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In this paper, we propose a new analog gravity example—a spinning (or Kerr) black hole in an
extended fluid model; the latter was derived in an earlier work [A. K. Mitra and S. Ghosh, Divergence
anomaly and Schwinger terms: Towards a consistent theory of anomalous classical fluids, Phys. Rev. D
106, L041702 (2022).] by two of the present authors. The fluid model receives Berry curvature
contributions and applies to electron dynamics in condensed matter lattice systems in the hydrodynamic
limit. We construct the acoustic metric for sonic fluctuations that obey a structurally relativistic
wave equation in an effective curved background. In a novel approach of dimensional analysis, we
have derived explicit expressions for effective mass and angular momentum per unit mass in the
acoustic metric (in terms of fluid parameters), to identify with corresponding parameters of the Kerr
metric. The spin is a manifestation of the Berry curvature-induced effective noncommutative structure in
the fluid. Finally we put the Kerr black hole analogy in a robust setting by revealing explicitly the
presence of horizon and ergoregion for a specific background fluid velocity profile. We also show that
near horizon behavior of the phase-space trajectory of a probe particle agrees with Kerr black hole
analogy. In a fluid dynamics perspective, the presence of a horizon signifies the wave blocking
phenomenon.

DOI: 10.1103/PhysRevD.109.064055

I. INTRODUCTION

Analog gravity [1] started with the work of Unruh [2],
who showed that first-order fluctuations in irrotational,
nonviscous, barotropic flow obey a structurally relativistic
massless scalar wave equation in an effectively curved
background, with an acoustic metric (AM), comprising of
fluid flow parameters (for diverse models, see [3,4]). AM
reveals black/white holelike features in velocity space,
known as wave blocking in fluid dynamics [5].
In this paper, we construct a new AM, (in the framework

of [2]), in an extended fluid model with the Berry curva-
ture effects, derived in [6]. This phase space describes
semiclassical electron dynamics in a magnetic Bloch band,
with periodic potential in an external magnetic field and
Berry curvature [7]. This fluid dynamics is relevant in
electron hydrodynamics in condensed matter, where elec-
tron flow obeys hydrodynamic laws instead of Ohmic [8].
Generically electrons in metals act as nearly-free Fermi gas

with a large mean free path for electron-electron collision.
Recently hydrodynamic regime was achieved in extremely
pure, high quality, electronic materials—especially gra-
phene [9], layered materials with very high electrical
conductivity such as metallic delafossites PdCoO2 and
PtCoO2 [10].
The salient feature in our work is that the AM after a

coordinate transformation [11] is similar to Kerr metric
[12] in Eddington-Finkelstein (EF) coordinates [13].
Recently, there have been several attempts to construct
analog models of BHs other than the nonrotating ones
[14–17]. The fluid, with the presence of a vortex in it, has
been considered as a system to construct an analog of a
rotating BH [14]. In [15], authors reasoned that in a
shallow water system, with a varying background flow
velocity, metric analogs of Kerr metric can be constructed.
Later, the presence of superradiance was found in it [16]
and also in the Bose-Einstein condensate [17]. In a recent
work in this direction but exploiting the optical vortex
is [18], the authors have used Laguerre-Gaussian-type
beams, bearing phase singularities. These types of beams
have transverse intensity profiles comprising all character-
istics of a vortex. The fluctuations in the amplitude and the
phase of the electric field have been shown to satisfy a
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massless scalar field equation on a curved background,
similar to the Kerr metric. However, this present paper is
possibly the first instance of an analog Kerr metric in the
fluid subjected to an external magnetic field and Berry
curvature. However, it is not unexpected since a spinlike
feature appears in Berry curvature-modified particle
dynamics [19]. The physics behind this AM is revealed
through explicit construction of Kerr-like parameters,
such as effective mass meff and angular momentum per
unit mass aeff , out of fluid composites via dimensional
analysis. More interestingly, using a specific form of
nonuniform background fluid velocity we explicitly pro-
vide spatial positions of the ergoregion and horizon,
characteristic of the Kerr metric.1 Recently, multiple
articles have shown studies on the trajectories of Weyl
fermions in curved spacetimes [20–22]. One of them
presented the trajectory of the massless Weyl particles
around an analog Schwarzschild black hole [22]. Here we
depict the phase space trajectories of a probe particle
around the (Berry curvature-induced) analog Kerr metric
that we have found and point out that the location of the
analog horizon in this analog Kerr metric is the same as
that of one in the Kerr metric in general relativity.

