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A reformulation of general relativity inspired by the Belinski-Khalatnikov-Lifshitz conjecture had
been introduced by Ashtekar, Henderson, and Sloan which is based on variables closely related to the
basic variables of loop quantum gravity, thereby providing a way of classically analyzing singularities
that may be carried over to the quantum theory. It is reasonable to expect that these variables are regular at
generic spacelike singularities. This has been shown on various examples—particularly, cosmological
spacetimes. In this study we extend this analysis to the singularities of gravitational wave collision
spacetimes, which are the result of the mutual focusing of the two waves. We focus on two specific
examples and explicitly confirm that the said variables are regular at the singularity and can be smoothly
continued beyond it.
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I. INTRODUCTION

Spacetime singularities in general relativity need to be
understood better for the deterministic nature of the theory.
Classical tools for understanding and resolving the issue
of singularities are insufficient due to the scales at which
singularities are formed. Thus, quantum tools are required
to cope with the analysis of singularities. For instance,
test quantum wave packets obeying Klein-Gordon, Dirac,
and Maxwell equations may be used to probe timelike
singularities in static spacetimes [1–3]. In this formalism,
the quantum singularity is understood as a nonunique
evolution of test quantum wave packets. In dynamical
spacetimes such as cosmological ones, the interior of the
Schwarzschild black hole or colliding gravitational wave
spacetimes, our example of interest here, a new perspective
is essential for analyzing spacelike singularities. To this
end, the formalism introduced by Ashtekar et al. [4,5],
which is motivated by the Belinski-Khalatnikov-Lifshitz
(BKL) conjecture [6], arise as a promising tool in dealing
with spacelike singularities in dynamical spacetimes.
According to the BKL conjecture, close to a generic

spacelike singularity, the spatial derivatives in the field
equations become negligible compared to the time deriv-
atives, turning the evolution equations approximately into
ordinary differential equations, and the metric exhibits
the same kind of basic chaotic behavior, which can be
accurately captured by the Bianchi models. There is now a

body of numerical and analytical evidence in favor of
the conjecture [7–12], thus, it is intriguing to think about
its consequences for quantum gravity. As pointed out by
Ashtekar et al. [5], it is possible that the BKL behavior sets
in already when the spacetime is sufficiently classical, i.e.,
relatively away from the Planck scale. This means that a
quantization of the effective theory with ordinary differ-
ential equations could provide a qualitative understanding
of quantum gravity effects close to spacelike singularities
in general.
It is natural to expect that the singularities in classical

general relativity are resolved in a fully quantum theory of
gravity. Indeed, there is already an accumulated body of
evidence in this direction, such as the ones coming from
loop quantum cosmology (LQC), where the singularities
of cosmological models are replaced effectively by a
bounce. Apart from the FLRW metric [13], this has been
shown also for the Bianchi I, II, and IX models [14–16].
In light of the BKL conjecture, these results suggest that
generic spacelike singularities may all be resolved in
LQC. However, the standard formulations of the BKL
conjecture are in terms of variables not particularly suited
for quantization. E.g., in the formalism introduced by
Uggla et al. [17], one normalizes relevant physical
quantities by an appropriate power of the inverse of the
trace of the extrinsic curvature K, which is expected to
diverge at the singularity, thus giving finite quantities.
Loop quantum gravity is based on a density weighted

triad formulation of general relativity, i.e., the basic
configuration variables are the orthonormal triads on
spacelike surfaces, scaled by the square root of the
determinant of the spatial metric

ffiffiffi
q

p
. The determinant
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q is expected to vanish at spacelike singularities, just
like K−1. Thus, another strategy to formulate the BKL
conjecture would be to multiply divergent quantities by
appropriate powers of q.1

