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General relativity’s prediction that all black holes are described by the Kerr metric, irrespective of their
size, can now be empirically tested using electromagnetic observations of supermassive black holes and
gravitational waves from mergers of stellar-mass black holes. In this work, we focus on the electromagnetic
side of this test and quantify the constraining power of very-long-baseline-interferometry (VLBI)
observations of emission generated by hot gas surrounding supermassive black holes. We demonstrate
how to use lensing bands—annular regions on the observer’s screen surrounding the critical curve—to
constrain the underlying spacetime geometry. Contingent upon a detection of a lensed VLBI feature, the
resulting lensing-band framework allows us to exclude spacetimes for which said feature cannot arise from
geodesics that traversed the equatorial plane more than once. Focusing on the first indirect image and tests
of black-hole uniqueness, we employ a parametrized spacetime as a case study. We find that resolving
geometric information that goes beyond the apparent size of the critical curve has the potential to lift
degeneracies between different spacetime parameters. Our work thereby quantifies a conservative estimate
of the constraining power of VLBI measurements and contributes to a larger effort to simultaneously
constrain geometry and astrophysics.
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I. INTRODUCTION

Do all astrophysical black holes source (up to rescaling)
the same exterior gravitational field? In general relativity
(GR), the answer is “yes”: uniqueness theorems imply that
(i) the vacuum exterior of any spherically symmetric source
is given by the Schwarzschild solution [1,2]; (ii) the
vacuum exterior of a stationary axisymmetric (as well as
uncharged and nondegenerate) black-hole horizon is given
by the subextremal Kerr solution [3]; and (iii) the leading-
order asymptotics of any stationary and axisymmetric
source are unique and agree with the asymptotics of the
Kerr solution [4]. Taken together, these three theorems
guarantee that the vacuum exterior of stationary solutions in
GR reproduces the Newtonian limit, allow us to uniquely
identify the (asymptotic quantities) mass M and angular
momentum J, and fix the first parametrized post-
Newtonian (PPN) parameters to βGR ¼ 1 and γGR ¼ 1
[5–7]. Physically, the latter two PPN parameters, respec-
tively, quantify the spatial curvature which is “generated”
per unit rest mass and the degree of “nonlinearity” arising
in the superposition law for gravity [8].

Any observation of a negligibly small test mass in a
stationary background spacetime (sourced by a signifi-
cantly larger mass) puts the assumptions of these unique-
ness theorems to the test. But in which regimes, see Fig. 1
as well as Ref. [9], might we find deviations? On the one
hand, we can probe uniqueness at large curvature scales
ξ≡GM=ðr3c2Þ: in this case, stellar-mass black holes or
neutron stars are the prime astrophysical targets. On the
other hand, we can probe black-hole uniqueness at varying
source mass Msource, whereby we refer to an appropriate
notion of mass in a stationary axisymmetric spacetime
[10,11]. Laboratory experiments currently push the low-
Msource frontier at submilligram mass scales [12,13] (shown
on the far left of Fig. 1). At large Msource, electromagnetic
observations of active galactic nuclei (AGN) through, for
example, radio very-long baseline interferometry (VLBI)
[14,15], x-rays (see, e.g., Refs. [16,17]), or the near infrared
(see, e.g., Refs. [18,19]), are currently the only way to
explore the galactic regime at horizon scales. In the future,
LISA will also be able to explore this regime in the
gravitational wave sector [20].
Extracting information about the underlying geometry

from VLBI data is an active area of research and progress is
happening fast, see, for example Ref. [21] for a recent

*cardenas-avendano@princeton.edu
†aaron.held@phys.ens.fr

PHYSICAL REVIEW D 109, 064052 (2024)

2470-0010=2024=109(6)=064052(25) 064052-1 © 2024 American Physical Society

https://orcid.org/0000-0001-9528-1826
https://orcid.org/0000-0003-2701-9361
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.064052&domain=pdf&date_stamp=2024-03-19
https://doi.org/10.1103/PhysRevD.109.064052
https://doi.org/10.1103/PhysRevD.109.064052
https://doi.org/10.1103/PhysRevD.109.064052
https://doi.org/10.1103/PhysRevD.109.064052


review of analytical studies. The image of a black hole is
formed by incident null geodesics on an observer’s screen.
The characteristic image features are tied to the presence of
a horizon and the presence of an unstable photon sphere or,
more generally, an extended photon shell, see Refs. [22–24]
for its description in the Kerr spacetime. The photon shell
can be defined as a spatial region in which closed photon
orbits are possible. Incident null geodesics on the observ-
er’s screen can then be divided into two classes: an exterior
image region in which incident geodesics originate from
radial asymptotic infinity and an interior image region in
which geodesics originate from the horizon. The division is
demarcated by the apparent shadow boundary [25] or,
henceforth, critical curve [26]. On either side, the critical
curve is surrounded by an infinite series of exponentially
stacked annular lensed images of the entire spacetime
region interior/exterior to the photon shell [24,27–29].
Since, by definition, no light can escape the horizon, one

may intuitively expect a central brightness depression,
commonly referred to as “the shadow.” The critical curve
also contains the direct image of the event horizon itself—
the “inner shadow” [30–32]. In realistic observations, both,
“the shadow” and even “the inner shadow” are not expected
to be completely dark due to astrophysical foreground
emission. Hence, the distinction between the presence and
absence of the horizon is nontrivial [33–35].
Going beyond the central brightness depression, the

apparent size of the critical curve and the surrounding
exponentially stacked lensed images have been used to
infer a quantitative imprint of the geometry [14,36]. The
quantitative precision of this inference is subject to astro-
physical uncertainty and has been scrutinized in various
studies [26,37–41].

The above issue of disentangling geometry and astro-
physics (at least in part) arises from the following
dichotomy. On the one hand, the critical curve itself
depends only on the geometry [25]. On the other hand,
the full observable image will clearly depend on the
astrophysical source. Subsequent lensed images approxi-
mate the critical curve exponentially well but carry some
residual astrophysical dependence [42]. Recent progress
towards quantifying this dependence is based on a precise
theoretical characterization of gravitational lensing in the
Kerr spacetime [24,28,29,43]. We will refer to the resulting
definition of an (n-fold) lensed image as the nth photon
ring, where the indexing nþ 1 is counting the maximum
number of times an emitted photon that arrives to the
observer plane has crossed the equatorial plane. Thus, for
example, n ¼ 0 corresponds to the direct (lensed) image,
i.e., photons that arrive to the observer’s screen and have
crossed the equatorial plane at most once.
In particular, this has led to a proposed null test of GR,

capable to achieve a subpercent level of accuracy [42]. The
proposed test consists of measuring the shape of the second
photon ring (n ¼ 2), which is (exponentially) close to
critical curve, on multiple baseline angles and check
whether or not it follows the GR prediction for the Kerr
metric [44].1 The level of accuracy can be achieved due to
the small width-to-diameter ratio of the (n ¼ 2) photon
ring. This null test works remarkably well even for
moderate inclinations (i≲ 45°) [46].
On the other hand, the first (n ¼ 1) photon ring has a

larger width-to-diameter ratio than subsequent rings, and
consequently the definition of its diameter in the image
plane is ambiguous. Nevertheless, the first photon ring does
admit an angle-dependent diameter in visibility space [47].
In other words, GR predicts a particular functional form for
the angle-dependent diameter for the critical curve that,
surprisingly, provides an interferometric ring diameter of
the first photon ring close, to a few percent, to the critical
curve. Therefore, detections of orbiting (n ≥ 1) photons
provide a window into strong gravity and enable higher-
precision probes of the Kerr geometry at large Msource.
Previous works beyond GR have mostly relied on the

assumption of black-hole uniqueness and have then
explored deviations which are, nonetheless, unconstrained
by other observations (see, for example, Refs. [48–51]).
This assumption effectively collapses the entire parameter
space in Fig. 1 and assumes that gravity acts universally.
There are several reasons to, nevertheless, remain agnostic.
First, GR itself produces event horizons which can be
reached by either going to sufficiently large curvature
(stellar-mass black holes) or to sufficiently large source
mass (AGNs). Similarly, deviations from GR could be tied

FIG. 1. Different types of observations classified by their
source mass Msource (in units of Planck mass MPlanck) and their
curvature scale ξ (in units of inverse Planck area lPlanck

−2). The
boundary of the gray region indicates the formation of a horizon
(according to GR). The vertical lines indicate increasing radial
distance to the source, along which light rays and test masses
(small dots denote the planets of the Solar System and Pluto)
probe the background geometry.

1In the Schwarzschild case, there does exist an analytic
asymptotic formula for the n ≥ 2 images of an equatorial
emission ring [45].
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to nonlinearities [52] or even to nonlocal quantities.
Second, theories beyond GR can have multiple (stable)
branches of black-hole solutions, see e.g., Refs. [53,54].
Different mass scales may be prone to end up in one or
another branch. Indeed, the formation history of AGNs is
not well understood [55,56]. Third, and maybe most
importantly, whenever we are granted new observational
opportunities, it is good practice to best not be guided by
any theoretical prejudice.
Given the above status of the field, our work is motivated

by three objectives. Our first objective is to provide a
generic framework to constrain spacetime parameters,
including the ones related to black-hole uniqueness, with
VLBI observations. Such uniqueness tests for AGN have
been recently been considered in spherical symmetry in
Ref. [57]. Here, we provide the means to extend them
beyond spherical symmetry. Our second objective is to
quantify the constraining power of the first indirect image
beyond null tests [47], and extend this work to deviations
from the Kerr paradigm. Our third objective is to disen-
tangle the above constraints on the underlying spacetime
geometry from uncertainty about the astrophysical accre-
tion process. Previous studies have attempted to tackle
this issue by large computation-intensive joint inference
[50,58–61], by calibration factors [34,48,49,62–64], or by
means of the second lensing band [51]. Here, we extend the
latter approach and propose a generic scheme which
circumvents modelling or calibrating the impact of astro-
physical uncertainties.
Focusing on geometric lensing bands [46,65], annular

regions on the observer’s screen surrounding the critical
curve, allows us to progress on all three of the above
objectives simultaneously. By extending previous works
within GR [42,47] and beyond GR [51,66], we will show
how lensing bands deform when parametrized deviations
from the Kerr spacetime grow sufficiently large. Parameter
regions that result in lensing bands which cannot contain
an observed lensed image are thereby excluded. Upon
confident detection of an associated VLBI feature, this
translates to independent constraints of the respective
deformation parameters, e.g., the leading PPN parameters
βM87 and γM87, for supermassive black holes. A comparison
of, e.g., ðβM87; γM87Þ and ðβGR; γGRÞ then provides a test of
the uniqueness of black holes at up-to-now unexplored
source-mass scales.
The rest of this paper is organized as follows. In Sec. II,

we present the framework by reviewing the geometric
concept of lensing bands (Sec. II A) and discussing some
observational avenues to extract a lensed emission region
from VLBI measurements (Sec. II B). With these two
inputs, we present a generic scheme to translate a confident
observation of lensed emission in the image plane into
constraints on the underlying geometry. Since in the present
work we are not using real data for the VLBI feature, we
will refer to all quantitative statements as “projected

constraints.” Our results aim to quantify the capability
of VLBI observations to impose constraints. As a proof of
concept, we then focus on VLBI observations of M87*
[14,40]. In Sec. III, we benchmark the framework by
recovering the Kerr parameters (mass and spin) and the
inclination to the source. In Sec. IV we apply the lensing-
band framework to a parametric deviation of the Kerr
metric, whose parameters are associated with black-hole
nonuniqueness. Projected constraints on specific space-
times can be obtained by expressing said spacetime within
the parametrization and comparing the respective coeffi-
cients. We summarize our results and discuss the prospects
of future work in Sec. V. Throughout the paper, we use
geometric units in whichGN ¼ c ¼ 1, and the ð−;þ;þ;þÞ
metric signature.

