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Post-Newtonian gravitational waves with cosmological constant
A from the Einstein-Hilbert theory
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We study the compact binary dynamics in the post-Newtonian approach implemented to the Einstein-
Hilbert action adding the cosmological constant A at first post-Newtonian (1PN) order. We consider very
small values of A finding that it plays the role of a PN factor to derive the Lagrangian of a compact two-
body system at the center of mass frame at 1PN. Furthermore, the phase function ¢(¢) is obtained from the
balance equation, and the two polarizations /2, and h, are also calculated. We observe changes due to A
only at very low frequencies, and we notice that it plays the role of “stretch” the spacetime such that both
amplitudes become smaller. However, given its nearly negligible value, A has no relevance at higher

frequencies whatsoever.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) has
opened new perspectives to understand the nature and
behavior of the Universe from an astrophysical point of
view [1,2]. These observations strengthen the general
relativity (GR) predictions given by Einstein in 1916 [3].
On the other hand, from a plethora of gravitational phenom-
ena, the very small value of the astrophysical cosmological
constant A ~ 1072 m~2 [4] is probably the reason for not
considering its contribution into the Einstein field equations
(EFE); howeyver, there are in fact astronomical observations
that suggest that A might cause the current accelerated
expansion of the Universe [5-8]. For instance, the analysis
of the cosmological microwave background radiation [9,10]
must include the effect of A; nonetheless, studies of probable
observational effects inside the solar system, due to the A,
are nearly negligible to be detected [11,12]. Certainly, the
standard cosmological A cold dark matter (ACDM) model
has been successfully tested throughout several sources of
observations, and it remains the most simple yet accurate
scenario. However, there are still areas of unresolved
phenomenology and ignorance.

Moreover, the post-Newtonian (PN) expansion is imple-
mented in GR to obtain approximate solutions of the EFE.
This method consists in expanding the metric at various
orders around small values of the velocity ratio v/c, where v
is the typical internal velocity of the system (or the relative
velocity in the binary case) [13]. Here, the Newtonian
theory is recovered when taking the limit of the speed of
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light to infinity, or the velocity ratio to zero. Einstein first
made use of the PN approximation (at first order) to
compute the perihelion precession of the Mercury’s orbit
[14,15]. Nowadays, this method is mostly utilized to study
the propagation of GWs of the relativistic two-body
problem (see, for instance, [16]). Note that this approach
is only valid at the very near zone of the source R, namely,
in the region when the evaluation point r (0 < r < R) is
much smaller than the emitted wavelength 4; in other words,
the condition r < A must be satisfied, where there are no
effects of time retardation in this region [17-19]. On the
other hand, in the external domain d < r < oo, we intro-
duce the post-Minkowskian (PM) approximation, where d
is the radius of the smallest sphere comprehending the
whole system, and here, the gothic metric g := /—gg" is
written as an expansion of powers of the Newtonian
constant of gravitation G. Note that there is an overlapping
region d < r < ‘R; therefore, the coefficients of the external
domain can be expressed in terms of powers of the PN
approximation by matching relations [18]. The DIRE
(Direct Integration of Relaxed Einstein Equation) can be
used to compute a wave equation of the EFE in an exact
form as long as the harmonic gauge holds to obtain
waveforms as powers of PN orders [20,21].

The starting point is the Einstein-Hilbert (EH) action for
the gravitational field with cosmological constant A given by

162G
A

s = [ v S R-2m + L] )
M

where G is the Newton’s gravitational constant, ¢ is the

speed of light in vacuum, the metric determinant is

(=g) == det(g,,), L, represents an arbitrary Lagrangian

density that describes matter, R := ¢**R,, and R, := R?,,,
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are the scalar curvature and Ricci curvature tensor, respec-
tively. They are derived from the curvature tensor
Raﬁ}/5 = 6yF‘lﬁ5 - aéraﬁy + F/’/;(gf‘“m, - F”ﬁ},f‘”pé, where
the Christoffel symbols are given in terms of the metric
tensor and its partial derivatives T7,; = % 9 (0,9,p +
99,0 — 0,94p)- Thus, the EFE are given by

1 872G
R;w - ERg;w + Ag;w = C4 T,uw (2)
. . — 2 0(v/=9Lm)
where the source term is obtained by 7+ := — W= TR

The main aim of this paper consists in exploring the
effects on the propagation of GWs due to the presence of A,
having a two-body problem examined to the 1PN order in
the post-Newtonian method. We then compare our results
with those with A =0 at 2PN [22,23], having the same
inspiralling compact binary systems. Furthermore, previous
studies have explored the effects of A in the linearized GR;
the authors expanded the metric around a flat Minkowski
spacetime [24,25]. However, the present work is the first
one to include such a constant in the two-body problem.

We begin our analysis in Sec. II where we solve the EFE
through the DIRE approach utilizing the gothic metric and
imposing the harmonic gauge; we then compute the tensor
waveforms h'/ at the near zone contribution of the faraway
components through the Epstein Wagoner (EW) tensors at
1PN order at the center of mass frame of a binary compact
system. Many explicit calculations are presented in
Appendices A-E. Then, in Sec. IV, the circular orbit
properties are explained, and the PN parameters y and x
are introduced. Also, we calculate the energy loss rate.
After that, by taking into account the balance equation (79),
we obtain the orbital phase ¢(7) of the two-body system at
1PN approximation. Note that these results can also be
derived using the symmetric trace-free tensor (STF) (see
Appendix D). Moreover, in Sec. V, we compute the
polarizations waveforms A (¢) and &, (f). We finish the
paper by making some remarks in Sec. VI.

A. Conventions

We consider a 4-dimensional spacetime manifold M.
Spacetime indices are designated by Greek letters u, v, ... =
{0, i} where i labels spatial components of tensors, and 0
indicates the temporal component. These indices are raised
and lowered with the spacetime metric g,,, which signature
is given by (—1,1,1,1). The repeated indices mean sum
throughout the paper unless otherwise stated. The symmet-
ric and trace-free part of a tensor 79125 is denoted as
T{i1i253ia) The time derivative of an object is represented by
a dot over the corresponding variable.

II. RELAXED EFE AND WAVEFORM

To solve the EFE (2) in the weak-field limit, we use the
DIRE approach [20] (see also [21,26]). First, we introduce

the gothic metric ¢ := ,/—gg"*. Then, we define the
tensor,

H{lﬂ/iv = g/,w ga[)’ _ gaz/ gﬁu , (3)

where the following identity holds:

162G
0. = (-g) (260 + 1504 ). @
Here, tﬁf is the Landau-Lifshitz energy-momentum

tensor [27],

162G @ . 1 . ,
4 (_g)tLﬁL = giygypaug(lapgﬁﬂ + Eg/lygaﬁapgi augm

- g;u/ (glaa/)gﬁb + ¢ﬁa/)g(ly)aﬂgﬂ”
1
+3 979" = 47G) (290 9ox

- gpo—gur)a/lg”aygpa’ (5)

C

and the Einstein tensor G, is defined as

1 872G _
Gy = Ry =5 9uR = =37 T = g™ 2. (6)

with g :=det(¢"*) = (—g). In order to study the field
outside the source, we expand the gothic metric around
the Minkowski metric as follows:

S 9

where A*¥ stands as a potential. We select the harmonic
gauge [17-19]: 9,¢" = 0; in this case, the relation (4)
becomes the wave equation,

167G

0t ==y, (®)

where u is the source of the system, which is given by

C4

u? = (-g)T +

and in this approach, the cosmological constant is taken as

v 162G
AG/i{ = c4

— 1"0,0,h. (10)

(—g)tf) —2Ag™' g% + 9,h 9, hP

The previous expression (8) is known as the relaxed EFE.