Based on these observations Ashtekar, Henderson, and
Sloan (AHS) introduced a formulation of the BKL con-
jecture [4,5] based on variables closely related to the basic
variables of loop quantum gravity, and therefore better
suited for quantization. These variables are tensor densities
involving positive powers of q, and therefore expected to be
finite at the singularity. So far, the AHS variables have been
used to study the singularities of the FLRW spacetime with
a massless scalar field, Bianchi I and IX models and the part
of the Schwarzschild spacetime inside the horizon [19].
In all of these cases, the AHS variables are regular at the
singularity, and can be continued beyond it.
In this study, we extend this analysis to the singularities

of colliding gravitational wave spacetimes. Colliding
gravitational waves have been known to produce singular-
ities as a result of the mutual focusing of the two waves.
Though the development of singularities seem to be a
generic feature of colliding gravitational waves, there also
exist exceptional solutions where, instead of a singularity, a
Cauchy horizon may develop in the region of interaction of
the two waves [20–22]. However, it has been shown that
these horizons are unstable in the full nonlinear theory
against small but generic plane-symmetric perturbations of
the incoming waves, and thus, spacelike curvature singu-
larities are developed in the interaction region [23].
Furthermore, it has been shown that close to the singularity,
these spacetimes asymptotically approach the Kasner
metric [24], i.e., a Bianchi type-I metric, in accordance
with the BKL conjecture.
Colliding gravitational wave spacetimes therefore pro-

vide interesting models for investigating singularities,
which are relatively unexplored. Here, we shall calculate
the AHS variables for two basic examples of colliding wave
solutions and confirm explicitly that the AHS variables are
regular at the singularity and can be continued smoothly
through the singularity.
The paper is organized as follows. In Sec. II, we briefly

review the basics of colliding gravitational waves. In
Sec. III we summarize the triad formulation of general
relativity and reintroduce the AHS variables. Then, we
demonstrate the application of the variables using the
example of the Schwarzschild spacetime. In Sec. IV we
apply the formalism to the two above-mentioned colliding
wave examples. Finally, in Sec. V we discuss the impli-
cations of our results and the further questions that need to
be addressed. Throughout the paper we use the mostly plus
metric signature ð−;þ;þ;þÞ and c ¼ 1.

II. AN OVERVIEW OF COLLIDING
GRAVITATIONAL WAVES

Before introducing the colliding gravitational wave sol-
utionswe are going toworkwith, it would be appropriate here
to briefly review the fundamental concepts of the subject.
When studying such collision solutions, it is convenient to
divide spacetime into four regions, as shown in Fig. 1, with
two dimensions suppressed. In a typical collision scenario,
one has two approaching waves coming from infinity, so
that regions II and III contain the incoming waves, whereas
region I contains no waves and is therefore described by
the—typically flat—background metric. After the point
u ¼ v ¼ 0, the twowaves interact, and region IVis described
by the interaction metric, which is to be determined.
In Rosen coordinates, the interaction of linearly polar-

ized gravitational waves, possibly coupled with matter
waves, is described [25] by a metric of the form

g ¼ −2e−Mdudvþ e−UðeVdx2 þ e−Vdy2Þ; ð1Þ

where the metric functionsM ¼ Mðu; vÞ,U ¼ Uðu; vÞ and
V ¼ Vðu; vÞ are functions of the null coordinates u and v.
These functions will assume different forms in each region,
which must satisfy certain junction conditions at each
boundary separating two regions.
A convenient way to examine the singularity of a

colliding gravitational wave spacetime is provided by the
Newman-Penrose (NP) formalism through the Weyl-NP
scalarsΨi. For instance, ifΨ1 ¼ Ψ3 ¼ 0, as will be the case
in the examples we look at, the two polynomial curvature
invariants I and J [26] can be written as

I ¼ 2Ψ0Ψ4 þ 6Ψ2
2; J ¼ 6ðΨ0Ψ4 −Ψ2

2ÞΨ2: ð2Þ

FIG. 1. General structure of a colliding wave spacetime.
Regions II and III contain the incoming waves, possibly including
impulsive waves on the boundaries u ¼ 0 and v ¼ 0. There are
no waves in region I, which is therefore described by the
background metric. The waves start interacting after the point
u ¼ v ¼ 0, so that the metric in region IV is determined by the
interaction of the waves. Generically, the interaction results in a
curvature singularity in region IV.

