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Regular black holes (RBHs)—geometries free from curvature singularities—arise naturally in theories
of nonlinear electrodynamics. Here we study the absorption and superradiant amplification of a
monochromatic planar wave in a charged, massive scalar field impinging on the electrically charged
Ayón-Beato-García (ABG) RBH. Comparisons are drawn with absorption and superradiance for the
Reissner-Nordström (RN) black hole in linear electrodynamics. We find that, in a certain parameter regime,
the ABG absorption cross section is negative, due to superradiance, and moreover it is unbounded from
below as the momentum of the wave approaches zero; this phenomenon of “unbounded superradiance” is
absent in the RN case. We show how the parameter space can be divided into regions, using the bounded/
unbounded and absorption/amplification boundaries. After introducing a high-frequency approximation
based on particle trajectories, we calculate the absorption cross section numerically, via the partial-wave
expansion, as a function of wave frequency, and we present a gallery of results. The cross section of the
ABG RBH is found to be larger (smaller) than in the RN case when the field charge has the same (opposite)
sign as the black hole charge. We show that it is possible to find “mimics”: situations in which the cross
sections of both black holes are very similar. We conclude with a discussion of unbounded superradiance
and superradiant instabilities.
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I. INTRODUCTION

General relativity (GR) is a geometric theory in which
gravity is associated with the spacetime curvature generated
by the presence of energy and momentum. For more than a
century, the physical predictions of this theory have been
scrutinized and tested experimentally in various ways [1–3].
In the last decade, for instance, two important verifications
of GR predictions in the strong-field regime were reported:
the Laser Interferometer Gravitational-Wave Observatory
Collaboration performed the first direct detection of gravi-
tational waves [4] from black hole (BH) coalescences, and

the Event Horizon Telescope (EHT) Consortium has
obtained the first image of a supermassive BH shadow [5].
BHs are among the most fascinating predictions of GR.

These objects are solutions of Einstein’s field equations
(EFEs) characterized by an event horizon (i.e., a nonreturn
surface) and typically formed by gravitational collapse [6].
Observational evidence indicates that BHs populate gal-
axies [7]; for example, the Milky Way Galaxy harbors a
supermassive BH (with 4.1� 0.4 × 106M⊙ [8,9]) at its
core, as well as myriad stellar-mass BHs.
In electrovacuum, the uniqueness theorems of GR [10]

determine that stationary BH solutions are described by
only three parameters: mass, charge, and angular momen-
tum. Despite this apparent simplicity, the stationary BHs of
GR are also paradoxical in nature: at their core is a
“curvature singularity,” where the classical field theory
breaks down.
Key theorems that support the formation of curvature

singularities in classical GR were established by Penrose
[11] and Hawking and Ellis [12]. These theorems show that
spacetimes can become geodesically incomplete in rather
general (i.e., nonsymmetric) collapse scenarios, within the
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classical field theory; and this, in turn, raises concerns
about the global breakdown of causality in such space-
times. As a remedy, the cosmic censorship hypothesis
asserts that [11] all curvature singularities must be shrouded
behind (apparent or event) horizons. Therefore, the space-
time outside this one-way membrane is not adversely
affected by the presence of these hidden singularities.
It can be argued that the formation of singularities

represents a flaw in classical field theory, and that the
paradoxes associated with singularities will be fully
resolved in a quantum theory of gravity. It is not necessary,
however, to await a complete quantum theory before
studying the properties of BH solutions that are free from
singularities. Recently, there has been increasing interest in
the properties of so-called regular black hole (RBH)
solutions.
The first RBH model was proposed in 1968 by

Bardeen [13]. In this model, as well as others [14–17],
the source term (i.e., the stress-energy tensor) in the EFEs
did not have a clear physical motivation or origin. In 1998,
Ayón-Beato and García found that a RBH could arise in a
physically well-motivated theory: nonlinear electrodynam-
ics (NED) minimally coupled to GR [18].
NEDmodels are, in essence, generalizations ofMaxwell’s

linear theory to strong electromagnetic fields [19–22]. Two
well-studied NED models are the Euler-Heisenberg model
[23], which provides an effective description of quantum
electrodynamics at the one-loop level, and the Born-Infeld
model [19,20], introduced to remove the infinite self-energy
of the electron. Among the features and applications of NED
models [19–32], there have recently been proposed several
electrically [33–38] and magnetically [39–45] charged RBH
solutions, in minimally coupled GR, as well as in alternative
theories of gravity [46–49]. For a review on NED and
applications to BH physics, see Refs. [50,51].
In general, RBH geometries violate at least the strong

energy condition in some region of the spacetime [52,53].
Furthermore, if the model satisfies the weak energy con-
dition, as in the Bardeen case, then the topology is different
from the Reissner-Nordström (RN) case [54]. Regarding
NED-based electrically charged RBH solutions, the validity
of theweak energy condition leads to de Sitter behavior in the
RBH core [36], providing an effective cutoff on the self-
energy density of the solution at the center.
Motivated in part by recent observational breakthroughs,

there is growing interest in discerning how the key proper-
ties of RBHs will differ from those of irregular (i.e.,
singular) BHs, particularly in the observable region exterior
to the horizon. A canonical example of the irregular class—
and a key point of comparison for this study—is the RN
spacetime: a spherically symmetric solution to the EFEs
for linear (i.e., Maxwell) electromagnetism minimally
coupled with GR, describing a BH of mass M and charge

Q with two horizons, at r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, and a

curvature singularity, at r ¼ 0.