Notice that the harmonic gauge d,¢" =0 and (8),
together, are equivalent to the Einstein field equations
[17-19]. Additionally, at this point of the analysis, we
stress that (7) represents a change of variable since the
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transformation between ¢** and /A"’ is one-to-one and
invertible. More explicitly, we have

W = \/—gg" —n", (11)

g = et + KO 4 ). (12)

A. The tensor waveforms at 1PN

In this subsection, we compute the near-zone contribu-
tion waveform of /. The near zone contribution of the
faraway zone term is identified as Ay, which is given
by [20,21]

y 2G d&* i
i (x ZNk] S N &)

Rc dr?

where Nkl is the unit normal vector pointing from the
source to the detector, and R is the distance between the
source and the detector. All terms of I/ ” %1k are known as

the EW moments, and they are given exphcitly as

y 1 o
Iy = 2/ uOxix/d3x, (14)
" Jm
5 1 - w
¢ Jm
’ 2 d?
Pk ok i
174k = WW/MJXM)C kB (16)

To determine the GWs at 1PN order, we have to compute
up to the fourth index of the EW moments, keeping in mind
the transverse-traceless (TT) gauge [21] of the spatial
tensor, that is,

2G &°

W) = =5 AT+ B B (17)

Moreover, the TT operator acting on a tensor object A is
such that [18,19]

- P B
AL = (P’kPﬂ —EPl/Pk1>Akl’ (18)

Pl =57 — NINY, (19)
where P¥ is an operator projection and satisfying the
properties P =2, PVP;; =2, and PVP* = pik,

In order to compute the EW moments, we need to know
the explicit form of the source components u* to the 1PN

order. To do so, we have to obtain the terms 2%, 4%, and 1%/
at the lowest order from the relaxed EFE, where the energy-
momentum tensor has the following form [27]:
W _ 1 Z dT dx” dxa 3
V=94 “dr dz, dz,

8 (X = X,(1)), (20)

where 8% (X — X,(t)) is the 3-dimensional Dirac delta, m,, is
the mass of the particle a, 7, is the proper time of the
particle a, and ¢ is the time coordinate. Therefore, from the
relaxed EFE (8), the equations of motion become

162G .o 1
V2p0 — > D m, (% -3,(1) +2A+ 0 (Ah,;),
(21)
. 1
V210 — O (Ah,c—3>, (22)
. . 1
V2hii = —2A87 + O (Ah,4>. (23)
C

Notice that Eq. (21) represents the equation of motion for
h% at the lowest order where in the first term of the right-
hand side involves a PN term 1/c2. Therefore, we can say
that the cosmological constant A plays the role of a PN
factor.

It is worth mentioning that in this approach the field 4,
and A are considered as perturbations; namely, we are
considering a very small value of the cosmological con-
stant [24]. Hence, the equations of motion of all h*’ are
taken at the lowest order and neglecting the terms
O(Ah*), and the harmonic gauge must be met, i.e.,
9, = 0. We point out that the lowest order of h% and
h'/ components are O(c~3, Ah) and O(1, A), respectively.
Therefore, the solutions of the /#*¥ components read

4G my

A
—+ 3 IX]> + O(Ah,c™), (24)

WO = O(Ah, c™3), (25)

hii = § [—% (12 = 22 )} +O(Ah.c™),  (26)

with no sum in the term x; from A"/ (26). Notice that the
trace of the spatial component reads h' = —A|X]>. In
explicit matrix form, the solution A*¥ is written as
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Dk 1tk 0

1 2

e = 0 —2AD
0
0

where x, y and z are the Cartesian coordinates. This
solution satisfies the harmonic gauge condition d,h*" =
at lowest order; i.e., the condition 0ﬂh"0 = 0 holds as long
as we add h% at order O(Ah,c™3) and h% [given in
Eq. (24)], while for the case dﬂh”i = 0 we only need to
consider 4"/, which is given in Eq. (26). This constraint is a
fundamental feature of the methodology of Blanchet and
Damour [17], and this implies that the solution expressed
in (27) has cylindrical symmetry around the corresponding
principal axis. Note that this property is a remnant of the
rotational symmetry; hence, the breaking of this symmetry
is an artifact of the harmonic gauge condition [24]. It is
worth stressing that the solution given in (27) leads to the
linearized Schwarchild-de Sitter metric, written in a set of
appropriate coordinates that correspond to the harmonic
gauge [24]. Therefore, the spacetime that we are consid-
ering at the lowest order is de Sitter or anti-de Sitter.

In [28] (see also [29-35]), the linearization of gravity is
performed introducing a de Sitter background in the form
of the spacetime metric (the cosmological constant A does
not comes from the action). In such linearized Einstein
equations, the perturbation is not sharp; there is a tail term.
Similarly, in our work, we observe in (27) that due to A the
solution of the field 4% has a sharp and a tail term, where A
is found in the latter. Moreover, note that 4 at the lowest
order only has a tail term; however, at higher orders, in 7%
and as well as A"/, both contributions will appear, i.e., sharp
and tail terms.

From the definition of the gothic metric and its expan-
sion (7), we can obtain the components of the metric at the
same order of the perturbation #**. Accordingly, we have

(=g) = det(¢) = det(p” + W) = 1 + h + O(h*), (28)

with /= h*n,, and g,, = 1n,, — h,, + O(h*). Thus, the
components of the metric at lowest order read

Joo = v —9900

1 1
= —(1 +§h°° +2h”> + O(h*, Ah),  (29)

J0i = vV —9%0i
= O(Ah, c‘3), (30)

0 0

+ 72 0 0
) 1 2 2 ’ (27)

_EA('X + Z ) 0

0 -3 A(* +y?)
|
9ij = v/ —99ij
1 1

:élj—hlj—§5Uh00+§hkk5,/+0(h2,Ah) (31)

Here, we have used i = —h + k', When substituting the
components of the metric into those of the source (9),
it yields

3 1 .. v
0 _ 2 00 i  Ya \ 3= =
u?=c ga ma<1—1h +4_1h +2C2)5(x—xa(t))

c* 7
—20:h%99. 4% 4+ 2A O(Ah, c¢72), 32
+16EG{8, ih% + ]+( ), (32)
W= S m vl - %, (1) + O(Ah, ), (33)
ﬂij:Zm Vi Uj53()—c>_;5 (t))+ c* laihooajhoo
- arava “ 162G |4

1 .. ’
_ §5t/akh005kh0‘)} —2A87 + O(Ah, c7?), (34)

with v, as the velocity of the particle a. We stress that the
cosmological constant only appears in the last terms of ;*°
and x. In the case of A =0, one recovers the usual
gravitational case at 1PN order [26].

III. EVALUATION OF THE
EPSTEIN-WAGONER MOMENTS

From the expressions (14)—(16), one can observe that the
EW moments are written as volume integrals, evaluated at
the retarded time 7 = ¢ — R/ ¢, and the boundary region oM
of the near zone is given by R. In this section, we present
some steps, in detail, in order to obtain the EW moments;
particularly, we focus in the terms that contain A, since the
integrals that do not have this parameter have already been
evaluated in [21]. Also, in various occasions, we integrate
by parts, and we use the identity [19,21]

/ O F ik Py = / Fi-*| N, R*Q,  (35)
M oM

with dM as the boundary of the 3-dimensional manifold M
at the near region, and R*7*dQ? = dS* is the surface
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element at this border. Moreover, we are only interested in
finding the tensorial terms that survive after applying the
TT projector. Thus, the subsequent identities follow from
the projection operator P';, given in Egs. (18) and (19),

(6ij)TT =0, (36)

(NiFj)TT =0, (37)

where the indices i and j apply to the final components of
the waveform (not the integrands), and F denotes a general
term. All these results and procedures are explained in
detail in [19,21].

A. Two-index moment I},

The first step to compute the moment Iiajw begins using
the following useful identity:
6kh000kh00xix-7 = 6k(h006kh00xix-7)
— hO(V2hOxix] + o'h®x/ + o/ hx),
(38)
|

c2

and after some algebraic manipulation, we obtain

. . . . 1. .
_h0001h00xj _ hOOd}hOOxl — _Eaz[(hOO)ij]

aj[(h()O)in] + (l’l00>5u

(39)

Substituting Eq. (32) into (14), then using Egs. (38) and
(39), neglecting the boundary terms and considering the TT
components of the far zone tensor perturbation, it yields

1 .