1We note that such a strategy was also considered by Einstein
and Rosen [18].
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Note in particular that ifΨ2 becomes unbounded, either I or
J must also be unbounded, hence, showing thatΨ2 diverges
is a sufficient proof of a curvature singularity in this case.
The metric in Eq. (1) suggests a natural choice for the

complex null tetrad:

lα ¼ e−M=2δuα; ð3aÞ

nα ¼ e−M=2δvα; ð3bÞ

mα ¼
e−U=2ffiffiffi

2
p ðeV=2δxα þ ie−V=2δyαÞ; ð3cÞ

m̄α ¼
e−U=2ffiffiffi

2
p ðeV=2δxα − ie−V=2δyαÞ: ð3dÞ

Working with this, it is straightforward to see that for the
metric (1), we have Ψ1 ¼ Ψ3 ¼ 0 and

Ψ0 ¼ −
1

2
eM½ðMv −UvÞVv þ Vvv�; ð4aÞ

Ψ2 ¼
1

6
eMðMuv − Uuv þ VuVvÞ; ð4bÞ

Ψ4 ¼ −
1

2
eM½ðMu −UuÞVu þ Vuu�; ð4cÞ

where the subscript denotes a partial derivative with respect
to the coordinate.
Typically, the Weyl-NP scalars Ψ4 ¼ Ψ4ðuÞ in region II

and Ψ0 ¼ Ψ0ðvÞ in region III represent the incoming
gravitational waves that participate in the collision. In
the interaction region these become functions of both of
the null coordinates; Ψ0 ¼ Ψ0ðu; vÞ and Ψ4 ¼ Ψ4ðu; vÞ. In
addition, a finite Coulomb component Ψ2 ¼ Ψ2ðu; vÞ also
develops as a result of the nonlinear interaction.
On the other hand, the Ricci-NP scalarsΦij represent the

electromagnetic or other matter fields participating in the
collision, e.g., Φ00ðvÞ and Φ22ðuÞ represent electromag-
netic wave components in the incoming regions. In the
interaction region, Φ00ðu; vÞ and Φ22ðu; vÞ are necessarily
nonzero and Φ02ðu; vÞ develops as a result of the nonlinear
interaction.
In this study, our focus will be on two specific colliding

gravitational wave solutions. The first is the Khan-Penrose
solution, which was the first solution discovered in this
context and which describes the collision of two impulsive
plane symmetric gravitational waves. The second is the
collision of a plane electromagnetic wave with plane
impulsive gravitational waves accompanied by shock
gravitational waves. The common point in each solution
is the existence of a spacelike curvature singularity in the
interaction region.
Since our focus in this study is the singularity structures

of these spacetimes, which are located in the interaction

region, we shall not be interested in the solutions in
regions I, II and III, and only consider region IV.

A. Khan-Penrose solution

The first exact solution that considers the collision of
two gravitational waves was discovered by Khan and
Penrose [27], where the colliding waves are linearly
polarized, impulsive gravitational waves described by
Ψ0 ¼ δðvÞ and Ψ4 ¼ δðuÞ.
The mutual focusing of the two waves eventually

produces a spacelike singularity. The interaction region
of the Khan-Penrose spacetime is described by the
metric (1), where the metric functions are given by

e−U ¼ 1 − u2 − v2; ð5aÞ

e−V ¼ 1þ u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

1 − u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
− v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ; ð5bÞ

e−M ¼ ð1 − u2 − v2Þ3=2
w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð5cÞ

with w ¼ uvþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. In this region, we get

Ψ2 ¼ e7U=2w2
�
w2 − uv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p �
: ð6Þ

Note that on the spacelike surface e−U ¼ 0, i.e.,

u2 þ v2 ¼ 1; ð7Þ

the term inside the parentheses in Eq. (6) is finite. Thus, Ψ2

diverges as ∼e7U=2, showing that the solution becomes
singular. The singular surface of the Khan-Penrose space-
time is illustrated in Fig. 2.

B. Colliding electromagnetic and gravitational waves

The second example we shall look at is the collision of
electromagnetic waves with plane symmetric impulsive
gravitational waves accompanied by shock gravitational
waves. This solution was obtained by Gurtug et al. [28]
together with an additional scalar field. Here, we shall
take the vanishing scalar field limit of this solution for
simplicity. The incoming gravitational wave is described by
Ψ4 ¼ δðuÞ − 3ð1þ sin uÞ−3 in region II and the incoming
electromagnetic wave may be described by the Ricci-NP
scalar Φ00 ¼ 1 in region III.
The interaction region is described again by Eq. (1), this

time with the metric functions

e−U ¼ cos2uþ cos2v − 1; ð8aÞ
e−V ¼ ð1þ sin uÞ2; ð8bÞ
e−M ¼ cos u cos ve−VþU=2; ð8cÞ
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and the electromagnetic potential Aμ ¼ Aδyμ, where

A ¼
ffiffiffi
2

p
sin vð1þ sin uÞ: ð9Þ

For this metric we have

Ψ2 ¼ −e3U=2 sin u sin v
ð1þ sin uÞ2 : ð10Þ

Looking at Ψ2, we see again that on the surface e−U ¼ 0,
i.e.,

cos2uþ cos2v ¼ 1; ð11Þ

we have a spacelike singularity. Note that Eq. (11) is
satisfied for uþ v ¼ π=2. This is illustrated in Fig. 3.