II. AM WITH BERRY CURVATURE EFFECTS

We consider a fluid with pressure PðρÞ. e is electronic
charge, B external magnetic field and ΩðkÞ is Berry
curvature in momentum ðk̄Þ space. For small ΩðkÞ the
extended fluid model [with full expressions [6] in the
Supplemental Material Eqs. (1)–(3)] is ½Aðx;kÞ ¼
1þ eBðxÞ ·ΩðkÞ�

ρ̇ ¼ −∇
�
ρv
A

�
; ð1Þ

v̇ þ ðv · ∇Þv
A

¼ −
∇P
ρA

: ð2Þ

Irrotational v ¼ −∇ψ is written by a velocity potential ψ .
The velocity cs of sonic disturbance in the medium and the

system enthalpy h are cs ¼
ffiffiffiffiffi
dP
dρ

q
;∇h ¼ ∇P=ρ and (2)

becomes

−∇ψ̇ þ∇
�ð∇ψÞ2

2A

�
¼ −∇ h

A
→ ψ̇ −

ð∇ψÞ2
2A

¼ h
A
: ð3Þ

With the fluid variables as backgroundþ fluctuation [2],

ρ¼ρ0þϵρ1; P¼P0þϵc2sρ1;

vi¼v0iþϵv1i¼∂iψ0þϵ∂iψ1; ∇h1¼c2s∇ρ1=ρ0: ð4Þ

the first-order perturbation terms are

ρ1 ¼
�
ρ0ψ̇1

c2s

�
þ
�
ρ0v0
! · ∇ψ1

c2sA

�
; ð5Þ

ρ̇1 ¼ −
1

A
∇:ðρ1v0!− ρ0∇ψ1Þ: ð6Þ

Taking the time derivative of (5) and comparing it with (6),
(keeping external parameters and cs fixed), we arrive at the
wave equation of massless relativistic scalar in a curved
spacetime,

∂μðfμν∂νψ1Þ ¼ 0;

fμν ¼ ρ0
c2s

0
BBBBBB@

A vx vy vz

vx
v2x−c2s
A

vxvy
A

vxvz
A

vy
vxvy
A

v2y−c2s
A

vyvz
A

vz
vxvz
A

vyvz
A

v2z−c2s
A

1
CCCCCCA
: ð7Þ

Note that fμν depends on the background velocity
v0i which we write as vi. The effective background metric
gμν is fμν ¼ ffiffiffiffiffiffi−gp

gμν with the determinant of fμν given by

jfμνj ¼ ð ffiffiffiffiffiffi−gp Þ4 1
g ¼ g ¼ − ρ4

0

c2sA2. The AM is constructed

out of background fluid velocity and inherits symmetries
of the latter. The AM is stationary as flow is stationary
(or steady in fluid dynamics terminology). Thus,
cherished AM gμν, one of our major results, in polar
form is

gμν ¼
ρ0
Acs

0
BBBBB@

c2s−ðv2rþv2θþv2ϕÞ
A vr rvθ r sin θvϕ
vr −A 0 0

rvθ 0 −Ar2 0

r sin θvϕ 0 0 −Ar2 sin2 θ

1
CCCCCA
:

It is important to remember that fluid particles see the flat
Minkowski metric (for fluid velocity ≪ velocity of the
electromagnetic field in vacuum) whereas acoustic fluctu-
ations feel only the AM; some basic properties of the latter
carry a legacy of the former. From the above AM it is
clear [23] that the regions of supersonic flow are ergo-
regions where gtt changes sign, gtt ¼ 0 → vr ¼ cs corre-
sponds to the event horizon (wave-blocking zone in fluid
dynamics); the boundary that null geodesics (or phonons)
cannot escape. In fact, here the ergosphere coincides with
the event horizon. Other notions such as trapped surface,
surface gravity, etc also exist for AM [23]. Spatial positions
of the analog horizon in the fluid will appear indirectly
from csðrÞ; vrðrÞ.1We thank the anonymous referee for the suggestion.
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III. meff, aeff IN AM-KERR ANALOGY