It is well known that the RN BH exhibits the phenome-
non of superradiance when interacting with a scalar field of
charge q. Field modes with a frequency ω > 0 satisfying
ω < qϕþ are amplified, rather than absorbed, by the BH,
where ϕþ is the electric potential at the outer horizon. In the
superradiant regime, the BH loses charge and mass (i.e., it
flows out of the BH into the field), and yet the area
of the BH (A ¼ 4πr2þ) increases. In the thermodynamic
interpretation, the horizon area is associated with the
entropy of the BH, and superradiance is then a necessary
consequence of the second law of thermodynamics. For
studies about charged superradiance in static BHs, see, e.g.,
Refs. [55–62]. Superradiance can also occur with neutral
fields if the BH is spinning. Superradiance has been studied
in a range of BH scenarios over the past fifty years, leading
to various interesting outcomes (see, e.g., Ref. [63] for a
comprehensive review).
It is natural to ask whether superradiance persists for

RBHs—and if so, whether it is enhanced or diminished. In
the far-field region, r ≫ M, where the electromagnetic
field is weak, NED models are expected to reduce to linear
electromagnetism, and thus, NED RBHs to be locally
equivalent to RN BHs. Conversely, in the near-horizon
region, where the electromagnetic field is strong, NED
models are likely to differ substantially from their linear
counterparts, and ϕþ may differ substantially from ϕRNþ ¼
Q=rþ. Consequently, we would expect the condition for
superradiance to depend on the precise form of the NED
model in question and, potentially, for certain models, to
display enhanced versions of superradiance and new phe-
nomenology. Some recent works addressed superradiance in
the background of rotating regular spacetimes, considering
massive scalar fields [64,65], but works considering charged
scalar fields and superradiance in static RBH geometries are
still lacking in the literature.
In this paper, we study the absorption of a charged

massive test scalar field in the background of a RBH
solution, namely, the first proposed exact charged RBH
solution of Ayón-Beato and García (ABG) [18]. Here
we are particularly interested in characterizing the effect
of superradiance on the absorption cross section (ACS).
Over the last fifty years, much effort has been made
to compute absorption and scattering in different BH
scenarios (cf., e.g., Refs. [66–74] and references therein).
Although several works have been dedicated to chargeless
test fields, few have dealt with the absorption of charged
scalar fields [57,58]. Recently, the absorption of chargeless
test fields has been investigated for RBHs [75–78], but the
absorption of charged massive scalar waves is still to be
properly quantified.
The remainder of this paper is organized as follows. In

Sec. II, we review the main aspects of the ABG RBH
spacetime proposed in Ref. [18], and in Sec. III we
investigate the dynamics of a massive and charged scalar
field on this spacetime. In Sec. III B, we present an
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expression to compute the ACS via a sum over partial
waves. In Sec. III C, we partition the parameter space, and
in Sec. III D we describe a high-frequency approximation.
Our numerical results concerning the absorption and super-
radiance properties of the ABG RBH solution are presented
in Sec. IV, and we also compare them with those obtained
in the RN case. We conclude with our final remarks in
Sec. V. Throughout the paper we use the natural units, for
which G ¼ c ¼ ℏ ¼ 1, and metric signature −2.

II. FRAMEWORK

The action associated with NED minimally coupled to
GR can be written as [18]

S ¼ 1

4π

Z
d4x

�
1

4
R − LðFÞ

� ffiffiffiffiffiffi
−g

p
; ð1Þ

where R is the Ricci scalar, LðFÞ is a gauge-invariant
electromagnetic Lagrangian density, and g is the determi-
nant of the metric tensor gμν. The electromagnetic invariant
F and the standard electromagnetic field tensor are given by

F ¼ 1

4
FμνFμν and Fμν ¼ 2∇½μAν�; ð2Þ

respectively, where Aν is the electromagnetic four-potential.
It is possible to represent NED in a different framework

by introducing an auxiliary antisymmetric tensor

Pμν ≡ LFFμν; ð3Þ

where LF ≡ ∂L=∂F; and also a structural function HðPÞ
through a Legendre transformation [79], namely,

HðPÞ≡ 2FLF − LðFÞ: ð4Þ

The invariant associated with Pμν is defined as

P≡ 1

4
PμνPμν: ð5Þ

Among its applications [22,79], this framework is useful to
obtain electrically charged NED-based RBH solutions [37].
With the help of Eqs. (2)–(5), one can show that

P ¼ ðLFÞ2F; HPLF ¼ 1; and Fμν ¼ HPPμν; ð6Þ

whereHP ≡ ∂H=∂P. By varying the action (1) with respect
to the inverse metric tensor gμν and using Eqs. (6), it is
possible to obtain

Gμ
ν ¼ −Tμ

ν ¼ 2½HPPναPμα − δμνð2PHP −HÞ�; ð7Þ

which are Einstein-NED field equations, and where Gμ
ν is

the Einstein tensor and Tμ
ν is the energy-momentum tensor.

The variation of the action (1) with respect to Aμ leads to
∇μPμν ¼ 0 (in the absence of electromagnetic sources).
For the solution proposed in Ref. [18], from now on

simply referred to as the ABG solution, the structural
function (the NED source) is

HðPÞ ¼ P

�
1 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p �
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p �
3
−

3M
jQjQ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p
�5

2

;

ð8Þ

with Q and M being the electric charge and mass of the
central object, respectively. Considering a spherically sym-
metric and static line element as an ansatz for the spacetime,
together with Eqs. (7) and (8), one can obtain the ABG line
element in spherical coordinates (xμ ¼ ft; r; θ;φg),

ds2 ¼ fðrÞdt2 − 1

fðrÞ dr
2 − r2ðdθ2 þ sin2 θdφ2Þ; ð9Þ

where

fðrÞ ¼ fABGðrÞ≡ 1 −
2Mr2

ðr2 þQ2Þ3=2 þ
Q2r2

ðr2 þQ2Þ2 ð10Þ

is the metric function of the ABG spacetime.
In the asymptotic limit r → ∞, the metric function (10)

has the following behavior:

fABGðrÞ ¼ fRNðrÞ þOðr−3Þ; ð11Þ

where fRNðrÞ is the metric function of the RN space-
time [80],

fRNðrÞ≡ 1 −
2M
r

þQ2

r2
: ð12Þ

As argued earlier, this is expected because, in the far-field
region, the electromagnetic field is weak and thus in the
linear (i.e., Maxwell) regime. On the other hand, expanding
the ABG metric function in powers of Q yields

fABGðrÞ ¼ fRNðrÞ þ 3MQ2

r3
þOðQ4Þ: ð13Þ

When the condition jQj≤Qext≈0.6341M is fulfilled
[18], the line element (9) describes an ABG RBH. For
jQj < Qext, the ABG RBH possesses an inner (Cauchy)
horizon at r− and an outer (event) horizon at rþ, given by
the real positive roots of fABGðrÞ ¼ 0. For jQj ¼ Qext, we
have the so-called “extreme” ABG RBH, with rþ ¼ r−.
For jQj > Qext, we have horizonless solutions. The
ABG causal structure is similar to the RN one (for which
QRN

ext ¼ M).
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Throughout this work, we shall restrict our analysis to
BH solutions ðjQj ≤ QextÞ and exhibit our results in terms
of the normalized electric charge

