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We apply neural posterior estimation for fast-and-accurate hierarchical Bayesian inference of
gravitational wave populations. We use a normalizing flow to estimate directly the population hyper-
parameters from a collection of individual source observations. This approach provides complete freedom
in event representation, automatic inclusion of selection effects, and (in contrast to likelihood estimation)
without the need for stochastic samplers to obtain posterior samples. Since the number of events may be
unknown when the network is trained, we split into subpopulation analyses that we later recombine; this
allows for fast sequential analyses as additional events are observed. We demonstrate our method on a toy
problem of dark siren cosmology, and show that inference takes just a few minutes and scales to ∼600
events before performance degrades. We argue that neural posterior estimation therefore represents a
promising avenue for population inference with large numbers of events.
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I. INTRODUCTION

Hierarchical Bayesian analysis (HBA) provides the
statistical framework to combine individual gravitational
wave (GW) observations to answer questions about entire
populations. Starting from a population model ppopðθjΛÞ
for source parameters θ depending on population hyper-
parameters Λ, with prior pðΛÞ, HBA characterizes the
population in terms of the posterior distribution pðΛjDCÞ,
where DC is a catalog of GW observations. With over 100
observations by the LIGO-Virgo-KAGRA Collaboration
[1–7] to date [8], HBA has been used to constrain a wide
variety of population properties including mass and spin
distributions [9–33], and fundamental physics [34–47].
When combined with redshift information, GWs can

also be used to constrain cosmology. Indeed, the joint GW
and electromagnetic observation of GW170817—a stan-
dard siren—constrained the Hubble constant H0 to within
∼20% [48,49]. However, the vast majority of observations
are of binary black holes, with no electromagnetic counter-
part. In these cases, statistical dark siren methods using

HBA can nevertheless still place constraints on cosmology.
This can be done by either correlating GW signals with
galaxy catalogs [45,50–56] or by involving assumptions on
the source binary mass distribution [39,40,57–61].
Here, we focus on the mass spectrum method: given

a population model in the source frame, the predicted
distribution of detector frame masses1 and luminosity
distance depends on the population and the cosmological
parameters. By comparing this predicted distribution to
the one observed with gravitational waves (GWs), we can
therefore jointly constrain population and cosmological
parameters.
However, the current uncertainty on H0 from GW

observations is much larger than from studies of the cosmic
microwave background [62] or supernovae [63] and it will
not be beforeOð104Þ binary black hole mergers [39,59–61],
or several hundred binary neutron stars [64] that their
uncertainty will be comparable. Networks of future detec-
tors, such as the Einstein telescope (ET) and Cosmic
Explorer (CE), will provide the requisite large number of
observed events, reaching far into the cosmic past. This will
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1Recall the relation between detector frame masses md and
source frame massesms are related asmd ¼ ð1þ zÞms. Through-
out, we assume the contribution from proper motion to be
negligible against the cosmological redshift.
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allow for the precise inference of cosmological parameters,
using bright sirens [65], in conjunction with galaxy catalogs
[66–71] and features in the mass spectrum [57,58,71–73].
Conventional population analyses (hierarchical Bayesian
inference methods) require an analytic population model,
and are slow when analyzing a large number of events. The
large number of events of the upcoming detector networks
calls for new methods for the measurement of the hyper-
parameters (e.g., H0) with GW events.2

In this work, we apply neural posterior estimation to
population inference of GW signals. The specific illustra-
tive problem we set out to solve is to obtain constraints on
cosmological parameters through the dark siren mass
spectrum method,3 addressing the aforementioned issues.
In addition to the gain in computational speed,4 simulation-
based approaches can, in principle, directly incorporate
predictions from astrophysical simulations, without having
to resort to phenomenological descriptions of the resulting
source parameter distributions. We summarize the analyzed
GW data by posterior samples of the parameters of the
individual events,5 but the method could be applied to any
input data that summarizes the GW observations suffi-
ciently well. It is therefore particularly adapted to future
analysis chains that rely on other deep learning algorithms.
In principle, our method can also account for additional
uncertainty from latent variables, which are difficult to
account for in conventional methods or when modeling the
population likelihood. For example, this could include the
use of different waveforms for the production of single-
event posterior samples.
The learning task is to approximate the posterior

pðΛjDCÞ, where Λ is the set of hyperparameters describing
the population model and the cosmological parameters, and
DC is the GW catalog data. We propose a deep neural
network scheme that learns directly the posterior distribu-
tion of the population parameters—including the selection
effect. In particular, this approach allows us to infer
population properties in a likelihood-free way (also referred
to as simulation-based inference), requiring solely the
simulation of observed event data.
A number of previous studies have applied machine

learning techniques to aspects of the population inference
problem. In [74], machine learning was used to estimate

the selection function, while [75–78] used machine learn-
ing to represent the population likelihood (including
selection effects in the latter two cases). By contrast, in
our approach we directly model the population posterior
distribution, which circumvents the need for an additional
MCMC analysis to obtain the hyperparameter posterior
since posterior samples are produced directly through
importance sampling. Additionally, [76] learned the pop-
ulation likelihood (in the bright siren case—assuming an
EM counterpart), but used a toy model for the single-event
posterior distribution, whereas our method uses posterior
samples generated with the realistic deep learning model
dingo [79]. It has been shown that this model agrees very
well with the true posterior distribution in the parameter
ranges we consider.
The network’s architecture used here is that of a condi-

tional normalizing flow [80–84]. This framework allows
one to generate a distribution conditioned on data, and to
draw samples from the distribution efficiently. This method
has been applied to a large variety of problems in science
[75,79,85–91]. In particular, it has accelerated single-event
parameter estimation for compact binary coalescences by
several orders of magnitude, see dingo [79,89–91].
Whereas the latter model outputs posterior samples of
individual event parameters given the estimated noise
spectral density and measured strain for that event, the
model described in this work outputs the distribution of the
hyperparameters given posterior samples of the individual
events.
The structure of this paper is as follows. In Sec. II A, we

begin by revisiting the classical approach to population
inference utilizing Bayesian statistics. Following this, in
Sec. II B 1, we outline our divide-and-conquer strategy,
which splits the population into smaller subpopulations for
independent analysis, subsequently merging them to obtain
the final result analysing the complete catalog. In Sec. III,
we then provide an overview of the astrophysical assump-
tions that underlie our study. The training dataset, along
with its number of entries, is then presented in detail in
Sec. IV. From these training datasets, we train our models
and present the results, which are described in Sec. V,
accompanied by a comparison against the traditional
Bayesian approach. Finally, in Sec. VI, we discuss our
results and possible extensions to our work.

II. METHODS

We now outline the conventional hierarchical Bayesian
population analysis and relate it to the deep neural network
approach in Sec. II B. The classical approach will function
as our reference point against which we will compare
the outcomes with the normalizing flow (NF) method.
We refer to the classical method as HBA (hierarchical
Bayesian analysis) and to the neural network model as
neural posterior estimation (NPE).

2Since the hyperparameters describe the overall distribution of
source parameters rather than the single-event ones, the extraction
of the hyperparameters is also referred to as hierarchical
inference.

3We note, however, that the proposed method of population
analysis with deep neural networks is not limited to this
application. In principle, our scheme could use electromagnetic,
or GW data or both to produce constraints on the cosmological or
population parameters.