2 1__h00 Z pii
e (13045
+ 20“ )52 (x— xa(t))}xa’xf, d*x

G 7

2162G 8

ij o 1
IEW__

/h00v2h00 xdx.  (40)

Next, we use the results (21) and (24), so the last term
becomes

7 P TT 62 7 4G m A N P
Lo p00g2 00 G By X _/ _ a1 TR12 Y W2 R00 ) 3
167[G8[M XV d’x 162G8 /s ngra+3|x| XV dPx

2
T ¢ 7 4G m .
= _— __E ZaN2005 iy | 3
167rGSA,1< c? — Ty, o *

TT 7G my, (i j)
SR B E]
b#a ab

where we have neglected all the terms at order O(Ah).
Finally, plugging in (24) and (26) into the first term of (40)
and putting together the previous result, the two-index EW
moment becomes

2

R
JA— g m g A P R
EW a 2C2 | Xa | 2C2 a

a

+ O(Ah, ™). (42)

B. Three-index moment 175,

In this case since there is no cosmological constant
contribution, the computation of the integral is direct,
yielding

- 1
i T 2N mg 20l xk — vkl x]
c
+ O(Ah, ¢3). (43)

(41)

C. Four-index moment I”kl

Plugging in the spatial component of the source (34) into
the corresponding four indices integral (16) and consider-
ing the TT gauge, we obtain

1 c? )
Ig\l,‘\f o Zm vivlxkxl +64ﬂ' / OOV hOxkx P
(44)

Next, we integrate by parts the last term, neglecting all the
boundary terms, applying the TT gauge and using (24),
yielding

/aihOOajhOOkaldej;r /hO()aiajhOO ld3
M

o=/ Do

(45)
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Here, in the last term, we have neglected expressions at
order O(Ah), and also, the TT gauge projection was not
used. On the other hand, using again the result (24), one
obtains

4G 1
00 __
%ijh™ = —5 § Mg [m Sij
3

‘)?_zals

(F- T (F=50) ] + 3005, 0

with X # X,,. After applying the TT gauge, the cosmological
constant term vanishes. Therefore, it turns out that the four

indices EW moment has no A; thus, from [21], the integral
reads

zjkl T 1
= E mgv! Uax

Gm,m,, xkx! x
l j _ 5kl -6
" Z:Z[ 12rc? <|z|2 B ﬂ

+ O(A, he™). (47)

We remark that in the three- and four-index moments there
are no contributions of the cosmological constant under the
TT projection; however, A will have an impact on higher
order approximations.

D. Center of mass at 1PN order with A
To express the waveform in terms of the relative

variables, we move to the center of mass frame
Xem = 0, that is,

. 1 .
X! — 00x1d3)'c’
CcM m/M/‘
E ata 2
m < 2c*m oz Tab

+LE myvixi —Ag mg|X, 2 x!
2 a~ata a a a
2¢°m ~ 2m <

+ O(Ah, ™), (48)

my, i
m, Xa
r
a

where we have used Eqgs. (24) and (32), and the spatial trace
of Eq. (26). On the other hand, considering only two
particles in interaction, we find at 1PN order that the
coordinates of each body in the center of mass frame are

given by
Hop o pam [, Gm
m, o <v r 2
+ O(c2A, A2, c73), (49)

L _ M
ry =

Gm Ac2r2) .
2

?zz—i? HAm 02_@_1\c2r2
my 2m?c? r 2
+ O(Ac™2, A%, c73), (50)

with 7 = 7| — 7, as the relative position, r = |F|, ¥ = 7, —
U, as the relative velocity, v = |v|, g = mym,/m as the
reduced mass of the binary system, m = m; + m,,
and Am :=m; —m,.

Computing the time derivative of the positions given by
Egs. (49) and (50) leads to the velocities of each particle,

N u 5y UAm 5 Gm A\
vy =—70 vt —— — v
! my 2m2c? r 2
Gm Ac2r
|+ — O(A

- - A G AP
@2:_i0+/’l " [(vz——m— Cr)v

2 A% ), (51)

Now, we substitute the positions and velocities (49)—(52)
into the EW moments (42), (43), and (47); finally, we plug
in the later results in Eq. (13), obtaining the waveform of a
compact two-body system in a general motion,

, 2Gu & 1
e = kg |1 2

Gm Am
9 J 20 (pliyi
2( 91/)}rr mc(vr( -7)

—30) (v = Ac?r?)

" 3re
—(N-ﬁ)rir/)

1 N .. Gm . .
—l——z(l—31/)(N-7)2<UZUJ——I?F’V’>} . (53)
c 3r TT

with v == pu/m = m;m,/m? as the symmetric mass ratio.
Then, performing the time derivatives present in the right-
hand side (53) and using the relative 1PN acceleration
(B38) (which is computed in Appendix B) where required,
we arrive at the final form of the near zone waveform,

2G 1
I (%) = = {Q” +-P2QY t3 PQ”

+0(c73, ¢7A, A2)}, (54)
with

o .. Gm . . A .
oY —2<v’v1—r—;nr’rf) +§czr’rf, (55)

064051-6
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- Gm . R A N . Gm . . .
P'2Q = Am [3—T(N- 7) <2v(lrf> —Ir’r/> +(7-N) (—Zvlvf —I——:nr’r/> —2A(N - 7)olir) —
r r r

inj — % {3(1 - 3y)v2 -2(2- 31/)G—m

(N ﬁ)rirf] ., (56)

.4 G .
}v’vl +§(5 + 31/)—;}1}"1](’#)
r

;
1 .2 N o o
+3G’"{ (10+30)22 +3(1 =301 +29 2 }r’r-’+3(1—31/)(17-N)2(3v’vf—G;%r’rf>
r r
21 =3 RGN G’”[ gy<tr/>+3frz,,}
3 7 p
1 o o 2 22 o
+ = (1 =30)(7- )ZG—:" —14pipi + 307 plip) + 3”__15r_+7GZ” i
3 r r 2 r2 7

17Ac2

(14+3v)—r'r/

+ Ac?[2(1 = 3v)ri; — (6 — 14u)riolir)

13 Gm  ~
- —Ac*(1-30)— (N -
9 r

where the repeated indices do not indicate sum. For
instance, for i = j = 1, we have

(G—T<r,.)2 + (v,.)Z) vl = (i—;" (n)? + (1)1)2> Py

with x as the Cartesian coordinate of the relative position 7
and v, as their respective velocity component (see
Appendix B). Notice that omitting the cosmological con-
stant the wave expression becomes the case of the gravi-
tational radiation at 1PN order [19].

IV. CIRCULAR ORBIT

In this section, we study the interaction of the compact
two-body system given the particular case of a circular
orbit, which is the most simple case to analyze. Here,
we have to consider that i = ¥ = 0, as well as we denote
¢ = w as the orbital frequency. From the results (B44) and
(B45) obtained in Appendix B, we arrive at the following
expression:

= —cC I
s 3 cAr| P

+0(c™ Ac2, A2).

Additionally, we know that the velocity is given by

7)? ’rf+§/\c (1=30)(N - B)(V - 7)rliod),

Grm iri A2 [2 @ - v) v* 4 (1-3v) (%(ri)2 + (yi)2>:| rirl

- A*(1=3u)r?

.4 A -
vl + gAcz(l —3u)(N - 7?0l
(57)
|
v? = (rw)?
Gm A Gm [Gm A
=3 B -0
+0(c™ Ac2, A?). (60)

Bearing in mind this particular case of circular orbit, we
point out the substitution of the velocity (60) into the
coordinates of each body in interaction given by (49) and
(50); we find that the terms corresponding to the 1PN order
do not vanish. In contrast with the case of absence of A,
there is no contribution in the coordinates of each body for
a circular motion at 1PN order [22]. The energy of the
system is [see (B39)]

Gum 1 Gm
E=mc®———|1--(7T-v)—>5—
2r { 4( 2 zr]
1 A (13
——uA 2,2 i 5
3/4 cre+ 6 (2 + 1/)
11 5
—?A,u(l—3u)(x vi 4yl +220%).  (61)
Recalling the orbital plane coordinates,
X = rcos ¢, (62)
y = rsing, (63)
z=1, (64)

then if 7 = 0, this leads to
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v, =X = —rwsing, (65)
vy =Y = rocos ¢, (66)
v,=2=0. (67)

Now, we can obtain the following identity:
202 +y?v3 4 2202 = 2r*wcos’ P sing
1
=5 r?v?sin?(2¢)
1
= EGmrsinz(Zqﬁ) +0(c72,Ac?), (68)

and here we have used (60). Consequently, we substitute
(68) into the energy (61), resulting in

Gym 1 Gm| A
E=me - 1=~ (7=0) 20 _ 222
me 2r { 4 (7-v) czr] 3HeT
A 13 11
+ g,qur<7 + 51/) - ZA,qur(l — 3v)sin?(2¢)
+ O0(c™, Ac2, A?). (69)

A. Energy loss rate

The flux of energy (see Appendix C) that comes from the
tensor wave is

C3R2 S

with R as the distance from the source to the detector. In
order to compute P, we can proceed in two different ways,
in which we consider the particular case of a circular orbit
of a compact two-body system, i.e., i = 0. A first approach

Gm

A G%m?

is to differentiate 4"/ [from (54)] with respect time, where
the 1PN equation of motion (B38) can be utilized, and we
substitute this outcome into (70). The other method is
taking the appropriate time derivatives of the STF moments
(D4)—(D6) (obtained in Appendix D), and we plug them
into (D7). By doing so, the rate of loss of energy of such
system is

G 32 G’m’  G*m?
P= —E?(ym)2 [ 2 Ac?
G*m* (2927 " § + G3m? A 2423 " 2
25 \336 4" e 252 67
+ O(c™, c2A, Az)] . (71)

Notice that both ways agree with each other.