α≡ Q
Qext

; ð14Þ

which satisfies 0 ≤ jαj ≤ 1 for BH geometries.
From F01 ¼ EðrÞ ¼ HPQ=r2, one can show that the

radial electrostatic field EðrÞ of the ABG solution is
given by

EABGðrÞ ¼ Qr4
�

r2 − 5Q2

ðr2 þQ2Þ4 þ
15M

2ðr2 þQ2Þ7=2
�
; ð15Þ

which is finite at the origin and asymptotically behaves as
the electrostatic field in the RN case, given by

ERNðrÞ ¼ Q
r2
: ð16Þ

A detailed analysis of the metric function, electric field, and
geodesics of massless particles of ABG and RN BHs is
presented in Refs. [78,81].
The covariant components of the electromagnetic four-

potential are given by

Aμ ¼ ðϕðrÞ; 0; 0; 0Þ; ð17Þ

where ϕ is the electrostatic potential, which can be obtained
using ϕðrÞ ¼ −

R
r
∞E · dl and Eq. (15), to obtain1

ϕABGðrÞ ¼ r5

2Q

�
3M
r5

þ 2Q2

ðQ2þ r2Þ3−
3M

ðQ2þ r2Þ5=2
�
: ð18Þ

In Fig. 1, we plot the ABG electrostatic potential
ϕABGðrÞ alongside the electrostatic potential of the RN BH,

ϕRNðrÞ ¼ Q
r
: ð19Þ

Notably,ϕABGðrÞ is finite at r ¼ 0, whereasϕRNðrÞ diverges
as r → 0. In the far field (r → ∞), ϕABG → ϕRN. At
the (outer) horizon, ϕðrþÞABG > ϕðrþÞRN, and thus an
enhanced superradiant regime may be anticipated.

III. ANALYSIS

A. Scalar fields and superradiance

We are interested in investigating a scalar field Φ with
mass μ and charge q, propagating in a static (electric) RBH
spacetime. Therefore, we shall consider the Klein-Gordon
equation

ð∇ν þ iqAνÞð∇ν þ iqAνÞΦþ μ2Φ ¼ 0: ð20Þ
Exploiting the separability of Eq. (20), we can write a
particular mode of Φ as

Φ≡ΨωlðrÞ
r

Plðcos θÞe−iωt; ð21Þ

where ΨωlðrÞ are radial functions and Plðcos θÞ are the
Legendre polynomials. The indexes ω and l denote the
frequency and the angular momentum of the scalar wave,
respectively. Inserting Eq. (21) into Eq. (20) leads to the
radial equation

d2

dr2⋆
Ψωl ¼ VðrÞΨωl; ð22Þ

where r⋆ is the “tortoise coordinate” defined by
dr⋆ ¼ dr=fðrÞ, and the potential function VðrÞ reads

VðrÞ≡ fðrÞ
�
μ2 þ 1

r
dfðrÞ
dr

þ lðlþ 1Þ
r2

�
− ðω − qA0ðrÞÞ2:

ð23Þ
From the form of Eq. (22), it is clear that Φ is propagative
(i.e., oscillatory) in regions where VðrÞ < 0 and evanescent
(i.e., exponential) in regions where VðrÞ > 0.
As the angular momentum l increases, the height of the

potential barrier increases commensurately (as in the
massless case [78]). Figure 2 shows VðrÞ as a function
of the parameter qM for the particular case l ¼ 0, ω ¼ μ,

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

FIG. 1. Comparison between the electrostatic potentials of
ABG and RN BHs, considering different values of α.

1We choose the infinity as the reference point at which the
electrostatic potential is zero. If one adopts such reference point
of the electrostatic potential at r ¼ 0, it follows an expression
for ϕABGðrÞ that does not behave asymptotically as the RN
electrostatic potential [82].

DE PAULA, LEITE, DOLAN, and CRISPINO PHYS. REV. D 109, 064053 (2024)

064053-4



and α ¼ 0.5 [defined in Eq. (14)]. The height of the local
maximum value of VðrÞ increases with qM. As we increase
α, the peak of VðrÞ increases (decreases) for qM > 0
(qM < 0). This is anticipated from the Lorentz force:
particles with the same charge sign of the BH are repelled,
and consequently less absorbed, than particles with the
opposite charge, which are attracted. Note also that, for
some values of qM, μM, and α, the peak of the radial
function VðrÞ becomes negative (cf. curve qM ¼ −0.3 in
Fig. 2) [83].
In the (planar-wave) scattering problem, the wave

satisfies the ingoing boundary conditions

Ψωl ∼
	
Tωle−iζr⋆ ; r⋆ → −∞;

Iωle−iκr⋆ þ Rωleiκr⋆ ; r⋆ → þ∞;
ð24Þ

where ζ≡ω−qϕþ [withϕþ ≡ ϕðrþÞ], and κ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
.

The quantities Tωl, Iωl, and Rωl are complex coefficients.
Justification for the ingoing boundary condition in (24)

runs as follows. In the near-horizon region, the general
solution for the fieldΦ is a superposition of two terms, with
behaviors e−iðωt�ζr⋆Þ. We seek fields Φ and Aμ which are
regular on the future horizon in a suitable gauge. Noting
that, for Aμ in Eq. (17), the Lorentz invariant AμAμ is
divergent, we can make a “gauge transformation,” Aμ →
A0
μ ¼ Aμ þ q−1∇μχ and Φ → Φ0 ¼ eiχΦ, such that A0

μ ¼ 0

on the horizon. This corresponds to the choice χ ¼ qϕþt.
Hence, the general solution for Φ0 is a superposition of two
terms with behaviors e−iζðt�r�Þ. The term with upper sign
choice (þ) is regular (irregular) on the future (past) horizon,
and the term with the lower sign (−) is regular (irregular)
on the past (future) horizon. The boundary condition in
Eq. (24) then follows from the requirement that Φ0 is
regular on the future horizon.