4Note that just-in-time compilation, the use of GPUs and
gradient-based sampling algorithms can achieve similar speeds.

5In the following, we refer to these as single-event posterior
samples.
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To facilitate the following discussion, we introduce some
notation (see also Table I for a summary of the variables
used). We denote the set of hyperparameters as Λ—this can
include cosmological parameters such as H0 and the
parameters describing the mass, spin and redshift distribu-
tion of individual events. The true source parameters are
written as θ, and the distribution of data, D, given the true
parameters as pðDjθÞ. The latter term is the single-event
GW likelihood. The population model is denoted as
ppopðθjΛÞ, and we use K to denote a collection of events.
For instance, θK ≔ fθigi∈K is the set of true parameters of
events in the set K. In this notation, the probability of
drawing the true parameters θK from the population model
is then

ppopðθKjΛÞ ¼
Y
j∈K

ppopðθjjΛÞ; ð1Þ

since individual sample draws are independent. The
number of events in the GW catalog is denoted as
Nobs ≔ cardðCÞ, with cardðXÞ the number of elements
in the set X.

A. Hierarchical Bayesian population method

The goal of extracting population and cosmological para-
meters from GW data is classically approached with a
hierarchical Bayesian analysis (HBA) [10,12,16,59,60,92–
97]. Wewish to infer the posterior distribution ofΛ, based on
a set of GWeventsDC ≔ fDigi∈C. With the catalogDC the
posterior of Λ can be rewritten with Bayes’s theorem as
pðΛjDCÞ ¼ pðΛÞpðDCjΛÞ=pðDCÞ, where pðΛÞ denotes

the prior knowledge of Λ, pðDCjΛÞ is the hierarchical
likelihood, and pðDCÞ is the evidence, the probability of
observing data DC.
Using then the HBA scheme, the posterior of the

hyperparameters informed from Nobs events is given by
(marginalizing over the overall rate of events) [98–100]

pðΛjDCÞ ¼
pðΛÞ
pðDCÞ

pðDCjΛÞ ¼
pðΛÞ
pðDCÞ

YNobs

j¼1

pðDjjΛÞ

¼ pðΛÞ
pðDCÞ

YNobs

j¼1

R
pðDjjθjÞppopðθjjΛÞdθjR
pdetðθjÞppopðθjjΛÞdθj

; ð2Þ

the prior on Λ is denoted as pðΛÞ and the prior probability
of the data as pðDCÞ. The uncertainty in our knowledge
of single-event parameters is encoded in the likelihood
pðDjjθjÞ of obtaining data Dj, given the true parameters
θj. Finally, the probability of detection, given the source
parameters θ, is denoted by pdetðθÞ and depends (among
other factors) on the detector sensitivity, the number of
detectors and the detection threshold. This encodes the fact
that not all data is included in the set DC, but we choose
segments of data in which we are confident that signals of
astrophysical origin are present. This selection is a property
of the data alone. The data is the sum D ¼ hðθÞ þ n of the
pure signal hðθÞ and the noise n. The detection probability
is the probability that this data lies in the region we define
as a detected source, i.e., pdetðθÞ ¼

R
D detected dnpðDjθÞ. The

denominator (in the product) of the above equation accounts
for this selection effect—not all GW sources have the same
probability of detection. It is common to define the detected
fraction of the population ξðΛÞ ≔ R

pdetðθÞppopðθjΛÞdθ.
In general, it is difficult to evaluate this term, and one
usually relies on an injection campaign to produce a set
of detected GW signals. We will show that our method
accounts for the selection effect, bypassing the explicit
computation of ξðΛÞ. Effectively, we perform an injection
campaign during the generation of the training data and
hence, the cost is amortized over the repeated evaluation of
the neural population posterior.
There is some freedom in the representation of the

GW data Di: we focus here on posterior samples, that
approximate the uncertainty of the source parameters θ
(such as the component source frame masses, or the
luminosity distance). The posterior samples follow the
distribution θ̂ ∼ pðθ̂jDkÞ, and we denote the assumed prior
under which the posterior samples were created as πMCMC.
In the following, we use θ̂ik to denote the ith posterior
sample from the GW event k [compare to Eq. (9)], and
npost;k is the number of posterior samples for this event. The
numerator of Eq. (2) is usually approximated by summing
over posterior samples of the individual GW events. The
population likelihood as informed by oneGWeventDk can
then be rewritten as

TABLE I. Overview of the variables and quantities used.

Variable Description

GW data

θ Single-event BBH parameters
pðθ̂jDÞ Single-event posterior distribution

GW catalog

DC A catalog C of GW observations
Nobs Number of observed GW events

Population parameters

Λ Hyperparameters
ppopðθjΛÞ Population model
pðΛjDCÞ Hyperparameter posterior from a

catalog C, cf. Sec. (2)
ξðΛÞ Selection bias

Machine learning

nsub Number of events per subpopulation
qðΛjDCÞ Hyperparameters posterior estimate from

a GW catalog C
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pðDkjΛÞ ≈
pðDkÞ

ξðΛÞnpost;k
Xnpost;k
i¼1

ppopðθ̂ikjΛÞ
πMCMCðθ̂ikÞ

; ð3Þ

where the sum above is taken over the posterior samples
θ̂ik ∼ pðθ̂ikjDkÞ. To evaluate the full population posterior
of Eq. (2), one multiplies the individual contributions
of Eq. (3).

B. Neural posterior estimation (NPE) methods

Hierarchical Bayesian analysis becomes increasingly
expensive as the number of sources included in the
analysis increases, due both to the cost of obtaining the
posterior samples for each event, and the cost of combin-
ing the events to obtain the population posterior. The use
of machine learning approaches is becoming increasingly
widespread in the physical sciences, as these often provide
a fast and efficient way to complete complex analysis
tasks. In a gravitational wave context, dingo has been
shown to generate posterior distributions nearly indistin-
guishable from those produced by standard sampling
algorithms in a small fraction of the time [91], while
residual differences can be efficiently eliminated through
importance sampling [101]. We hope to see similar
benefits from the application of machine learning methods
to population inference. A major complication is that the
number of events that will be observed is not typically
known a priori. Not only does this present the difficulty of
generating an arbitrarily large training dataset, but neural
networks typically have fixed input dimension. We over-
come this problem by implementing a strategy that divides
the GW catalog into smaller subpopulations, each con-
taining Oð10–100Þ signals. Our model then learns the
posterior distribution analyzing a subpopulation of events.
We combine the intermediate results (the population
posterior of each subpopulation) to derive the population
posterior of the entire catalog.6 We will now elaborate on
the model loss, how to combine subpopulations of events,
the NF’s architecture and the generation of the training
dataset.

1. Subpopulation analysis

To simplify the problem, we split the GW catalog into
smaller subpopulations. Calling one of these subpopula-
tions DK ≔ fDkgk∈K , the model we propose then approx-
imates the population posterior from analyzing DK ,
converging to the term pðΛjfDkgk∈KÞ. One then obtains
the complete posterior analyzing all events by combining
the individual posteriors of each of the subpopulations.
This approach ensures the computational cost to generate
the training dataset is not too large.

The catalog C is divided into subpopulations of events,
fKig, where each of the Ki contains nsub events.