III. ASHTEKAR-HENDERSON-SLOAN
VARIABLES

Motivated by the BKL conjecture, a set of variables was
introduced by Ashtekar et al. [4,5], which provides a way
of analyzing spacelike singularities in a purely classical
setting. These variables are based on the formulation of
general relativity in terms of a density weighted triad,
which is also the starting point of loop quantum gravity. In
this section, we shall review the triad formulation of general
relativity and the Ashtekar-Henderson-Sloan (AHS) vari-
ables. We shall then summarize the application of these
variables to the Schwarzschild singularity as an illustration
of the idea, which will also help us introduce some of the
ideas we are going to use in the next section.

We consider spacetimes of the formM ¼ R ×M, where
M is a three-dimensional manifold, and foliate M into
spacelike slices Σt. Let qab denote the spatial metric
induced on these slices. A density weighted triad Ẽa

i on
Σt is defined by

Ẽa
i Ẽ

bi ¼ ˜̃qqab; ð12Þ

where ˜̃q denotes the determinant of qab and the tilde marks
the density weight; a tilde above a variable means a density
weight of þ1. The letters a; b; c;… denote the spatial
indices and i; j; k;… denote internal SO(3) indices. The
internal indices can be raised/lowered freely using δij,
while the spatial indices are raised/lowered using the spatial
metric qab.
The triad determines a unique connection Γi

a such that

DaẼb
i − ϵjikΓk

aẼb
j ¼ 0; ð13Þ

whereDa is the Levi-Civita connection of the spatial metric
qab. We should emphasize that Da acts only on spacetime
indices whereas Γi

a acts only on the internal indices.
The variable canonical to Ẽa

i is K
i
a, which, on solutions,

is related to the extrinsic curvature Kab of Σt by

Kab ¼ Ki
ðaebÞi: ð14Þ

The standard ADM variables ðqab; P̃abÞ, where P̃ab ¼
ð16πGÞ−1 fffiffiffiqp ðKab − Kc

cqabÞ can be found using
Eqs. (12) and (14).

FIG. 3. Structure of the gravitational-electromagnetic wave
collision spacetime. The gravitational waves (GW) coming from
region II and the electromagnetic waves (EMW) coming from
region III start interacting after the point u ¼ v ¼ 0, and the
interaction results in a singularity on the surface uþ v ¼ π=2.
The part of region IV below the singularity is described by the
metric (1) with the metric functions given by Eq. (8).

FIG. 2. Structure of the Khan-Penrose spacetime. The incoming
Dirac-δ waves start interacting after the point u ¼ v ¼ 0, and
eventually create a singularity on the surface u2 þ v2 ¼ 1. The
part of region IV below the singularity is described by the metric
(1) with the metric functions given by Eq. (5).
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The AHS variables [4,5] are defined as2

P̃i
j ¼ Ẽa

i K
j
a − δji Ẽ

a
kK

k
a; ð15aÞ

C̃i
j ¼ Ẽa

i Γ
j
a − δji Ẽ

a
kΓk

a: ð15bÞ

Furthermore, a derivative operator D̃i is defined as
D̃i ¼ Ẽa

i Da. Note that these carry internal indices only;
they are spacetime scalars (with density weight þ1).
Physically, the P̃ij are related directly to the canonical
ADM momenta P̃ab, whereas the C̃ij encode information
about the D̃i derivatives of the triad Ẽa

i [5]. As mentioned
previously, the determinant q is expected to vanish at the
singularity and therefore the AHS variables, being den-
sities, are expected to be finite there. In what follows, we
shall omit the tildes for simplicity. Thus, each of Ea

i , Ci
j,

Pi
j, and Di carries a density weight of þ1.
One can write down the equations of motion for the

variables Pi
j,Ci

j, and the operatorDi by taking the Poisson
brackets with the Hamiltonian. We shall not use the
equations of motion directly, and therefore do not repeat
them here (see Ashtekar et al. [5] for the full equations
of motion). The important thing to note, however, is that
both the constraints (hence the Hamiltonian) and the time
derivative of the triplet ðPi

j; Ci
j; DiÞ can be written entirely

in terms of the triplet itself (and the Lagrange multipliers
N;Ni and Λi), i.e., without reference to ðEa

i ; K
i
aÞ.