For matching with Kerr, we convert the acoustic path-
length dimension to jds2j ¼ ðlengthÞ2 ¼ ½L�2. In GR, the
metrics have dimensional parameters such as Newton’s
constant G and velocity of light c, among others. Similarly,
AM can depend on cs, background fluid density ρ0 (both
not constant in general), etc. Another fluid parameter
is the dynamic (or absolute) viscosity μ of dimension of
jμj ¼ ½M�½L�−1½T�−1 (with kinematic viscosity being μ=ρ0).
A length scale l (∼ spatial dimension of the fluid system)
enters our acoustic model. k-dependence in ΩðkÞ refers to
the quasimomentum of a single band (in the crystalline
solid) of the Bloch electron, comprising the electron fluid
in the hydrodynamic limit, where the AM is constructed.
For the present work, k is just a label and is treated as a
constant. For a uniform BðrÞ ¼ B, A is effectively a
constant. The resulting acoustic path has jds2AMj ¼
ðlengthÞ2 dimension,

ds2AM¼cslρ0
μA

�ðc2s−v2Þ
A

dt2þ2vrdtdrþ2rvθdtdθ

þ2rsinθvϕdtdϕ−Afdr2þr2dθ2þr2sin2θdϕ2g
�
;

ð8Þ

where v2 ¼ v2r þ v2θ þ v2ϕ. Now we perform a coordinate
transformation

dt → dtþ dr
cs

þ dθ
ωs

þ dϕ
Ωs

;

ωs ¼ angular frequency;

Ωs ¼ azimuthal frequency of sonic disturbance; ð9Þ

on the acoustic path to obtain,

ds2AM ¼ cslρ0
μA

�ðc2s − v2Þ
A

dt2 þ
�ðc2s − v2Þ

Ac2s
þ 2vr

c2s
−A

�
dr2 þ 2

�ðc2s − v2Þ
Acs

þ vr

�
dtdrþ 2

�ðc2s − v2Þ
AΩs

þ r sin θvϕ

�
dtdϕ

þ 2

�ðc2s − v2Þ
Aωs

þ rvθ

�
dtdθ þ 2

�ðc2s − v2Þ
Acs

þ vr
ωs

þ rvθ
cs

�
drdθ þ 2

�ðc2s − v2Þ
AΩsωs

þ r sin θvϕ
ωs

þ rvθ
Ωs

�
dθdϕ

þ 2

�ðc2s − v2Þ
AcsΩs

þ vr
Ωs

þ r sin θvϕ
cs

�
drdϕþ

�ðc2s − v2Þ
AΩ2

s
−Ar2sin2θ þ 2r sin θ

Ωs
vϕ

�
dϕ2

þ
�ðc2s − v2Þ

Aω2
s

−Ar2 þ 2r
ωs

vθ

�
dθ2

�
: ð10Þ

Our major observation is that in the equatorial plane (i.e., θ ¼ π=2 hypersurface) and with vθ ¼ 0, the acoustic path,

ds2AM ¼ cslρ0
μA

�ðc2s − v2Þ
A

dt2 þ
�ðc2s − v2Þ

Ac2s
þ 2vr

c2s
−A

�
dr2 þ 2

�ðc2s − v2Þ
Acs

þ vr

�
dtdrþ 2

�ðc2s − v2Þ
AΩs

þ rvϕ

�
dtdϕ

þ 2

�ðc2s − v2Þ
AcsΩs

þ vr
Ωs

þ rvϕ
cs

�
drdϕþ

�ðc2s − v2Þ
AΩ2

s
−Ar2 þ 2r

Ωs
vϕ

�
dϕ2

�
; ð11Þ

is structurally equivalent to Kerr metric path length in Eddington-Finklestein coordinates [full expressions in Supplemental
Material Eqs. (5)–(10)],