For a propagating wave at infinity (unbounded modes),
the condition κ > 0 holds, i.e., ω2 > μ2. The transmission
and reflection coefficients are defined, respectively, as

jT ωlj2 ≡ jTωlj2
jIωlj2

and jRωlj2 ≡ jRωlj2
jIωlj2

: ð25Þ

From the conservation of the flux, or using the
Wronskian of Eq. (22), one can derive

jRωlj2 þ
ζ

κ
jT ωlj2 ¼ 1: ð26Þ

The “amplification factor” [63] is

Zωl ≡ jRωlj2 − 1 ¼ −
ζ

κ
jT ωlj2: ð27Þ

This measures the fractional gain (or loss) of energy in a
scattered wave, with positive values of Zωl corresponding
to superradiant amplification. Clearly, the sign of Zωl is
determined by the sign of ζ. Hence the “critical frequency”
for superradiant scattering is

ωc ¼ qϕþ: ð28Þ

For frequencies ω > ωc, the wave is absorbed; conversely,
for frequencies 0 < ω < ωc, the wave is amplified.
In Fig. 3, we show ϕþ, the electric potential at the

horizon, for ABG and RN BHs. We note that (for α > 0)
ϕþ is always positive and increases monotonically with α.
As a consequence, superradiance occurs whenever qϕþ > 0.
We also observe that ϕABGþ is always greater than ϕRNþ .
Therefore, for the same values of qM and α, the critical
frequency of the ABG RBH is always larger than that of the
RN BH. This implies a greater capacity for superradiant
scattering in the ABG case.

1 2 3 4 5 6 7
�5

0

5

10

15

20

25

30

FIG. 2. The function VðrÞ of charged massive scalar waves in
the background of the ABG RBH, as a function of r=rþ,
considering different values of qM. In this figure, we have
chosen l ¼ 0, ωM ¼ μM ¼ 0.1, and α ¼ 0.5.

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

0.9

1.2

1.5

FIG. 3. Electrostatic potential at the event horizon,
ϕþ ≡ ϕðrþÞ, as a function of the normalized charge α, for
ABG and RN BHs.
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B. Absorption cross section

The ACS σ, for a plane-wave incident upon a spherically
symmetric BH, can be expanded in partial waves as follows:

σ ¼
X∞
l¼0

σl; ð29Þ

where the partial ACS is

σl ¼
π

κ2
ð2lþ 1Þð1 − jRωlj2Þ: ð30Þ

Hence, using Eq. (26),

σl ¼
π

κ3
ð2lþ 1Þðω − ωcÞjT ωlj2: ð31Þ

For superradiant modes (with 0 < ω < ωc ¼ qϕþ), σl takes
negative values, as the wave is amplified rather than
absorbed.
In the limit ω → μ (from above), the momentum of

the wave tends to zero, κ → 0. Hence σl in Eq. (31) will
diverge in this limit, unless limω→μ jT ωlj2=κ3 exists. In
other words, σl will diverge unless the transmission factor
jT ωlj2 approaches zero at least as rapidly as the cube
of the momentum, κ3. We will call the divergent case
“unbounded” and the finite case “bounded.”
It is clear that there are four possibilities to consider

in the limit ω → μ, namely: (i) bounded absorption,
(ii) bounded superradiance, (iii) unbounded absorption,
and (iv) unbounded superradiance. Cases (i)–(iii) have been
observed in absorption by a RN (irregular) BH [58]. The
fourth possibility, unbounded superradiance, does not appear
to occur for RN BHs, but it does arise for the regular ABG
BH, as we demonstrate in Sec. IV. To understand why this
arises,wenow turn attention to the properties of the potential.

C. The parameter space

In this section, we argue that it is possible to divide the
parameter space into regions where behaviors (i)–(iv) occur
(see above) by examining the behavior of an effective
potential function. Considering Eq. (23) in the limit μ → ω,
we define

UðrÞ≡ −VðrÞjμ¼ω;

¼ ðμ − qϕðrÞÞ2 − fðrÞ
�
μ2 þ 1

r
dfðrÞ
dr

þ lðlþ 1Þ
r2

�
:

ð32Þ
In Fig. 4, we present the typical behavior of the function
UðrÞ in the ABG RBH spacetime. In the region whereUðrÞ
is positive, the wave is propagative. The plot makes it clear
that the existence of a propagative region extending to
spatial infinity depends critically on the parameter values.
For the uncharged massive scalar field case, Jung and

Park [83] defined the critical case as that in which the local

maximum of UðrÞ is exactly zero. This idea extends
naturally to absorption of a charged field: the critical case
is shown as the blue dashed line in Fig. 4, and this case
defines a critical charge αc (for fixed l, μM, and qM). For
α < αc, a propagative region extends from a certain radius
rc out to infinity [i.e., the region r∈ ðrc;∞Þ], whereas for
α > αc, the only propagative region is close to the horizon.
It is natural to anticipate qualitatively different absorption
properties in the limit ω → μ, with the former (latter) case
corresponding to unbounded (bounded) behavior.
In fact, to determine the existence of a propagative region

that extends to infinity, it is sufficient to examine the large-r
expansion of UðrÞ, given by

UðrÞ ¼ 2μ
ðμM − qQÞ

r
þOðr−2Þ: ð33Þ

At leading order, the expansion is identical for the RN and
ABG BHs (as one might expect in the weak-field/linear
regime). For μM > qQ, Newtonian attraction dominates
over the Coulomb repulsion and the propagative region
exists; for μM < qQ, Coulomb repulsion is dominant and
the propagative region does not exist. The critical case is
at μM ¼ qQ.
We can now divide the parameter space into regions

using two separatrices: μM ¼ qQ (the bounded/unbounded
boundary) and μ ¼ qϕþ (the absorption/amplification
boundary).
Figure 5 shows the anticipated behavior of the ACS in

the limit ω → μ (i.e., κ → 0), in the parameter space. The
horizontal blue line (μM ¼ qQ) separates the bounded and
unbounded regions. The solid red line demarcates the onset
of superradiance. In the RN case, there is no overlap
between the unbounded and superradiant regions (though
the boundaries meet in the extremal case, Q ¼ M). This
is consistent with an observed absence of unbounded
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FIG. 4. The function UðrÞ of charged massive scalar waves in
the background of the ABG RBH, as a function of r=rþ, consi-
dering l ¼ 0, μM ¼ 0.2, and qM ¼ 0.8 for distinct values of α.
In this case, superradiance occurs whenever α > 0.2702 ¼ αc.
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superradiance. Conversely, for the ABG BH, the super-
radiant region is significantly larger than in the RN case
(even for Q → 0), due to the increase in ϕþ (see Fig. 3).
Consequently, the unbounded region overlaps with the
superradiant region, and hence we should anticipate
unbounded superradiance (that is, unbounded amplifica-
tion) to occur in the limit ω → μ, in this region of the
parameter space. These conclusions are supported by the
numerical evidence presented in Sec. IV C.