These variables can therefore be used as follows. On an
initial time slice, one can construct the triplet ðPi

j; Ci
j; DiÞ

from the pair ðEa
i ; K

i
aÞ and then evolve the triplet

ðPi
j; Ci

j; DiÞ without referring to ðEa
i ; K

i
aÞ. As we have

mentioned, these variables are expected to be finite at the
singularity, where the metric formulation fails, hence one
can continue time evolution past the singularity. Once we
cross the singularity, we can, in principle, reconstruct the
triad Ea

i by solving an ordinary differential equation.
Note that, since the derivative operator Di has a density

weight of þ1, we expect the Di derivatives of regular
quantities to vanish at the singularity. Thus, the Di
derivatives can be interpreted as the spatial derivatives that
should be negligible according to the BKL conjecture. This
allows one to make a precise formulation of the BKL
conjecture, where the time derivative that should dominate
is the Lie derivative in the time direction of the foliation,
and the spatial derivatives that should be negligible are the
Di derivatives, see Ashtekar et al. [4,5].

A. Application to Schwarzschild spacetime

In order to demonstrate the use of AHS variables with a
simple, analytical example, we shall summarize their

application to the Schwarzschild singularity, which has
been done by Valdés–Meller [19]. We start with the metric

g ¼ −TðτÞdτ2 þ XðτÞdx2 þ AðτÞðdθ2 þ sin2θdϕ2Þ; ð16Þ

where

T ¼ 4τ4

2M − τ2
; X ¼ 2M − τ2

τ2
; A ¼ τ4: ð17Þ

The portion of this spacetime given by τ∈ ð− ffiffiffiffiffiffiffi
2M

p
; 0Þ is

precisely the interior of a Schwarzschild black hole, as can
be seen by the coordinate transformation

t ¼ x; r ¼ τ2: ð18Þ

However, the spacetime in Eq. (16) also includes the
part τ∈ ð0; ffiffiffiffiffiffiffi

2M
p Þ, which is a time-reversed copy of the

black hole interior, i.e., a white hole interior (see Fig. 4),
since the transformation from τ to r is a two-to-one
mapping. As discussed by D’Ambrosio and Rovelli [29],
such a spacetime with two copies of the Schwarzschild
metric may actually provide an effective description of
an underlying quantum geometry, where there is a high-
curvature cutoff that causes the geometry to “bounce
back” instead of becoming singular, as in the big bounce
scenario from LQC.
The metric (16) has singularities at τ ¼ � ffiffiffiffiffiffiffi

2M
p

, which,
of course, correspond to the horizon of the Schwarzschild
black hole, and are merely coordinate singularities.
It also has a singularity at τ ¼ 0, which is the central

singularity of the Schwarzschild black hole. At both sides
of the singularity, i.e., at τ∈ ð− ffiffiffiffiffiffiffi

2M
p

; 0Þ ∪ ð0; ffiffiffiffiffiffiffi
2M

p Þ, we
have a well defined metric tensor. However, in the
standard metric formulation, one cannot evolve the metric

maxmax

maxmax

FIG. 4. Spacetime diagram of the metric (16). We have a well-
defined metric tensor in the two regions τ < 0 and τ > 0, which
are separated by the singularity, τ ¼ 0. Here, τmax ¼

ffiffiffiffiffiffiffi
2M

p
.