7 That is,
the Ki, for i∈ f1; 2;…; nbg, define a (random) distinct
partition of C, i.e.,

C ¼ K1∪̇K2∪̇…∪̇Knb ; ð4Þ

with nb ≔ Nobs=nsub. The machine learning model
produces a population posterior qðΛjDKi

Þ for each of
the subpopulations, which approximates pðΛjDKi

Þ. The
repeated application of Bayes’s theorem yields the com-
plete posterior informed by all events in C, i.e.

qðΛjDCÞ ≔
N

pðΛÞnb−1
Ynb
i¼1

qðΛjDKi
Þ; ð5Þ

with pðΛÞ the prior on the hyperparameters and N is a
normalization constant given byN −1 ≔

R ½Qnb
i¼1 qðΛjDKi

Þ=
pðΛÞnb−1�dΛ. In the limit qðΛjDCÞ ≔ pðΛjDCÞ, N ¼
ðQnb

i¼1 pðDKi
ÞÞ=pðDCÞ, where

pðDKi
Þ ¼

Z
pðDKi

jΛÞpðΛÞdΛ

pðDCÞ ¼
Z �Ynb

i¼1

pðDKi
jΛÞ

�
pðΛÞdΛ: ð6Þ

In Sec. IV, we assume a uniform prior of the hyper-
parametersΛ so that the denominator in Eq. (5) also amounts
to a normalization constant. If the model correctly learns
the posterior distribution that analyzes a subpopulation of
events, we should have the approximation

qðΛjDCÞ ≈ pðΛjDCÞ: ð7Þ

The target distribution is conditioned on the observed data.
In general, this could be a large space, making the learning
task more complex. However, not all components of the
data are informative about the target distribution. It is clear
from the form of a standard HBA, Eq. (2), that one possible
summary of the data for each event is the set of samples from
the individual event parameter posterior distribution.
Therefore, we make the choice to represent the input data
via a set of posterior samples for the GW events. The neural
network (NN) then learns the population posterior from the
posterior samples of the individual signals in one subpopu-
lation. We denote the set of posterior samples of the events in
K as θ̂K and the number of posterior samples per event as
npost, assumed to be equal for all events. We define,

θ̂K ¼ fθ̂ij∶ i∈K; j ¼ 1; 2;…; npost − 1; npostg; ð8Þ

6The hyperparameters samples are combined via importance
sampling, as detailed in Sec. II B 1.

7Throughout, we assume the length of the subset of events nsub
to divide the total number of events Nobs.

LEYDE, GREEN, TOUBIANA, and GAIR PHYS. REV. D 109, 064056 (2024)

064056-4



where

θ̂i• ∼ pðθjDiÞ; ð9Þ

for i an event in the subpopulationK. From our choice of the
data representation, we can then schematically write

qðΛjDKÞ ≈ qðΛjθ̂KÞ: ð10Þ

In principle, however, the network could learn the popu-
lation posterior from any representation of the data DK
that is sufficiently informative; this could be the Fourier-
transformed or the time-domain strain data. Of course, no
matter the representation of the data, the resulting posterior
distribution should be the same.
The neural networks used in this work have Oð106−8Þ

parameters that are optimized during the training process
to minimize the chosen loss function, ensuring that the
learned function converges to the desired distribution. We
take the loss function to be proportional to the Kullback-
Leibler (KL) divergence (up to an additive constant), which
is defined as [102]

DKLðpkqÞ ≔
Z

pðxÞ log
�
pðxÞ
qðxÞ

�
dx: ð11Þ

The KL divergence is positive semi-definite, and is zero
only if p ¼ q. Also, note that the KL divergence is not
symmetric in the distributions p and q. Thus, it can be seen
as a (generalized) distance between the target distribution
and the one learned by the network.
The objective is thus to minimize DKLðpðΛjDKÞk

qðΛjDKÞÞ. In reality, we will be approximating pðΛjDKÞ
by pðΛjθ̂KÞ, since we assume that the data DK is summa-
rized accurately by the single-event posterior samples θ̂K .
This can be done by minimizing the loss

L ≔ EpðΛÞEppopðθK jΛÞEpðDK jθKÞEpðθ̂K jDKÞ
�
− log ðqðΛjθ̂KÞÞ

�
;

ð12Þ

where we have introduced the expectation value

EpðxjyÞ½fðx; yÞ� ≔
Z

dxpðxjyÞfðx; yÞ: ð13Þ

The right-hand side of Eq. (12) is the expectation value over
four distributions. Averaging over noise realizations, DK ,
and population draw, θK , we can apply Bayes’s theorem
successively to obtain the equality (see Appendix B)

L ¼ −Epðθ̂KÞEpðΛjθ̂KÞ log
�
qðΛjθ̂KÞ

�
: ð14Þ

From the definition of the KL divergence in Eq. (11), we
rewrite the above equation as

L ¼ Epðθ̂KÞ
�
DKLðpðΛjθ̂KÞkqðΛjθ̂KÞÞ

−DKLðpðΛjθ̂KÞk1Þ
�
: ð15Þ

Thus, this expression is [up to a constant and the expect-
ation value over pðθ̂KÞ] the KL divergence between the
model qðΛjθ̂KÞ and the target distribution pðΛjθ̂KÞ. Since
the KL divergence is minimized for p ¼ q, it follows that
the above loss is also minimized for pðΛjθ̂KÞ ¼ qðΛjθ̂KÞ,
and if the network is properly trained, qðΛjθ̂KÞ will
approximate pðΛjθ̂KÞ. If a network achieved the minimum
loss for every possible choice of input parameters, θ̂K ,
then it would perfectly represent the population posterior.
In practice, this will not be achievable. By averaging the
loss over noise realizations, DK , and population draws,
θK , we ensure that learning effort is expended to represent
the distribution best for values of θ̂K that are more likely to
be observed in practice.
To evaluate the loss value of Eq. (12) one has to

evaluate an expectation value over four distributions. We
approximate these expectation values by Monte Carlo
averaging, i.e.

L ≈
1

N

X
fΛν;DK;νg

qðΛνjDK;νÞ; ð16Þ

where N is the number of samples drawn as follows:
according to the prior pðΛÞ we draw population para-
meters. For each sample Λ, we create the cosmological
model, draw nsub true events, simulate nsub observed
strains (passing some specified selection threshold) and
produce npost posterior samples. For computational rea-
sons, we precompute the samples fΛν;DK;νg and call the
resulting data the training dataset. The loss is then
minimized over choices for the NN parameters during
the training process.
Note that at no point in the process is the (true)

population posterior explicitly evaluated. The above
scheme relies solely on the simulation of data rather than
on evaluating the hierarchical Bayesian likelihood in
Eq. (2). As a consequence, it does not require an analytic
expression for the population prior, but solely relies on a
forward model to generate training data (i.e. samples
from the population likelihood). This differs from most
HBAs, with the exception of [103,104], which instead
use Monte Carlo integration to evaluate the population
likelihood, using the population prior to draw samples. In
turn, that approach requires us to be able to efficiently
estimate the single-event likelihood.
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Also, by construction, the model contains the selection
effect term ξðΛÞ appearing in the denominator of Eq. (2).
We thus avoid the computation of this term during
inference.8

In some cases the NPE results differ from the HBA
approach for reasons we elaborate below. These differences
can be corrected by reweighting the NPE samples to the
target HBA posterior using importance sampling weights

wðΛÞ ¼ pðΛjDCÞ
qðΛjDCÞ

: ð17Þ

This is possible because we have access to the learned NPE
posterior density, and have an explicit expression for the
target HBA density. We show this procedure on one
example in Sec. VA. Importance sampling can also provide
a validation: an unchanged posterior (after reweighting)
implies that the model has learned the correct HBA
distribution.