D. High-frequency approximation

We now turn our attention to absorption in the regime of
high frequencies and short wavelengths. In this regime, the
characteristics of the charged massive scalar wave can be
associated with the trajectories of charged particles subject
to the Lorentz force imparted by the electric background
field. In order to obtain the equations of motion associated
with our problem, we consider the following Lagrangian:

Lcp ¼
1

2
gμνẋμẋν þ

qcp
m

Aμẋμ; ð34Þ

where the overdot stands for the derivative with respect to
the proper time, and qcp andm are the charge of the particle
and mass of the particle, respectively. From Eq. (34), one
can introduce the conserved quantities

E ¼ m
∂Lcp

∂ṫ
; ð35Þ

L ¼ −m
∂Lcp

∂φ̇
; ð36Þ

which are related to the energy and the angular momentum
of the particle and, in the semiclassical limit, are associated
with ω and lþ 1=2, respectively. Using Eqs. (34)–(36)
together with gμνẋμẋν ¼ 1 (the condition that a massive

particle follows a timelike path, parametrized by its proper
time [84]), one can show that

ṙ2
�
m2

L2

�
¼ ðE − qcpA0Þ2

L2
− fðrÞ

�
m2

L2
þ 1

r2

�
; ð37Þ

in which, due to the spherical symmetry, we considered the
motion in the equatorial plane ðθ ¼ π=2Þ.
By defining the impact parameter b≡ L=vE and

KðrÞ≡ ṙ2ðm2=L2Þ, we can rewrite Eq. (34) as

KðrÞ ¼ 1

b2v2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p qcp
m

A0ðrÞ
�

2

− fðrÞ
�
1 − v2

b2v2
þ 1

r2

�
; ð38Þ

where v is a dimensionless parameter defined by

v≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
: ð39Þ

Since we are interested in the unbounded timelike paths,
i.e., κ > 0, this parameter is limited by 0 < v ≤ 1.
Considering that KðrÞ and its first derivative vanish at
the critical radius rc, namely,

KðrcÞ ¼ 0; ð40Þ
dKðrcÞ
dr

¼ 0; ð41Þ

we may find the critical impact parameter bc,

b2c ¼
r2c

m2v2fðrcÞ
½m2ð1þðv2− 1ÞfðrcÞÞ

þqcpA0ðrcÞðqcpA0ðrcÞð1−v2Þ− 2m
ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p
Þ�; ð42Þ
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FIG. 5. Absorption parameter space for ABG (left) and RN (right) BHs, as functions of Q=M. The solid red curve corresponds to the
superradiance threshold and the solid blue curve to the attractive/repulsive threshold in Eq. (33). Left: the red line meets the vertical axis
at μM=qQ ¼ 23=16. The points highlight situations in which we have unbounded superradiance. The total ACS corresponding to these
situations is exhibited in Fig. 10.
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and an equation that gives the values of rc,

2fðrcÞðm2zfðrcÞ − ðm − qcp
ffiffiffi
z

p
A0ðrcÞÞðm − qcp

ffiffiffi
z

p ðrcA0
0ðrcÞ þ A0ðrcÞÞÞÞ þ rcf0ðrcÞðm − qcp

ffiffiffi
z

p
A0ðrcÞÞ2

m2zfðrcÞ − ðm − qcp
ffiffiffi
z

p
A0ðrcÞÞ2

¼ 0; ð43Þ

where we defined z≡ 1 − v2 and the prime ( 0) denotes
derivative with respect to the radial coordinate r. For
qcp ¼ 0, we recover the bc and rc of the massive chargeless
case, which are given by [69]

b2c ¼
r2cð1þ ðv2 − 1ÞfðrcÞÞ

v2fðrcÞ
; ð44Þ

2ð1þ ðv2 − 1ÞfðrcÞÞ ¼ rc
f0ðrcÞ
fðrcÞ

; ð45Þ

respectively. In the limit m → 0, which implies in v → 1,
we obtain the results for the massless case [78]. The high-
frequency absorption cross section, also called geometric
cross section (GCS), σgcs, is given by [84]

σgcs ¼ πb2c: ð46Þ

IV. RESULTS

A. Numerical analysis

We can obtain the reflection and transmission coeffi-
cients, given by Eqs. (25), by numerically integrating
Eq. (22) from very close to rþ up to far from the BH,
with the boundary conditions given by Eqs. (24) and their
derivatives. Then we compute the total ACS using Eq. (29).
The oscillatory character of the ACS is related to the partial
waves contributions [see Eq. (30)]. We have chosen, in
general, to perform the summation in Eq. (29) up to l ¼ 20.

The GCS is obtained numerically through Eq. (46), using
Eqs. (42) and (43).

B. ABG regular black hole cross sections

Figures 6 and 7 show the total ACS for different values
of the charge (qM) and mass (μM) couplings, respectively.
Generically, we can see that the total ACS oscillates around
the GCS (black dotted lines), with good agreement in the
high-frequency regime. Moreover, for a fixed value of μM
and α, we observe that the absorption increases (dimin-
ishes) as we consider smaller (higher) values of qQ, as a
consequence of the Lorentz force. As shown in Fig. 7, the
total ACS increases as we increase μM, so that the increase
of μM leads to a higher absorption of planar scalar waves.
For massive planar scalar waves, the effective potential
typically admits an (inner) local maximum and an (outer)
local minimum; as we increase μM, the stationary points
move closer together and the maximum of the potential
decreases, until the stationary points eventually merge and
the potential barrier vanishes. Hence, increasing μM leads
to strongly absorbed unbounded modes, similar to the RN
BH case [69].
Figure 8 shows the total ACS together with the partial

ACS for two choices of qM, with the normalized BH
charge α ¼ 0.5 and the field mass coupling μM ¼ 0.2. The
plots show that the oscillatory pattern in the total ACS is
related to the sequential contributions from partial ACSs
l ¼ 0; 1; 2;…. The monopole (l ¼ 0) dominates the behav-
ior of the total ACS in the low-frequency regime. Note that,
although the values of α and μM are equal in both panels of
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FIG. 6. Total ACS of charged massive scalar waves in the
background of the ABG RBH, as a function of ω=μ, for different
choices of qM, considering α ¼ 0.5 and μM ¼ 0.2. The ACS is
compared with the geometric cross section (dashed black lines).