2Note that, due to the placement of the indices, our convention
for Γi

a and consequently for C̃i
j differs from that of Ashtekar

et al. [4,5] by a sign.
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from one side to the other, past the singularity. This brings
up the question, can there be a formulation of the
gravitational field equations which does not face the same
problem at the singularity?
It is always possible in principle that a differential

equation is stated in terms of “wrong” variables, and the
same equation can be stated in terms of other variables which
has well-behaved solutions. To quote the simple example
from D’Ambrosio and Rovelli [29], the differential equation
yÿ − 2ẏ2 − y2 ¼ 0 has the solution y ¼ 1= sin t, which is
singular at t ¼ 0. Formulated in terms of x ¼ y−1, however,
the equation is simply the harmonic oscillator equation
ẍþ x ¼ 0 and the corresponding solution x ¼ sin t is
regular. The idea of the AHS variables is that, although
the metric formulation fails at the singularity, the AHS
variables can still remain finite and provide a well-behaved
description of the gravitational field.
Now, we can calculate the AHS variables Eq. (15) for the

metric in Eq. (16). The spatial metric on the τ ¼ const
slices reads as

q ¼ XðτÞdx2 þ AðτÞðdθ2 þ sin2θdϕ2Þ: ð19Þ
We work with the density weighted triad

Ea
1 ¼Asinθδax; Ea

2¼
ffiffiffiffiffiffiffi
XA

p
sinθδaθ ; Ea

3¼
ffiffiffiffiffiffiffi
XA

p
δaϕ: ð20Þ

Then, the only non-vanishing AHS variables are [19]

P11 ¼ 2P22 ¼ 2P33 ¼ −2 sin θð2M − τ2Þ; ð21aÞ

C31 ¼ − cos θτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − τ2

p
: ð21bÞ

Hence we see that the AHS variables are indeed finite at
τ ¼ 0, and can be continued from one side of the singu-
larity to the other.

IV. SINGULARITIES OF GRAVITATIONAL
WAVE COLLISIONS

In this section, we shall analyze the behavior of the
AHS variables at the singularities of the Khan-Penrose
metric and the gravitational-electromagnetic wave collision
solution introduced in Sec. II. This requires a time-space
split of the spacetime, thus, it is suitable to go from the null
coordinates in Eq. (1) to a pair of timelike and spacelike
coordinates. We therefore define t ¼ ðuþ vÞ= ffiffiffi

2
p

and
z ¼ ðu − vÞ= ffiffiffi

2
p

. With these, Eq. (1) becomes

g ¼ e−Mð−dt2 þ dz2Þ þ e−UðeVdx2 þ e−Vdy2Þ; ð22Þ
which will be our starting point in what follows. Note
that in these coordinates, the singularity of the Khan-
Penrose metric is located at e−U ¼ 1 − t2 − z2 ¼ 0,
whereas the singularity of the second metric is at a
constant–t surface, t ¼ 2−3=2π.

A. Khan-Penrose metric

To calculate the AHS variables for the Khan-Penrose
metric, we want to choose such a foliation that the singular
surface e−U ¼ 0 is a limiting case of the spacelike slices. In
other words, we want to introduce a timelike variable τ,
such that the singularity corresponds to a level surface,
conveniently chosen to be τ ¼ 0. In addition, just as
was done in the Schwarzschild case, we let τ enter
quadratically so that we get a spacetime with two copies
of the interaction region connected by the singularity. We
therefore define

τ2 ¼ 1 − t2 − z2; ð23Þ

whose upper and lower limits for a fixed z are �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2z2

p
in the region we are considering. With this, the metric (22)
becomes

g ¼ e−M

ξþ z2
ð−τ2dτ2 − 2τzdτdzþ ξdz2Þ

þ e−UðeVdx2 þ e−Vdy2Þ; ð24Þ

where we introduced the shorthand notation ξ¼1−τ2−2z2.
Just as in the Schwarzschild case, here we have two copies
of the interaction region, one of them being the time
reversed copy of the other, and the two are separated by
the singularity τ ¼ 0.
We now turn to the calculation of the AHS variables for

the metric (24). We shall work on the spatial surfaces of
constant τ, so that the spatial metric reads