2. Combining subpopulations of events

In the previous section, we have subdivided the complex
problemof obtaining the posterior distribution fromcatalogs
of GW events into multiple simpler problems, namely to
obtain the posterior distribution from a subpopulation of
GW events. We thus train a model q to approximate the
population parameter posterior informed by a subset of
eventsDKi

, i.e.pðΛjDKi
Þ. One is eventually interested in the

posterior as informed by the event catalog C ¼ ∪̇nb
i¼1Ki. To

obtain this distribution we apply the following procedure:
(1) With the model, we draw Nprop Λ samples from each

of the posteriors qðΛjDKi
Þ analyzing a subpopula-

tion of GW events—these are our proposal samples.
In total, we have nb × Nprop samples.

(2) Out of these, we randomly choose Nprop samples.
The chosen samples follow the distribution
qinitðΛjθ̂CÞ ≔ 1

nb

Pnb
i¼1 qðΛjDKi

Þ.
(3) We evaluate the combined population posterior

according to Eq. (5) for the proposal samples with
our model; to obtain qðΛjθ̂CÞ. From this, we can
compute the weights w as

wðΛjθ̂CÞ¼
qðΛjθ̂CÞ
qinitðΛjθ̂CÞ

¼
N

pðΛÞnb−1
Qnb

i¼1qðΛjDKi
Þ

1
nb

Pnb
i¼1qðΛjDKi

Þ ;

ð18Þ

where we applied the definition of qðΛjθ̂CÞ in Eq. (5)
in the second equality.

(4) The samples are importance weighted according to
wðΛjθ̂CÞ above. The reweighted samples follow the
desired distribution qðΛjθ̂CÞ.

In order to apply this procedure it is vital that one can
sample from the distribution and that one has access to the
probability with which the samples are created. The archi-
tecture of a normalizing flow allows for this. The generation
of random samples with normalizing flows is rapid, making
the scheme fast. Wewill apply the procedure in practice and
compare it to the conventional HBA method in Sec. V.
Other scheme are also possible: one could multiply

the hierarchical (neural) posterior [dividing out the prior,
cf. Eq. (5)] that analyze each of the subpopulations (the
probability of which is given by the flow) and use MCMC
sampling to recover the combined posterior (that analyzes
the entire catalog). The sampling method we outlined
above avoids running a full MCMC analysis, which would
further increase the computing time. We have compared the
two approaches for selected cases and found very good
agreement.

C. Flow architecture

The following section summarizes the building blocks
that make up our NPE model. The proposed machine
learning model combines two embedding neural networks
for data compression and a normalizing flow for population
posterior generation as described in Fig. 1. In the following,
we refer to the full algorithm simply as the “model.”
The posterior samples from all events in one subpopu-

lation represent a large dataset that we seek to reduce with
two embedding networks that summarize (i) the individual
events in a first stage and (ii) the set of all summaries of nsub
events produced by the first embedding network. The flow
is then conditioned on the output of the second embedding
network. Figure 1 shows a schematic overview of the
model architecture.
The first embedding network summarizes each single-

event posterior.9 This network takes as input data the
collection of npost posterior samples of the component
masses and the luminosity distance (following Sec. II A);
that is a three-dimensional posterior distribution for the nsub
events in the subpopulation. We have found that 16
“summary” parameters for the single-event posterior are
sufficient to recover the population posterior. The first
embedding network is identical for each event. If the
flow analyzes nsub events, we thus have 16 × nsub scalars
describing the input data after applying the first embedding

8To obtain constraints on a different population distribution
requires the training of a new model, which also entails the
generation of new training data. This is different from conven-
tional analysis, where the original injection set (to evaluate the
selection effect) can be recycled, provided that it covers the
parameter space of the new population model sufficiently well.

9As input data of the first embedding network, we use the
standardized posterior samples (subtracting the mean and divid-
ing by the standard deviation of the respective variable). This
standardization of the input data is a common practice in machine
learning and allows for faster convergence of the model.
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network. These data are then further summarized by an
additional embedding network, whose output feeds into the
flow. We choose this second summary to have 64 and 256
parameters for the two models we train in the result section
below. The embedding network parameters (summarizing
the input data) also implicitly appear in the loss [cf. Eq. (12)]
and are therefore optimized jointly with the parameters that
define the flow transformation as discussed below. The two
embedding networks significantly reduce the number of free
parameters in the model, leading to less overfitting.
As anticipated, the normalizing flow is conditioned on

the output of the second embedding network and computes
an approximation of the true population posterior pðΛjDKÞ.
In general, the normalizing flow performs a transformation
that maps the physical variables (here the hyperparameters
Y ≔ Λ) to an unphysical variable Z that follows the
normal distribution.10 One can rapidly generate samples in

Λ ∼ qðΛjDKi
Þ by drawing samples from the normal dis-

tribution [Z ∼N ðμ ¼ 0; σ ¼ 1Þ] and applying the flow
transformation to them, i.e. Λ ¼ gðZÞ.
We use the nflows [105] package to construct this

transformation, where the flow transformation from Z to Y
is constructed from a sequence of simple transformations.
In our case, these are piecewise rational quadratic coupling
transforms [106] in analogy to those implemented in [90].11

The number of coupling transforms is referred to as the
number of flow steps. The parameters governing the
coupling transforms are trained to minimize the loss
defined in Eq. (12). We have investigated different choices
of parameters and found that four flow steps, each para-
metrized by a fully connected residual network with 32
parameters and five to fifteen layers provided the best
results. Table IV summarizes the details of the specific
network architecture. Throughout, we use graphics

FIG. 1. Overview of the data reduction with the embedding networks and the conditioning of the normalizing flow. This method
reduces the data dimension from initially nsub × npost × 3 to 128. Note that the embedding network 1 is identical for all GWevents. This
data summary reduces the number of adjustable NN parameters and hence simplifies the training process.

10We follow the standard notation as used in the review of
normalizing flows of [84]. 11SeeAppendixA for additional details on these transformations.
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processing units (GPUs) to accelerate both the generation
of single-event posterior samples and the training of the
normalizing flow.

III. ASTROPHYSICAL
AND INSTRUMENTAL SETUP

In the following we describe our assumptions on the
astrophysical population of binary black holes (BBHs), the
detector network, the detection criterion and the generation
of waveforms.