ds2Kerr ¼
�
1 −

2Gm
rc2

�
c2dt2 −

4Gm
rc

dtdrþ 4Gma
rc2

dtdϕ −
�
1þ 2Gm

rc2

�
dr2 þ 2

a
c

�
1þ 2Gm

rc2

�
drdϕ

−
�
r2 þ a2

c2
−
2Gma2

rc4

�
dϕ2: ð12Þ

We exploit the dimensional equality ds2AM ¼ ds2Kerr ¼ ðlengthÞ2 to construct effective mass and spin parameters for AM,
in analogy with mass (m) and angular momentum per unit mass a ¼ J=m of Kerr black hole [with details in Supplemental
Material Eqs. (11)–(17)]:

(i) Comparison of the dimensions of gtt gives

meff ≡ l3ρ0v2

A2c2s
ð13Þ

and
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(ii) Comparison of the dimensions of gtϕ gives

aeff ≡ lρ0c5s
μA2Ωsv2

: ð14Þ

This constitutes another set of important results since these effective parameters are, in principle, measurable.
In terms of meff and aeff the same metric (11) turns out to be

ds2AM ¼
�
cslρ0
μA2

−meff
cs
μl2

�
c2sdt2 þ 2meff

c2s
μl2

�
c2s
v2

− 1þ csvrA
v2

�
dtdrþ 2meffaeff

�
A2

l3ρ0

��
1 − v2 þΩsA

c2s
rvϕ

�
dtdϕ

þ
�
cslρ0
μA2

�
1þ 2

vr
c2s

A −A2

�
−meff

cs
μl2

�
dr2 þ 2aeff

v2r
c3s

�
1 −meff

A2

l3ρ0cs
þAvr

cs
þAΩs

c2s
rvϕ

�
drdϕ

þ
�
μA2v4

c7slρ0
a2eff

�
1 −meff

A2

l3ρ0

�
−
cslρ0
μ

r2 þ 2
cslρ0
μAΩs

rvϕ

�
dϕ2: ð15Þ

Remarkably, our entirely algebraic methodology for
implementing coordinate transformations (10) and pre-
scription of identifying fluid mass and spin parameters
have resulted in an AM (15), which can be compared term
by term with the Kerr metric (see Supplemental Material
[24]). Notice that meff ; aeff in AM (15) occupy identical
positions asm, a in Kerr metric (see Supplemental Material
[24]). This provides a mathematical consistency of our
framework and reveals the physics behind AM.

IV. PHASE SPACE PROBE TRAJECTORY

The AM at θ ¼ π=2 has a timelike Killing vector
χa ¼ ð1; 0; 0; 0Þ with conserved energy of a particle given
by E ¼ −χapa ¼ −pt, where pa ¼ ðpt; pr; pθ; pϕÞ. Using
the AM in the dispersion relation gabpapb ¼ −M2 for a
particle of mass M in AM (with pθ ¼ 0), particle energy E
is obtained in terms of the other momentum components,
as the positive energy root. Hamilton’s equations of
motion are

ṙ¼ ∂E
∂pr

; ṗr¼−
∂E
∂r

; ϕ̇¼ ∂E
∂pϕ

; ṗϕ¼−
∂E
∂ϕ

: ð16Þ

Let us consider a particular background fluid profile known
as “draining bathtub” flow (for details see [23])

v ¼ Ar̂þ Bϕ̂
r

: ð17Þ

with constant A, B. In this idealized model, background
fluid flow is planar until it reaches a linear sink along
perpendicular direction. The background fluid density ρ is
taken to be constant throughout the flow. Furthermore, for
the barotropic fluid considered here, (2) and specific
enthalpy (h) indicate that the background pressure P
and the speed of sonic disturbance cs are also constant.