0 0.5 1 1.5 2 2.5 3
40

80

120

160

200

FIG. 7. Total ACS of charged massive scalar waves in the
background of the ABG RBH, as a function of ωM for α ¼ 0.5,
qM ¼ 0.1, and different values of μM.
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Fig. 8, superradiance occurs only in the bottom panel
case. We observe that the ACS is negative in the range
μ < ω≲ 2μ. Physically, a negative cross section implies
that the stimulation from the plane wave causes the BH to
transmit mass-energy and charge into the field.
In Fig. 9, we present the amplification factor of massive

charged scalar fields in the background of an ABG RBH.
[We exhibit the amplification factor (27) in percentage,
i.e., Zωl½%�≡ 100Zωl, and restricted to the regions where
Zωl½%� ≥ 0]. As we can see, the maximum superradiant
amplification increases with the charge of the scalar field,
for fixed values of the BH mass and (positive) charge.

C. Unbounded superradiance
from a regular ABG black hole

In the previous section, we presented some typical
absorption properties of charged massive scalar waves in
the background of the ABG RBH. In the limit ω → μ
we saw two types of behavior: unbounded absorption
(Figs. 6–8, upper plot) and bounded superradiance

(Fig. 8, lower plot). In this section, we show that the ABG
RBH can also display unbounded superradiance for parameter
choices informed by Fig. 5 and the discussion in Sec. III C.
Figure 10 shows the ACS of the ABG RBH for a

selection of parameter choices (informed by Fig. 5) for
which we would expect to see unbounded superradiance.
As we can see, the results are consistent with the expect-
ations of Fig. 5: in all cases, the cross section σ is negative
(indicating superradiant amplification) and it grows without
bound as ω → μ.
The results in Fig. 10 reveal a remarkable implication of

the electromagnetic fields associated with (electrically
charged) NED-based RBH geometries: they generate a
superradiant divergence in the ACS of a charged, massive
scalar field. That is, an ABG BH stimulated by a massive
planewave of lowmomentum has an ACS that is unbounded
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FIG. 8. Partial and total ACSs of charged massive scalar waves
in the background of the ABG RBH, as functions of ω=μ, for
α ¼ 0.5 and μM ¼ 0.2, in two distinct scenarios: (top) qM ¼ 0.2
and (bottom) qM ¼ 0.8. The inset in the bottom panel empha-
sizes superradiance that occurs for 1 < ω=μ≲ 1.924.

1 1.0025 1.005 1.0075 1.01
�1000

�800

�600

�400

�200

0

FIG. 10. Total ACS of charged massive scalar waves in the
background of the ABG RBH, as a function of ω=μ, considering
situations in which we have unbounded superradiance (the points
in the left panel of Fig. 5). We focus on the region near the limit
ωM → μM to emphasize the divergent behavior of the total ACS
in the superradiant regime.
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FIG. 9. Superradiant amplification of massive charged scalar
fields by anABGRBHwithα ¼ 0.5, as a function ofω=μ. Herewe
consider the mode l ¼ 0, μM ¼ 0.2, and distinct values of qM.
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from below. This is in stark contrast to the RNBH, where the
cross section cannot obtain arbitrary negative values.

D. Comparison with the Reissner-Nordström BH

In this section, we compare the absorption properties of
ABG RBHs with those of RN BHs [58].
Figure 11 shows a comparison between the total ACSs of

ABG RBHs and RN BHs for α ¼ 0.4, qM ¼ 1.6, and two
values of μM. We see that, for a fixed value of μM, the total
ACSof theABGRBHis smaller than the totalACSof theRN
BH, across the frequency range. We also observe that, for
μM ¼ 0.4, the ABG RBH exhibits superradiant scattering
(i.e., σ < 0 in some range ofω), whereas theRNBHdoes not
(for these parameters). This feature is due to the higher
threshold frequency (ωc ¼ qϕþ) for superradiance in the
ABG case [see Sec. III, in particular, Eq. (28) and Fig. 3] and
the condition for unbounded modes, namely, ω2 > μ2. For
μM ¼ 0.4, both systems show unbounded absorption as
ω → μ. Conversely, for μM ¼ 0.8, the RN shows bounded
absorption, whereas the ABG RBH shows bounded super-
radiance, in this limit.
Referring again to the parameter space shown in

Fig. 5, in the RN BH case the unbounded region and the
superradiant region of the parameter space are disjoint.
Therefore, we do not expected to observe unbounded super-
radiance (asω → μ) in the RN case. In this sense, absorption
by the RN BH is qualitatively different to absorption by
the ABG RBH, for which it is possible to find a set of field
and RBH parameters that leads to unbounded superradiance
(see Fig. 10). A further notable feature of Fig. 5 is that
bounded absorption does not occur in the ABG case (since
the bounded case is necessarily superradiant), whereas it
does in the RN case; see Fig. 11 for an example.

Figure 12 shows results for the ACSs in two distinct sets:
(i) for α ¼ 0.4; μM ¼ 0.4, and different values of qM
(top panel); and (ii) for μM ¼ 0.2, qM ¼ 0.4, and different
values of α (bottom panel). We note that, similar to the
behavior presented in Fig. 11, for a given set of parameters,
superradiance might occur only for the ABG RBH. We see
again that the propagating waves are more absorbed in the
RN case, when qQ > 0; however, for qQ < 0, we observe
the opposite behavior.
Figure 13 compares the partial ACSs of ABG and RN

BHs. In this case, for the chosen parameters we have
superradiance for both BH types. The range of frequency in
which σ < 0 is larger in the ABG case than in the RN case.
The dominant contribution to superradiance comes from
the monopole mode, l ¼ 0.
A comparison of the amplification factors in the ABG

and RN geometries is exhibited in Fig. 14. The superradiant
amplification in the background of the ABG RBH, for the
same values of α, μM, and qM, is typically larger than that
in the corresponding RN geometry, in agreement with the
results presented in Figs. 11–13.
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FIG. 11. Comparison between the total ACSs of charged
massive scalar waves in the background of ABG and RN
BHs, as functions of ω=μ, considering α ¼ 0.4, qM ¼ 1.6,
and different choices of μM. Inset: highlights the range of
frequency ð1 < ω=μ ≲ 1.5, for μMðABGÞ ¼ 0.4) for which the
ACS becomes negative, denoting superradiance.
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FIG. 12. Comparison between the total ACSs of charged
massive scalar waves in the background of ABG and RN
BHs, as functions of ω=μ, in two different scenarios: (i) for
α ¼ 0.4, μM ¼ 0.4, and different values of qM (top); and (ii) for
μM ¼ 0.2, qM ¼ 0.4, and distinct values of α (bottom).
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We end this section by noting that all results presented
here, as well as those not shown, are consistent with the
parameter space for ABG and RN BHs introduced in Fig. 5.