A. Assumptions on the population distribution

Throughout this work, we model sources as uniformly
distributed in comoving volume in a flat ΛCDM universe
described by the Hubble constant, H0, and the matter
content, Ωm. We fix the latter to Ωm ¼ 0.3 and assume it to
be known. This assumption is straightforwardly relaxed,
but this is beyond the scope of our work here.
The two training datasets we construct follow the

POWER LAW source frame mass distribution.12 This source
frame mass model is characterized by four parameters.
The minimum mass mmin and the maximum mass mmax
limit both source frame masses from below and above,
respectively. In addition, we have two power law slope
parameters α and β characterizing the distribution of
masses according to

pðm1;sjΛmÞ ¼ Nm−α
1;sχ½mmin;mmax�ðm1;sÞ;

pðm2;sjm1;s;ΛmÞ ¼ N 0mβ
2;sχ½mmin;m1;s�ðm2;sÞ; ð19Þ

where we have defined the normalization constants N
and N 0, as well as the set of hyperparameters Λm ¼
fmmin; mmax; α; βg. Finally, χ is the characteristic function,
defined as

χ½a;b�ðxÞ ≔
�
1 if x∈ ½a; b�
0 otherwise:

ð20Þ

B. Assumptions on BBH sources

We focus on precessing BBHs in quasi-circular orbits,
characterized by 15 parameters: the component (detector
frame) masses of the BHs, m1;d; m2;d, the two spin vectors
described by their magnitudes, a1, a2, angles of reference,
ϕ12;ϕjl, and tilts, θ1, θ2, as well as the time of coalescence,
tc, the phase at coalescence, Φc, declination and right
ascension of the sky position, δSP and αSP, luminosity
distance, dL, the inclination of the orbital plane with respect
to the line of sight, θjn and polarization angle, ψ . We

assume sources to be distributed uniformly in the sky, we
draw the spins isotropically over the sphere and the spin
magnitudes uniformly between 0 and 0.99.
The IMRPHENOMXPHM waveform [107] is used to model

the gravitational wave signal of the BBH coalescences in
the frequency domain.

C. Assumptions on waveform and the detector network

We assume the O1 sensitivity curve [1] for the Laser
Interferometer Gravitational wave Observatory (LIGO)
Hanford and LIGO Livingston detectors and impose as a
selection criterion a signal-to-noise ratio (SNR) threshold
of 12.13 Given a detected GW signal, we then use the
deep learning tool dingo [79,91] to analyze the strain data
and produce single-event posterior samples. Due to limi-
tations in the size of the parameter space of signals that
can be reliably analyzed we restrict the mass range of
signals to a conservative mass cutoff in source frame mass
of m1;s ≥ m2;s ≥ 18M⊙.

14 This lower bound on the mass
range directly implies a lower bound on the prior of mmin
we can explore. Also, recall that the mass spectrum method
uses only the component masses and luminosity distance.
We thus discard the remaining single-event parameters. See
Table III for the priors on the training set and, by extension,
the prior learned by the model.

IV. TRAINING DATASETS

The number of events per subpopulation, nsub, is a free
parameter of this approach, the optimal value of which we
would like to determine. To study this, we build two
different training sets and train models on each one,
assuming the same detector network and with the pop-
ulation model, described in Sec. III. In the following, we
refer to a hypersample, as one population of events that
share the same hyperparameters. Training set low has
6.7 × 105 hypersamples, which is ten times more hyper-
samples than that of training set high (which has 4.4 ×
104 hypersamples). However, training set low has only ten
events per population, which is 20 times less than training
set high (which has 200 events per hypersample). Overall,
the two datasets contain approximately the same number of
GW events (and posterior samples) and hence, their
information content (and their computational cost) is also
approximately equal. For this reason, the performance of
the models trained on the respective datasets can be directly
compared. Training dataset low only allows small event
subpopulations (≤10), but with an in-depth training on
many population examples, whereas training dataset high

12This is the simplest of the four source frame mass dis-
tribution considered currently by the LIGO-Virgo-KAGRA
Collaboration [10,12,16].

13This is an approximation, since the application of this
method to real data will make the selection criteria more intricate,
e.g. incorporating the false alarm rate. To fully account for
selection effects, an injection campaign would be needed.

14In the near future, the lower bound of dingo’s mass range is
expected to decrease to 5M⊙.
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allows for large subpopulations at the price of a limited
number of populations.

A. Training set low

Each hypersample of the training data contains the
true value of the hyperparameters, Λ, ten events and 200
associated posterior samples in three variables: the (detec-
tor frame) component masses and luminosity distance. In
total, the data associated to one population hypersample
thus contains 6000 ¼ 10 × 200 × 3 scalars.
During one training epoch, we randomly choose nsub

events among the ten events for each hypersample with
npost random posterior samples each. This sampling method
increases the variability of the input data. After several
trials, we have found that the model provides a good
approximation to the population posterior if it analyzes
six events per subpopulation (nsub ¼ 6).15 The same rea-
soning applies to the number of posterior samples, 100
posterior samples per event seem to be sufficient to produce
a faithful approximation (although see the discussion below
in Sec. V B).
A summary of the training dataset low can be found in

table II.

B. Training set high

With future GW detector networks in mind, we
also construct a training dataset that allows for models that

analyze a much larger number of events. Each population
hypersample of the training set high includes 200 events
with 200 posterior samples per event. The data associated to
each hypersample thus includes 120; 000 ¼ 200 × 200 × 3
scalars. The model we train below selects randomly 100 out
of the 200 available events during each training epoch. For
each of these events, the flow chooses 100 out of 200
posterior samples at random. Thus, each input population
sample includes 30; 000 ¼ 100 × 100 × 3 scalars. Again,
this method of drawing a subset of the available data is
introduced to reduce overfitting. For training set high we
find that nsub ¼ 100 gives the best performing models.
This is the result of a trade-off; given that one hypersample
contains 200 GWevents, if nsub is set higher the variability
of the training data is not high enough, and if nsub is
too low we cannot analyze a large number of events,
since too many subpopulations have to be combined.
Empirically, we find that the model does not produce
reliable results above Oð10–20Þ combinations of different
subpopulations.

C. Training the networks

Given the training data, we train different models
by minimizing the loss we have introduced in Eq. (12),
varying the network parameters, as well as the number
of GW events that are taken as input parameters. The
parameters describing the flows that yield the best
agreement with standard HBA results are summarized in
Table IV. The network trained on dataset low (which we

TABLE III. Summary of priors assumed for the two training
datasets. The uniform prior is denoted as U.

Summary priors

Metaparameter Prior Unit

H0 Uð40; 140Þ km s−1 Mpc−1

mmin Uð18; 30Þ M⊙
mmax Uð37; 47Þ M⊙
α Uð−2; 2Þ � � �
β Uð−2; 2Þ � � �

TABLE II. Properties of the two generated training datasets.

Summary of training datasets

Study low high

Number of training population samples 6.7 × 105 4.4 × 104

Number of available events per population 10 200
Number of available posterior samples
per event

200 200

TABLE IV. Architecture of the embedding networks and the
normalizing flow. For the hidden layers of the embedding
networks we use the tuple notation Xn ≔ ðX;X;…; XÞ, with X
repeated n times.

Summary of the normalizing flow parameters

Model

Variable low high

Events per batch nsub 6 100
Posterior samples per event npost 100 100

Dimensions embedding network 1 (512, 2565,
128, 64)

(512, 256,
128, 64)

Dimensions embedding network 2 (5124, 2564,
1282, 643)

(10242,
5122, 256)

Flow steps 3 4
Spline points 8 6
Hidden dimensions(spline network) 32 32
Hidden layers(spline network) 5 15

Training epochs 200 300
Learning rate 0.0001 0.0001
Scheduler Plateau Plateau
Batch size 1024 1024

15The combination of subpopulations of events delivers more
reliable posterior distributions if the number of events per
subpopulation (nsub) is high. However, the time to generate
the training dataset limits the maximum value nsub which there-
fore, cannot be set arbitrarily high.
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refer to in the following as model low) had a training time
of ∼5.5 h. In Fig. 2(a), we present the training and test loss
curves for the model. Based on the loss curves, we
conclude that the model can generalize effectively to data
that were not included in the optimization process.
The training time of model high was 82 min. The

shorter training time (compared to model low) is due to
the smaller number of hypersamples in training dataset
high. The associated training and test loss curves of
model high are plotted in Fig. 2(b). We discuss the
resulting respective posterior distributions in Sec. VA
for the training set low and Sec. V B for training
set high.

