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We study the compact binary dynamics in the post-Newtonian approach implemented to the Einstein-
Hilbert action adding the cosmological constant Λ at first post-Newtonian (1PN) order. We consider very
small values of Λ finding that it plays the role of a PN factor to derive the Lagrangian of a compact two-
body system at the center of mass frame at 1PN. Furthermore, the phase function ϕðtÞ is obtained from the
balance equation, and the two polarizations hþ and h× are also calculated. We observe changes due to Λ
only at very low frequencies, and we notice that it plays the role of “stretch” the spacetime such that both
amplitudes become smaller. However, given its nearly negligible value, Λ has no relevance at higher
frequencies whatsoever.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) has
opened new perspectives to understand the nature and
behavior of the Universe from an astrophysical point of
view [1,2]. These observations strengthen the general
relativity (GR) predictions given by Einstein in 1916 [3].
On the other hand, from a plethora of gravitational phenom-
ena, the very small value of the astrophysical cosmological
constant Λ ≃ 10−52 m−2 [4] is probably the reason for not
considering its contribution into the Einstein field equations
(EFE); however, there are in fact astronomical observations
that suggest that Λ might cause the current accelerated
expansion of the Universe [5–8]. For instance, the analysis
of the cosmological microwave background radiation [9,10]
must include the effect ofΛ; nonetheless, studies of probable
observational effects inside the solar system, due to the Λ,
are nearly negligible to be detected [11,12]. Certainly, the
standard cosmological Λ cold dark matter ðΛCDMÞ model
has been successfully tested throughout several sources of
observations, and it remains the most simple yet accurate
scenario. However, there are still areas of unresolved
phenomenology and ignorance.
Moreover, the post-Newtonian (PN) expansion is imple-

mented in GR to obtain approximate solutions of the EFE.
This method consists in expanding the metric at various
orders around small values of the velocity ratio v=c, where v
is the typical internal velocity of the system (or the relative
velocity in the binary case) [13]. Here, the Newtonian
theory is recovered when taking the limit of the speed of

light to infinity, or the velocity ratio to zero. Einstein first
made use of the PN approximation (at first order) to
compute the perihelion precession of the Mercury’s orbit
[14,15]. Nowadays, this method is mostly utilized to study
the propagation of GWs of the relativistic two-body
problem (see, for instance, [16]). Note that this approach
is only valid at the very near zone of the source R, namely,
in the region when the evaluation point r (0 < r ≪ R) is
much smaller than the emitted wavelength λ; in other words,
the condition r ≪ λ must be satisfied, where there are no
effects of time retardation in this region [17–19]. On the
other hand, in the external domain d < r < ∞, we intro-
duce the post-Minkowskian (PM) approximation, where d
is the radius of the smallest sphere comprehending the
whole system, and here, the gothic metric gμν ≔ ffiffiffiffiffiffi−gp

gμν is
written as an expansion of powers of the Newtonian
constant of gravitation G. Note that there is an overlapping
region d < r < R; therefore, the coefficients of the external
domain can be expressed in terms of powers of the PN
approximation by matching relations [18]. The DIRE
(Direct Integration of Relaxed Einstein Equation) can be
used to compute a wave equation of the EFE in an exact
form as long as the harmonic gauge holds to obtain
waveforms as powers of PN orders [20,21].
The starting point is the Einstein-Hilbert (EH) action for

the gravitational field with cosmological constantΛ given by

S½g� ¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p �
16πG
c4

ðR − 2ΛÞ þ Lm

�
; ð1Þ

where G is the Newton’s gravitational constant, c is the
speed of light in vacuum, the metric determinant is
ð−gÞ ≔ detðgμνÞ, Lm represents an arbitrary Lagrangian
density that describes matter, R ≔ gμνRμν and Rμν ≔ Rα

μαν
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are the scalar curvature and Ricci curvature tensor, respec-
tively. They are derived from the curvature tensor
Rα

βγδ ¼ ∂γΓα
βδ − ∂δΓα

βγ þ Γρ
βδΓα

ργ − Γρ
βγΓα

ρδ, where
the Christoffel symbols are given in terms of the metric
tensor and its partial derivatives Γρ

αβ ¼ 1
2
gργð∂αgγβ þ

∂βgγα − ∂γgαβÞ. Thus, the EFE are given by

Rμν −
1

2
Rgμν þ Λgμν ¼

8πG
c4

Tμν; ð2Þ

where the source term is obtained by Tμν ≔ − 2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgμν
.