B. Post-Newtonian parameters

For future purposes, we introduce some PN parameters.
The first one is defined as y := f’:’ Hence, the orbital
frequency of a circular orbit (59) takes the following form:

o =—[1-0B-v)yl-

2 Gm Ac?
r 3

1-3 (10 - 31/)] (72)

Then, the relative distance can be expressed as

= (2 - -

{1 + g\—cz {1 ~L(10- 31/)} }_1/3. (73)

Therefore, the first PN parameter becomes

C(me)Z/3 1—(3—U)y]—1/3{1+3 : [1__<10 3y)]}1/3
| AGEm?

1
=x [1+§(3—v)x2+§ R

T 54 Ayt

(6 —v) + O(x* Ac™*x78, Az)] , (74)

where with the second PN parameter x = (2%%)!/3, the inverse squared frequency given by

o2 =——[1+ B =)y + 0 A%, N)), (75)

which is obtained from (72) using Taylor series expansion, and the relations of both PN parameters y ~ x

2 were introduced.

On the other hand, we introduce the PN parameter y from (74) into the radiated power (71) and the energy (69), yielding
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325 2027 5\ AGIm®  AG2m? (2423 31
P=— 2501 = ZZ=2 42y ) = oo LAyl A2
567 [ 7(336 +4”> v R R <252 % ”) + 0 Ac )]
326, 1247 35 \ , AGm> AG*m? )
- = (2 2 ) e - 97 —26920) + O(x*, Ac=*x2, A?) |, 76
567 [ (336+12”)x 0 32 v)+ O AT, ) (76)

L 1 1 Gm? G*m? (13 11 Gm? ,
E = mc? —Eczy[l —1(7—1/)}/] _gﬂA‘z—yfz+_AﬂcTy 5 —+5v _IA Z (1 = 3v)sin?(2¢gpx)
u 3 1 7 G*m* AG*m?
_mCZ—EC‘X {1—(Z+Eu)x2+§Aﬂ—W(103+95u)
11 AG*m? .
TW (1 — 31/)51n2(2¢0pN) + 0()64, AC_4X2,A2):| . (77)

Here, we have to remark that the energy depends
explicitly of the orbital phase ¢ (inside the sine function).
However, at this point of the analysis, this information is
not available (at least at 1PN order). As a consequence of
this fact, we introduce the Newtonian orbital phase ¢pn
since at this point of the analysis, this is the quantity that we
have in hand. Furthermore, it is worth mentioning that the
explicit appearance of the orbital phase ¢ in (77) is due that
the spatial components of the solution of the relaxed EFE

C. Energy loss rate of a circular motion
of a two-body system

It is well known that the loss of energy is in the form of
the GWs; therefore, this configuration becomes a binary
quasicircular scenario. Then, to obtain the orbital phase of
the GW ¢, we must use the balance equation, namely,

do not have rotational symmetry due to the gauge artifact dE
[24]. Thus, the Newtonian orbital phase ¢ypy in terms of ar (79)
the PN parameter x that we use in (77) is given by
1 _ 25 AG*m?* _
$opn = 3,7 : [1 99 4 6] (78) Next, the time derivative of the energy (77) becomes
|
dE 1 14AG*m?  AG*m?
—=- 1--13 2 103 + 95
dr ”C”[ 2( +3”> o gy (103495)
33AG*m? )
— ) W (1 — 3U)Sln2(2¢0PN) + 0(X4,AC_4 -2 Az)
11
- 7uAGmcx(1 —3v) sin(4gpopn) + O(Ax?, A?), (80)

where the PN parameter x was used to express the frequency as ¢ = w = % We equate the formulas (76) and (80) leading
to the following expression to solve for the unknown PN parameter x, that is,

1 1 14AGPm?  AG?m? 33AG2m? .
/,uc x[ (3 "3 ) 2 9 x0T 18cty (103 +950) - S22t (1= 3v)sin’(2hopw)
3265, 4, 1247 35\ , AG*m® AG2m?
- (=242 )2 - - 97 — 2692
{ 5677 { <336 i 12”>x T 130 2
11uAG . -
+$(1 ~3) sm(4¢opN)} dx = —(t, - 1). (81)

Expanding in Taylor series, we arrive at the following expression:
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1 256 (743 11 20 AG?m? 1 AG2 2
= 81 2 -6 _ DY 593 4 o444
0(r) 5™ { ST <336+ v)x e (573 + V)X~
132AG2m? 1
Tm(l —3)x8 / 3 sin?(2bonn ) + 0(x4,Ac‘4x‘2,A2)}, (82)

where (1) := SGm Y (t.—t), and ¢, is the time of coales-
cence. The inversion of the later equation reads

| 743 11
— _M-1/8 o o -3/8
¥=5070 (16128+192 )®

80 AG2m? _ 1AG2m2
T T @8 3/8
g a9 o (573 + 24441)©
33 AG2m?
1024 4m (1-3v)07"1(0), (83)

with 1(®) := [ J5sin?(2¢pn)dx. Additionally, notice that
if we introduce ¢ypy into /(@) and we expand it at PN
order, the lowest order of such integral is O(Ac™*x~14),
then the next order is O(Ac™*x7*), and so on. This
implies that the lowest order of the term M(l -
3u)x® [H5sin®(2¢opn)dx must be O(Ac™*x7°); conse-
quently, the next order is O(Ac™*x~'%). Hence, under this
approach, the integral diverges. As a consequence of this
fact, it is convenient to evaluate the complete integral
considering no expansion (see Appendix E for the explicit
calculation). Note that the precise solution is a complex
function; however, given our next numerical examples,
only the real part is considered since its imaginary upshot
is very small compared to its real counterpart.

D. Computation of the phase of oscillation of the
GW of a compact two-body system

First, to compute the phase of oscillation ¢, we know that

d¢ _d¢do _ c’v_dg (84)
dt  d®dt  5Gmd®’
Therefore, we have
d¢ 5Gmd¢ 5Gm
_— - _— - (03}
de Av o dt v
5Gm 03’x3 5,
= = ——x, 85
3uv Gm ux (85)

where we have used the relation w =
(83), we obtain

3.3
_ch . Moreover, from
m

1 743 11
3 _ Lo-3/8 A -5/8
o (21504 i 256”)

YT
20 AG2m? 1 AG?m?
-5 Vs - - (572 + 24441)0'/8
C C
99 AG m?
+m(1 -3v) e~11/31(@). (86)

Finally, we integrate Eq. (85), resulting in the following
expression:

40 = =1 [0+ (372432, o

8064 96
_ %AG?’Z o!1/8
C
5 AGm? o/s
- ST (572 4 24440)0°
495 AG*m?
‘I’m( —31/) o /6_11/8I(®)d®:|, (87)

where ¢, is the value of the phase at the instant of
coalescence. First, note that in the limit A — 0, Eq. (87)
matches the known phase of the waveform propagation of a
GW [22,23]. Second, we present Fig. 1, which is the
graphic representation of the Newtonian phase ¢pn(?),

S[1 s 160 AG?m?

e /38 , 88
¢OPN 15 231 ( )

where we consider the binary compact system with both
identical masses, such m = 10°' kg; and ¢y =0, A =
1072 m~2 [4], and t, = 1s. The orange line includes A,
while the blue one does not (A = 0). Note that both lines
are superimposed on each other; thus, the effect of A in
¢opn 1s negligible. To bear out this result, it is convenient to
carry out a numerical comparison of the phase that contains
A given by (78) with respect to the standard Newtonian
phase without a cosmological constant given by

1

¢0PN,A:0 == ; 65/8' (89)

Thus, the relative correction that the cosmological constant
A causes at r =0 (time where it reaches its maximum
value) reads
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FIG. 1. Plot of the GW Newtonian phase ¢gpy () (88) for a
binary compact system of identical masses with m = 10°' kg,
¢o =0, A =1072 m~2, and ¢. = 1s. The blue line includes A,
while the orange one does not (A = 0). Note that both lines are
superimposed on each other; thus, the effect of A in ¢gpy is
negligible.