V. RESULTS

A. Results with model low

As a first validation step, we generate the P-P-plot of the
model. To this end, we draw 1000 population hypersamples
from the training dataset, input the corresponding posterior
samples in the model, and sample qðΛjDKi

Þ for each. From
the Λ samples, we compute the percentile in which the true
value of the population lies and sort the resulting percentiles
by value. The cumulative density of the percentiles is shown
in Fig. 3(a). If the model correctly infers the hyperpara-
meters, the figure should follow the diagonal within a
reasonable error interval. From the Kolmogorov-Smirnov

(a) (b)

FIG. 2. Loss for the (left) model low and (right) model high. Since the test loss (blue) and train loss (orange) do not differ much, we
conclude that the models generalize well to unseen data.

(a) (b)

FIG. 3. The P-P-plot for 1000 injections for model low (left) and 2500 injections for model high (right). We find p values as
indicated in the legend, indicating that the models reconstruct the population posterior correctly. However, the lowest p values of model
high are slightly lower than the model low. The mmax parameter of model high has the lowest value, with 15.7%.
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(KS) test (comparing the computed percentiles against the
uniform distribution), we obtain p values between 27% and
93%, which is expected for five variables, indicating that the
model reconstructs the population posterior correctly.
The above tests only include nsub ¼ 6 events per pop-

ulation. To further validate our results, we generate a
detected population with 60 GW events. With dingo, we
produce posterior samples for each of these events and run a
classical Monte Carlo Markov chain (MCMC) analysis
(with an analytical likelihood, using icarogw [60]) on
these samples. The resulting hyperparameter posterior dis-
tribution serves as our ground truth. This scheme differs
from the classical approach (for instance in [16,92]) as the
computationally expensive parameter estimation (PE) has

been carried out with dingo. This “crossing” from the
likelihood-free inference part to the classical inference (with
icarogw) is a simplification and comes at a cost. Ifdingo
does not correctly estimate the single-event posterior dis-
tribution, the resulting distribution of the hyperparameters
with icarogw will not represent the ground truth. We will
discuss below formodelhigh the possible consequences of
this assumption. Note that it is possible to correct for
possible inaccuracies of dingo by importance sampling.
However, since this significantly increases the computation
time we do not choose to pursue this here.
In parallel, we apply our model to the same single-

event posterior samples and combine the results with the
importance sampling step that was outlined in Sec. II B 2.

FIG. 4. Results from model low (NPE, blue) compared to a conventional hierarchical Bayesian analysis (HBA, green). The posterior
analyzes 60 GW events of population No. 4 (cf. Appendix C). The one and two sigma intervals are indicated as two-dimensional
contours and dashed lines mark the true values ofΛ. We could produce an effective sample size of ∼8 × 104 posterior samples in 2.5 min
of computation time. In total, we have verified our results on a total of twelve populations. For the largest discrepancy between our
model and the conventional approach consider the result in Fig. 5. The “PE” stands for individual event parameter estimation which, in
both cases, uses the dingo algorithm.
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This procedure is applied for twelve different populations.16

Figure 4 shows one out of these twelve distributions, with a
model that analyzes 60 events in total. Since the network was
trained for nsub ¼ 6 events, we divide the input data in nb ¼
10 subpopulations. The result shows that it is possible to
combine the output of multiple model evaluations and obtain
the correct population posterior. This figure is representative
of the majority of cases—we generally see good agreement
between the two methods. We have also verified that the
(arbitrary) division of events in the different subpopulations
does not impact the resulting population posterior.
To make this comparison more quantitative, we compute

the Jensen-Shannon (JS) divergence17 between the NPE
and HBA results for each of the variables in Λ. Table V
collects these values. The lower the JS divergence, the
better the agreement between two distributions. The JS
divergence for single-event PE with LALINFERENCE (for
identical runs with different random seeds) is ∼7 × 10−4nat
[108]. For two icarogw runs with the same settings,
we find JS divergences between 3 × 10−3nat and 10−4nat.
The JS divergences observed in our experiments are an
order of magnitude higher than these baselines. Thus,
there exists potential for further refinement in our
approach. The problems appear almost exclusively for

two hyperparameters: the minimum and maximum mass
of the population, mmin and mmax, and out of the two, the
minimum mass proves to be the more difficult parameter.
Out of the 60 JS divergences we have analyzed (twelve
populations with five hyperparameters each), 16 had a JS
divergence larger than 0.01. The population models
which proved to be most difficult to reconstruct were
populations 1, 7 and 10, where population 1 and 7 both
have low Hubble constant. Additionally, population 7 has
mmax ¼ 38M⊙, very close to the boundary of the prior for
which the model was trained (mmax ¼ 37M⊙). It is well
known the neural network performance decreases close to
the prior boundary. We show in the next section that it is
possible to recover the HBA result by applying importance
sampling to the samples produced from our model.

1. Failing of the model and recovery
from importance sampling

In certain cases the NPE samples do not agree with the
HBA samples. However, we have access to the probability
associated with which each population sample was gen-
erated through the construction of the NF. We can therefore
obtain the HBA result by calculating the (conventional)
population likelihood for each sample, pðΛjDCÞ, and
reweighting the NF samples to this target likelihood, using
the weights determined by Eq. (17). Figure 5 shows this
procedure on the example of population 1, and model low.
For comparison, the current LVK cosmological inference
code produces the classical result (with 24,000 samples and
parallelizing on 16 cores) in ∼8 h, whereas the flow
produced 300,000 samples in 2.3 min. Applying an addi-
tional importance sampling step (parallelizing on 16 cores)
generated an effective sample size of 104 in ∼3.3 h. This
gain in computation time is due to the reduced number
of likelihood evaluations with the NPE (3 × 105) when
compared to the HBA (1.7 × 106). These computation
times do not include the times for single-event parameter
estimation (here carried out with dingo and therefore,
within minutes). Also note that one can implement hier-
archical inference codes with just-in-time compilation,
using GPUs and faster sampling algorithms [109] that
generate hyperparameter posteriors in minutes.
When combining more than 10–20 subpopulations of

events, the resulting NPE posterior becomes unreliable.18

Consequentially, model low cannot analyze more than
∼100 events. This might be caused by model low not
resolving the fine structure in the posterior distribution that

TABLE V. JS divergence (in units of 10−3nat) for all hyper-
parameters and all twelve populations. The mean and median
values over all populations are also presented. The most prob-
lematic parameters are mmin and mmax. We have indicated which
population are plotted in later sections, corresponding to cases
where our model differs weakly or strongly to the conventional
approach.