The main aim of this paper consists in exploring the
effects on the propagation of GWs due to the presence ofΛ,
having a two-body problem examined to the 1PN order in
the post-Newtonian method. We then compare our results
with those with Λ ¼ 0 at 2PN [22,23], having the same
inspiralling compact binary systems. Furthermore, previous
studies have explored the effects of Λ in the linearized GR;
the authors expanded the metric around a flat Minkowski
spacetime [24,25]. However, the present work is the first
one to include such a constant in the two-body problem.
We begin our analysis in Sec. II where we solve the EFE

through the DIRE approach utilizing the gothic metric and
imposing the harmonic gauge; we then compute the tensor
waveforms hij at the near zone contribution of the faraway
components through the Epstein Wagoner (EW) tensors at
1PN order at the center of mass frame of a binary compact
system. Many explicit calculations are presented in
Appendices A–E. Then, in Sec. IV, the circular orbit
properties are explained, and the PN parameters γ and x
are introduced. Also, we calculate the energy loss rate.
After that, by taking into account the balance equation (79),
we obtain the orbital phase ϕðtÞ of the two-body system at
1PN approximation. Note that these results can also be
derived using the symmetric trace-free tensor (STF) (see
Appendix D). Moreover, in Sec. V, we compute the
polarizations waveforms hþðtÞ and h×ðtÞ. We finish the
paper by making some remarks in Sec. VI.

A. Conventions

We consider a 4-dimensional spacetime manifold M.
Spacetime indices are designated by Greek letters μ; ν;… ¼
f0; ig where i labels spatial components of tensors, and 0
indicates the temporal component. These indices are raised
and lowered with the spacetime metric gμν which signature
is given by ð−1; 1; 1; 1Þ. The repeated indices mean sum
throughout the paper unless otherwise stated. The symmet-
ric and trace-free part of a tensor Ti1i2i3���in is denoted as
Thi1i2i3���ini. The time derivative of an object is represented by
a dot over the corresponding variable.

II. RELAXED EFE AND WAVEFORM

To solve the EFE (2) in the weak-field limit, we use the
DIRE approach [20] (see also [21,26]). First, we introduce

the gothic metric gμν ≔ ffiffiffiffiffiffi−gp
gμν. Then, we define the

tensor,

Hαμβν ≔ gμνgαβ − gανgβμ; ð3Þ

where the following identity holds:

∂μ∂νHμανβ ¼ ð−gÞ
�
2Gαβ þ 16πG

c4
tαβLL

�
: ð4Þ

Here, tαβLL is the Landau-Lifshitz energy-momentum
tensor [27],

16πG
c4

ð−gÞtαβLL ¼ gλμgνρ∂νgαλ∂ρgβμ þ
1

2
gλμgαβ∂ρgλν∂νgρμ

− gμνðgλα∂ρgβν þ gλβ∂ρgανÞ∂λgρμ

þ 1

8
ð2gαλgβμ − gαβgλμÞð2gνρgστ

− gρσgντÞ∂λgντ∂μgρσ; ð5Þ

and the Einstein tensor Gμν is defined as

Gμν ≔ Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν − Λg−1=2gμν; ð6Þ

with g ≔ detðgμνÞ ¼ ð−gÞ. In order to study the field
outside the source, we expand the gothic metric around
the Minkowski metric as follows:

gμν ¼ ημν þ hμν; ð7Þ

where hμν stands as a potential. We select the harmonic
gauge [17–19]: ∂μgμν ¼ 0; in this case, the relation (4)
becomes the wave equation,

□hαβ ¼ 16πG
c4

μαβ; ð8Þ

where μαβ is the source of the system, which is given by

μαβ ¼ ð−gÞTαβ þ c4

16πG
Λαβ
GR; ð9Þ

and in this approach, the cosmological constant is taken as

Λαβ
GR ≔

16πG
c4

ð−gÞtαβLL − 2Λg−1=2gαβ þ ∂μhαμ∂νhβν

− hμν∂μ∂νhαβ: ð10Þ

The previous expression (8) is known as the relaxed EFE.
Notice that the harmonic gauge ∂μgμν ¼ 0 and (8),

together, are equivalent to the Einstein field equations
[17–19]. Additionally, at this point of the analysis, we
stress that (7) represents a change of variable since the
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transformation between gμν and hμν is one-to-one and
invertible. More explicitly, we have

hμν ¼ ffiffiffiffiffiffi
−g

p
gμν − ημν; ð11Þ

gμν ¼ ½detðηαβ þ hαβÞ�−1=2ðημν þ hμνÞ: ð12Þ

A. The tensor waveforms at 1PN

In this subsection, we compute the near-zone contribu-
tion waveform of hij. The near zone contribution of the
faraway zone term is identified as hijN, which is given
by [20,21]

hijNðxÞ ¼
2G
Rc4

d2

dt2
X∞
l¼0

N̂k1 � � � N̂klI
ijk1���kl
EW ; ð13Þ

where N̂kl is the unit normal vector pointing from the
source to the detector, and R is the distance between the
source and the detector. All terms of Iijk1���klEW are known as
the EW moments, and they are given explicitly as