¢OPN ¢OPNA 0 — 574 % ]0_42 (90)

d’OPN A=0

Lastly, we observe that at 1PN order, that is, Eq. (87),
the behavior of ¢(7) due to A in ¢py is not modified
whatsoever.

V. GRAVITATIONAL WAVEFORMS
IN THE TIME DOMAIN

To compute the time domain, we must introduce the
orthonormal triad N, p, and g; with N as the unit vector,
which is a radial vector pointing from the source to the
observer; p lies on the intersection of the orbital plane with
the plane of the sky, i.e., the plane which is orthonormal
to the direction N, and § = N x p. We also have to
consider the parameters : and ¢ that are the inclination
angle relative to NV and the orbital phase of the motion of the
body 1, measured counterclockwise from the line of nodes,
which is given by the line of intersection between the two
planes (plane of sky and orbital plane), and 7 is the unitary
vector of 7. Thus, we have that

=(1,0,0), (91)
|

q = (0,cos 1, —sinz), (92)
i =pcosg+ (gcost+ Nsint)cos ¢, (93)
;1:_quin¢+(E[COSL—I—ﬁsinz)cosqﬁ, (94)

where ¥ = rwA for circular orbits. The gravitational wave-
forms in the time domain are linear combinations of the
polarizations waveforms /4, (r) and h,(t) defined by the
projections

(Pibj = 4i;)h". (95)

Lo .
hoe =5 (Pidt + ibj)h". (96)
We have already computed the waveforms extracted after
applying their projections [see (54)], and recall that we
have taken the particular case for a circular motion i- = 0.
Therefore, both polarizations become

2Gu (Gmw\2/3
=2 () e

c
+O0(x*, Ac7!, A%}, (97)
2Gu (G 2/3
+0(x*, Ac™!, A%}, (98)

with
HY = —(1 + cos?1) cos 2¢

Ac? 1 5 2
+F <—Esm z+36(1 + cos l)cos2¢>, (99)

Am1
Hlf = —ngsinz[(S + cos?1) cos ¢

—9(1 + cos?1) cos 3(;5](1 —A—Cz>, (100)
3w

1 4
H! = 6{[19—|—9cos 1 —2cos*1] — v[19 — 11cos?t — 6cos* z}}coquﬁ—gsm 1(1 + cos?1)(1 = 3v) cos 4¢p

c J13 9cos +1cos +275
0 124 1600 T g T

33—14—£cos +§cos + cosd¢p|—
144 T 144 T3

vsin’t + cos 2¢b [—

18 54

3135 5 35
432 144 T 108!

11 13 5 69 13
o2 — 22 2% 22 ocd
cos“1 27COSl—|—IJ( 7 cos’1 + g COs z>]} (101)
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0 : Ac? .
H, = —2cosisin2¢ + ﬁcos 1sin 2¢h,
[0)

(102)

20 Ac?

A 2Ac?
= —?mgsinZZKI +§w—cz> sing) — <3__F> sin3¢],

(103)

17 4 13 8
H! = cosz[{ (— - —cos2z> + v(—? + 4coszz> } sin 2¢) — 3 (1 = 3v)sin’zsin4¢

3 3

A2 92 1 79 13 Ac? (359 359
+w—i{<—ﬁ+§coszl> +v<1—8—€coszz>}sin2¢+w—cz <2—16—7—21/)Sin215in4¢].

The following identities, which come from the combi-
nations of the definitions (95) and (96) with (91)—(94), were
utilized to compute the above polarizations s, h,:

o 1 1
(A'Ad), = Zsinzz +7 [1+ cos?1]cos2¢,  (105)
Nin 1
(A'¥),, = —Ecoszsin 2¢, (106)
A 1
(A3, = vilhs cos?1] sin 2¢p, (107)
L 1 .
(A'al), = Ecoszs1n2¢, (108)
pini 1., 1 s
(AA), = sin 1—4—1[1 + cos?i] cos2¢,  (109)
NG
(AVA), = Ecoszcoskb, (110)
o 1
((r)2rlir)), = Z’A cos1sin2¢, (111)
. 1
((r)?rir)), = Er4[3 +5co0s2¢
—3cos?1(1 — cos 2¢)], (112)
K”i)z”(irj)]x = {’”iviv(iﬂ)]x
1
= Zr“a)2 cos sin 2¢, (113)
[(0:)?rr)] . = [rw0r)]
1
:E’sz sin? 1(1 — cos 4¢h), (114)
N - it = sinzsin ¢, (115)
N -] =sinicos¢ (116)

(104)

Here, all repeated indices do not indicate sum. From
Egs. (99)-(104), one can observe that all H;’s present
nearly the same structure; that is, they have a constant term
multiplied by a trigonometry function, which contains the
phase ¢, except the first term of H. and the first four terms
of H' with A. Thus, considering constant frequencies
¢ = w(t — R/c), we can say that the presence of A makes
the amplitude of the waveforms change in magnitude, and
their roots (points where the function vanishes) are modi-
fied in the /. polarization (see Figs. 3 and 4). We close this
section with four remarks:

(i) The first case is presented in Fig. 2 with
o = 1077 s7!; one can see that the two lines (blue
with A=~ 1072 m™? [4]; orange A =0) in both
polarizations ., and h, are superimposed on each
other. Thus, the effect of A is almost negligible. To
observe this, we compute the highest value of the
approximation error of the two polarizations that
contains the presence of the cosmological constant A
with respect to the standard polarizations (without
A), obtaining as a result 0.8% and 0.5% for h, and
h,, respectively.

(ii) In the second case with @ = 107'® s=! (see Fig. 3),
we can notice that A begins to have importance. We
observe that A modifies the amplitudes of 4, and
h, and it reduces their sizes compared to the case
with null A. This is a direct consequence that the
cosmological constant “stretches” the spacetime
making that the objects within it move away from
each other. In this example, it turns out that the
highest value of the relative change of the polar-
izations containing the A terms with to respect the
standard polarizations (without A) are 80% for &
and 50% for h,,.

(iii) For the particular frequencies wy = cv/5A/6=1.12 x
1078571 and wy=cVv2A/6=7.07x10""957", the
amplitudes of i, and h, are canceled respectively, at
OPN order. Thus, if the system oscillates at one of this
particular frequencies, A would annihilate such
amplitudes at Newtonian order. Nevertheless, we
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px10'7 4x10"7 6x10"

FIG. 2. Plots of the gravitational waveform /4, (top) and 7
(bottom) for a binary compact system of identical masses at 1PN
order with parameter values m = 103" kg, R = 200 x 10?> m,
o = 107" 57!, A = 1072 m~? and the inclination angle 1 = 7/2
(top), 1 = O (bottom). The blue line includes A, while the orange
one does not (A = 0). Note that two lines, in both polarizations,
are superimposed on each other; thus, the effect of A is negligible.

observe that the spacetime is still altered by A in an
oscillatory way since the correction of the waveforms
at 0.5PN order or higher, in fact, prevail [see (97)
and (98)].

(iv) Then, for w < w, as shown in Fig. 4, the effect of A
becomes very evident. The ripples of the spacetime
are now ‘“‘stretched” by the cosmological constant.
In fact, one can drop all expressions without A from
(97) and (98), and we will get nearly the same
output; therefore, the waveforms of the GW depend
mostly on those terms with A # 0. Furthermore,
observe that in the case of the plot of 4, the crest
and trough are displaced downward as a conse-
quence of the shift constants, such as the coefficient
—c?sin’1/(120?) that multiplies A in (99). Finally,
in this instance, the highest values of the relative
corrections between the polarizations that contain A
terms and the standard polarizations (without A) are
considerably much larger, having as a result 8000%
for A, and 5000% for h,.