II. THE LENSING-BAND FRAMEWORK

The main motivation behind our work is to constrain
spacetime geometries based on an inconsistency with an
observed “(n-fold) lensed” image of an astrophysical
emission source. In this section, we will provide the
detailed definitions and ingredients of the method.
The proposed lensing band framework requires: (i) a

precise (geometric) definition of what is meant by the
“(n-fold) lensed” image; (ii) a confident detection of a
persistent VLBI “feature”; and (iii) the assumption that this
persistent VLBI feature can be explained as the defined
(n-fold) lensed image.
Given the definition of a “lensed image” that we choose

to work with (see below), the precise exclusion statement,
which we explore quantitatively in the subsequent sections,
can be expressed as follows:

Upon a confident detection of a persistent VLBI
feature, we exclude spacetimes for which this
feature cannot arise from geodesics that traversed
the equatorial plane more than once.

We expect it to be straightforward to apply our framework
to any other definition of a “lensed image” and to any other
assumed/observed VLBI feature.
If one defines the “photon ring” as the lensed image

associated with the above lensing-band definition, and
assumes that a VLBI measurement has detected said
photon ring, then the above statement can be rephrased
as follows:

We identify spacetimes which are excluded by a
confident detection of the photon ring.

The resulting constraints are then rigorous and depend only
on the level of confidence in the above input definitions and
assumptions.
In Sec. II A, we review several available definitions

of the term “lensed” image or “(n-fold) lensed” image.
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We compare these definitions and, in particular, review the
henceforth-used notion of equatorial lensing bands. In
Sec. II B, we briefly review some observational avenues
toward confidently detecting the associated VLBI feature.
Relying only on these two inputs, in Sec. II C, we present
an algorithm for excluding parameter regions in families of
spacetimes such as the Kerr spacetime.

A. On the definition of a lensed image

Lensing bands demarcate the region in an observers’
image plane in which the (n-fold) lensed image of the
emission can be incident. Clearly, the very definition of any
such lensing bands rests on the underlying definition of
what one precisely refers to as “(n-fold) lensed image.”
In general one may relate lensing to the deflection angle

between the ingoing and the outgoing portion of the ray
(see, for example, Ref. [67] for how to obtain the deflection
angle in the Kerr spacetime).
When there is a sufficiently compact central object, such

as a black hole, geodesics can orbit the central object more
than once—or infinitely many times in the presence of a
photon shell. Therefore, it is desirable to have a general
definition quantifying this n-fold orbital motion. In addi-
tion, it is desirable to exploit the symmetries associated to
stationarity and axisymmetry. Together with the
assumption of reflection symmetry, this singles out the
equatorial plane as a plane with respect to which orbital
motion may be defined precisely.
Related concepts were discussed in Refs. [24,26], and a

precise definition with respect to crossings of the equatorial
plane was made rigorous in Refs. [43,68].

1. Black hole lensing bands

In any stationary and axisymmetric spacetime, the
equatorial plane is singled out since it is perpendicular
to the axis of symmetry. It is thus useful to tie a notion of a
lensed image to the equatorial plane.2 The nth-order lensing
band may, therefore, be defined as the region in the image
plane corresponding to geodesics that have crossed the
equatorial plane up to nþ 1 times [46,65]. In Boyer-
Lindquist coordinates ðt; r; θ;ϕÞ, this definition simply
corresponds to counting how many times the condition θ ¼
π=2 (or equivalently cos θ ¼ 0) is met. In the context of
comparing to alternative definitions below, we will refer to
the above as the “crossing definition” of lensing bands.
Throughout the paper, whenever we use the term lensing
bands without further specification, we refer to the “cross-
ing definition.”

In particular, the zeroth-order lensing band then corre-
sponds to all light rays that reach the observer’s screen with
a cut-out portion corresponding to the apparent location of
the event horizon in the observer’s screen. Therefore, the
zeroth-order lensing band covers the entire image plane
apart from the direct image of the event horizon, commonly
referred to as the inner shadow [30–32], and corresponds to
the direct, and therefore weakly lensed, image of the
accretion structure. In contrast, already the first-order
lensing band covers only a finite region within the image
plane. Its inner (outer) boundary corresponds to rays
originating from the location of the event horizon (from
equatorial radial infinity) and arriving at the screen after
crossing the equatorial plane once more. Each successive
higher-order lensing band is contained within the former
and, for n → ∞, the nth-order lensing band exponentially
converges to the critical curve [25].

2. Alternative definitions

Several other (sometimes closely related) geometric
definitions of lensing bands have been discussed in the
literature, see, e.g., Refs. [[23], Sec. 4.3], [[69], Fig. 1], or
[[51], Appendix A]. In particular, this includes a definition
via turning points [24] in the polar coordinate θ: one may
alternatively define themth-order lensing band as the image
region in which incident geodesics exhibit mþ 1 turning
points in θ, i.e., for which the condition d cosðθÞ=dλ ¼ 0
(with λ denoting the affine parameter along the geodesic) is
metmþ 1 times along the geodesic. We will refer to this as
the “turning-point definition” of the lensing bands.
The “crossing definition” and the “turning-point defi-

nition” are related but are not equivalent. To be specific, it
was shown that all geodesics in Kerr spacetime must cross
the equatorial plane between two turning points [68]. In
stationary and axisymmetric spacetimes beyond vacuum
GR, the above relation can be broken, see for example,
Fig. 6 of Ref. [70]. That said, even in the Kerr spacetime,
geodesics which start (or end) at radial asymptotic infinity
may or may not cross the equatorial plane while coming in
(or escaping from) radial asymptotic infinity, as shown in
Fig. 2. Hence, while a lensing band obtained via the
“turning-point definition” will always encompass the
respective lensing band obtained with the “crossing defi-
nition,” the inverse statement is not generally true, and the
two lensing band boundaries do not coincide.
Consequently, for anoptically thin andgeometrically thick

accretion disk, emission from the far half of the disk transits
the equatorial plane once more than emission from the near
half of the disk (where near and far are definedwith respect to
the observer’s position). The tails of the associated emission,
i.e., emission which originates from r ≈ r0 or r ≈∞ but on
the near side of the equatorial plane, can thus “leak” from the
nth into the (n − 1)th equatorial lensing band.
Two comments are in order. First, this effect is increas-

ingly relevant for non-equatorial emission from either close

2Other definitions of what one may refer to as a geometric
lensing band are possible. For instance, one may also count
crossings (or turning points) with respect to other planes such as
the one orthogonal to the observer’s line of sight, see, for example
the discussion around Fig. 1 in Ref. [69].
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to the horizon or close to asymptotic infinity. Second, even
for rather exotic geometrically thick disks with an emission
peak close to r ≈ r0 or r ≈∞, the (n-fold) lensed emission
(according to the “turning point definition”) must always
lie within the (n − 1)th-order lensing-band (according to
the “crossing definition”).
Nevertheless, the above discussion highlights that the

very definition of what one refers to as lensed emission may
be related to the question of an astrophysics-independent
confident detection of the associated VLBI feature. In
practice, different geometric notions of a lensing band
discussed may serve as an estimate for a systematic error in
the identification of a VLBI feature with the lensing band.
As the purpose of the present work is merely to introduce
and demonstrate the lensing-band framework, we defer
such quantitative estimates of a potential systematic error to
future work.

3. Numerical approximation via bisection

Due to their simple geometric definition, the effort to
obtain lensing bands is comparable to the effort to obtain
the critical curve. For any algebraically special spacetime in
which geodesic motion is separable, we expect that the
lensing bands can thus be expressed by closed-form one-
dimensional integrals, see Ref. [[46], Appendix A] for the

Kerr case. In the nonseparable case, each lensing-band
boundary can be obtained by numerical bisection. In
complete analogy to numerically obtaining the critical
curve, this amounts to bisecting while numerically solving
the geodesic equation, i.e., a coupled system of ODEs.
For this purpose, we have developed a Mathematica

package, LBEYONDGR,3 to iteratively move the bisection
forward along the lensing-band boundary. Thereby, we can
reliably obtain even non-star-convex lensing-band boun-
daries [65]. A description of the algorithm is given in
Appendix A. A brief summary of the resulting scheme to
constrain the underlying geometry is presented in Sec. II C.

B. On the observation of a lensed emission region

In the following Secs. II B 1 to II B 3, we briefly review
three current avenues to observationally extract a lensed
emission region from VLBI data. In Sec. II B 4, we then
model a specific lensed emission region with which we
obtain the projected constraints presented in the remainder
of this paper.

1. A hybrid imaging algorithm

One way to isolate evidence for a lensed image from
foreground emission is hybrid imaging. Hybrid imaging
combines rasterized image reconstruction with the specific
modeling of expected features. In Ref. [40], for the data
obtained in the 2017 EHT observation run of M87* [14],
hybrid imaging algorithms [71,72] indicated a Bayesian
preference for a model fit upon inclusion of an expected
thin-ring feature over a model fit without said thin-ring
feature. The authors of Ref. [40] interpreted these results as
first evidence of (with the definitions of the present work)
n ¼ 1 lensed emission. We refer the reader to Refs. [41,73]
for other analyses where no evidence for the presence of
lensed emission was found.

2. An interferometric diameter inferred
from the visibility amplitude

An image consisting of nested rings, as expected from
GR, produces a cascade of damped oscillations on pro-
gressively longer baselines [24]. Such decomposition is
displayed, for example, in Fig. 1 of Ref. [47] for 0 ≤ n ≤ 2.
Consequently, the visibility amplitude of such an image
will display a ringing pattern whose period of oscillation is
related to a characteristic length/diameter in the image
domain, modulated by an envelope whose specific falloff is
dictated by the ring thickness [24]. Due to these properties
in the visibility domain, a space-based VLBI observation
can provide evidence for a lensed emission region within
the LBn≥1

VLBI, if a ringing pattern in the visibility amplitude is
detected. By sufficiently long baselines, we mean that,

FIG. 2. To exemplify the inequivalence of different geometric
definitions of lensing bands, we show the Boyer-Lindquist
coordinates ðr; θÞ of example trajectories in the Schwarzschild
spacetime, viewed at inclination i ¼ 17° and for screen coor-
dinates ðα; βÞ ¼ ðx; xÞ in the vicinity of x ≈ 4M. All the shown
trajectories have two turning points (i.e., m ¼ 1) and, therefore,
are part of the first lensing band according to the turning-point
definition. In contrast, the trajectories that cross the equatorial
plane only once (i.e., n ¼ 0), denoted with dashed orange lines,
are not part of the first lensing band according to the equatorial-
plane-crossing definition. Conversely, the trajectories that cross
the equatorial plane twice (i.e., n ¼ 1), plotted with dotted cyan
lines, are part of the first lensing band according to the equatorial-
plane-crossing definition. The critical trajectory, for which
cosðθÞ → 0 for r → ∞, is marked as the black (continuous)
curve, on which the arrow points towards the screen.

3The code is publicly available at https://github.com/aaron-hd/
LBeyondGR.
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since the n ¼ 0 image is also ringlike, the baseline should
be long enough to provide evidence of a change in the slope
of the envelope of the interferometric signature [24]. The
location, in baseline length, where the direct image (n ¼ 0)
stops dominating the visibility domain depends on the
width of the n ¼ 0 image itself, which is highly dependent
on the accretion structure surrounding the black
hole [42,47].