IijEW ≔
1

c2

Z
M
μ00xixjd3x; ð14Þ

IijkEW ≔
1

c3

Z
M
ð2μ0ðixjÞxk − μ0kxixjÞd3x; ð15Þ

Iijk1���klEW ≔
2

l!c2
dl−2

dðctÞl−2
Z
M
μijxk1xk2 � � � xkld3x: ð16Þ

To determine the GWs at 1PN order, we have to compute
up to the fourth index of the EWmoments, keeping in mind
the transverse-traceless (TT) gauge [21] of the spatial
tensor, that is,

hijNðxÞ ¼
2G
Rc4

d2

dt2
fIij þ N̂kIijk þ N̂kN̂lIijklgTT: ð17Þ

Moreover, the TT operator acting on a tensor object Aij is
such that [18,19]

Aij
TT ¼

�
PikPjl −

1

2
PijPkl

�
Akl; ð18Þ

Pij ≔ δij − N̂iN̂j; ð19Þ

where Pij is an operator projection and satisfying the
properties Pii ¼ 2, PijPij ¼ 2, and PijPik ¼ Pjk.
In order to compute the EW moments, we need to know

the explicit form of the source components μαβ to the 1PN

order. To do so, we have to obtain the terms h00, h0i, and hij

at the lowest order from the relaxed EFE, where the energy-
momentum tensor has the following form [27]:

Tμν ¼ 1ffiffiffiffiffiffi−gp
X
a

ma
dτa
dt

dxμa
dτa

dxνa
dτa

δ3ðx⃗ − x⃗aðtÞÞ; ð20Þ

where δ3ðx⃗ − x⃗aðtÞÞ is the 3-dimensional Dirac delta, ma is
the mass of the particle a, τa is the proper time of the
particle a, and t is the time coordinate. Therefore, from the
relaxed EFE (8), the equations of motion become

∇2h00 ¼ 16πG
c2

X
a

maδ
3ðx⃗ − x⃗aðtÞÞ þ 2ΛþO

�
Λh;

1

c4

�
;

ð21Þ

∇2h0i ¼ O

�
Λh;

1

c3

�
; ð22Þ

∇2hij ¼ −2Λδij þO

�
Λh;

1

c4

�
: ð23Þ

Notice that Eq. (21) represents the equation of motion for
h00 at the lowest order where in the first term of the right-
hand side involves a PN term 1=c2. Therefore, we can say
that the cosmological constant Λ plays the role of a PN
factor.
It is worth mentioning that in this approach the field hμν

and Λ are considered as perturbations; namely, we are
considering a very small value of the cosmological con-
stant [24]. Hence, the equations of motion of all hαβ are
taken at the lowest order and neglecting the terms
OðΛhμνÞ, and the harmonic gauge must be met, i.e.,
∂μhμν ¼ 0. We point out that the lowest order of h0i and
hij components are Oðc−3;ΛhÞ and Oð1;ΛÞ, respectively.
Therefore, the solutions of the hμν components read

h00 ¼ −
4G
c2

X
a

ma

ra
þ Λ

3
jx⃗j2 þOðΛh; c−4Þ; ð24Þ

h0i ¼ OðΛh; c−3Þ; ð25Þ

hij ¼ δij
�
−
1

2
Λðjx⃗j2 − x2i Þ

�
þOðΛh; c−4Þ; ð26Þ

with no sum in the term xi from hij (26). Notice that the
trace of the spatial component reads hii ¼ −Λjx⃗j2. In
explicit matrix form, the solution hμν is written as
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hμν ¼

0
BBBBB@

− 4G
c2
P

a
ma
ra
þ Λ

3
jx⃗j2 0 0 0

0 − 1
2
Λðy2 þ z2Þ 0 0

0 0 − 1
2
Λðx2 þ z2Þ 0

0 0 0 − 1
2
Λðx2 þ y2Þ

1
CCCCCA
; ð27Þ

where x, y and z are the Cartesian coordinates. This
solution satisfies the harmonic gauge condition ∂μhμν ¼ 0