On the other hand, there is an exception among all

aforementioned examples, that is case iii. There is no
difference between the plots of OPN and 1PN orders due to

/\ /\ A )
\/2”01@ o "me\/m‘c \"
x10~36
n-36

FIG. 3. Plots of the gravitational waveforms /i, (top) and A
(bottom) for a binary compact system of identical masses at 1PN
order. The parameters are given by m = 103! Kg, R = 200x
1022 m, @ = 10~'® s~ and the inclination angle : = /2 (top),
1 = 0 (bottom). The blue line includes A, while the orange one
does not (A = 0). Note that with this particular frequency, the
effect of A starts to be observable.

the very small value of the frequency w. The corresponding
terms at 1PN are practically negligible in comparison to the
OPN ones. Nonetheless, for the case of higher frequencies,
i, > 10718 57! there might be a difference between
results at OPN and 1PN, but the presence of A is negligible
for numerical purposes. Hence, we can confirm that at
higher orders of the post-Newtonian method, the presence
of A will not affect the polarizations s, and h,.

Finally, in [28], it is mentioned that the perturbation is
not sharp, and there is also a tail term. The analysis given in
[36] shows that the sharp term is comparable with the tail
term, no matter how small A is. In our work, as it is

effect of A is notorious.

VI. CONCLUDING REMARKS

In this paper, we have studied from scratch the propa-
gation of GWs including the cosmological constant A in a
binary compact system. Using the direct integration of
the relaxed EFE at 1PN, and taking into account that the
terms O(Ah) were dropped given that, from the beginning,
we assume that A =~107? m=2 [4] is very small and
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hy(t)

4x1019

= t(s)
1x1020

FIG. 4. Plots of the waveforms 4 (top) and &, (bottom) for a binary compact system of identical masses at 1PN order. The parameter
values are given by m = 103! kg, R = 200 x 102 m, @ = 107'? s~ with inclination angle 1 = 7/2 (top), 1 = 0 (bottom). The blue line
includes A, while the orange one does not (A = 0). Note that with this particular frequency, the effect of A becomes very evident.

positive [24]. We also compute the waveforms (54), where
the equations of motion at 1PN (B38) were derived from
the Lagrangian taken at the center of mass frame,
expressed in (B36). Furthermore, observing the solutions

for h% and (;)00 given by (24) and (A12), correspondingly,
we find that A can be interpreted as a PN factor since
globally we can factorize 1/c?, and this power of c is the
1PN approximation.

Focusing on the particular case of a binary quasicircular
motion, we derive the energy and the radiated power given
by (69) and (71), respectively. Then, we substitute these
results into the balance equation (79), where the PN
parameters ¥y and x were introduced, in order to obtain
the phase (87) in the time domain at 1PN order. We notice
that this expression depends on explicitly on their own
quasicircular orbital phase ¢(z) of lower order; never-
theless, we can use the Newtonian phase (78) to compute
the integral (E3) (given in Appendix E). On the other hand,
from Fig. 1, we can observe that ¢» behaves the same with or
without A, therefore adding the cosmological constant does
not affect the phase. However, the impact of A starts
becoming noticeable on the amplitudes of the polarizations
h, and h, (see Figs. 3 and 4) when taking a constant
frequency @ < 107!8 s~!. Moreover, we find that given the

particular frequencies wy = ¢v5A/6 and wy, = cvV2A/6

the amplitudes of 4, (97) and A, (98) vanish at Newtonian
order; nonetheless, at higher orders, the propagation of the
GWs holds.

In the near future, we can extend our study now
considering O(Ah) terms [25], given that in the early stages
of the Universe (inflationary period [37-39]) the value of A
could have been much larger. Also, we may investigate
heavier objects, such as a system of black holes at the center
of two galaxies weighing billions of solar masses, since they
emit GWs with lower frequencies. This, indeed, opens the
possibility to explore detectable signals from the most
recent NANOGrav survey [40]. Furthermore, comple-
menting our work applied to the scalar-Gauss-Bonnet-
gravity [41] could shed light to understand the behavior
of A together with the scalar field. On the other hand, we
can explore the coordinate transformation from the
Cartesian coordinates given in the spatial components of
(27) which leads to the Schwarzschild-de-Sitter metric [24]
(see also [25,42]). We can also expand this PN approach
from the very beginning in the Brans-Dicke theory [43] (see
also [44]).
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APPENDIX A: METRIC AT NEWTONIAN ORDER

This appendix is devoted to compute the components of
the metric at Newtonian order. We follow the method
developed in [45]. To begin, we make the expansion of the
metric in the PN approximation as follows:

(2)
goo=—14+ goo+--- (A1)
3)
oi = Joi T (A2)
(2)
9ij = 6ij+ gij+ -+, (A3)

where the number over the objects means the power of the
factor of the velocity ratio v/c. The temporal and spatial
components of the Ricci tensor take the following form:

@ 0
Rooz—iv 900 (A4)
@ 1 1@ 1.@© 2)
Rijzz o; zajgoo_iajgkk""akgik
1.2 1_@ ) )
+Q;<§ai900—50i9kk+0kgik> —Vzg,».,}
1 2)
=3[0 + 0T = V2 gy, (A5)

15 15 @
where we define I'; == 50; g oo —50; g r + Ok g ix- Since we
are considering a system of n compact bodies, the expres-
sion energy-momentum tensor that describes it is given by

with 7, as the proper time of the particle a and 7 as the time
coordinate. Furthermore, the EFE (2) can be rewritten as
follows:

dr, dxly dx,
dt dz, dr,

FE=X,(1).  (A6)

87G

Ry =—3

1
<T/w - E Tg/w) + Ag;w

=9

pv

(A7)

with §,, playing the role as the source of the EFE. The
sources components Syy and S;; at lowest order corre-
spondingly read

47G (0)
Soo = A Too— A, (A8)
471'G (0)
Sij 5 TOO +A51]7 (Ag)
(0) (0)

where we use the result 7, ~ — T . From the EFE, we find
the following set of equations:

472G ()
—Evzgoo :—4T00—A7 (AIO)
C
1 2 4 G (0)
Slor; + T G = T+ Asy. (AL

(0)
Recalling that T oy = >, m,5° (X — X,(1)), the solution of
(A10) is shown as

2) 2G
Joo =7 —+—| X[,

(A12)

with X, X, as the vector field point and the vector position of
the particle a, respectively, and r, := |X — X,|. On the other
hand, to solve (A11), it is convenient to choose the gauge
I'; = 0. Therefore, the solution is given by

G = [2GZ———< |x|2+x>} s (AD3)

with no sum over the index i. Notice that %) ij 1s a diagonal
matrix, but it is not proportional to the identity. The solution
(A13) satisfies (A11) as long as the gauge1 I'; = 0 holds.
Furthermore, observe that the solutions (A12) and (A13)
meet the gauge I'; = 0 as well.

APPENDIX B: TWO-BODY LAGRANGIAN
OF A COMPACT SYSTEM

In this section, the interaction of a compact two-body
system at the first post-Newtonian correction order with
cosmological constant is considered. To begin the analysis,
we propose the following ansatz of the components of the
metric as follows:

—e?V + 0(c™, Ac™?),

oo = (B1)

goi = 4g; + O(c™>, Ac™?), (B2)

'See [46] to notice that the gauge I'; = 0 is equivalent to fix the
spatial components of the De Donder gauge condition
9,(\/=9¢"") = 0, which is used in the linearized form of the

waveform corresponding to aﬂh/” =0.
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gij = 5i/.e—[2U+%<\f\2+<xf)2>J +0(c™* Ac™?), (B3)
with no sum over the index i in the last term of g;;.
Introducing the objects (B1)-(B3) into the temporal and

spatial-temporal components of the Ricci tensor we find

1 1 2., 0.
Rop = V2U + =9, (—36,U +49,9; + —Ax- X>» (B4)
c c ¢

. 3 02 =
Ry = —2V?%g; + 20; [— U+0,9; + 4—A(x - X)
c : c

A
SRt (B5)
again with no sum over the index i in the last term of Ry;.
Recalling that the source of the EFE can be defined from
(A7), we find that at Newtonian order, namely, when the
factor v/c — 0,