3. A phase shift on polarimetric images

Another approach to increase confidence in the detection
of a lensed emission region, is given by polarimetric images.
Assuming that the astrophysical emission source, and, in
particular, its polarization structure, shares the rotational
symmetry of the spacetime, one expects that the polarization
flips between successive lensing bands [74]. In particular,
there is a complex conjugation of the rotationally symmetric
Fourier mode, known as β2, between the n ¼ 0 and n ¼ 1
images. Thus, measuring a shift in polarimetric phases on
long baselines is another estimator [75].
Such a rotationally symmetric polarization structure is

expected to arise from the accretion flow of magnetically
arrested disks which are currently preferred by observations
of M87* [76]. At moderate (near-face-on) inclination, the
above polarimetric signature has been confirmed in simu-
lated interferometric observations [75]. In particular, the
authors construct a gain-robust interferometric quantity and
demonstrate that future observations of M87* have the
potential to detect this polarization signature.

4. Concrete implementation of an input VLBI feature

Irrespective of which of the above avenues the reader
deems most promising, we demonstrate the potential of
such an observation to rule out parameter ranges in an
underlying family of spacetime geometries such as the Kerr
spacetime. As a concrete proof of concept, we assume a
lensed emission region LBn≥1

VLBI which matches the (upper
prior limit of the) narrow-ring feature reported in Ref. [40],
i.e., a geometrically circular ring of radius θring ¼ 21.7�
0.1 μas and fractional width ψ ¼ 0.05. We neglect the error
in the radius θring, since it is a subleading contribution. A
graphic representation of the resulting lensed emission
region LBn≥1

VLBI is given in Fig. 3.
We emphasize once more that the posteriors in Ref. [40]

are insufficient to constrain the width or shape of the
ringlike VLBI feature. In the following, we implicitly
assume that joint data analysis of future observations,
see, for instance Refs. [77,78], can confidently associate
such a thin-ring VLBI feature to lensed emission.
Provided an external measurement of the distance D to

the source (in this case to M87*, for example), we can
translate between the apparent on-sky angle α (in units of
radians or equivalently μas) to geometric units r0 ¼
2MGN=c2 in the underlying spacetime (with M the

asymptotic mass, GN the Newton constant, and c the speed
of light) by

tanðαÞ≡MGN

Dc2
: ð1Þ

In all statistical inferences, we assume D ¼ 16.8�
0.8 Mpc as inferred in Ref. [[79], Appendix I], cf. also
Refs. [80–82] for the original measurements. For our
exploratory analysis, we neglect the error on D as sub-
leading, recognizing that any error in D fully degenerates
with the inferred mass M.

C. Resulting scheme and numerical implementation

From here on, we assume that a lensed emission region
(i) has been observed and (ii) must lie, for any given
spacetime g, within its n ¼ 1 lensing band, LBn¼1ðgÞ.
Hence, if the observed lensed emission region LBn≥1

VLBI does
not match, or “fit into,” the lensing-band LBn¼1ðgÞ, then we
can rule out the respective underlying spacetime geometry
g, see Fig. 3 for an schematic representation of this
matching procedure. The level of confidence with which
the underlying spacetime geometry can be ruled out
depends on (i) the level of confidence in the detection of
the lensed emission region, and (ii) the level of confidence
in the theoretical assumption that it must occur within the
lensing band.
We allow for an arbitrary centroid shift by an image-

plane vector ðx0; y0Þ when performing the matching. The
centroid shift amounts to the lack of a reference point.
Potential observations of the inner shadow [30–32] or the
base of the jet in M87* [83] could provide additional priors
for the centroid shift. Examples of such reference points
will be shown in Sec. IV B, but we will not include them in
the statistical analysis presented in this work. Such addi-
tional priors will only strengthen evidence against the
underlying spacetime g.

FIG. 3. Two schematic examples of n ¼ 1 lensing bands
LBn¼1ðgÞ (light-shaded regions), for which the respective space-
time g remains allowed (left-hand panel)/can be excluded (right-
hand panel), after a confident detection of a lensed emission
region LBn≥1

VLBI (circular crescent; green regions contained in the
lensing band; orange regions not contained in the lensing band).
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In the following, we present an explicit algorithmic
scheme with which we decide—given a lensed emission
region LBm≥n

VLBI, as defined in Sec. II B—whether or not a
given spacetime g is excluded. The readers not interested in
numerical technicalities may skip this section and proceed
directly to the results (Sec. III).
The scheme splits into three parts: first, an algorithm to

determine the lensing band LBnðgÞ; second, a minimization
of the subregion of LBm≥n

VLBI which cannot be covered by
LBnðgÞ; and third, an iteration of the former two steps as
part of a Markov-chain Monte Carlo (MCMC) sampling
algorithm.
In the present work, we focus on the n ¼ 1 lensing band

which is, at present, observationally most relevant.
However, the scheme generalizes to arbitrary n and we
plan to determine the exclusion potential of a confident
(space-based) n ¼ 2 detection in future work, cf. Ref. [51].

1. Free-floating bisection to obtain
the lensing-band region

The numerical approximation of a lensing-band LBnðgÞ
requires us to determine4

(i) its outer boundary ∂
ðouterÞLBnðgÞ and

(ii) its inner boundary ∂
ðinnerÞLBnðgÞ.

Each equatorial lensing-band LBnðgÞ is defined by the
number of times N that the respective incident light ray has
crossed the equatorial plane, i.e., n ¼ N − 1. Equivalently,
one can define the following binary conditions

CðouterÞn ¼
�
TRUE if N ≥ nþ 1

FALSE if N < nþ 1
; ð2Þ

CðinnerÞn ¼
�
TRUE if N < nþ 1

FALSE if N ≥ nþ 1
: ð3Þ

These conditions evaluate to TRUE whenever the respec-
tive image point is to the left of the respective lensing-band
boundary ∂

ðouterÞLBnðgÞ [or ∂ðinnerÞLBnðgÞ], where left and
right are defined following the boundary counterclockwise.
The only difference between determining the inner and
outer boundary is a flip in the condition (or equivalently a
flip in clockwise/counterclockwise direction). Other con-
ventions may be chosen and are equivalent to the above.
The task of numerically approximating a lensing band is,

thereby, reduced to numerically approximating a closed
boundary curve ∂R twice. This curve demarcates a sub-
region R ⊂ R2 in the 2D image plane with respect to a
specified boundary bisection condition C, i.e., with respect

to the above conditions CðouterÞn and CðinnerÞn .

Except for a modification in the boundary bisection
conditions, the individual bisections are fully equivalent to
the well-known numerical bisection of the critical curve,
see Ref. [84] for an example of such a bisection code. In
particular, the numerical effort is equivalent.
The abstract task of bisecting a closed curve can be

thought of as a discretization of said curve. One may define
an orthogonal ray on each such discrete boundary piece. If
one can ensure that, on each ray, two initial points are given
—one on either side of the boundary—then one can
perform a simple iterative bisection with respect to the
defining boundary bisection condition C.
Our key technical advancement lies in the choice of

bisection rays. Previous numerical codes, see, e.g.,
Ref. [84] (for the critical curve) and Ref. [65] (for lensing
bands), perform an “angular bisection” with respect to a
(suitably) chosen central point. Instead, here we develop a
“free-floating” bisection algorithm. Once two points on the
boundary are known, the next bisection can then be chosen
only in reference to these two points. We find that this has
two major advantages:
(1) The first significant advantage is robustness with

respect to non-star-convex boundaries. When using
an angular bisection with respect to a central
reference point, bisection rays may intersect the
boundary more than once. By definition, this nec-
essarily occurs whenever the respective region is not
star convex. Whenever such a double intersection
occurs, the boundary is not identified correctly by
means of angular bisection. The free-floating bisec-
tion algorithm avoids these issues. In particular, it
robustly identifies also non-star-convex boundaries.5

(2) The second major advantage is the adaptive step size.
The free-floating bisection initializes each subsequent
bisection in reference to (at least two) previous points
on the boundary. This makes it possible to dynami-
cally adapt the step size and precision which, in turn,
allows us to optimize efficiency while ensuring that
the boundary is not lost.

We assume that the free-floating bisection algorithm can be
adapted to any other (binary) boundary bisection condition in
a 2Dplane.Given thegenerality of this problemandgiven the
above two advantages, the algorithm might be of more
general use. We provide further details in Appendix A.
Given this free-floating bisection algorithm, the problem

is reduced to standard numerical ray tracing (in curved
spacetime g) at each bisection step. In order to keep the
code-development minimal, we use an adapted version of

4Strictly speaking, this split only holds as long as the topology
of the lensing-band region remains unchanged. Here, we will
assume that this is the case.

5The only remaining ambiguity concerns the initial guess and
whether it converges to the associated boundary. Here, we assume
(and verify) that the screen point ðα; βÞ ¼ ð0; 0Þ lies within the
inner shadow and that a random guess at radial distance of 100M
lies within the asymptotic n ¼ 0 lensing-band region. We find
that these assumptions are sufficient to identify all lensing-band
boundaries investigated here.

LENSING-BAND APPROACH TO SPACETIME CONSTRAINTS PHYS. REV. D 109, 064052 (2024)

064052-7



Mathematica’s NDSOLVE routine for the ray tracing.6 The
ray tracing is performed in Boyer-Lindquist type coordi-
nates. The translation from screen coordinates to ray tracing
coordinates is detailed in Appendix C (see also Ref. [84])
and, in fact, only requires that the coordinates converge to
oblate spheroidal coordinates at r → ∞. The observers
screen is then placed at r ¼ 105M, which approximates the
r → ∞ limit sufficiently well.7

2. Minimizing the uncovered emission region

Once the lensing band is determined, the second task is to
vary the centroid shift ðx0; y0Þ such that the subregion of
LBm≥n

VLBI that cannot be covered by LB
nðgÞ is minimized.8 In

themathematical language of set theory, the regionwhichwe
want to minimize is the relative complement LBnðgÞc of
LBnðgÞ in LBm≥n

VLBI, i.e., LBnðgÞc ∩ LBm≥n
VLBI ≡ LBm≥n

VLBIn
LBnðgÞ. Finally, we normalize the area to the total area of
LBm≥n

VLBI. We can thus summarize the abstract task as
determining the relative covered area A defined by

AðgÞ≡Minðx0;y0ÞðLBm≥n
VLBInLBnðgÞÞ

LBm≥n
VLBI

: ð4Þ

Thenormalization ensures that0 ≤ AðgÞ ≤ 1which is useful
for numerical purposes. Once A is determined, we decide

(i) if AðgÞ ¼ 0, the geometry g remains allowed;
(ii) if AðgÞ > 0, the geometry g is excluded.

For the present purposes, we use Mathematica’s predefined
region andminimization routine to perform this second step.9

While VLBI image reconstructions do not have an absolute
reference frame, we enforce a constraint on the centroid
shift, i.e.,

x20 þ y20 < radðLBn≥1
VLBIÞ2; ð5Þ

where radðLBn≥1
VLBIÞ denotes the radius of the observed/

assumed lensed emission region. This constraint effectively
enforces that the central brightness depression region does
not move to unphysical regions. In practice, this constraint is
required to avoid artefacts when the lensing band develops
very broad regions, i.e., regionswhich exceed the diameter of

the observed/assumed lensed emission region, see lower
panels of Fig. 5 for examples.

