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We describe embeddings of n-dimensional Lorentzian manifolds, including Friedmann-Lemaître-
Robertson-Walker spaces, in Rnþ2 such that the metrics of the submanifolds are inherited by a restriction
from that of Rnþ2, and the action of the linear group SOð2; nÞ of the ambient space reduces to conformal
transformations on the submanifolds.
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I. INTRODUCTION

It is well known that de Sitter space of dimension n can
be obtained as a hyperboloid embedded in a Rnþ1

Minkowski space. This short note presents an observation
to realize more general cosmological Friedmann-Lemaître-
Roberston-Walker (FLRW) spacetimes in a similar fashion
in Rnþ2, compatible with the action of the conformal
group SOð2; nÞ.
Embeddings of conformally flat n-dimensional

Lorentzian manifolds in higher-dimensional flat space-
times have been considered in the past in various
contexts [1–7]. More often than not, these embeddings
use convenient coordinate systems, in which the metric
tensor of the embedded manifold can be extracted from
the ambient metric by applying suitably chosen con-
straints. The advantage of such a method is that it is
fitted for specific practical applications. By contrast,
some aspects, such as the action of the linear conformal
group (when applicable) or a global geometric view, are
much less apparent.
In this paper, in a coordinate-free approach, we build the

embedding in Rnþ2 of n-dimensional conformally flat
spaces, hereafter denoted by W, including FLRW space-
times as special cases. While explicit embedding formulas
date back to FLRW space’s infancy [8,9] and were
rediscovered unknowingly later [10], here the embedding
is as natural as possible, meaning that the metric on W is
the restriction of the Rnþ2 metric, and the action of the
linear group SOð2; nÞ of Rnþ2 reduces to conformal
transformations on W. The present work originates from

the need of a geometric (coordinate-free) framework for
the generalization of previous works regarding the
restriction to submanifolds of differential operators—in
particular, the Laplace operator [11].
The geometric setting with its definitions and conven-

tions is exposed in Sec. II. The embeddings follow from
Proposition 1, proved in Sec. III. The inverse problem,
extensions, and relations to previous works are discussed
in Sec. IV.

II. GEOMETRIC SETTING

LetRnþ2 be a pseudo-Euclidean space of dimension nþ 2
equipped with the metric η ¼ þ − � � � −þ. Throughout the
paper, μ; ν;… ¼ 0;…; n − 1 are related to n-dimensional
manifolds, and α; β;… ¼ 0;…; nþ 1 to Rnþ2. The canoni-
cal coordinates of a point y of Rnþ2 are denoted fyαg, and
the associated Cartesian orthonormal basis is denoted f∂αg.
We denote by D the dilation operator; in y coordinates it
reads D ¼ yα∂α.
We will denote by Xh the n-dimensional manifold

obtained as the intersection of the (nþ 1)-dimensional
null cone of Rnþ2: C ≔ fy∈Rnþ2;CðyÞ ≔ yαyα ¼ 0g, and
the surface Ph ≔ fy∈Rnþ2; hðyÞ ¼ 1g, h being a homo-
geneous function of degree one.

III. EMBEDDINGS

The SOð2; nÞ-compatible embedding of (n-dimensional)
FLRW spaces in Rnþ2 is a special case of the following
theorem:
Theorem 1. LetRnþ2 be the nþ 2 dimensional real space

with the pseudo-Euclidean metric η with signature ð2; nÞ.
Let f and l be two homogeneous functions of degrees one
and zero, respectively, and k ¼ e−lf. Let gf be the induced
metric from Rnþ2 to Xf, with gk having the same relation
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with respect to Xk. Then, gk ¼ e2lg̃f, where g̃f is a metric
on Xk which is isometric to gf. Moreover, the elements of
the linear group SOð2; nÞ on Rnþ2 act on Xk and Xf as
conformal transformations.
Proof. Let

Λ∶ Rnþ2 → Rnþ2

y ↦ elðyÞy:

We clearly have ΛXf ¼ Xk, since, for y∈Xf, one
has elðyÞy ¼ elðyÞy=fðyÞ ¼ y=kðyÞ and kðy=kðyÞÞ ¼ 1.
Moreover, Λ induces a diffeomorphism Λr between Xf

and Xk.
In order to determine the relation between gf and gk, the

metrics induced from the ambient space on Xf and on Xk,
respectively, let us consider V ∈TyRnþ2. A straightforward
calculation from the definition of the push forward leads to

Λ�V ¼ elðV þ hdl; ViDÞ:

This map induces the map Λr� between TXf and TXk, with
the same expression on a vector field of TXf.
Now, let U0 ¼ Λr�U, V 0 ¼ Λr�V, where U;V ∈TXf,

and let m and n be the canonical injections from Xf

and Xk, respectively, in Rnþ2. Then, noting that ηðD;UÞ ¼
ηðD;VÞ ¼ ηðD;DÞ ¼ 0, one has successively

gkΛðyÞðU0; V 0Þ ¼ ðn�ηÞΛðyÞðU0; V 0Þ
¼ ηðΛr�U;Λr�VÞ
¼ ηðelðV þ hdl; ViDÞ; elðV þ hdl; ViDÞÞ
¼ e2lηðU;VÞ
¼ e2lηðm�U;m�VÞ
¼ e2lm�ηðU;VÞ
¼ e2lgfðU;VÞ:

The map Λr� is thus an isometry between ðXf; e2lgfÞ and
ðXk; gkÞ, proving the first assertion of the theorem.
We now consider the SOð2; nÞ action on Xk. Let the

action of SOð2; nÞ on the set Xk ⊂ Rnþ2 be

αkðyÞ ¼ α : y
kðα : yÞ ∈Xk; α∈SOð2; nÞ;

where α:y is the natural SOð2; nÞ action in Rnþ2. We claim
that this action on Xk is a conformal transformation.
In fact, the action ðαkÞ0 on Xk is the tangent one. For

V ∈TXk, one has

ðαkÞ0ðyÞðVÞ ¼ 1

kðα : yÞ α : V −
k0ðα : yÞðα : VÞ

k2ðα : yÞ ðα : yÞ:

Since α is isometric with respect to η, and y, viewed as a
vector of Rnþ2, is perpendicular to V ∈TXk—that is,
ηðy; VÞ ¼ ηðy; yÞ ¼ 0—one has

ηððαkÞ0ðyÞðV1Þ; ðαkÞ0ðyÞðV2ÞÞ ¼
1

k2ðα:yÞ ηðV1; V2Þ;

V1; V2 ∈TXk:

That is, αk acts as a conformal transformation on Xk. This
completes the proof of the theorem. ▪
We now return to the problem of the natural embed-

ding of FLRW spaces in Rnþ2. We begin with the
n-dimensional de Sitter (dS) space Σ, with metric gdS

and scalar (Ricci) curvature R ¼ −nðn − 1ÞH2. Let us
define the FLRW space W through the scale factor a
such that gW ¼ e2agdS.
The de Sitter space Σ is first realized, as usual [12], as the

hypersphere of the pseudo-Euclidean space Rnþ1 through
the equation

yμyμ − ðynÞ2 ¼ −H−2:

We then identify Rnþ1 with the (hyper)plane of Rnþ2

defined through fðyÞ ¼ Hynþ1 ¼ 1. This realizes an iso-
metric embedding of Σ in Rnþ2 (see Ref. [11] for a more
general approach). The key point is that Σ is now defined as
the intersection of the null cone of Rnþ2 and the plane
f ¼ 1:

(
CðyÞ ¼ yμyμ − ðynÞ2 þ ðynþ1Þ2 ¼ 0;

fðyÞ ¼ Hynþ1 ¼ 1:

In other words, Σ ¼ Xf.
Proposition 1. Let l be a homogeneous function of

degree zero on Rnþ2 whose restriction to Σ is the function
a. LetW ¼ elΣ, then the induced metric onW by η ofRnþ2

is the Weyl rescaling gW ¼ e2agdS of the de Sitter metric
gdS. Moreover, the elements of the linear group SOð2; nÞ on
Rnþ2 act on W as conformal transformations.
Proof. This proposition is nothing but a specialization of

the above theorem with Σ ¼ Xf and W ¼ Xk. ▪
One can ask why we could not specialize l so that it does

not depend on ynþ1, eliminate that variable, and then obtain
an embedding in Rnþ1. In that case, the metric onW would
no longer be induced by that of Rnþ1, and SOð2; nÞ
invariance would be lost. Indeed, defining W as a subset
of the Rnþ2 cone is key to the proof through isotropic
vectors.
Note that the same result can be obtained by continuous

deformation of Minkowski or anti–de Sitter (AdS) spaces
instead of de Sitter space. This amounts to choosing
f ¼ Hyn or f ¼ Hðyn þ ynþ1Þ=2, respectively.
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IV. CONCLUDING REMARKS

In the previous section, Sec. III, we built k, and thus the
manifold Xk, from f and the scale factor a. One can ask
about the converse problem—that is, starting from a function
k, homogeneous of degree one, is the manifold Xk the
continuous deformation of some de Sitter space Xf, where f
is a homogeneous polynomial of degree one? Globally, the
answer is most likely negative. Locally, however, Xk can
be obtained as a continuous deformation of dS or AdS
spaces whose related defining planes Pf are tangent to Xk.
Precisely, let us consider a point yo of Xk and set
Ko ≔ ∇kðyoÞ: we assume that ðKoÞ2 ≠ 0, and the tangent
plane at yo is defined through fðyÞ ¼ Ko · ðy − yoÞþ
kðyoÞ. Then, from Theorem 1, the metric gk is, locally, a
continuous deformation of a dS or AdS metric depending on

the sign of ðKoÞ2, and hence on the point yo considered on
the manifold.
Concerning the scale factor a, it can be chosen as any

continuous function of y∈Σ. As a consequence, by
contrast with the scale factor appearing in the metric
of FLRW spacetimes in (four-dimensional) cosmology
(see, for instance, [13] about different forms of the RW
metric), it can describe more general conformally flat
spacetimes—in particular, those with less symmetry than
the FLRW space.
In the most general case, the need to embed FLRW

spaces in Rnþ2, in contrast to simply Rnþ1, has been
pointed out in [6]. Here, in our works, considering Rnþ2 to
boot stems from the need to track how the SOð2; nÞ
group acts.
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