4dnG

Soo = e (Too + Tii) = A, (B6)
87nG
Soi = e T, (B7)

Consequently, plugging back the components of the Ricci
tensor (B4) and (B5), and the components of the source
(B6) and (B7) into the EFE (A7) yields

1 1 2 . 0.
V2U+at(36,U+40igi+Ax'x>
c "\c c

4nG
=—5(Too + T};) + goo A, (B8)
- 2V2g; + 29, U+a +iA(5£ X) —A(xx)
9i i9j 4c 4o VN
87G
=—To, (B9)

with no sum in the index i in the last term of the second
equation. Using the energy-momentum tensor given in
(A6), the components of the matter sources shown in (B8)
and (B9) become

(1+ AP

700 = ¢2 14U
ch[—l— +2

+A|5c'|2}53(5€—55a(t)), (B10)
T = =) “m ;8 (% — %,(1)). (B11)
va 1+ AJF[H)83 (X — X, (1)) (B12)

On the other hand, to solve (B8), it is convenient to use the
“Coulomb-like” gauge [45] considering the presence of the
cosmological constant as follows:

1. 2., 0.

c c

Therefore, regarding this particular gauge, (B8) takes the
following form:

4rG

sz = 7 (T()() + Tii) + Ag()g. (B14)

Next, we define the object &; that satisfies the subsequent
relation,

1. 3 . A
2. — V2. — 9. | = a4 AT X)) = 2 (g
v&l vyz al CU+anJ+4CA(x )C) 4c(x1xt) ’
(B15)
with no sum in the i index, and we define
A
=&+ x+§0(xx+y y+22).  (B16)

Remarkably, the addition of the last term of (B16) ensures
that the Coulomb-like gauge (B13) holds. Moreover, the
third term with A has no rotational symmetry; hence, the
Coulomb-like gauge breaks the rotational symmetry of
the component of gy; at order O(Ac™"). We then apply the
Laplacian operator to both sides of previous relation,
having

Aa(x X)

1
——9.V?%y =
40V X 3¢

V2 - Vig +

1.
—0: |- U+9d.q;

o, [%A(E %) —i/\(x i )}

AL
+—0;(X-X),

. (B17)

with no sum in the index i and where we have used (B15).
Integrating the above relation, we obtain

1 1. 3A :
R 2P A PR
4c L 095t 4 (x-3)
A A .
— C(xd) —— (%% BI
M) -3 @)

with no sum over the index i. Note that the last expression
represents three equations given that i = 1, 2, 3; and this
fact is a direct consequence that the rotational symmetry is
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broken due to the presence of A. However, if we add them
all together, we obtain

1
-— V¥ =

i (B19)

Yo to LAG-3)
c ]gj 3c X-X).

Then, we apply the Coulomb-like gauge (B13), having

1 A
Ly U-—|x]|.
4¢ ’{4c 12¢ g

Next, we integrate with respect to time both sides,

(B20)

AL
Viy=U —§|x|2. (B21)

On the other hand, replacing (B15) in (B9) yields

4dnG

szi - —TTOI'. (B22)

Now, to solve (B8), we begin solving it at lowest order. So,
that relation becomes

4drG

ViU = A (Too +Ti) = A
4G -
= TEN B (F - Ra(f) — A
C

a

G m, A _

with r, :=|X —X,(¢)|, and note that we have used the
relations & (X — X,(1)) = - V() and VZX]? =6.

Thus, the solution at lowest order is

Gy

(B24)

We remark that the substitution of (B24) into the compo-
nents of the metric (B1) and (B3) leads to the same results
previously given in (29) and (31) using the DIRE
approach. This, in fact, reflects that both approaches PN
and PM are related to each other in the near zone of the
faraway waveform. Furthermore, from (A12) and (A13),
one can realize that the ansatz given by (B1) and (B3) is

satisfied providing that U = —3 (g 0=-3 Es = = A1
)

hence, such ansatz matches the solution of <g)00 and g ;.
Moreover, from (B21) and (B22), and using the result
(B24), we find that

G ALy
¥ = —?;mara +ﬁ |X]*, (B25)
G v
= —— = B26
é:l C3 a r, ( )
This leads to
9i = 8C3 Z 71}(11 + nal( ng - @u)]
A, ldx X; A
il 2L (X-D)| = —(x;)%k;, B27
o [dﬁ D) - o (B2)

with no sum in the index i in the last term, where
n, =7¥,/r, and b, = dr,/dt. These results (B24) and
(B27) do comply the Coulomb-like gauge (B13) at order
O(c™3, Ac™"). Subsequently, using the previous result at
Newtonian order, one can get the following result:

G m
U:__ %
C2;|x_xa(t)|
G ma 3 ) mb
I = = / N ~ a_G -
c4z|x—xa<r>|<2” Z)

- \)?|2 + ?GZmara +0(c™, Ac™?).  (B28)

Here, 7, :=7,—7,. On the other hand, considering a
compact two-body system, the two-body Lagrangian can
be obtained a la Droste-Fichtenholz, a technique which, at
this order, is equivalent to the Fokker Lagrangian [23]. To
obtain the Lagrangian that describes the interaction of
compact bodies, i.e., which are regarded as point particles,
we begin computing the equations of motion of a particle of
mass m; moving in the near zone which follows the
geodesic equation. This action is given by

dx* dx*\ 1/2
:/dthl :—mlC/dt<—g’wWE>
v viv\ 172
= —mc? / df(‘Qoo - 2901'?1 = Gij 221> . (B29)

where L,,

. is the Lagrangian of the geodesic of the mass
my, and v means the velocity of the particle 1. We expand
the integrand given by such Lagrangian to 1PN order as
follows:
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i 2 1/2
vy o _ay AR a2V A2 Yy a2 U /
L, =-mc*eY {1 —8g;—Le 2V — el [ o2 X o 1+ e 1z
c

1 1 3 1 4
= —m102 |:1 —E’U% + U—gv?+TU2U+_U2—Zgan +

+ O(c™, Ac™?, A?), (B30)

R A
_U%|x1|2 +m('x%v%x + y%v%y =+ Z%U%z)

where we utilized the ansatz of the metric given in (B1)—(B3) and evaluate the Lagrangian at the position of the mass m,,
implying that we must assess the potentials U and g; on the trajectory, where their self part o m, or m% diverges, ignoring all

the contributions to the field from the body m,. These ill-defined (formally infinite) potentials that diverge are regularized
(see, for instance, [22]) yielding

sz 3 GAm2 N A N AG

U=- 2o (1 + @”@ T3, % — 5 1% + 2 Ml (B31)
Gm T AL L A '

g9 = _—8C3"f2 [Tva; + g1y - U)] + e 1%, *[v1; + 2(7; - D)7y — e (xi1)%%1;. (B32)

Substituting the regularized potentials (B31) and (B32) into the Lagrangian (B30) leads to

1 Gmym, 1 Gmm, L T, G*mym3
L,, =-m¢c’ "‘Emlv% + P +@m1”‘1‘ + 2, [3(v] +v3) = 70y - U = (g - 1) (fyy - 12)] RN
GAm;m 1 Actmyr? A -
+ # (r% _EF%) +%— AGmymyry, +€m1rﬂv% +2(7y - 4,)?
11
- ﬁAml (¥fof, +yiof, + z7v7,) + O(c™ A2, A2). (B33)

The Fichtenholz Lagrangian that describes the motion of two compact bodies is constructed in such a way to give the

same equations of motion as (B33) when m; — 0. Hence, the Lagrangian that governs the motion of two compact bodies in
interaction is given by

L=-mc*—myc*+ %mlv% +%m21}% + Gn:]lzmz + émlv‘l‘ + émzvé
+ SRR 30} + ) = Ty T = (2 7)1 )] —Gz’"—’"w +my)
+%Cz(m1r% + myr3) + GAmym, <r%6—:12r% - r12) + %mlrfv% + %mzr%”%
t3m (Ay - B1)*r} + %mz(ﬁz “13)%r5 — %A[ml (xFoi, +yivt, + zivr,) + mo (6303, + y3v3, + 2303,)]
+ O(c™*, Ac™2, A?), (B34)

with 71y = % Ny, = % The first two lines of the Lagrangian correspond to the case of a null A. Besides, this

formula depends explicitly of the components of the position and the velocity of the particles. On the other hand, this
computation can be repeated taking into account the interaction of n particles, giving as a result
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Gm,m 1 Gm,my, __ . N .
L :Zmuv[%+2 b+2§mavi_z b[7va’vb+(nab'ya)(nab'Ub)]