E. Mimic configurations

In this section, we show that it is possible to find
combinations of the normalized charge of the BH solution,
and the parameters (charge and mass) of the scalar field
such that the ACSs of ABG and RN BHs are very similar.
We start by computing the values of α for which the GCS
(see Sec. III D) of the ABG RBH is equal to that of the RN
BH, for fixed values of the charged massive particle
parameters EM, qcpM, and mM. Next, we compute the
ACSs using the corresponding values of α, qM, and μM.
Figure 15 shows the total ACSs for specific pairs

ðαABG; αRNÞ with μM ¼ 0.6 and qM ¼ 0.2. As we can

see, the total ACSs of the two types of BHs (regular ABG
and irregular RN) can be very similar in the middle- to
high-frequency range, particularly for low-to-moderate
values of α, but distinguishable in the low-frequency regime.
Figure 16 shows that, for a neutral field (qM ¼ 0), the

ACSs of the two types of BHs can be very similar across
the whole frequency range, particularly for small-to-
moderate values of α. Here we consider two pairs of
choices of ðαABG; αRNÞ that lead to the same GCS.
The field charge q increases the differences between
the absorption pattern of ABG and RN BHs, particularly
at lower frequencies.
It is possible to find configurations for which a massive

and charged scalar field has the same value of the critical
frequency ωc of superradiance in the two spacetimes,
that is,
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FIG. 13. Comparison between the partial ACSs of charged
massive scalar waves in the background of ABG and RN BHs, as
functions of ω=μ, with α ¼ 0.8, μM ¼ 0.4, and qM ¼ 0.8.
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FIG. 14. Superradiant amplification of charged massive scalar
fields by ABG and RN BHs, as a function of ω=μ. Here we
consider α ¼ 0.8, l ¼ 0, μM ¼ 0.3, and qM ¼ 0.8 in both
geometries.
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FIG. 15. Total ACSs of charged massive scalar waves for the
pairs ðαABG;αRNÞ¼ð0.2;0.1794Þ and ðαABG;αRNÞ¼ð0.5;0.4498Þ
as functions ofω=μ. In both cases,we setμM ¼ 0.6 andqM ¼ 0.2.

1 2 3 4 5 6 7
60

80

100

120

140

160

FIG. 16. Total ACSs of chargedmassive scalar fields for the pairs
ðαABG;αRNÞ¼ð0.2;0.1794Þ and ðαABG;αRNÞ¼ð0.5;0.4498Þ, as
functions of ω=μ. In both cases, we set μM ¼ 0.4 and qM ¼ 0.
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ωABG
c ¼ ωRN

c : ð47Þ

Figure 17 shows the values of the pair ðαABG; αRNÞ for
which the critical frequency is the same in both back-
grounds, considering a fixed value of qM. These configu-
rations can be found up to αABG ≲ 0.8716.
Figure 18 shows the total ACS for pairs ðαABG; αRNÞ

with the same critical frequency ωc. We see that the

effect of superradiance is enhanced in the ABG case, as
one would expect given the stronger amplification shown
in Fig. 14.
It is also possible to find situations in which scalar

fields with different masses and charges have the same
critical frequency ωc in the background of ABG and
RN BH spacetimes. In Fig. 19, we consider a scalar
field with qM ¼ 1 and μM ¼ 0.2 in the ABG spacetime
and a scalar field with qM ¼ 1.4 and μM ¼ 0.4 in the
RN geometry. As we can see, the distinct scalar fields
are superradiantly scattered whenever ωM < 0.7.
Figure 20 shows the amplification factors for the same
parameters, highlighting once again that superradiance
amplification is enhanced for the ABG BH relative to
the RN BH.
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FIG. 17. Values of the pair ðαABG; αRNÞ for which a fixed choice
of qM presents the same critical frequency in the background of
ABG and RN BHs.
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FIG. 18. Example of situations in which a massive and charged
scalar field presents the same critical frequency in the back-
ground of ABG and RN BHs. The small disks denote the
values of the critical frequency, namely, ωc ¼ 1.3333 (left disk)
and ωc ¼ 2.5071 (right disk).

0 0.5 1 1.5 2 2.5 3
�10

0

20

40

60

FIG. 19. Total ACS for qM ¼ 1 and μM ¼ 0.2 in the ABG
geometry and for qM ¼ 1.4 and μM ¼ 0.4 in the RN spacetime.
Superradiance occurs when ωM < ωcM ¼ 0.7 in both scenarios.
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FIG. 20. Superradiant amplification of massive charged
scalar fields, as a function of ωM, considering the same
parameters used in Fig. 19, for which the critical frequency
is ωcM ¼ 0.7.
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V. CONCLUDING REMARKS