3. Bayesian inference

Given a confident measurement of lensed emission as
discussed above, we estimate the parameters of the space-
time gðM;A; p1;…; pkÞ, where M and A denote the
asymptotic mass and spin, respectively, and pi denotes
extra parameters (e.g., coupling constants or dimensionless
“bumpy” parameters [89]), for which the n ¼ 1 lensing
band of an observer at infinity, and at inclination i can cover
the considered ring. In other words, we estimate the set of
parameters λ⃗ ¼ fi;M; A; p1;…; pkg such that its n ¼ 1
lensing band covers the observed VLBI feature, as Fig. 3
illustrates.
We perform the parameter estimation using the affine

invariant MCMC sampler EMCEE [90], to explore the
posterior surface, i.e., the likelihood function L

log ½Lðθring ¼ 21.7 μas jλ⃗Þ� ¼ −
1

2

�
A
σ

�
2

; ð6Þ

times the parameter priors. HereA∈ ½0; 1� [Eq. (4)] denotes
the overlapping area between the VLBI feature and the
lensing band, and σ is the standard deviation of the
distribution, which we assume it to be σ ¼ 0.05, as a
proxy for the observational error of the VLBI feature. We
choose flat priors on all the parameters. For the parameters
A, i and M the ranges are −1 ≤ A=M ≤ 1, 0 ≤ i½deg� ≤ 85

and 3 ≤ M=ð109M⊙Þ ≤ 8, respectively. For the parameters
pi, however, the only requirement are for them to satisfy
(i) the absence of further (Killing) horizons; (ii) the absence
of closed timelike curves; and (iii) no signature changes in
the metric. In Appendix D, we present the explicit
expressions for their range of validity.
The EMCEE ensemble of walkers is initialized by sam-

pling from the prior distributions. For all the cases
presented in this work, we run until ∼105 samples are
obtained, and burn-in the initial 100 samples. In general,
parameter regions in which the lensing band is wide are
easier to find within the posterior likelihood distribution.
Recovering the theoretically expected symmetry of all
results and correlations under the exchange of A ↔ −A
(as well as a ↔ −a) seems to be another good marker for
convergence of the MCMC sampler. The presented results
suggest that most (but not all) correlations are fully
converged. Given the exploratory character of our work,
we do not deem it justified to spend computation time on
further convergence.

III. BENCHMARK: PROJECTED CONSTRAINTS
IN THE KERR SPACETIME

As a benchmark application of the lensing-band scheme,
we ask what can be inferred about the parameters of the

6This is certainly not the most efficient ray tracing and we are
inclined to make use of existing optimized ray tracing codes (such
as the ones presented in Refs. [16,85–87], for example) in future
applications.

7We have tested that the precision of the lensing-band
boundary in the Kerr space time at high inclination (see Fig. 5
for some visual examples) remains at least at the subpercent level
with the analytical results using the code described in Ref. [65].

8In Ref. [88], a mismatch was defined for the regions within
the critical curve, after cocentering them at the origin of the
camera’s reference frame.

9To be explicit, we use NMINIMIZE and specify the method to
RANDOMSEARCH.
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Kerr spacetime itself. In Boyer-Lindquist coordinates the
free parameters of the Kerr geometry are the inclination i,
the Kerr mass parameter M, and the Kerr spin parameter
A=M. The results of the MCMC sampling are shown in
Fig. 4. All the results should be understood as projected
constraints which can be inferred once a confident detec-
tion of a lensing-band region, as discussed in Sec. II B, is
available. We further emphasize this interpretation, i.e., that
these are not actual constraints obtained from data, by using
the “geometrically-equal-to” sign ≑ whenever referring to
projected constraints.
For the implemented example, it is reassuring that the

mass posterior results in a projected constraint for the mass
of M87*, i.e., M≑6.68þ0.48

−0.4210
9M⊙, that is in agreement

with previous results [14]. We find no independent pro-
jected constraint on the spin. We remind the reader that we
ignore any external mass measurement and make only
minimal assumptions on the astrophysics, cf. Sec. II.
Hence, we interpret this result as the statement that addi-
tional knowledge about, for example, the accretion physics,
an external mass measurement, or higher-order lensing
bands is needed to infer the spin.
We do, however, find an interesting correlation, albeit

small, between mass and spin: the higher the absolute value
of the spin, the larger the inferred mass, see the covariance

of A and M in Fig. 4. The underlying reason for this
correlation is the shrinking of the n ¼ 1 lensing band with
increasing spin, see left vs right columns in Fig. 5. With
very different inference techniques, it has been previously
found in Refs. [40,91] that such correlation between mass
and spin is more significant in the n ¼ 1 image than in the
critical curve (i.e., in the n ¼ ∞ image). It is reassuring that
we recover this correlation.
As expected, given that the modeled VLBI feature is a

circle, the results disfavor high inclinations. To be specific,
the posterior for the projected constraint on inclination
results i≑34°þ28°

−22° . Indeed, the n ¼ 1 lensing band becomes
very thin as the inclination approaches i ∼ 90°, as shown by
the different rows in Fig. 5. We highlight that formally our
analysis assumes, and thus all constraints rely on, a
confident detection of lensed emission throughout the
specified region LBn≥1

VLBI, see, for instance, the darker and
colored regions in Figs. 5 and 3 and the discussion in

FIG. 4. Projected constraints obtained using the lensing-band
framework applied to the Kerr spacetime. These results exemplify
how, upon measuring a VLBI feature, as mentioned in Sec. II B,
one can constrain parameters of the spacetime. Given that the
lensed image assumed for this example is a circular ring, it is
possible to constrain the inclination. The mass, as expected, is
also constrained from the overall scale.

FIG. 5. Examples of lensing bands (light gray regions) and the
fitted lensed emission regions LBn≥1

VLBI (green regions contained in
the lensing band; orange regions not contained in the lensing
band) in the Kerr spacetime. The three rows (top to bottom)
distinguish different inclinations: i ¼ 0°; 50°, and 85°, respec-
tively. The two columns distinguish different spins: A ¼ 0 (left)
and A ¼ 0.99M (right).
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Sec. II B. In particular, the quantitative projected con-
straints (such as the one on the inclination) which arise
from a thinning of the lensing band, implicitly rely on
lensed emission being observed not just somewhere but
everywhere within the observed region.
The above example highlights that our projected con-

straints should be interpreted as an estimate for the
constraining power of a given VLBI observation or as a
means to uncover quantitative physical correlations among
the underlying parameters of the geometry.
Dedicated future studies to determine how confident

VLBI observations can constrain the thickness of a lensed
emission region are vital to solidify constraints such as the
above ones. We also emphasize that the definition of
lensing bands (defined with respect to the equatorial
plane) is ill defined at exactly edge-on inclination
i ¼ 90°. Respectively, when deforming, e.g., the n ¼ 1
lensing band with increasing inclination across i ¼ 90°,
one encounters a discontinuity, see, e.g., [[46], Fig. 7].
The quantitative impact of this remains to be scrutinized in
future studies and, hence, we are cautious to interpret our
results at close to edge-on inclination.

IV. APPLICATION: PROJECTED
CONSTRAINTS ON BLACK HOLE

NONUNIQUENESS

In this section, we apply the developed lensing-band
framework to parametrized deviations from the Kerr
spacetime. This test case demonstrates that the framework
is an efficient tool for first explorations of large parameter
spaces of possible deviations from GR in the context of
black-hole shadow observations. In particular, we demon-
strate that the formalism enables us to

(i) efficiently explore degeneracies and correlations in
large parameter spaces;

(ii) quantify the constraining power of a confident
observation of a lensed emission region;

(iii) identify specific detectable deviations which may
then be tested for against the Kerr spacetime in
explicit astrophysical models.

As in the previous section, we present the results in the
form of “projected constraints” on the underlying space-
time parameters. In Sec. IVA, we briefly review para-
metrized deviations in stationary and axisymmetric
spacetimes beyond Kerr, and present a seven-parameter
spacetime which we will use as a prototype test case
beyond Kerr. In Sec. IV B, we then apply the lensing-band
framework presented in Sec. II and discuss the resulting
projected constraints.

A. Parametrizing deviations to circular spacetimes

There are various ways in which black-hole candidates
may differ from a black hole solution in GR [92]. In recent
years, a “theory-agnostic” approach to testing GR has been

heavily pursued. This approach involves parametrizing
deviations from GR solutions (such as the metric [89] or
gravitational potentials [8]) or observables (such as the
gravitational waveform [93] or quasinormal modes
frequencies [94]). As a result, a particular theory is neither
employed nor tested, but the hope is that the parameters
involved, in such an agnostic way, can then be mapped to
physical constraints.
The exploration of deviations at the level of the metric

requires to (i) parametrize a given class of spacetimes in
terms of free metric functions, and then (ii) expand these
metric functions. In the first step, the free functions should
ideally cover the entire class of spacetimes without any
redundancy. While this may seem trivial, a satisfactory
answer with regards to all possible stationary and axisym-
metric spacetimes is—to the best of our knowledge—not
known. In Sec. IVA 1, we review what is known in
subclasses of stationary and axisymmetric spacetimes with
additional symmetries. For the second step, a relation to
physical quantities, such as multipole moments at asymp-
totic infinity, seems desirable. We briefly review such
expansions in Sec. IVA 2.

1. Subclasses of stationary and axisymmetric spacetimes
with a redundancy-free metric ansatz

Stationary and axisymmetric spacetimes are defined by
the existence of a spacelike rotational Killing vector ημ and
an asymptotically timelike Killing vector ξμ. A theorem by
Carter ensures that the two Killing vectors always commute
[95]. Throughout the following discussion, we restrict to
the physical case of four-dimensional Lorentzian space-
times, but we do not assume vacuum GR. Moreover, we
seek a coordinate system valid throughout the exterior
black-hole region.
Due to the Killing symmetries, the metric can always be

written in terms of ten free functions which depend only on
two coordinates. Assuming a global ðð2þ 1Þ þ 1Þ foliation
of the spacetime, eight independent metric functions are
sufficient [96]. When restricting to a coordinate patch in the
vicinity of future null infinity, these can further be reduced
[97,98]. However, to the best of our knowledge, a fully
satisfactory understanding regarding completeness and
redundancy remains outstanding, see also [99,100].
In contrast, the class of stationary and axisymmetric

spacetimes contains several subclasses in which further
progress has been made. Each of these subclasses can be
understood in terms of some enhanced (either explicit or
hidden) symmetry. Some of the known subclasses are
successively contained within each other.
First, one may restrict to circular spacetimes [101–103].

Physically, circular spacetimes allow for a global foliation
into two orthogonal 2-surfaces. This also implies a global
symmetry under simultaneous inversion ϕ ↔ −ϕ and
t ↔ −t of the two Killing coordinates (associated with ημ
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and ξμ). All vacuum solutions of GR are circular.10

Irrespective of vacuum GR solutions, any circular spacetime
can be written as

ds2circ ¼ −gttðr; θÞdt2 − gtϕðr; θÞðdtdϕþ dϕdtÞ
þ grrðr; θÞ½dr2 þ σðr; θÞdθ2� þ gϕϕðr; θÞdϕ2; ð7Þ

where the choice of σðr; θÞ ¼ r2 þ a2 cosðθÞ2 specifies
Boyer-Lindquist coordinates ðt; r; θ;ϕÞ. The circular class
requires five nonvanishing metric elements, described in
terms of four independent functions.11 It is both minimal and
exhaustive in the number of required free functions.
Exhaustiveness of Eq. (7) relies on circularity and has been
established in Refs. [101–103].
One may further enhance the symmetry from statio-

narity to staticity. Any static and axisymmetric spacetime
is a member of the Weyl class [104] with four non-
vanishing metric elements written in terms of two inde-
pendent functions.
Alternatively, one may restrict to spacetimes which, in

addition to the two Killing vectors ημ and ξμ, admit for an
independent rank-2 Killing tensor. The Killing tensor then
guarantees a hidden constant of motion and thus separabil-
ity and integrability of geodesic motion [105,106]. The
minimal and exhaustive form has been derived in
Ref. [106], and we will thus refer to this subclass as the
Benenti-Francaviglia class. Both, the Weyl class and the
Benenti-Francaviglia class are contained in the circular
class.
Finally, in any of the above classes, one may or may not

chose to break reflection symmetry about the equatorial
plane, see, e.g., Ref. [107] for a study within the Benenti-
Francaviglia class. Of course, one may also further restrict
to spherical symmetry, where stationarity implies staticity.
Given that the circular class is the largest known subclass

in which a redundancy-free metric ansatz has been estab-
lished, we focus on this symmetry subclass of stationary
and axisymmetric spacetimes in our analysis. Before we do
so, we briefly summarize different expansion approaches.