q ¼ e−M
ξ

ξþ z2
dz2 þ e−UðeVdx2 þ e−Vdy2Þ; ð25Þ

and we work with the density-weighted triad

Ea
1 ¼ e−Uδaz ; ð26aÞ

Ea
2 ¼ e−ðMþUþVÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ

ξþ z2

s
δax; ð26bÞ

Ea
3 ¼ e−ðMþU−VÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ

ξþ z2

s
δay: ð26cÞ

Then, the only nonvanishing AHS variables [Eq. (15)] are

P11 ¼ −
e−U

τ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξþ z2

p DU; ð27aÞ

P22¼−
e−U

2τ
ffiffiffiffiffiffiffiffiffiffiffi
ξþz2

p �
DðMþUþVÞ−2τ

1−τ2

ξ

�
; ð27bÞ
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P33¼−
e−U

2τ
ffiffiffiffiffiffiffiffiffiffiffi
ξþz2

p �
DðMþU−VÞ−2τ

1−τ2

ξ

�
; ð27cÞ

C23 ¼ 1

2
e−UðUz − VzÞ; ð27dÞ

C32 ¼ −
1

2
e−UðUz þ VzÞ; ð27eÞ

where we have defined the shorthand operator notation
D ¼ ξ∂τ þ τz∂z.
We now want to show that all of these variables are

regular at the singularity. To this end, note that for any
function f we have

Df ¼ −
τffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
ξþ z2

p
ðfu þ fvÞ þ

τzffiffiffi
2

p ðfu − fvÞ; ð28Þ

and

fz ¼
1ffiffiffi
2

p ðfu − fvÞ −
zffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffi
ξþ z2

p ðfu þ fvÞ: ð29Þ

Therefore, the question whether the AHS variables Pij and
Cij are regular at τ ¼ 0 is reduced to whether e−Ufu;v are
regular, where f is any of the functions U, V and M.
This is easily seen to be the case for f ¼ U, for which we

have DU ¼ −2ξτ−1 and Uz ¼ 0.
For M, we get

Mu ¼ 3ueU −
u

1 − u2
− 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
− v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

w
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p : ð30Þ

Note that the second and third terms on the right hand side
of Eq. (30) are regular everywhere in the region 0 < u,
v < 1. Thus, as τ → 0 we get

e−UMu ≈ 3u ¼ 3ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − τ2 − z2
p

þ z
�
; ð31Þ

which is also regular. Since M and U are symmetric
functions of u and v, the same holds for e−UMv.
Lastly, for V we have

e−UVu ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p ðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Þðvþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
Þ

1þ u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ; ð32Þ

which is regular as well. Again, by symmetry, the same is
true for e−UVv. Thus, all of the AHS variables in Eq. (27)
are regular throughout the region in question, including the
singularity τ ¼ 0, and they can be evolved smoothly from
one side of the singularity to the other. Fig. 5 shows the

AHS variables for the Khan-Penrose metric as functions of
τ at two sample points.
We note that P22 and P33 diverge at the boundaries of our

region, τ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2z2

p
, due to the ξ−1 terms inside the

square brackets in Eqs. (27b) and (27c). This does not
imply a physical breakdown, however, because the boun-
daries are the null surfaces u ¼ 0 and v ¼ 0, or t ¼ jzj, i.e.,
in the limit ξ → 0 the foliation we have used becomes not
spacelike, but null, which is also apparent from Eq. (25).
If one wants to use the foliation we have used to calculate
and evolve the AHS variables, one simply needs to start
somewhere in the interior, where the τ ¼ const surfaces are
spacelike and evolve from there.
It is easy to see that both the Cij and the triad Ea

i vanish
as one approaches the singularity, while the Pij assume
finite values. This is just like the case for the Kasner
metric [5], which is what we would expect, since, as
mentioned previously, the type of gravitational wave
collision spacetimes we investigate here approach the
Kasner metric close to the singularity, in accordance with
the BKL conjecture.

B. Gravitational-electromagnetic wave collision

We now turn to the gravitational-electromagnetic wave
collision solution. Similarly to the previous cases, we
define a timelike variable τ as

τ2 ¼ π

2
ffiffiffi
2

p − t; ð33Þ

FIG. 5. Nonvanishing AHS variables for the Khan-Penrose
metric at two different points of space, z ¼ 0 (left) and z ¼ 1=2
(right). For this metric we always have C23 ¼ C32, which exactly
vanish at z ¼ 0. It can be seen that all of the variables are
regular at the singularity. We note that P22 and P33 diverge at the
boundaries of our region, τ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2z2

p
. As explained in the

text, however, this does not signal a physical breakdown since
the foliation we have used becomes degenerate at the boundaries.
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so that the singularity occurs at τ ¼ 0. With this definition,
Eq. (22) becomes