2rab #b 4rub
mymp,v? 3 M, mym, 2 » , GA Mgy 2
ZZ —— 5 3) Pp il Zm R+ 7= g
a b#a c#a TabTac a Tap a#b
- 11
+ g;ma’%vg + g;ma(ﬁa ’ ’1}”)27% - EA;ma('x%ﬂ)Z}c + Zz @ ) + O( _2A’ Az)’ (B35)

where @ = 1, ..., N labels the particle, r,, is the distance between the particle a and b, and 7, is the unit vector from a to b.
Considering the center of mass frame given by (49) and (50), the Lagrangian (B34) becomes

1 G 1 Gum G A
L:—mcz—l—i/wz—i-#—i-@/w“(l—&/) 2? {(3—1—1/)0 + (- )Z—Tm +€cz,ur2
1 1 20 N o 2
—EGA,ur(S + 20v) +8A;4(1 =3v)rv +§/¢(n -0)* (1 =3u)r
11
- EA,u( = 3u)(x*0? + Y20 + 2202) 4+ O(c™, Ac™2, A?), (B36)
with F =X, = X,, i = ?—;I’ and 7 := 7, — ¥, are the relative vector distance, the relative unit vector, and the relative

velocity vector between the particles 1 and 2, correspondingly, and x, y, z are the Cartesian components of the relative
vector position 7 with v, vy, and v, as their respective velocities components. The objects without the vector symbol stand
only for the magnitude of the vector. The two-body Lagrangian (B36) is one of the main results of this work. It describes the
interaction of a compact two-body system with relativistic correction considering the presence of the cosmological constant.

Using the Euler-Lagrange equations,
d (oL oL
-— =0, B37
di < ) or' (B37)

the equation of motion of a compact two-body system is displayed as follows:

. Gm . G G 3 . . A :
a' :__;nﬁl+2_n12 —m(4+2u)—vz(1+31/)+—1/(fz~5)2 Al (4=2v) (A D)y + = Pt
r c°r r 2 3
5 11 . 3 11 27
+A(1-3) [—gr(ﬁ - ) —ﬁ—?(ri'ri)] v' —GmA[Z(Z—l—l/) +F(l —-3v) (};'2) }ﬁ’
1 11 2| 4 4 oA 2 Ao
— Ar(1-3v) iv +te (v;)* A"+ O(c™*, Ac™2, A?), (B38)

with no sum over the repeated index i; so this implies that is not possible to express the equations of motion using vector
notation, unlike the case where A = 0. The energy of the system is given by L' — L, that is,

1 A 1 (3
E=me+ gt =L i L -3 +GZL[<3+u>v wota- 7+ 22|
GA 1 1 -
+ ?,umr(S +2v)+ 3 (1 =3v)Apur? {E >+ (A 1))2] - EA,u(l - 3u)(x?v + y*ol + 2202). (B39)

Both in the acceleration (B38) and the energy (B39) hinge on explicitly of the Cartesian components of the relative
position and velocity as a consequence that the cosmological constant breaks the rotational symmetry of the system. Next,
taking the orbital plane coordinates,

it = (cos ¢, sin¢g,0), (B40)
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g?ﬁ = (—sin¢, cos ¢, 0),

z2=(0,0,1),

(B41)
(B42)

we have that the components of the acceleration can be
written as
o ld
a' = (F—r¢ )it +—— (r'g)¢'. (B43)
rdt
Therefore, comparing (B38) and (B43), and adding the

three different equations for each component, given that
i=1, 2, 3, we obtain

> Gm
P = rqﬁz—?—l—fczr—l—ﬁ 5(6—71/)}.’2

A Gm |1
3

— (rgp)?(1 + 3v) +2GTm<2 —l—v)}
—%Ar(l - 3v)i? +$Ar3(1 -l

A
- EGm(S’S +30) + O(c™, Ac?, A?), (B44)

%(ﬂ(;ﬁz) =2(2-v) GC—TMS +2A(1 =30)Pirgp.  (B4S)

APPENDIX C: RADIATED POWER FORMULA

In this section, we show that the radiated power formula
does not contain A provided that the condition Ah — 0 is
satisfied. Thus, from (10), we can observe that the radiated
power, taking into account A, reads

C4
P = C/ (_g)t?,]i - 2 167[G Ag_]/zg()k:| dSk

C4
= [ |ott = oA 410 as,

o
—c [ |oth - oot s,

~c / (—g)4ds,. (c1)

where dS; is an outward-directed surface element on the
2-dimensional surface S. Considering the shortwave
approximation (see, for example, [19]), which is based
on expansion of the gravitational potentials in powers of
A/R < 1, with 1 as the wavelength of the source and R as
the distance between the source and the observation point,
we write

h? = (AR + AR+, (C2)

where fﬁ,’ﬁ withn = 1,2,3, ..., is a function of the retarded
time 7 := ¢ — £ Substituting (C2) in 1}, given by (5), from
there, we replace it into (C1), yielding

C3R2

P=_—— / hifhF dx. (C3)

322G

Observe that the assumption Ak — 0, due to the very
small value of A, implies that the flux of the radiation
power P does not contain A, giving as a result the
expression (70). Nonetheless, in the waveform (54), A
does appear explicitly.

APPENDIX D: ENERGY LOSS RATE OBTAINED
FROM THE SYMMETRIC TRACE-FREE
MULTIPOLE DECOMPOSITION

It is well known that the EW multipoles are related with
the symmetric trace-free multipoles at 1PN order as follows
[21,47]:

ij g 1 i)k lij) k(i
B = 18+ 57 (W = 1200 +4). (o)

vijk ijk
ISJTF = 3IEJW’ (D2)

ij |
JS]TF = 5'9( klIJE>w- (D3)

Then, recalling the results of the EW multipoles (42), (43),
and (47), and considering the interaction of only two
particles at the center of mass frame coordinates (49)
and (50), the STF moments (D1)-(D3) become

i o Gm . .
I = prlir) + 7Lc2 (=54 8v) Tr<’rf>

29 . 11 o
—I—%E(l - 3u)0?rlip)) —l—mu(l —3u)r2lip))
A o
_oK 1 —3u)r2rlip), D4
2
Am . .
jik = 3 EE i, D5
STF me2 T (D5)
A .
o = /462’;” iyl ;. (D6)

At 1PN approximation, the radiated power in terms of the
STF multipoles is given by [21,22]

G (1w wstp 1 [1 @ @
P——g{glsjn:lt/ +p[@ e 1 st

16 --s7F-
+ —JS»TFJSJTF} + 0(c™, c72A, AZ)}. (D7)

4571
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Therefore, plugging back the results (D4)—(D6) into (D7)
yields the energy loss rate of a circular motion of a binary
compact system given by (71).

APPENDIX E: COMPUTATION
OF THE INTEGRAL I(©)

considering the Newtonian phase (78) neglecting the
additional A term since (AG?>m?)/c* < 1; i.e., we only
take ¢hopn =~ —x>/(32v), and the post-Newtonian param-
eter x = ©~1/8/2. Therefore,

5/8
In this appendix, we compute the integral Dopn = —®—. (E2)
v
. 2 2
1©) = / sin”(2op) fOPN)dx, (E1)
X Then, we have
|
. 2 2
I(@) _ /Sln ( 1q;()PN) dx
x
2@5/8
= —512/&1@)@1/25in2 (—)
v
500 40%/8 20°/8
— 0!/ x |- ZZ@%44105v cos + 300008 sin
1500 v v v
4i©%/8 4i©%/8
+21U(E%< : )—I—E;(— : >>} (E3)
1% 5

with E,(x) :== x""'I'(1 — n,x) as the exponential integral function with I'(1 — n,x) = [®™e~'ds as the incomplete
Gamma function. On the other hand, we also compute the following expression:

2u
O 31(®)de = —
/ (@) 3375

@8 [500@5/4 + 13512 cos<

408
-

:25/8 :25/8 . 5/8 :55/8
+18u2<Eg<4l® >+Eg<—4l® >>+63u2<&<4’® >+Eg<—4l® ))] (E4)
5 14 3 14 5 12 5 14
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