2. Expansion approaches to parametrized deviations

Multipole expansions of the Weyl class have been
explored in Refs. [89,108]. They have been extended to
deviations from Kerr spacetime by applying the Newman-
Janis algorithm [109] to the Weyl class [108,110–112]. The
resulting spacetimes are no longer within the Weyl class. In
Ref. [111] it was shown that the resulting spacetimes do not
necessarily admit for a rank-2 Killing tensor and thus need
not remain within the Benenti-Francaviglia class.
Different Taylor expansions around asymptotic infinity

within the Benenti-Francaviglia class have been explored in
Refs. [113–115]. A continued fraction expansion around
the horizon at r ¼ r0 of the circular class (first developed in
spherical symmetry in Ref. [116]) has been set up by
Konoplya, Rezzolla, and Zhidenko (KRZ) [117], which we
briefly review in Appendix B. To the best of our knowl-
edge, the KRZ expansion covers all of the above expan-
sions, while the reciprocal is not true. Hence, we focus on
this continued-fraction expansion below.

3. A seven-parameter family obtained from the
leading-order terms in the KRZ expansion

As detailed above, we focus on the KRZ expansion (see
Sec. IVA 2) of circular spacetimes (see Sec. IVA 1).
Furthermore, we make sure to maintain oblate spheroidal
coordinates at radial asymptotic infinity and match the
leading order asymptotics to the mass M, the angular
momentum J, and the PPN parameters β and γ. The
respective explicit derivation within the KRZ expansion
is detailed in Appendix B. These choices result in a seven-
parameter family of spacetimes for which the metric
functions in Eq. (7) can be written in the following simple
form

gtt ¼ −
ðΔβγ þ r3

0
ðr−r0Þ
r2 a01Þsin2θ − g2tϕ

gϕϕ
;

grr ¼
Σð1 − ð1−γÞM

r Þ2

ðΔβγ þ r3
0
ðr−r0Þ
r2 a01Þ

;

gθθ ¼ Σ;

gϕϕ ¼
�
a2 þ r2 þ 2Mra2

Σ

�
A
a
−
ða2 þ r20Þcos2θ

2Mr0

��
sin2θ;

gtϕ ¼ −
2MrAsin2θ

Σ
: ð8Þ

We use the common shorthand A ¼ J=M,
Σ ¼ r2 þ A2 cos2 θ, and Δ ¼ r2 − 2Mrþ A2 which are
also often used to denote Kerr spacetime. In addition,
we use the shorthand

Δβγ ¼
ðr − r0Þ½Δ − 2M2ðβ − γ þ r0

MÞ þ r0ðrþ r0Þ�
r

; ð9Þ

10Mathematically, circularity can be understood as a property
of the Ricci-tensor Rμν in relation to the two Killing vectors ημ

and ξμ, i.e., that ημR½ν
μ ξκηλ� ¼ 0 and ξμR½ν

μ ηκξλ� ¼ 0 everywhere
(while there exists a point in the spacetime for which
η½μξν∇κηλ� ¼ 0 and ξ½μην∇κξλ� ¼ 0), see e.g., Ref. [[103],
Sec. 7.1]. It is now obvious that any Ricci-flat spacetime,
hence, any vacuum solution of GR is circular.

11Equation (7) requires only four free functions but five non-
vanishing metric elements. Hence, coordinate transformations can
be used to, for instance, alter the relation betweendr2 anddθ2. This
coordinate freedom can be used to reduce from five to four free
functions, see, e.g., Ref. [101] for thewell-knownPapapetrou form.
The latter choice of coordinates, however, does not contain Kerr in
Boyer-Lindquist coordinates [[100], Appendix B].
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which reduces to Δβγ → Δ in the Kerr limit (see below).
The seven free parameters

Ξ ¼ ðr0;M; J; β; γ; a; a01Þ; ð10Þ

have the following physical meaning:
(1) The surface r ¼ r0 denotes the black-hole horizon.

In Appendix D we present the theoretical bound on
the other parameters to ensure that r ¼ r0 is the
outermost (Killing) horizon.

(2) The parameters M and J correspond to asymptotic
mass and angular momentum, respectively. Instead
of J, we sometimes work with A ¼ J=M.

(3) The parameters β and γ correspond to the leading-
order PPN parameters in the point-mass limit.

(4) The parameter a accounts for independent devia-
tions of the horizon area12 away from the horizon
area of a Kerr black hole with equatorial horizon
radius r0 and asymptotic spin A.

(5) In the asymptotics, the parameter a01 corresponds to
ðr0=rÞ3 corrections. We include this parameter to
relate to previous studies [50,57].

The Kerr spacetime in Boyer-Lindquist coordinates is
recovered when r0 → M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, J → aM, β → 1,

γ → 1, and a01 → 0.

B. From size constraints to shape constraints

Given the spacetime in Eq. (8) and the lensed-emission
region in Sec. II B, we employ the lensing-band framework
to obtain projected constraints on the underlying free
parameters of the circular beyond-Kerr geometry given
in Eq. (10).
The full results of the Bayesian parameter estimation,

including deviations of all seven free parameters Ξ ¼
ðr0;M; A; β; γ; a; a01Þ of the underlying spacetime, is pre-
sented as corner plot in Fig. 6. As in the previous section,
we choose flat priors on all the parameters with the
following bounds: 0.01≤ r0 ≤ 5, −5≤A=M≤ 5, −1≤β≤3,
−1 ≤ γ ≤ 5, −1 ≤ a ≤ 1, and −5 ≤ a01 ≤ 5, and check that
the resulting metric obeys the theoretical bounds presented
in Appendix D. As we will see, these flat priors are
deformed into preferred regions, for most of these param-
eters, demonstrating the constraining power of a confident
observation of a lensed emission region such as the one
discussed in Sec. II B.
We discuss several aspects of these results in more detail

in the following section. To aid the discussion, we present
explicit lensing bands of respective metric deformations
and refer to the marginalized posteriors and covariances
in Fig. 6.

1. Disentangling the asymptotic mass
and the radial horizon location

Previous constraints derived from data obtained in EHT
observations ofM87* and SgrA� assume that the asymptotic
massM is tied to the horizon location r0 [14,49,50,57]. This
can be understood as an expression of the uniqueness
theorems ofGR.As our parametrized spacetime disentangles
M and r0, we are able to probe this particular uniqueness
assumption. Indeed, our results indicate independent pro-
jected constraints for both parameters, with inferred values
ofM≑5.98þ1.35

−1.5110
9M⊙ and r0≑2.23þ1.38

−1.16M. The outcome is,
therefore, consistent with mass estimates obtained from the
image ofM87* [14,40]. Thesevalues are also consistentwith
a horizon location in the full range of black holes admissible
in GR, i.e., from Schwarzschild spacetime with r0 ¼ 2M all
the way to extremal Kerr spacetime, i.e., with r0 ¼ 1M.

2. The effects of the inclination

As discussed in Sec. III, for the Kerr spacetime, the
definition of equatorial lensing bands is ill defined at edge-
on inclination (i.e., at i ¼ 90°), see, e.g., Fig. 7 in Ref. [46].
Hence, we are cautious to interpret results at close to edge-
on inclination.
With the above caveat, and similar to the Kerr case in

Sec. III, our results suggest a preference for low, i.e., close to
face-on, inclination. Specifically, we find i≑32°þ31°

−21° which
remains very similar to the posterior for the inclination
obtained for the Kerr benchmark test in Sec. III. Once more,
the lensingbandbecomesvery thin at high, i.e., close to edge-
on, inclination. Hence, it becomes increasingly delicate (or at
some point impossible) to fit the observed lensed emission
region into the theoretical lensingband.We reiterate that such
projected constraints formally rely on a confident observa-
tion of lensed emission everywhere within the associated
image region.
With regards to the specific astrophysical source of

M87*—used here to quantitatively exemplify our lens-
ing-band formalism—an observation of the jet can provide
a strong independent prior on the inclination [118,119], i.e.,
i ¼ 17.2°� 3.3°. Said prior is very far from edge-on such
that the above caveat is likely not very relevant—at least for
this particular source. In the future, it would be interesting
to perform a Bayesian analysis that uses this external prior
on the inclination.

3. Lifting (part of) the degeneracy among spherically
symmetric PPN corrections ðβ;γÞ

The PPN corrections (β and γ) enter as spherically
symmetric deformations. Both PPN corrections remain
consistent with the values preferred by GR (βGR ¼ 1 and
γGR ¼ 1). Moreover, they are correlated which suggests that
the strongest projected constraint can actually be placed on
the combination (β − γ), see Fig. 6. This combination enters
in the considered spacetime metric via Δβγ and, therefore,

12In the context of the KRZ expansion, see Appendix B, a is
identified with the spin parameter of the background Kerr
spacetime.
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affects the gtt component of the metric, see Eq. (8). Several
other works have quantified constraints directly in terms of
constraints on the functional form of gtt [38,48,64,120].
However, away from spherical symmetry or the critical
curve, the lensing behavior is not only controlled by the
gtt component of the metric.
Beyond the combination (β − γ), we find independent

projected constraints towards lower values of β and γ,

while we find that our priors are saturated towards larger
values. From this we conclude that the presented lensing-
band framework can only place lower bounds on the
leading PPN parameters—at least not without external
input from independent measurements.
As detailed below, an explanation for these one-

sided projected constraints can be understood in terms of
(i) a thinning/broadening behavior of the lensing-band

FIG. 6. An application of the lensing-band framework to the seven free parameters of the beyond-GR spacetime given in Eq. (8) and
the observer’s inclination. Assuming the observation of a VLBI feature, as discussed in Sec. II B, these projected constraints, to one
standard deviation, result by demanding it to be completely within the first lensing band of the spacetime considered.

LENSING-BAND APPROACH TO SPACETIME CONSTRAINTS PHYS. REV. D 109, 064052 (2024)

064052-13



deformation associated to these parameters and (ii) a degen-
eracy of several spherically symmetric deviation parameters.
Looking at single-parameter deformations away from the

Schwarzschild spacetime (see Fig. 7), we identify that
increasing β or γ broadens the lensing band. If there are no
other deformations (or if all other deformations can be
compensated for by other parameters such as the mass),
then the observed emission region can still be accommo-
dated. Vice versa, decreasing β or γ thins the lensing band,
thus eventually obstructs a complete overlap of the
assumed VLBI feature, and, hence, places constraints on
the respective parameter regions.
In addition to this broadening/thinning effect, deforma-

tions of β or γ, also lead to an increase/decrease of the
overall size of the lensing band. Such a deformation in the
overall size occurs generically for many spherically sym-
metric deformation parameters and has previously been
discussed in Ref. [38]. In fact, most constraints placed on
deviations from GR to date reduce the geometrical infor-
mation to the apparent size of the photon ring [49,57] and
are thus, as such, highly degenerate [38]. The degeneracy
with the mass M, can, of course, be lifted by means of an
external mass measurement [14]. However, without resolv-
ing geometric information beyond the overall apparent
shadow diameter, degeneracies among various possible
spherically symmetric deformation parameters are impos-
sible to avoid [121]. Our results demonstrate that the first

lensing band provides an independent way to break (at least
some of these) these degeneracies. In particular, the lensing-
band framework captures more information than just one
overall diameter. Even in spherical symmetry, it captures
continuous information encoded in the width of the lensing
band.As a result, these degeneracies can (at least partially) be
lifted. For instance, the independent lower bounds on β and γ
indicates such a breaking of degeneracy.
Several other ways to lift the degeneracy among various

spherically symmetric parameters have been suggested in
the literature. For example, using higher-order lensed
images [50,70,91,122–125], or the inner shadow [30–
32]. The latter is also demonstrated in Fig. 7, where we
also show the inner shadow, where a comparison of the
overall diameter of the first lensing band with the diameter
of the inner shadow provides another powerful way of
lifting the degeneracy, without relying on higher-order
lensed images.