g ¼ e−Mð−4τ2dτ2 þ dz2Þ þ e−UðeVdx2 þ e−Vdy2Þ: ð34Þ

The spatial metric on a surface of constant τ is

q ¼ e−Mdz2 þ e−UðeVdx2 þ e−Vdy2Þ: ð35Þ

We work with the triad

Ea
1 ¼ e−Uδaz ; ð36aÞ

Ea
2 ¼ e−M=2e−U=2e−V=2δax; ð36bÞ

Ea
3 ¼ e−M=2e−U=2eV=2δay: ð36cÞ

With this choice, the nonvanishing AHS variables are

P11 ¼ −
e−U

2τ
Uτ; ð37aÞ

P22 ¼ −
e−U

4τ
ðMτ þ Uτ þ VτÞ; ð37bÞ

P33 ¼ −
e−U

4τ
ðMτ þ Uτ − VτÞ; ð37cÞ

C23 ¼ 1

2
e−UðUz − VzÞ; ð37dÞ

C32 ¼ −
1

2
e−UðUz þ VzÞ: ð37eÞ

Inserting our known solution Eq. (8) and inspecting term by
term, we see that

Uτ ¼ −
ffiffiffi
2

p
τeUðsin 2uþ sin 2vÞ; ð38aÞ

Vτ ¼ 2
ffiffiffi
2

p
τ

cos u
1þ sin u

; ð38bÞ

Mτ ¼ −
ffiffiffi
2

p
τðtan uþ tan vÞ þ Vτ −

1

2
Uτ; ð38cÞ

Uz ¼
eUffiffiffi
2

p ðsin 2u − sin 2vÞ; ð38dÞ

Vz ¼ −
ffiffiffi
2

p cos u
1þ sin u

; ð38eÞ

where u and v are understood to be functions of τ and z.
We therefore observe that in the interior where 0 < u;
v < π=2, all of the variables Pij and Cij remain finite
and differentiable, including the singularity uþ v ¼ π=2.

Figure 6 shows the AHS variables for the gravitational-
electromagnetic wave collision as functions of τ at two
sample points.
As a final remark, we note that as one approaches the

singularity, the Cij and the triad Ea
i vanish in this case as

well, just as in the Kasner case.

V. DISCUSSION

The well-behavedness of the AHS variables at the
singularities of the FLRW spacetimes, Bianchi I and IX
models and the Schwarzschild metric had already been
demonstrated. Here we have shown this to be the case for
two specific colliding wave solutions. Although our results
are for these two examples only, this further motivates the
expectation that these variables are well behaved at generic
spacelike singularities.
The first example we have looked at is the Khan-Penrose

metric, which describes the collision of two impulsive
gravitational waves. In order to calculate the AHS varia-
bles, we have chosen a foliation adapted to the singularity
of the metric. Our results show explicitly that the AHS
variables are finite at the singularity and can be continued
through it without any problem.
The second examplewe have looked at is an exact solution

which describes the collision of a gravitational wave with
an electromagnetic wave. Here, too, are the AHS variables
regular on the entire spacetime, including the singularity.
We should emphasize that since the singularities of

general relativity occur at scales where quantum effects
should be dominant and thus the classical theory is not
necessarily a good approximation, investigating these
singularities classically—as we have done—should be
seen as a first step toward a fuller understanding of the

FIG. 6. Non-vanishing AHS variables for the gravitational-
electromagnetic wave collision at two different points of space,
z ¼ 0 (left) and z ¼ π=4 (right). Note that C23 andC32 coincide at
z ¼ 0. It can be seen that all of the variables are regular at the
singularity.
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problem. In fact, as we mentioned previously, there are a
number of results indicating that quantum corrections
become meaningful only when curvature or matter density
are about a percent of the Planck scale. Therefore, it is
possible that the classical results such as the BKL
conjecture or the behavior of the AHS variables at the
singularity reliably describe what effectively happens near
the singularity.
Of course, a full understanding of the problem requires a

consistent theory of quantum gravity. However, semiclass-
ical analyses such as looking at quantum fields on classical
backgrounds [30] may also shed some light on the issue.

This is what is referred to as “level 2” in Ashtekar et al. [31]
and has been done, e.g., for cosmological models, and
extending these semiclassical methods to colliding gravi-
tational waves seems to be a reasonable way to gain further
insight into their singularity structures.
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