X∞
n¼3

α1n
Mn

rn
;

A2 ¼ 1þ
X∞
n¼2

α2n
Mn

rn
;

A5 ¼ 1þ
X∞
n¼2

α5n
Mn

rn
;

The spacetime has four infinite sets of deformation param-
eters, fϵng, fα1ng, fα2ng, and fα5ng. In this manuscript, we
have considered the Johannsen metric with a possible
nonvanishing α13 and set all other deformation parameters
to zero. This is the most widely used choice in the literature
of x-ray tests of the Kerr hypothesis.
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