4. Beyond PPN corrections: Strong-field modifications

We have chosen to include the parameter a01 in order to
compare with results in the literature [49,50,57]. These
studies assume black-hole uniqueness and therefore focus
on a01 and other higher-order deviation parameters. In an
expansion around radial asymptotic infinity, a01 contributes
to the next-to-leading order spherically symmetric devia-
tions once the leading-order PPN parameters (i.e., β and γ)
have been fixed to their GR values. The latter are well-
constrained at Solar System scales, while the former is not.
In this sense, if one assumes black-hole uniqueness, then
a01 captures the leading deviations which have not already
been constrained by other observations.
We find that the lensing-band framework places an

independent projected constraint on a01, both from
above and from below, e.g., for the considered case
a01≑ − 0.06þ1.79

−1.40 . Together with the theoretical bounds
(see Appendix D), the lensing-band shape itself seems to
be sufficient to break the degeneracy with all other
deviation parameters investigated here. On the one hand,
a theoretical constraint on the existence of a Killing
horizon (cf. Appendix D) bounds the value of a01 from
below [60]. On the other hand, larger values of a01 lead to
a thinner lensing band, see Fig. 8, hence, eventually to an
upper bound. Contrary to previous results [49,50,57], the
obtained projected constraint does not rely on an external
mass measurement. The projected constraint on a01 has
the same order of magnitude than the results inferred from
the EHT observation of SgrA� [34].

5. A shape constraint on the asymptotic
angular momentum J

The lensing-band formalism also provides access to
constraints which rely on the shape and not just on the
overall size or width of the lensing band. In the following,

FIG. 7. The inner shadow and the first (n ¼ 1) lensing band
viewed at an inclination of i ¼ 17°. The orange regions denote
the lensing bands arising from individually deforming the PPN
parameters β (top panels) and γ (bottom panels), while keeping all
of other parameters fixed at their Schwarzschild values. As a
reference, we also display the lensing band of the Schwarzschild
spacetime in blue in all these panels.
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we refer to these as “shape constraints.” Corresponding
variations in the shape of the critical curve and in the second
lensing band have been previously considered in
Refs. [25,42]. In particular, deformations of their approx-
imately elliptical shape have lead to a proposed null test of
GR [42,47], see also Ref. [51] for beyond-GR deformations.
An explicit example of such a shape constraint is

provided by deformations in the asymptotic angular
momentum J, see Fig. 9. At large angular momentum,
exceeding the viable values in Kerr spacetime, the lensing
band shape is deformed so far that the lensed emission
region modeled in Sec. II B can no longer be covered by the
lensing band. Thus, the underlying geometry is excluded.
The asymptotic angular momentum, J, is the only

parameter in our parametrized ansatz which explicitly
breaks spherical symmetry. One may thus expect that, in
fact, similar “shape constraints” can also be obtained for
further nonspherically symmetric deformation parameters.
In this context, we also note that one can expect much
tighter constraints when our formalism is applied to the
n ¼ 2 lensing band and a potential space-based VLBI
detection of the associated emission region. We will extend
our analysis to the n ¼ 2 lensing band in future work.

V. DISCUSSION

We have introduced a framework for leveraging the
observation of a lensed image of astrophysical emission

surrounding a supermassive black hole to constrain the
underlying spacetime geometry systematically. The
approach is based on lensing bands: annular regions around
the critical curve on the observer’s screen, shaped exclu-
sively by the spacetime geometry (and the observer’s
location). We have specifically focused on an equatorial
definition of the first lensing band, defined as the area in the
image space in which incident light rays that have inter-
sected the equatorial plane at least twice.
The framework relies only on three inputs: (i) a precise

(geometric) definition of the lensing bands; (ii) a detection
of a persistent VLBI feature; and (iii) the assumption that (i)
and (ii) can be identified. Although the first requirement
may sound simple at first glance, defining what a lensed
image is can be challenging, as there are various ways to do
so. The choice of geometric definition and the status of a
detection of a persistent VLBI feature are discussed in
Secs. II A and II B, respectively.
As an explicit demonstrations of the framework, we have

(i) specified to a lensing-band definition which counts how
many times an incident light ray has crossed the equatorial
plane; and (ii) assumed a detection of an associated VLBI
feature for which we model a thin ring. Given these
choices, the precise exclusion statement which we quanti-
tatively explore can be stated as follows:

Upon a detection of a VLBI feature, we exclude
spacetimes for which this feature cannot arise
from geodesics that traversed the equatorial plane
more than once.

If one assumes a definition of the “photon ring” as the
lensed image associated with the above lensing-band
definition, and assumes that a VLBI measurement has
detected said photon ring, then the precise exclusion
statement can be rephrased as follows:

We identify spacetimes which can be excluded by
a confident detection of the photon ring.

Since a confident detection of the photon ring of M87*
remains subject of current research [40,41,47,73,75], the
application we have presented should be understood as a
way to quantify the constraining capability of current and
future VLBI observations. That is why we have referred
to our results as projected constraints, and not actual
constraints.
In Sec. II C, we have detailed the explicit implementation

of the lensing-band framework. Our implementation
encompasses (i) numerical ray tracing in stationary, axi-
symmetric, and asymptotically flat but otherwise arbitrary
spacetimes, (ii) numerical bisection of potentially non-star-
convex lensing-band boundaries, (iii) numerical minimi-
zation of the overlap of the resulting geometric lensing
bands with an observational prior, and (iv) Bayesian

FIG. 8. As in Fig. 7, but for single-parameter deviations in a01.

FIG. 9. As in Fig. 7, but for single-parameter deviations in the
asymptotic spin A ¼ J=M.
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parameter estimation, see also Fig. 3 for a visual synthesis.
In this context, we also develop a novel free-floating
bisection algorithm, the details of which are delegated to
Appendix A.
Alongside the conceptual description in this paper, we

provide links to the associated computational toolbox. The
developed algorithm can also be used to generate adaptive
pixel grids to compute high-resolution black-hole images
by putting more pixels within the lensing bands, as done in,
for example, Ref. [65]. We highlight that, while the present
application is entirely focused on the n ¼ 1 lensing band,
our framework is entirely general and can straightforwardly
be applied to higher-order lensing bands, see Ref. [51] for
related work on the second photon ring. Constraints from
higher-order photon rings will be much tighter because the
thickness of the lensing bands (exponentially) decreases
with their order. At the same time, higher-order photon
rings are more challenging to resolve in observations.
Our work is complementary to previous work based on

lensing bands. This includes the null tests ofGRproposed for
the first [47] and second [42,46] photon rings. Beyond GR,
our work complements previous studies which have focused
on spherically symmetric deviations [66] and on deviations
of the largest diameter of the second lensing band [51]. In
particular, the width and the angular shape of the lensing
band have the potential to impose independent constraints.
We find that these can be used to lift degeneracies, for
instance, between (i) the black-hole mass and its horizon
location; (ii) the asymptotic mass and angular momentum;
and (iii) PPN parameters and horizon-scale modifications.
Nevertheless, the projected constraints obtained from the first
lensing band are conservative, i.e., we make no assumption
about the astrophysics. This has advantages and disadvan-
tages. On the one hand, such conservative constraints cannot
be impacted by incorrect assumptions on the astrophysics.
On the other hand, this means that any correct assumption on
the astrophysics is expected to improve the constraints. For
instance, a fast radial falloff of the emissivity would
significantly tighten constraints as the outer edge of the
lensing band can be replaced with a new boundary corre-
sponding to a finite radial location at which the intensity is
effectively negligible.
Turning the projected constraints obtained in this explor-

atory study into actual constraints will require a concerted
effort. As we have highlighted above, all our quantitative
statements crucially rest on whether an observed VLBI
feature can be identified and confidently associated with a
precise definition of lensed emission. We expect that such
confidence is best achieved when inference methods based
on hybrid imaging [40], ringing in visibility space [47], and
polarization [75] will be combined. It is likely that some
systematic uncertainty in our assumptions will remain and
we thus view the above only as a first step. In a second step,
it is imperative to verify any resulting constraints by means
of joint inference on parameters in the geometry and the

astrophysics. Any such joint-inference study would amount
to a test of our assumptions. We emphasize that the latter
statement does not rely on a perfect astrophysical modeling
within the joint-inference study. It will thus be most
valuable to compare to joint-inference studies beyond-
GR based on disk models [50,60], semianalytic models
[126], and GRMHD [61]. Moreover, the second step of
joint inference remains crucial, since any added insight on
the astrophysics of the plasma surrounding the black hole is
expected to tighten the obtained constraints.
With observational Earth-based VLBI data becoming

more precise and space-based VLBI data becoming avail-
able in the future, it is imperative to develop generic
theoretical tools that go beyond the mere calculation of
the critical curve. In this work, we propose a concrete
framework to quantitatively constrain arbitrary stationary
and axisymmetric spacetimes beyond GR with the first
indirect image. This contributes, both, to a larger effort to
quantify a geometric map between four-dimensional near-
horizon spacetimes and their two-dimensional optical
image on the celestial sphere, and to a larger effort to
simultaneously infer geometry and astrophysics.
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APPENDIX A: FREE-FLOATING
BISECTION ALGORITHM

Here, we provide the details of an algorithm to solve the
following numerical problem: we assume a 2D vector space
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R2 with a suitable norm j · j, and a compact subregionR ⊂
R2 defined by a binary condition C such that Cðx⃗Þ ¼ TRUE
if x⃗∈R and Cðx⃗Þ ¼ FALSE otherwise. The goal of the
algorithm is to numerically approximate one closed piece of
the boundary ∂R of this region. If the region is topologically
nontrivial, then there may be several such closed pieces
which will then have to be obtained individually.13

We assume some prior implementation of a standard
bisection algorithm. Given any two points x⃗1; x⃗2 ∈R2, such
standard bisection will approximate the intersection of the
boundary ∂R with the straight line connecting x⃗1 and x⃗2. If
there is no such intersection the bisection will converge to
one of the boundary points. Depending on the specific
binary bisection condition C, such a standard bisection
algorithm will require to pass on suitable information. We
refer to this information collectively as hyper parameters.
For the lensing-band case investigated in the main text, the
hyper parameters include all the necessary information to
perform ray tracing which then serves to evaluate the
bisection condition C.
The abstract algorithm detailed below subdivides the

goal of determining the closed boundary. The algorithm is
realized in three steps, the last of which is iterated until the a
full closed boundary piece has been obtained:
(1) Determine an initial section of the boundary: First,

we need to obtain two initial points x⃗1; x⃗2 ∈R2

which approximate two distinct, but sufficiently
close, boundary points. With the phrase “distinct,
but sufficiently close,” we refer to 0 < jx⃗2 − x⃗1j < ϵ
such that ϵ is smaller than the desired (user-defined)
initial numerical precision. This step either requires
some prior knowledge about where (at least a piece
of) the boundary is located, or needs to be iterated by
drawing random pairs of x⃗1; x⃗2 ∈R2 until an initial
boundary section has been successfully identified.
We detail in the main text how this initial step can be
robustly implemented for the specific application to
lensing bands.

(2) Determine the initial guardrail points: Given x⃗1 and
x⃗2, their distance may serve as the initial precision
p ¼ jx⃗2 − x⃗1j, their tangent ⃗t ¼ x⃗2 − x⃗1 may provide
an initial bisection direction, and, following their
normal by a distance p on either side, we define so-
called inner and outer “guard-rail points” ⃗i and o⃗.
The latter are defined such that initially n⃗ ¼ o⃗ − ⃗i is
perpendicular to ⃗t. By construction, we choose x⃗2, ⃗i,
and o⃗ to lie on one straight line.