The equation of continuity (1), in cylindrical coordinates
with a sink along z-direction, reduces to

1

r

�
∂

∂r
ðrvrÞ þ

∂vϕ
∂ϕ

þ ∂

∂z
ðrvzÞ

�
¼ 0; ð18Þ

and clearly the profile (17) (with vz ¼ 0 on the plane just
away from the sink and planar distance r measured from
z-axis) is a solution of (18) (for more details, see Sec. 2.4.3
of [23]).
In this model the acoustic ergosphere and event horizon

form at

rergosphere ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

cs
; rhorizon ¼

jAj
cs

: ð19Þ

However, one important thing needs be to mentioned here
is that the distinction between ergosphere and the acoustic
horizon is critical for this model [23]. Therefore, keeping
that in mind, we proceed here to solve these coupled
differential equations numerically [Eqs. (16)].
After the numerical solutions we have plotted the phase-

space plot between the radial coordinate (r) and the
corresponding radial momentum of the particle ðprÞ.
Depending on the sign of A (þ and −) we plot two cases.
The values of the other parameters are as follows: A ¼ 5,
cs ¼ 100,Ωs ¼ 1.0, Γ ¼ cslρ0

μA ¼ 100. In the first figure, i.e.,
Fig. 1 the amplitudes of the velocity components (i.e., vr
and vϕ) are respectively A ¼ B ¼ 100; 000. In Fig. 1, we
can see, that the phase-space trajectory of the particle starts
with some lower-momentum value for a larger value of r,
but as r decreases, the corresponding radial momentum
value (pr) increases and at r ¼ 1000 the momentum
reaches its maximum value. This nature of the graph
depicts that as the particle moves near to r ¼ 1000 the
particle experiences a “sudden change” in its trajectory.
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Moreover, according to the “draining bathtub” model the
acoustic horizon should appear at r ¼ 1000 [see Eq. (19)]
which exactly happens in our case based on our specified
parameter values. Consequently, from this occurrence, we
can identify the position of the horizon, which exactly
matches the theoretical value of the horizon, i.e., at
jAj=cs ¼ 1000. In this context, it is worth mentioning that
in some near-horizon contexts [13,25,26] it has been shown
that in the near-horizon region, a particle experiences this
kind of “sudden change” or ”instability” in its phase-space
trajectory.
Similarly, in Fig. 2 we have chosen A ¼ −100; 000 and

B ¼ 500 keeping the other parameters the same and we
find that the radial momentum value of the massless
particle does not change much until reaching r ≃ 2000.

After r ≃ 1000 the momentum value falls abruptly which
suggests that the particle is sucked inside the horizon which
is situated at r ¼ 1000. This characteristic is exactly similar
to an ingoing massless particle in the near-horizon region of
a SSS BH [see Eq. (26) and Page 8 of [26] ] and a Kerr BH
(see Page 6 of Ref. [13]).
In a nutshell, we can say that with the radial-dependent

background flow of fluid, we can construct an analog
metric which mimics the exact structure of Kerr BH, and by
studying the particle dynamics in this background we can
pinpoint the exact location of the horizon for particular
values. Future works will involve a more rigorous analysis
with the full anomalous fluid dynamics and an arbitrary
fluid flow. Attempts of laboratory demonstrations of this
new analog black hole model will be worthwhile.

FIG. 1. Phase-space diagram for a massless particle (for A ¼ B ¼ 1; 000; 000). From the figure we can see as the particle moves near
to r ¼ 1000 its radial momentum pr increases exponentially reaching its peak as r attains the value of 1000. This occurrence enables us
to pinpoint the horizon’s position, which precisely corresponds to the theoretical expectation at jAj=cs ¼ 1000.

FIG. 2. Similarly, for A ¼ −100; 000 and B ¼ 500 we plot again plot the phase-space trajectory of the massless particle remaining
other parameter values the same. We see that until around r ≃ 2000 the radial momentum of the particle does not change much, but near
to r ≃ 1000 the momentum of the particle suddenly falls down which suggests that the massless particle falls inside the horizon.
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