at lowest order; i.e., the condition ∂μhμ0 ¼ 0 holds as long
as we add h0i at order OðΛh; c−3Þ and h00 [given in
Eq. (24)], while for the case ∂μhμi ¼ 0 we only need to
consider hij, which is given in Eq. (26). This constraint is a
fundamental feature of the methodology of Blanchet and
Damour [17], and this implies that the solution expressed
in (27) has cylindrical symmetry around the corresponding
principal axis. Note that this property is a remnant of the
rotational symmetry; hence, the breaking of this symmetry
is an artifact of the harmonic gauge condition [24]. It is
worth stressing that the solution given in (27) leads to the
linearized Schwarchild-de Sitter metric, written in a set of
appropriate coordinates that correspond to the harmonic
gauge [24]. Therefore, the spacetime that we are consid-
ering at the lowest order is de Sitter or anti-de Sitter.
In [28] (see also [29–35]), the linearization of gravity is

performed introducing a de Sitter background in the form
of the spacetime metric (the cosmological constant Λ does
not comes from the action). In such linearized Einstein
equations, the perturbation is not sharp; there is a tail term.
Similarly, in our work, we observe in (27) that due to Λ the
solution of the field h00 has a sharp and a tail term, where Λ
is found in the latter. Moreover, note that hij at the lowest
order only has a tail term; however, at higher orders, in h0i

and as well as hij, both contributions will appear, i.e., sharp
and tail terms.
From the definition of the gothic metric and its expan-

sion (7), we can obtain the components of the metric at the
same order of the perturbation hμν. Accordingly, we have

ð−gÞ ¼ detðgμνÞ ¼ detðημν þ hμνÞ ¼ 1þ hþOðh2Þ; ð28Þ

with h ≔ hμνημν and gμν ¼ ημν − hμν þOðh2Þ. Thus, the
components of the metric at lowest order read

g00 ¼
ffiffiffiffiffiffi
−g

p
g00

¼ −
�
1þ 1

2
h00 þ 1

2
hii

�
þOðh2;ΛhÞ; ð29Þ

g0i ¼
ffiffiffiffiffiffi
−g

p
g0i

¼ OðΛh; c−3Þ; ð30Þ

gij ¼
ffiffiffiffiffiffi
−g

p
gij

¼ δij − hij −
1

2
δijh00 þ

1

2
hkkδij þOðh2;ΛhÞ: ð31Þ

Here, we have used h ¼ −h00 þ hii. When substituting the
components of the metric into those of the source (9),
it yields

μ00 ¼ c2
X
a

ma

�
1−

3

4
h00 þ 1

4
hii þ v2a

2c2

�
δ3ðx⃗− x⃗aðtÞÞ

þ c4

16πG

�
−
7

8
∂ih00∂ih00 þ 2Λ

�
þOðΛh;c−2Þ; ð32Þ

μ0i ¼ c
X
a

maviaδ3ðx⃗ − x⃗aðtÞÞ þOðΛh; c−2Þ; ð33Þ

μij ¼
X
a

maviav
j
aδ3ðx⃗ − x⃗aðtÞÞ þ

c4

16πG

�
1

4
∂
ih00∂jh00

−
1

8
δij∂kh00∂kh00

�
− 2Λδij þOðΛh; c−2Þ; ð34Þ

with va as the velocity of the particle a. We stress that the
cosmological constant only appears in the last terms of μ00

and μij. In the case of Λ ¼ 0, one recovers the usual
gravitational case at 1PN order [26].

III. EVALUATION OF THE
EPSTEIN-WAGONER MOMENTS

From the expressions (14)–(16), one can observe that the
EW moments are written as volume integrals, evaluated at
the retarded time τ ¼ t − R=c, and the boundary region ∂M
of the near zone is given by R. In this section, we present
some steps, in detail, in order to obtain the EW moments;
particularly, we focus in the terms that contain Λ, since the
integrals that do not have this parameter have already been
evaluated in [21]. Also, in various occasions, we integrate
by parts, and we use the identity [19,21]

Z
M
∂kFij���kd3x ¼

Z
∂M

Fij���kjRN̂kR2dΩ; ð35Þ

with ∂M as the boundary of the 3-dimensional manifoldM
at the near region, and R2n̂kdΩ2 ¼ dSk is the surface
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element at this border. Moreover, we are only interested in
finding the tensorial terms that survive after applying the
TT projector. Thus, the subsequent identities follow from
the projection operator Pi

j, given in Eqs. (18) and (19),

ðδijÞTT ¼ 0; ð36Þ

ðN̂iFjÞTT ¼ 0; ð37Þ

where the indices i and j apply to the final components of
the waveform (not the integrands), and F denotes a general
term. All these results and procedures are explained in
detail in [19,21].