(3) Take a free-floating bisection step (iterated): Given
the initial section of the boundary (defined by x⃗1 and
x⃗2), the precision p, and the initial inner and outer
guard-rail points ⃗i and o⃗, we can now perform the

key iterative step of the algorithm. This step is
further subdivided into the following tasks:
(i) We normalize the tangent by the precision p.
(ii) We move forward either ⃗i or o⃗ along the tangent

⃗t. In the first iteration this choice is arbitrary but
in each subsequent step we determine whether
to move forward ⃗i and o⃗ depending on whether
the scalar product ⃗t · n⃗ is positive or negative.
This ensures that each bisection step will
(approximately) follow the curvature of the
boundary.

(iii) We perform a standard boundary bisection
between the updated ⃗i0 and o⃗0. If this bisection
converges (up to precision p) to either of the
guardrail points, then we can no longer be sure
that the boundary remains between the guard-
rail points. If the latter occurs, then we increase
the precision p0 ¼ atightenp by a factor of
atighten < 1 and repeat the above three tasks.
This increase in the precision eventually en-
sures that the boundary remains between the
guardrail points.

Finally, once successful, we relax the precision p by a
factor arelax > 1 in favor of efficiency, update ⃗i ¼ ⃗i0 and
o⃗ ¼ o⃗0, and append the newly obtained boundary point to
the boundary section.
Step (3) can now be iterated until the last point on the current
boundary section is only a distancep from the first point, i.e.,
the boundary section has (approximately) closed.
We implement the above algorithm in the current version

of LBEYONDGR. We find that the choice of atighten ¼ 1=2
and arelax ¼ 4 seems to work well but we have not yet
performed a dedicated runtime optimization study for these
parameters. In general, we expect that the optimal choice of
atighten and arelax will depend on the specific application
at hand.
The two key advantages of such a free-floating bisection

algorithm are (i) that it guarantees a reliable bisection of a
closed but otherwise arbitrary (in particular, not necessarily
star-convex) boundary and (ii) it incorporates an adaptive
step size control.

APPENDIX B: THE KRZ EXPANSION OF
CIRCULAR SPACETIMES

In this Appendix we briefly review the expansion of
circular spacetimes provided in Ref. [117]. For specific
details, we refer the reader to Refs. [116,117]. This
particular parametrization uses both polynomial and con-
tinued-fraction expansions to represent the metric in Eq. (7)
by five free functions B, K, N, W, and Σ, i.e.,

gtt ¼
Nðr; θÞ2 −Wðr; θÞ2 sinðθÞ2

Kðr; θÞ2 ; ðB1Þ
13For the present use case of a lensing-band region, there are

two distinct closed pieces of boundary—one inner and one outer
boundary of the lensing band.
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gtϕ ¼ 2Wðr; θÞr sinðθÞ2; ðB2Þ

gϕϕ ¼ Kðr; θÞ2r2 sinðθÞ2; ðB3Þ

grr ¼ Σðr; θÞ Bðr; θÞ
2

Nðr; θÞ2 ; ðB4Þ

σðr; θÞgrr ≡ gθθ ¼ Σðr; θÞr2: ðB5Þ

The functional form in which the free metric functions
appear is arbitrary as long as the functions are exact. If,
however, the functions are expanded, the specific choice of
the functional form may lead to differences at finite order in
a respective expansion. It appears that the specific func-
tional form in Eqs. (B1) and (B5) (see Ref. [117] for the
specifics) is chosen such that (i) the leading asymptotics are
fixed by single coefficients and (ii) the Kerr metric is
represented by comparatively simple polynomial functions.
One of the free functions is related to coordinate free-

dom, so the authors in Ref. [117] choose to fix

Σðr; θÞ ¼ 1þ A2
KRZ

r2
cosðθÞ2; ðB6Þ

which is compatible with a representation of Kerr space-
time in Boyer-Lindquist coordinates, cf. σðr; θÞ below
Eq. (7). In the latter case, AKRZ matches the spin parameter
of Kerr spacetime. More generally, the parameter AKRZ is
related to the asymptotic choice of coordinates, i.e., to the
focal parameter of the oblate spheroidal coordinates in
which the asymptotically flat limit of the spacetime is
represented—see Appendix C for further discussion.
By introducing a polar polynomial and a radial coor-

dinate [117]

y ¼ cosðθÞ; x ¼ 1 −
r0
r
; ðB7Þ

respectively, the functions are expanded in a mixture of a
low-order polynomial and a continued-fraction expansion.
This choice guarantees an asymptotically flat limit and that
the lowest-order expansion coefficients map to the first few
asymptotic corrections, i.e., map to the PPN parameters.
This is not the only choice and fixing more/less of the
asymptotic behavior is, a priori, equally (un)justified. More
explicitly, in Ref. [117] the polynomial expansion in the
angular coordinate y chosen is

Nðx; yÞ2 ¼ xA0ðxÞ þ
X∞
i¼1

AiðxÞyi; ðB8Þ

Bðx; yÞ ¼ 1þ
X∞
i¼0

BiðxÞyi; ðB9Þ

Wðx; yÞ ¼ 1

Σ

X∞
i¼1

WiðxÞyi; ðB10Þ

K2 −
AKRZ

r
W ¼ 1þ 1

Σ

X∞
i¼1

KiðxÞyi: ðB11Þ

The lowest polynomial orders in ð1 − xÞ≡ r0=r are treated
separately, i.e.,

A0ðxÞ ¼ 1 − ϵ0ð1 − xÞ þ ða00 − ϵ0 þ k00Þð1 − xÞ2
þ Ã0ðxÞð1 − xÞ3; ðB12Þ

Ai>0ðxÞ ¼ Ki þ ϵið1 − xÞ2 þ ai0ð1 − xÞ3
þ ÃiðxÞð1 − xÞ4; ðB13Þ

BiðxÞ ¼ bi0ð1 − xÞ þ B̃iðxÞð1 − xÞ2; ðB14Þ

KiðxÞ ¼ wi0ð1 − xÞ2 þ K̃iðxÞð1 − xÞ3; ðB15Þ

WiðxÞ ¼ wi0ð1 − xÞ2 þ W̃iðxÞð1 − xÞ3; ðB16Þ

while higher (polynomial) orders are part of a continued-
fraction expansion, i.e.,

ÃiðxÞ ¼
ai1

1þ ai2x
1þ…

; ðB17Þ

B̃iðxÞ ¼
bi1

1þ bi2x
1þ…

; ðB18Þ

K̃iðxÞ ¼
ki1

1þ ki2x
1þ…

; ðB19Þ

W̃iðxÞ ¼
wi1

1þ wi2x
1þ…

: ðB20Þ

We summarize the explicit matching to the Kerr solution in
Table I and in Appendix B. Note that the matching to the
Kerr metric presented in Ref. [117] needs additional terms
that are not shown explicitly in their paper [130]. The last
term in [[117], Eq. (A6)] should read

k21r30

r3½1þ k22ð1−r0
r Þ

1þk23ð1−r0
r Þ
�
; ðB21Þ

with k22 and k23 given as in Table I. Nevertheless, the Kerr
metric has an exact representation at finite order in the KRZ
expansion. The expansion (or “bumpy”) parameters are
thereby denoted by ðϵi; aij; bij; wij; kij; Þ where the index i
(j) denotes the order of the (continued-fraction) expansion
in y (x) [117].
Similarly, as in Ref. [131], here we use the KRZ metric to

parametrize deviations from Kerr as follows. First, we
linearly perturb the KRZ parameters Ξ ¼ ðϵi; aij; bij;
wij; kijÞT , around their respective Kerr value, i.e. around
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ΞKerr. This effectively introduces deviations (“bumpy”
parameters), which we collectively label by δΞ, to all of
the KRZ parameters, i.e.,

Ξ ¼ ΞKerr þ δΞ ¼

0
BBBBBBBB@

ϵKerri

aKerrij

bKerrij

ωKerr
ij

kKerrij

1
CCCCCCCCA

þ

0
BBBBBB@

δϵi

δaij
δbij
δωij

δkij

1
CCCCCCA
: ðB22Þ

Since we seek a modification of the Kerr metric, only two
parameters are required to describe the “background” KRZ
parametersΞKerr.We chose to parametrize them as a function
of the massm and spin parameter a, i.e.,ΞKerrðm; aÞ, and we
take r0 ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ a2

p
as in, for example, Ref. [34] for

the spherically symmetric case and Ref. [131] for the axis
symmetric case. Note, however, that under this description,
m and a are not necessarily the asymptotic mass and spin.
Once all expansion parameters, up to the order at which

the Kerr metric is exactly represented, are included, the
“background” KRZ parameters become redundant with a
suitable deformation of the deviation parameters.
The coefficients ki0 play a special role because they are not

suppressed by r0=r and thus modify the oblate spheroidal
coordinates to which the Boyer-Lindquist coordinated con-
verge in the flat asymptotic limit, as shown in Appendix C.
We choose to fix all the ki0 as in Ref. [117], i.e.,

k00 ¼
A2
KRZ

r20
; k0iji>0 ¼ 0; ðB23Þ

such that the parameter AKRZ corresponds to the focal
parameter of the asymptotically flat oblate spheroidal coor-
dinates (cf. AppendixC). The coefficients ϵi, bi0,ωi0, and ki0
contribute at order Oðr0=rÞ, while ai0 contributes at order
Oðr20=r2Þ, cf. also Table I.
Without the uniqueness theorems of GR, there is no

a priori reason to expect that the Kerr parameters ðm; aÞ are
related to the asymptotics of the spacetime. In fact, the
asymptotic (Komar) mass and angular momentum are now
(to leading order) given by

M ¼ mþ r0
2
δϵ0; J ¼ amþ r20

2
δω00: ðB24Þ

When the deformation parameters δϵ0 ¼ 0 and δω00 ¼ 0,
the Kerr parameters ðm; aÞ agree with the asymptotic mass
and spin, i.e.,M ¼ m and J ¼ aM, respectively. Therefore,
the relation between asymptotic ðM; JÞ and Kerr param-
eters ðm; aÞ can be viewed as an expression of the unique-
ness theorems of GR.
Two of the other KRZ deformations parameters can be

identified with the PPN parameters γ (related to how much
spatial curvature is produced by unit rest mass) and β
(related to how much “nonlinearity” is introduced in the
superposition law for gravity) as

γ ¼ 1þ r0δb00
M

; β ¼ γ −
r20δa00
2M2

: ðB25Þ

TABLE I. The 51 parameters ðϵi; aij; bij; wij; kijÞ, up to Oðx3y2Þ, (i ≤ 2 and j ≤ 3), required in the KRZ expansion to represent the
Kerr spacetime exactly. The KRZ parameters ϵi and those with j ¼ 0 are chosen to obtain a specific form of asymptotics. In contrast, the
KRZ parameters with j ≥ 1 are part of a continued-fraction expansion. Once any of the continued-fraction parameters vanishes, all
corresponding higher-order parameters do not contribute. The KRZ parameters with odd i break reflection symmetry about the
equatorial plane, and thus all vanish for Kerr spacetime. We do not consider such deviations in the present work. We list the respective
values reproducing the Kerr spacetime, where r0 ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
. We also indicate the order in the 1=r expansion around r ¼ ∞ at

which the respective deviation parameter affects the asymptotic behavior of the spacetime by Oðr−nÞ. All the coefficients for which
n ¼ 0 affect the asymptotic definition of oblate spheroidal coordinates, cf. Appendix C. Finally, we highlight in bold the five deviation
parameters which are investigated in the present work. Some of the leading and subleading continued-fraction parameters have also been
investigated in Refs. [49,50].