JS divergence (10−3 nat)

Population H0 mmin mmax α β

0 6.4 26.4 4.9 2.9 1.6
1 (Fig. 5) 10.0 70.9 15.3 17.7 4.0
2 3.8 6.3 11.9 4.1 5.8
3 3.2 4.3 4.2 8.5 1.5
4 (Fig. 4) 7.0 10.3 3.5 0.9 1.4
5 0.9 4.2 7.2 6.8 0.8
6 1.8 6.6 11.6 8.1 3.5
7 2.6 16.4 18.4 3.4 21.3
8 8.9 4.6 4.5 3.4 1.0
9 2.3 10.1 17.2 6.2 2.1
10 30.6 10.2 21.8 4.0 0.8
11 3.4 4.1 11.1 6.9 2.6

Mean 6.73 14.53 10.97 6.07 3.86
Median 3.61 8.36 11.35 5.16 1.81

16Each population has a different Hubble constant, and
variables parametrizing the source frame mass distribution.
The details of the populations are given in Table VI.

17The JS divergence is a symmetrized version of the KL
divergence that was defined in Eq. (11).

18We occasionally find a nonsmooth posterior distribution for
models that analyze one subpopulation. While this does not
significantly impact the result, these discontinuities accumulate
when we compute the product of several posteriors that each
analyze one subpopulation, respectively. This is likely a conse-
quence of the chosen model architecture and not intrinsic to the
method.
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becomes important when combining large event sets. We
thus rely on training set high to construct a model that can
analyze a larger number of events as we now elaborate.

B. Results with model high

To show the capability of the model to reconstruct the
population posterior given a large number of observed
events, we use training set high to construct a model
analyzing nsub ¼ 100 GW events. Figure 2(b) shows the
resulting loss curves of the training and test dataset,
respectively. The train and test loss coincide, suggesting
that the model can process unseen input data and
generate accurate hyperparameter posterior distributions.
Figure 3(b) shows the P-P-plot of model high with 2500

population realizations, implying that the network has
correctly learned the desired posterior distribution.
We have verified that when analyzing 100GWevents that

the NN is in good agreement with the HBA for all the
populations described in Table VI. Considering a larger
number of events, we focus on one specific population, with
the parameters H0 ¼ 67 km s−1Mpc−1, mmin ¼ 20.1M⊙,
mmax ¼ 42.9M⊙, α ¼ 0.6 and β ¼ −0.5. Figure 6 com-
pares the posterior of our model and the classical
posterior, analyzing 600 events. Although the posterior
distributions overlap, they show a significant deviation.19

FIG. 5. Results from model low [NPE (PE: DINGO), blue] compared to a conventional hierarchical Bayesian analysis (HBA) (green).
The posterior analyzes 60 GW events of population No. 1 (cf. Appendix C). The one and two sigma intervals are indicated as two-
dimensional contours and dashed lines mark the true values of Λ. As the NF and the classical analysis differ, most notably in the variable
mmin, we perform an importance sampling with the classical likelihood. The resulting posterior is shown in red [NPE (weighted)] and
agrees well with the classical result.

19As previously, we can successfully recover the HBA result
through importance sampling.
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The computation time for the conventional approach was
127 h20 and for our model 7 min.
The reason for the discrepancy in Fig. 6 is still an open

question: as anticipated above, we make an approximation of
the ground truth. We use dingo to estimate the single-event
posterior distributions, and these samples are then sub-
sequently analyzed by icarogw to derive the hyperpara-
meter posterior. To decrease the computation time we did
not perform importance sampling on the generated dingo
samples for the individual event posteriors. This can degrade
the performance of the estimation of the single-event pos-
terior. From a preliminary analysis, we find that some pos-
terior distributions as inferred by dingo differ from the

PE samples ofbilby. In the near future, we hope to perform
a full PE on all events and compute the ground truth from
conventional analyses alone. However, we emphasize that
even if thedingo algorithm is not a perfect approximation to
the single-event posterior, this does not invalidate our
approach—by construction the NPE model learns the pos-
terior distribution marginalized over the dingo uncertainty.
There are other potential sources of the discrepancy, such

as the smaller number of hypersamples represented in the
training dataset high. We have checked that the posterior
resulting from a model trained with training set low is
compatible with a posterior trained with training set high.
Moreover, we find a strong dependence of the HBA

results on the number of posterior samples per event (if the
number of posterior is not “high enough”). This potentially
additional source of uncertainty is now discussed.

FIG. 6. Results from model high (blue) compared to a conventional hierarchical Bayesian analysis (HBA) (green). Both analyses use
the dingo samples as input data. The posterior analyzes 600 GW events. The one and two sigma intervals are indicated as two-
dimensional contours and dashed lines mark the true values of Λ. The model and the conventional analysis show a discrepancy.
However, the model is generally closer to the injected values than the HBA method that relies on dingo PE samples.

20This computation time was for an injection set (used to
compute the selection effect) of 1.4 × 105 detected GW signals.
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1. Impact of the number of posterior samples

The HBA scheme usually processes Oð103–104Þ pos-
terior samples per event. Since the NPE model works
with a significantly lower number, this section explores the
consequences of this approximation.
We carry out the HBA using 100 posterior samples per

event, for 300 events in total. The population analyzed is
the same as in the previous paragraph. We repeat the HBA
many times, using a different set of posterior samples for
each event each time. This leads to a scatter of the
population posterior, as shown in Fig. 7.
For the hyperparameters with more scatter (in particular

H0 and mmin) the NPE differs more from the individual
HBAs and gives posteriors that are broader, covering the
range over which the individual HBAs vary. So, the NPE is
mass covering, i.e. it has support across the scatter of the

posterior that arises from the limited number of posterior
samples. This indicates that the NPE marginalizes over the
additional uncertainty arising from this approximation.
This behavior is also expected from the construction of
the loss in Eq. (14)—if the model qðΛjDKÞ has no support
on the support of pðΛjDKÞ, the loss diverges. As a
consequence, future analyses will either have to increase
the number of posterior samples or use a more complete
summary of the GW signal. In this limit, we expect to find a
closer agreement between these two methods.21

FIG. 7. Results from repeating the HBA analysis with different random sets of 100 samples from each single-event posterior. We
compare this to the NPE scheme, plotted in gray. The posterior here was computed from 300 events, and the true population parameters
are indicated by the dashed lines.