A. Two-index moment IijEW
The first step to compute the moment IijEW begins using

the following useful identity:

∂kh00∂kh00xixj ¼ ∂kðh00∂kh00xixjÞ
− h00ð∇2h00xixj þ ∂

ih00xj þ ∂
jh00xiÞ;

ð38Þ

and after some algebraic manipulation, we obtain

−h00∂ih00xj − h00∂jh00xi ¼ −
1

2
∂
i½ðh00Þ2xj�

−
1

2
∂
j½ðh00Þ2xi� þ ðh00Þδij:

ð39Þ

Substituting Eq. (32) into (14), then using Eqs. (38) and
(39), neglecting the boundary terms and considering the TT
components of the far zone tensor perturbation, it yields

IijEW¼TT 1

c2

Z
M

�
c2
X
a

ma

�
1 −

3

4
h00 þ 1

4
hii

þ v2a
2c2

�
δ3ðx⃗ − x⃗aðtÞÞ

�
xhia x

ji
a d3x

þ c4

c216πG
7

8

Z
M
h00∇2h00xhixjid3x: ð40Þ

Next, we use the results (21) and (24), so the last term
becomes

c2

16πG
7

8

Z
M
h00∇2h00xhixjid3x ¼TT c2

16πG
7

8

Z
M

�
−
4G
c2

X
a

ma

ra
þ Λ

3
jx⃗j2

�
∇2h00xhixjid3x

¼TT c2

16πG
7

8

Z
M

�
−
4G
c2

X
a

ma

ra
∇2h00xhixji

�
d3x

¼TT −
7G
2c2

X
a

X
b≠a

mb

rab
xhia x

ji
a ; ð41Þ

where we have neglected all the terms at order OðΛhÞ.
Finally, plugging in (24) and (26) into the first term of (40)
and putting together the previous result, the two-index EW
moment becomes

IijEW ¼TT
X
a

ma

�
1 −

G
2c2

X
b≠a

mb

rab
−
Λ
2
jx⃗aj2 þ

v2a
2c2

�
xiax

j
a

þOðΛh; c−4Þ: ð42Þ

B. Three-index moment IijkEW
In this case since there is no cosmological constant

contribution, the computation of the integral is direct,
yielding

IijkEW ¼TT 1

c

X
a

ma½2vðia xjÞa xka − vkaxiax
j
a�

þOðΛh; c−3Þ: ð43Þ

C. Four-index moment IijklEW

Plugging in the spatial component of the source (34) into
the corresponding four indices integral (16) and consider-
ing the TT gauge, we obtain

IijklEW ¼TT 1

c2
X
a

maviav
j
axkaxla þ

c2

64πG

Z
M
∂
ih00∂jh00xkxld3x:

ð44Þ

Next, we integrate by parts the last term, neglecting all the
boundary terms, applying the TT gauge and using (24),
yielding

Z
M
∂
ih00∂jh00xkxld3x ¼TT −

Z
M
h00∂i∂jh00xkxld3x

¼TT 4G
c2

Z
M

X
a

ma

ra
∂
i
∂
jh00xkxld3x:

ð45Þ
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Here, in the last term, we have neglected expressions at
order OðΛhÞ, and also, the TT gauge projection was not
used. On the other hand, using again the result (24), one
obtains

∂i∂jh00 ¼
4G
c2

X
a

ma

�
1

jx⃗ − x⃗aj3
δij

−
3

jx⃗ − x⃗aj5
ðx⃗ − x⃗aÞiðx⃗ − x⃗aÞj

�
þ 2

3
Λδij; ð46Þ

with x⃗ ≠ x⃗a. After applying the TT gauge, the cosmological
constant term vanishes. Therefore, it turns out that the four
indices EW moment has no Λ; thus, from [21], the integral
reads

IijklEW ¼TT 1

c2
X
a

maviav
j
axkaxla

þ
X
a

X
b≠a

�
Gmamb

12rc2
xixj

�
xkxl

jx⃗j2 − δkl − 6
xkaxla
jx⃗j2

��

þOðΛ; hc−4Þ: ð47Þ

We remark that in the three- and four-index moments there
are no contributions of the cosmological constant under the
TT projection; however, Λ will have an impact on higher
order approximations.

D. Center of mass at 1PN order with Λ
To express the waveform in terms of the relative

variables, we move to the center of mass frame
Xi
CM ¼ 0, that is,

Xi
CM ≔

1

m

Z
M
μ00xid3x⃗

¼ 1

m

X
a

maxia −
G

2c2m

X
a

ma

X
b≠a

mb

rab
xia

þ 1

2c2m

X
a

mav2axia −
Λ
2m

X
a

majx⃗aj2xia

þOðΛh; c−3Þ; ð48Þ

where we have used Eqs. (24) and (32), and the spatial trace
of Eq. (26). On the other hand, considering only two
particles in interaction, we find at 1PN order that the
coordinates of each body in the center of mass frame are
given by