Polynomial coefficients Leading continued fraction Subleading continued fraction

KRZ parameter ϵ0 a00 b00 k00 ω00 a01 b01 k01 ω01 a02 b02 k02 ω02 a03 b03 k03 ω03

Kerr a2

r2
0

0 0 A2
KRZ
r2
0

ð1þ a2

r2
0

Þ a
r0

0 0 0 0 — — — — — — — —

Oðr−nÞ 1 2 1 0 1 3 2 1 2 � � � � � �
KRZ parameter ϵ1 a10 b10 k10 ω10 a11 b11 k11 ω11 a12 b12 k12 ω12 a13 b13 k13 ω13

Kerr 0 0 0 0 0 0 0 0 0 � � � � � � � � � � � � � � � � � � � � � � � �
Oðr−nÞ 2 3 1 0 1 4 2 1 2 � � � � � �
KRZ parameter ϵ2 a20 b20 k20 ω20 a21 b21 k21 ω21 a22 b22 k22 ω22 a23 b23 k23 ω23

Kerr 0 ð1þ a2

r2
0

Þ a2r2
0

0 0 0 − a4

r4
0

0 − a2

r2
0

0 0 � � � − a2

r2
0

� � � � � � � � � a2

r2
0

� � �
Oðr−nÞ 2 3 1 0 1 4 2 1 2 � � � � � �

..

. ..
. ..

.
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Thus, with regards to the leasing asymptotics, the physical
parameters of the metric in this parametrization can be
identified by trading ðδϵ0; δω00Þ for ðM; JÞ [using
Eqs. (B24)] and ðδa00; δb00Þ for ðβ; γÞ [using Eqs. (B25)],
to get

δϵ0 ¼
2ðM −mÞ

r0
; δω00 ¼

2ðJ − amÞ
r20

; ðB26Þ

δa00 ¼
2M2ðγ − βÞ

r20
; δb00 ¼

Mðγ − 1Þ
r0

: ðB27Þ

If one assumes uniqueness and Solar System constraints on
the PPN parameters, γ and β are required to be close to one
[8]. Higher-order coefficients correspond to higher-order
corrections to the behavior at asymptotic infinity. The
mapping to the PPN metric of a point particle is shown
explicitly in Appendix C. In summary, the resulting expan-
sion around the Kerr spacetime within the KRZ parametri-
zation thus exhibits the following parameters:
(1) the location of the horizon: r0,
(2) a horizon parameter of the background Kerr geom-

etry parameter: a,
(3) leading asymptotics: ðM; JÞ,
(4) PPN asymptotics: ðβ; γÞ,
(5) beyond-PPN (θ-dependent) asymptotics: ðδϵi; δai0;

δbi0; δki0; δωi0Þ ∀ i ≥ 1, which we will not modify
here,

(6) continued-fraction coefficients: ðδaij; δbij; δkij;
δωijÞ ∀ j ≥ 1, of which we modify only δa01.

As a result, we obtain a spacetimewith asymptotic mass and
angular momentum ðM; JÞ and five deviation parameters
ðr0; s; β; γ; δa01Þ.When r0¼Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−J2=M2

p
, a¼J=M,

β ¼ γ ¼ 1, and δa01 ¼ 0, the spacetime reduces to Kerr
spacetime in Boyer-Lindquist coordinates. More generally,
its metric elements are compactly written as

gtϕ ¼ −
2MrAsin2θ

Σ
;

grr ¼
Σð1 − ð1−γÞM

r Þ2

ðΔβγ þ r3
0
ðr−r0Þ
r2 a01Þ;

gθθ ¼ Σ;

gϕϕ ¼
�
a2 þ r2 þ 2Mra2sin2θ

Σ
ΔaAKRZ

�
sin2θ;

gtt ¼ −
ðΔβγ þ r3

0
ðr−r0Þ
r2 a01Þsin2θ − g2tϕ

gϕϕ
: ðB28Þ

We use the common shorthand A ¼ J=M as well as

Σ ¼ r2 þ A2
KRZ cos

2 θ; ðB29Þ

Δ ¼ r2 − 2Mrþ A2
KRZ: ðB30Þ

It isAKRZ, notA ¼ J=M or a, which appears in shorthand. In
addition, we use additional deviation shorthand, i.e.,

Δβγ ¼
ðr − r0Þ½Δ − 2M2ðβ − γ þ r0

MÞ þ r0ðrþ r0Þ�
r

; ðB31Þ

ΔaAKRZ
¼

�
AAKRZ

a2
−
rða2 − A2

KRZÞ
2Ma2

�
1

sin2θ

þ
�
a2 − A2

KRZ

2Mr
−
a2 þ r20
2Mr0

�
cos2θ
sin2θ

: ðB32Þ

The latter reduce to Δβγ → Δ and ΔaAKRZ
→ 1 in the

Kerr limit.
The focal parameter AKRZ, the asymptotic angular

momentum A ¼ J=M, and the background spin parameter
a are, in principle, independent quantities. In the main text,
we choose to identify the focal parameter of the asymptotic
coordinates with the background spin parameter, i.e.,
AKRZ ≡ a but we keep the asymptotic spin parameter
A ¼ J=M as an independent parameter.

APPENDIX C: KRZ PARAMETERS AND THE
ASYMPTOTIC LIMIT

1. The far-field metric in GR in quasi-isotropic
coordinates

Kerr black holes are unique in GR (see Ref. [3] for a
proof and its mathematically precise statement). Thus, in
quasi-isotropic coordinates [132] ðt; rI; θ;ϕÞ, the asymp-
totic behavior of any black hole in GR must match the
point-mass PPN metric [133]

ds2 ¼ −
�
1 − 2

M
rI

þ β
M2

r2I
þO

�
1

r3I

��
dt2

þ
�
1þ 2γ

M
rI

þO
�
1

r2I

��
dr2I þ ½r2I þOð1Þ�dΩ

−
�
4 sinðθÞ2 J

M
M
rI

þO
�
1

r2I

��
dtdϕ; ðC1Þ

whereM and J can be identified as the Newtonian mass and
angular momentum (in agreement with the mass and
angular momentum of the full Kerr solution), and
dΩ ¼ dθ2 þ sinðθÞ2dϕ2. The two PPN parameters in GR
are βGR ≡ γGR ≡ 1 [8]. Under the assumption that AGNs
are black holes, this is sufficient to test the asymptotic
behavior required by GR.
Other uniqueness theorems extend the importance of the

above asymptotic behavior to the vacuum exterior of
generic spacetimes in two ways. First, in spherical sym-
metry, i.e., for J → 0, the Jebsen-Birkhoff theorem [1,2]
guarantees that the same asymptotic behavior applies to the
vacuum exterior of any source [2]. Second, the leading-
order [i.e., up to Oð1=r2Þ] behavior also applies to the
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vacuum exterior of any stationary and axisymmetric
source [4].

2. The far-field metric in GR
in oblate spheroidal coordinates

We rewrite the Kerr spacetime in Boyer-Lindquist
coordinates as deviations from flat space (see, e.g.,
Ref. [134]), i.e.,

ds2 ¼ −dt2 þ r2 þ a2 cos2 θ
r2 þ a2

dr2

þ ðr2 þ a2 cos θ2Þdθ2 þ ðr2 þ a2Þ sin2 θdϕ2

þ r0
r

�ðdt − a sin2 θdϕÞ2
ð1þ a2 cos2 θ=r2Þ þ

ð1þ a2 cos2 θ=r2Þdr2
1 − r0=rþ a2=r2

�
:

ðC2Þ

In this form, the first two lines denote Minkowski space in
oblate spheroidal coordinates, while the last line denotes
corrections starting at order Oðr0=rÞ.
When comparing this to the asymptotic limit [neglecting

Oðr0=rÞ] of the KRZ expansion, i.e., to

ds2 ¼ −dt2 þ dr2 þ ðr2 þ A2
KRZ cos θ

2Þdθ2
þ ½r2 þ r20ðk00 þ k20 cos2 θ þ…Þ� sin2 θdϕ2

þOðr0=rÞ; ðC3Þ

we find that all the ki0 contribute to the definition of the
oblate spheroidal coordinates in which the flat limit of
the KRZ spacetime is expressed. In particular, we find that
the choices

k00 ¼
A2
KRZ

r20
; ðC4Þ

ki0 ¼ 0; ðC5Þ

are required such that the asymptotics match to those of of a
spinning spacetime (in oblate spheroidal coordinates).
Hence, the parameter AKRZ determines how to transform
from Boyer-Lindquist to screen coordinates and thus how
to set initial conditions for ray tracing geodesics backwards
in time, see, e.g., Ref. [84].

APPENDIX D: THEORETICAL CONSTRAINTS
ON THE KRZ PARAMETERS

Any fixed set of nonvanishing KRZ parameters is
constrained by theoretical consistency considerations in
the external spacetime, i.e., for r > r0. In particular, this
includes (i) the absence of further (Killing) horizons; (ii) the
absence of closed timelike curves; and (iii) no signature
changes in the metric.

(i) Here, we assume that event horizons coincide with
the Killing horizons. In GR, this equivalence is
guaranteed by the Hawking rigidity theorem. We
caution that, beyond GR, it is a nontrivial
assumption. For stationary and axisymmetric space-
times (with t and ϕ the two Killing coordinates),
Killing horizons occur whenever

g2tϕ − gttgϕϕ ¼ 0: ðD1Þ

We thus need to make sure that r ¼ r0 remains the
largest root of Eq. (D1).

(ii) The sign of gϕϕ determines whether changes in ϕ are
spacelike or timelike. At the same time, asymptotic
flatness requires that ϕ is a periodic coordinate in
ϕ∈ ½0; 2π�. Thus, whenever gϕϕðr; θÞ < 0, it means
that there exists a closed timelike curve. If we want
to avoid such causality violations, we need to
therefore require

gϕϕ > 0; ðD2Þ

at least outside the horizon.
(iii) We also check that the signature of the metric does

not change, i.e., that

detðgÞ < 0: ðD3Þ

However, we find that this does not impose con-
ditions on the investigated parameters.

In the following, we collect the implied theoretical
bounds on the parameter sets which we investigate in
the present work. We implement these theoretical con-
straints as priors in the Bayesian analysis presented in the
main text, and rule out the respective spacetimes before
applying any lensing-band constraints.
Let us now focus on the explicit bounds obtained when

identifying AKRZ ≡ a (but keeping A ¼ J=M independent)
as in the main text. From the form of the metric in Eq. (8)
[or even in the more general form in Eq. (B28)] and the
Killing-horizon condition in Eq. (D1), we find that Killing
horizons occur whenever

0 ¼ Δβγ þ
r30ðr − r0Þ

r2
a01;

¼ ðr − r0Þ
r

�
Δ − 2Mðβ − γ þ r0Þ þ r0ðrþ r0Þ þ

r30
r
a01

�
:

ðD4Þ

Hence, the (Killing) horizon condition (i) is fulfilled
whenever the largest real-valued root r ¼ rþ of the above
equation remains inside of the horizon, i.e., rþ ≤ r0. (Note
that r ¼ r0 itself always remains a root, i.e., a Killing
horizon.)
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Regarding closed timelike curves, we find that gϕϕ > 0,
is guaranteed whenever

2AsM þ s2r0 þ r30 > 0: ðD5Þ
To obtain the explicit expression, we have divided out
manifestly positive factors and specified to the equatorial

plane, i.e., to χ ≡ cosðθÞ ¼ 0 (which can be shown to imply
the tightest bound as it comes with a prefactor which is
manifestly positive for all r > r0). Similarly, the tightest
bound arises when evaluating the condition at r ¼ r0.
For the considered metric parameters, condition (iii) does

not imply further constraints.
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