21Note that the works of [110,111] have explored these
consequences for conventional analyses. An insufficient number
of posterior samples per event was found to lead to narrow,
incorrect population posteriors.
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VI. CONCLUSION

Future planned detector networks will detect up
to a hundred thousand GW sources each year, allowing
for high-precision measurements of the parameters char-
acterizing the population, including cosmological para-
meters. With these many events, fast methods, such
as machine learning, will be essential for population
inference and related analyses, e.g., tests of general
relativity (GR).
In this work, we have demonstrated that normalizing

flows can rapidly produce the posterior distribution of
cosmological and population parameters inferred from
observed GW dark sirens. We have introduced a loss
function one has to maximize for the NF to converge
to the true posterior distribution. Within this setup,
the posterior learned naturally incorporates selection
effects. Normalizing flows prove to be flexible enough
to approximate the posterior distribution of up to 600 GW
events.
However, there are instances where the results from the

flow do not align with the standard results from the
HBA. The work of [110,111] has shown for conventional
HBAs that incorrect population posteriors can arise
due to insufficient samples per Monte Carlo integral, an
effect which could contribute to the observed differences.
An almost perfect agreement can still be obtained by
performing importance sampling on the samples output
by the neural network, using the standard HBA likeli-
hood for the weights. This process increases the computa-
tional time of our method, but still requires Oð10Þ
fewer likelihood evaluations than in the standard HBA
approach.
The reasons for the discrepancies between HBA and our

method are still unresolved. The single-event posterior
samples generated by dingo could deviate from the true
single-event posteriors, possibly leading to biases in the
HBA results. Our method relies on an arbitrary data
summary (provided the summary contains the majority
of the signal information).22 As long as the flow trains on
this summary data, the model should recover the true
hyperparameter posterior. Indeed, the network could, in
principle, compensate for the eventual incorrect represen-
tation of the GW data, but we have not explicitly shown this
in the present work. Moreover, we currently use 100
posterior samples per GW event which also leads to an
additional uncertainty. To produce reliable posterior dis-
tributions one has to use a sufficient number of posterior

samples per event, posing a potential bottleneck for
analyses of 3G detector data. Indeed, future analyses might
have to limit the number of posterior samples for comput-
ing efficiency, resulting in an additional uncertainty our
approach can marginalize over. Alternatively, a possibility
is that the model has not accurately learned the population
posterior, but we have performed several tests that make
this scenario unlikely.
Our approach requires us to divide the observed pop-

ulation into subpopulations of fixed dimensionality to
use as input for the network. Errors in the learning of
the posterior accumulate when combining the results
of subpopulations. In practice, we find that when the
model is repeatedly evaluated to combine a large number
[Oð10–20Þ × nsub] of subpopulations of events, instabilities
appear that prevent the production of an accurate posterior,
i.e. GW catalogs with Nobs=nsub⪆10 cannot be robustly
analyzed with the current framework. A more robust
network architecture might be needed to learn the posterior
with the necessary accuracy to analyseOð1000Þ events. We
leave this for future work, as well as more complex mass
and redshift distributions.
Finally, the method proposed can test population models

with source frame mass distributions that are difficult to
parametrize analytically since it relies on simulation-based
inference, with (in principle) no explicit likelihood needed.
For instance, one could include stellar evolution codes,
circumventing the choice of a analytic distribution describ-
ing the source frame mass distribution.
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APPENDIX A: COUPLING FLOWS

We provide details of the deep NN in this appendix. The
flow transformation of Sec. II C, g, is given by a sequence
of coupling transforms [82] that are each parametrized by
monotonic rational quadratic splines [106]. As a reminder,
g applies a coordinate transformation on Z∈RD.
One can write the sequence of coupling transforms as

g ¼ gðnblockÞ ∘ gðnblock−1Þ ∘… ∘ gð2Þ ∘ gð1Þ; ðA1Þ

where nblock is the number of blocks. Each of the functions
gðiÞ depends on the data, a set of NN parameters and the
latent variable Z. The gi all share the same functional form

22The choice we made here, to represent data by physical
posterior samples, θ, is not the only possibility. For instance,
another approach would be to directly compress the strain data.
This compressed data can then provide the input for the
population inference with a NF. As such, our approach is
particularly adapted to a population analysis relying on other
NN summaries.
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(but have different model parameters). First, one applies
a random (but different for each coupling transform,
fixed during training) permutation of Z. Then the first k
components of the reshuffled variable Z̃ are left unchanged.
The remaining parameters undergo an invertible (spline)
transformation si that is parametrized by the NN parameters
Θi. One can write the transformation component-wise
as [82]

½gðiÞðZÞ�j ¼
�Zj if 1 ≤ j ≤ k;

½sðZ;ΘðiÞÞ�j if kþ 1 ≤ j ≤ D;
ðA2Þ

where ΘðiÞ are the NN parameters of the ith coupling
transformation. A fully connected residual network gov-
erns the spline function. Each transformation is inver-
tible, and its inverse and Jacobian is simple to compute.
Figure 8 shows schematically the transformation of one
such elementary cells that make up the flow. In our
case, the transformation s∶RD → RD−j corresponds to a
monotonic,23 quadratic, rational spline function [106]
(see Fig. 1 of [106] for an example of a one-dimensional
spline function). The parameters of this function are
governed by a NN. Note that s depends on all variables
Z and can hence incorporate correlations between differ-
ent parameters.

APPENDIX B: LOSS IDENTITY

In this appendix, we show that the loss function proposed
in Eq. (12) equals the expectation value of the KL
divergence between the true posterior and the model.
We proceed in two steps: we demonstrate that the four
expectation values can be rewritten in terms of two

expectation values. These two expectation values can
then be exchanged (from Bayes’s theorem), yielding the
desired result.
Let us consider the following expectation value of the

function fðw; zÞ

L ¼ EpðwÞEpðxjwÞEpðyjxÞEpðzjyÞfðw; zÞ: ðB1Þ

This can be written from definition as a fourfold integration

L¼
Z

dwdxdydzpðwÞpðxjwÞpðyjxÞpðzjyÞfðw;zÞ: ðB2Þ

Making the additional assumption that y and w are condi-
tionally independent given x, i.e.,

pðy;wjxÞ¼pðyjxÞpðwjxÞ ⇔ pðyjx;wÞ¼pðyjxÞ; ðB3Þ

and similarly that z and ðx; wÞ are conditionally indepen-
dent given y, so that pðzjyÞ ¼ pðzjy; x; wÞ, and applying
the law of conditional probability pðsjtÞpðtÞ ¼ pðs; tÞ, the
above expression can be rewritten as

L ¼
Z

dw dx dy dz pðw; x; y; zÞfðw; zÞ: ðB4Þ

Since the function f is independent of the random variables
x, y, we can perform the integration

L ¼
Z

dw dz pðwÞpðzjwÞfðw; zÞ: ðB5Þ

After applying Bayes’s theorem and changing the order of
the integration, we obtain

L¼
Z

dwdzpðzÞpðwjzÞfðw;zÞ¼EpðzÞEpðwjzÞfðw;zÞ: ðB6Þ

The identity claimed in Sec. II B 1 of Eqs. (12) and (14)
can be obtained for w ¼ Λ, x ¼ θK , y ¼ DK , z ¼ θ̂K , f ¼
− log½qðΛjθ̂KÞ� and pðwjzÞ is the target distribution,
namely the population posterior given a set of GW
events pðΛjfDkgk∈KÞ. The conditional independence con-
ditions reduce to assuming pðθ̂K;Λ; θKjDKÞ ¼ pðθ̂KjDKÞ
pðΛ; θKjDKÞ, which holds because the distribution of
posterior samples depends only on the observed data,
and pðDK;ΛjθKÞ ¼ pðDKjθKÞpðΛjθKÞ, which holds
because the observed data depends only on the parameters
of the sources in the data.

APPENDIX C: POPULATION DETAILS

In the results section we analyze 13 different popula-
tions, each of which has a different underlying set of
hyperparameters. Table VI lists the value of all parameters
for each population.

FIG. 8. Schematic overview of an elementary cell of the
coupling transform on the example of a four-dimensional flow.
The compressed data that is summarized by the second embed-
ding network serves as the input data for the spline through a
residual neural network.

23If the spline was not monotonic the function would be not
invertible, making it unsuitable for NFs.
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