r⃗1 ¼
μ

m1

r⃗þ μΔm
2m2c2

�
v2 −

Gm
r

−
Λc2r2

2

�
r⃗

þOðc−2Λ;Λ2; c−3Þ; ð49Þ

r⃗2 ¼ −
μ

m2

r⃗þ μΔm
2m2c2

�
v2 −

Gm
r

−
Λc2r2

2

�
r⃗

þOðΛc−2;Λ2; c−3Þ; ð50Þ

with r⃗ ¼ r⃗1 − r⃗2 as the relative position, r ¼ jr⃗j, v⃗ ¼ v⃗1 −
v⃗2 as the relative velocity, v ¼ jv⃗j, μ ¼ m1m2=m as the
reduced mass of the binary system, m ¼ m1 þm2,
and Δm ≔ m1 −m2.
Computing the time derivative of the positions given by

Eqs. (49) and (50) leads to the velocities of each particle,

v⃗1 ¼
μ

m1

v⃗þ μΔm
2m2c2

��
v2 −

Gm
r

−
Λc2r2

2

�
v⃗

−
�
Gm
r2

þ Λc2r
2

�
ṙ r⃗

�
þOðΛc−2;Λ2; c−4Þ; ð51Þ

v⃗2 ¼ −
μ

m2

v⃗þ μΔm
2m2c2

��
v2 −

Gm
r

−
Λc2r2

2

�
v⃗

−
�
Gm
r2

þ Λc2r
2

�
ṙ r⃗

�
þOðΛc−2;Λ2; c−4Þ: ð52Þ

Now, we substitute the positions and velocities (49)–(52)
into the EW moments (42), (43), and (47); finally, we plug
in the later results in Eq. (13), obtaining the waveform of a
compact two-body system in a general motion,

hijN;TT ¼
2Gμ
Rc4

d2

dt2

��
1þ 1

2c2
ð1− 3νÞðv2−Λc2r2Þ

−
Gm
3rc2

ð2− 9νÞ
�
rirj −

Δm
mc2

ð2vðirjÞðN̂ · r⃗Þ

− ðN̂ · v⃗ÞrirjÞ

þ 1

c2
ð1− 3νÞðN̂ · r⃗Þ2

�
vivj−

Gm
3r3

rirj
��

TT
; ð53Þ

with ν ≔ μ=m ¼ m1m2=m2 as the symmetric mass ratio.
Then, performing the time derivatives present in the right-
hand side (53) and using the relative 1PN acceleration
(B38) (which is computed in Appendix B) where required,
we arrive at the final form of the near zone waveform,

hijN;TTðt; xÞ ¼
2Gμ
c4R

�
Q̃ij þ 1

c
P1=2Q̃ij þ 1

c2
PQ̃ij

þOðc−3; c−1Λ;Λ2Þ
�
; ð54Þ

with

Q̃ij ¼ 2

�
vivj −

Gm
r3

rirj
�
þ Λ

3
c2rirj; ð55Þ
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P1=2Q̃ij ¼Δm
�
3
Gm
r3

ðN̂ · r⃗Þ
�
2vðirjÞ−

ṙ
r
rirj

�
þðv⃗ · N̂Þ

�
−2vivjþGm

r3
rirj

�
− 2Λc2ðN̂ · r⃗ÞvðirjÞ −Λ

3
c2ðN̂ · v⃗Þrirj

�
; ð56Þ

PQ̃ij ¼ 1

3

�
3ð1 − 3νÞv2 − 2ð2 − 3νÞGm

r

�
vivj þ 4

3
ð5þ 3νÞGm

r2
ṙvðirjÞ

þ 1

3

Gm
r3

�
−ð10þ 3νÞv2 þ 3ð1 − 3νÞṙ2 þ 29

Gm
r

�
rirj þ 2

3
ð1 − 3νÞðv⃗ · N̂Þ2

�
3vivj −

Gm
r3

rirj
�

þ 4

3
ð1 − 3νÞðv⃗ · N̂Þðr⃗ · N̂ÞGm

r3

�
−8vðirjÞ þ 3

ṙ
r
rirj

�

þ 1

3
ð1 − 3νÞðr⃗ · N̂Þ2Gm

r3

�
−14vivj þ 30

ṙ
r
vðirjÞ þ

�
3
v2

r2
− 15

ṙ2

r2
þ 7

Gm
r3

�
rirj

�

−
17Λc2

9
ð1þ 3νÞGm

r
rirj − Λc2

�
2

�
2

3
− ν

�
v2 þ ð1 − 3νÞ

�
Gm
r3

ðriÞ2 þ ðviÞ2
��

rirj

þ Λc2½2ð1 − 3νÞriṙi − ð6 − 14νÞrṙ�vðirjÞ − Λc2ð1 − 3νÞr2vivj þ 4

3
Λc2ð1 − 3νÞðN̂ · r⃗Þ2vivj

−
13

9
Λc2ð1 − 3νÞGm

r3
ðN̂ · r⃗Þ2rirj þ 8

3
Λc2ð1 − 3νÞðN̂ · v⃗ÞðN̂ · r⃗ÞrðivjÞ; ð57Þ

where the repeated indices do not indicate sum. For
instance, for i ¼ j ¼ 1, we have