Within GR, the standard BH solutions (Schwarzschild,
Reissner-Nordström, Kerr, and Kerr-Newman) possess a
common feature in their core: a curvature singularity
hidden by an event horizon. On the other hand, certain
regularBH solutions, i.e., objects with an event horizon but
with no curvature singularity, can be obtained by minimally
coupling NED models to GR. Much work is underway to
determine the properties of RBHs. Contributing to this
effort, we have scrutinized the absorption properties of
charged massive scalar fields in the background of the
electrically charged RBH solution proposed by Ayón-Beato
and García [18].
The most intriguing result of our study is that

regular ABG BHs, unlike their RN counterparts, exhibit
unbounded superradiance (as ω → μ) in massive scalar
fields, within a certain parameter range. More precisely,
the cross section σ is unbounded from below as ω → μ; this
is shown clearly in Fig. 10. The region of parameter space
in which unbounded superradiance occurs is clarified in
Sec. III C and Fig. 5.
Some care is needed in interpreting the physical meaning

of the divergence of the cross section σ as ω → μ. In the
particle picture, a divergence arises naturally because
particles of low momentum and large impact parameters
are attracted by the BH, with bc → ∞ as κ → 0. In the wave
picture, a divergence in σ arises if the transmission factor
does not go to zero as rapidly as the cube of the momentum
κ in the denominator of Eq. (31); and if this occurs in the
superradiant regime ω < ωc, then the unbounded super-
radiance phenomenon occurs. Notably, the amplification
factor, Zωl in Eq. (27), does not diverge in our numerical
results.
In principle then, by stimulating the BH with a planar

wave of low momentum (κ → 0) in a massive charged field,
one can extract (via superradiance) unbounded quantities
of mass and charge from the ABG BH (within the
limitations of the linearized regime of weak scalar fields).
It is important to stress, however, that the divergence in σ is
related to the fact that the BH is interacting with a planar
wave of infinite lateral extent (and bc → ∞ as κ → 0).
Therefore, one should not expect unbounded extraction of
energy to be possible (even in principle) for a stimulating
wave of finite width and duration.
Some further interesting aspects of the ACS are sum-

marized below:
(i) Massive scalar waves are typically more absorbed

than massless ones, and absorption increases with
the value of μM. This result is expected since
larger field masses lead to larger GCSs, and large
field masses are associated with strongly absorbed
modes [69,83].

(ii) In the case of a charged scalar field, due to the
Lorentz force, the absorption for qQ < 0 is typically
larger than for qQ > 0.

(iii) Low-frequency waves satisfying the condition
ω < ωc [cf. Eq. (28)] can have a negative ACS.
This occurs due to the superradiant amplification of
low multipoles of the field (principally, in the l ¼ 0
mode) [55].

(iv) The absorption of scalar waves by ABG RBHs is
typically larger than for RN BHs (for equivalent q,
M, and α), when the value of the charge coupling qQ
is negative. Conversely, σRN > σABG when qQ > 0.

(v) The critical superradiant frequency of the ABG
BH is always larger than that of the RN BH, for
equivalent parameters. Moreover, superradiant am-
plification is stronger for the ABG BH. Both aspects
are due to the enhanced electrostatic potential at the
horizon, ϕþ, in the ABG case (i.e., ϕABGþ > ϕRNþ ).

We showed in Sec. IV E that, for certain parameter
choices, the ABG RBH solution can mimic the RN
solution, from the point of view of absorption spectrum,
reinforcing the results presented in Refs. [78,81]. It is also
possible to find configurations for which scalar fields with
different masses and charges, in the background of ABG
and RN BHs, have the same critical superradiant frequency.
Several avenues for further investigation are open. First,

we note that superradiant scattering is, in some sense, the
wave analog of the Penrose process. In light of the results
here, it could be worth studying the Penrose process for the
ABG BH in detail; that is, the scenario of a charged
particle, incident from infinity, that splits into two parts in
the vicinity of the BH, with one part ejected to infinity and
the other absorbed.2 In a Penrose process, the escaping
particle has more mass-energy than the incident one. It
would be interesting to compare the regions of parameter
space in which energy extraction can occur, again drawing
a comparison between the RN BH and the ABG BH.
Second, the existence of the unbounded superradiance

region in Fig. 5 strongly hints at the existence of super-
radiantly unstable quasibound states in the spectrum of the
massive charged scalar field on the ABG spacetime.
Previous investigations on the RN spacetime have sug-
gested that it is not possible to form quasibound states that
are also superradiant in the RN case. Heuristically, the
reason is clear: for bound states one needs an attractive
potential in the far field, which necessitates μM > qQ; then
modes with ω < μ do not lie in the superradiant regime
ω < qϕRNþ ¼ qQ=rþ of the RN BH. Conversely, as shown
in Fig. 5, modes satisfying μM=qQ > 1 can also be
superradiant on the ABG spacetime, due to the increase
in the electric potential at the horizon, ϕþ. This implies that
certain quasibound modes of the massive charged scalar
field will grow exponentially with time and thus that the
ABG BH suffers a superradiant instability. This is under
active investigation [86].

2In Ref. [85], the authors studied the Penrose process in the
ABG RBH, but considered neutral particles.
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Third, the ABG BH is just one example in the regular
class in NED. It would be interesting to clarify whether
other solutions in this class also exhibit a stronger electro-
magnetic field at the horizon and thus an enhanced region
of superradiance with associated phenomena, or whether
the ABG BH stands alone in this respect.
Finally, real astrophysical BHs are known to be

rotating. Future studies of absorption by spinning RBHs
would clarify the interplay between charged superradiance
(studied here) and rotational superradiance.
We conclude this paper by discussing some potential

observational impacts. In recent years, the EHT Con-
sortium has provided the first images of the shadows of
the supermassive BHs M87* [5] and Sgr A* [87]. In
principle, observations of BH shadows probe the geometry
of the spacetime near the light ring, and thus there should
be observable differences between regular and singular
BHs, as well as between the charged and uncharged
scenarios. The area of the shadow is closely linked to
the ACS in the high-frequency limit, that is, to the geo-
metric capture cross section σgcs [see Eq. (46)]. This is
influenced by the charge of the spacetime and by its
causal structure, but we do not expect σgcs to be signifi-
cantly affected by unbounded superradiance. However,
unbounded superradiance may provide an efficient mecha-
nism for the BH to deplete its charge (in addition to the
Schwinger effect) and, moreover, a superradiant instability
in the same region of the parameter space could lead to
the formation of a scalar field cloud, with its own
observational signatures. Another arena to explore is the
effect of charge and NED on gravitational waves from

two-body coalescences; for instance, using the merger-
ringdown signal for charged BHs, one may seek to
constrain the charges of the progenitors and the product
of the merger [88]. In certain astrophysical scenarios, scalar
fields are used to model dark matter candidates (see
Ref. [89] and references therein), and dark matter models
can support a small amount of charge [90] (though several
orders lower than that of an electron). Further study is still
needed to understand the role of superradiant scattering in
such scenarios, including on RBH spacetimes.
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