�
Gm
r3

ðriÞ2 þ ðviÞ2
�
rirj ¼

�
Gm
r3

ðr1Þ2 þ ðv1Þ2
�
r1r1

¼
�
Gm
r3

x2 þ ðvxÞ2
�
x2; ð58Þ

with x as the Cartesian coordinate of the relative position r⃗
and vx as their respective velocity component (see
Appendix B). Notice that omitting the cosmological con-
stant the wave expression becomes the case of the gravi-
tational radiation at 1PN order [19].

IV. CIRCULAR ORBIT

In this section, we study the interaction of the compact
two-body system given the particular case of a circular
orbit, which is the most simple case to analyze. Here,
we have to consider that ṙ ¼ ̈r ¼ 0, as well as we denote
ϕ̇ ≔ ω as the orbital frequency. From the results (B44) and
(B45) obtained in Appendix B, we arrive at the following
expression:

ω2 ¼ Gm
r3

−
Λ
3
c2 −

Gm
c2r

�
Gm
r3

ð3 − νÞ − c2Λ
6

ð10 − 3νÞ
�

þOðc−4;Λc−2;Λ2Þ: ð59Þ

Additionally, we know that the velocity is given by

v2 ¼ ðrωÞ2

¼ Gm
r

−
Λ
3
c2r2 −

Gm
c2r

�
Gm
r

ð3 − νÞ − c2Λ
6

r2ð10 − 3νÞ
�

þOðc−4;Λc−2;Λ2Þ: ð60Þ

Bearing in mind this particular case of circular orbit, we
point out the substitution of the velocity (60) into the
coordinates of each body in interaction given by (49) and
(50); we find that the terms corresponding to the 1PN order
do not vanish. In contrast with the case of absence of Λ,
there is no contribution in the coordinates of each body for
a circular motion at 1PN order [22]. The energy of the
system is [see (B39)]

E ¼ mc2 −
Gμm
2r

�
1 −

1

4
ð7 − νÞGm

c2r

�

−
1

3
μΛc2r2 þ Λ

6

�
13

2
þ 5ν

�

−
11

2
Λμð1 − 3νÞðx2v2x þ y2v2y þ z2v2zÞ: ð61Þ

Recalling the orbital plane coordinates,

x ¼ r cosϕ; ð62Þ

y ¼ r sinϕ; ð63Þ

z ¼ 1; ð64Þ

then if ṙ ¼ 0, this leads to
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vx ¼ ẋ ¼ −rω sinϕ; ð65Þ

vy ¼ ẏ ¼ rω cosϕ; ð66Þ

vz ¼ ż ¼ 0: ð67Þ

Now, we can obtain the following identity:

x2v2xþ y2v2yþ z2v2z ¼ 2r4ω2cos2ϕsinϕ

¼ 1

2
r2v2sin2ð2ϕÞ

¼ 1

2
Gmrsin2ð2ϕÞþOðc−2;Λc2Þ; ð68Þ

and here we have used (60). Consequently, we substitute
(68) into the energy (61), resulting in

E ¼ mc2 −
Gμm
2r

�
1 −

1

4
ð7 − νÞGm

c2r

�
−
Λ
3
μc2r2

þ Λ
6
μGmr

�
13

2
þ 5ν

�
−
11

4
ΛμGmrð1 − 3νÞsin2ð2ϕÞ

þOðc−4;Λc−2;Λ2Þ: ð69Þ

A. Energy loss rate

The flux of energy (see Appendix C) that comes from the
tensor wave is

P ¼ c3R2

32πG

Z
ḣijTTḣ

TT
ij d

3x; ð70Þ

with R as the distance from the source to the detector. In
order to compute P, we can proceed in two different ways,
in which we consider the particular case of a circular orbit
of a compact two-body system, i.e., ṙ ¼ 0. A first approach

is to differentiate hij [from (54)] with respect time, where
the 1PN equation of motion (B38) can be utilized, and we
substitute this outcome into (70). The other method is
taking the appropriate time derivatives of the STF moments
(D4)–(D6) (obtained in Appendix D), and we plug them
into (D7). By doing so, the rate of loss of energy of such
system is

P ¼ −
G
c5

32

5
ðνmÞ2

�
G3m3

r5
−
G2m2

r2
Λc2

−
G4m4

c2r6

�
2927

336
þ 5

4
ν

�
þG3m3

r3
Λ
�
2423

252
þ 31

6
ν

�

þOðc−4; c−2Λ;Λ2Þ
�
: ð71Þ

Notice that both ways agree with each other.

B. Post-Newtonian parameters

For future purposes, we introduce some PN parameters.
The first one is defined as γ ≔ Gm

c2r. Hence, the orbital
frequency of a circular orbit (59) takes the following form:

ω2 ¼ Gm
r3

½1 − ð3 − νÞγ� − Λc2

3

�
1 −

γ

2
ð10 − 3νÞ

�
: ð72Þ

Then, the relative distance can be expressed as

r ¼
�
Gm
ω2

�
1=3

½1 − ð3 − νÞγ�1=3

×

�
1þ Λc2

3ω2

�
1 −

γ

2
ð10 − 3νÞ

��
−1=3

: ð73Þ

Therefore, the first PN parameter becomes

γ ¼ Gm
c2r

¼
�
ωGm
c3

�
2=3

½1 − ð3 − νÞγ�−1=3
�
1þ Λc2

3ω2

�
1 −

γ

2
ð10 − 3νÞ

��
1=3

¼ x2
�
1þ 1

3
ð3 − νÞx2 þ Λ

9

G2m2

c4x6
−

1

54

ΛG2m2

c4x4
ð6 − νÞ þOðx4;Λc−4x−8;Λ2Þ

�
; ð74Þ

where with the second PN parameter x ≔ ðωGmc3 Þ1=3, the inverse squared frequency given by

ω−2 ¼ r3

Gm
½1þ ð3 − νÞγ þOðγ2;Λc2;ΛÞ�; ð75Þ

which is obtained from (72) using Taylor series expansion, and the relations of both PN parameters γ ≃ x2 were introduced.
On the other hand, we introduce the PN parameter γ from (74) into the radiated power (71) and the energy (69), yielding
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P ¼ −
32

5

c5

G
ν2γ5

�
1 − γ

�
2927

336
þ 5

4
ν

�
−
ΛG2m2

c4γ3
þ ΛG2m2

c4γ2

�
2423

252
þ 31

6
ν

�
þOðγ2;Λc−4γ−1;Λ2Þ

�

¼ −
32

5

c5

G
ν2x10

�
1 −

�
1247

336
þ 35

12
ν

�
x2 −

ΛG2m2

c4x6
−

ΛG2m2

432c4x4
ð97 − 2692νÞ þOðx4;Λc−4x2;Λ2Þ

�
; ð76Þ

E ¼ mc2 −
μ

2
c2γ

�
1 −

1

4
ð7 − νÞγ

�
−
1

3
μΛ

G2m2

c2γ2
þ 1

6
Λμ

G2m2

c2γ

�
13

2
þ 5ν

�
−
11

4
Λμ

G2m2

c2γ
ð1 − 3νÞsin2ð2ϕ0PNÞ

¼ mc2 −
μ

2
c2x2

�
1 −

�
3

4
þ 1

12
ν

�
x2 þ 7

9
Λ
G2m2

c4x6
−
ΛG2m2

54c4x4
ð103þ 95νÞ

þ 11

2

ΛG2m2

c4x4
ð1 − 3νÞsin2ð2ϕ0PNÞ þOðx4;Λc−4x2;Λ2Þ

�
: ð77Þ

Here, we have to remark that the energy depends
explicitly of the orbital phase ϕ (inside the sine function).
However, at this point of the analysis, this information is
not available (at least at 1PN order). As a consequence of
this fact, we introduce the Newtonian orbital phase ϕ0PN
since at this point of the analysis, this is the quantity that we
have in hand. Furthermore, it is worth mentioning that the
explicit appearance of the orbital phase ϕ in (77) is due that
the spatial components of the solution of the relaxed EFE
do not have rotational symmetry due to the gauge artifact
[24]. Thus, the Newtonian orbital phase ϕ0PN in terms of
the PN parameter x that we use in (77) is given by

ϕ0PN ¼ −
1

32ν
x−5

�
1 −

25

99

ΛG2m2

c4
x−6

�
: ð78Þ

C. Energy loss rate of a circular motion
of a two-body system

It is well known that the loss of energy is in the form of
the GWs; therefore, this configuration becomes a binary
quasicircular scenario. Then, to obtain the orbital phase of
the GW ϕ, we must use the balance equation, namely,

dE
dt

¼ −P: ð79Þ

Next, the time derivative of the energy (77) becomes

dE
dt

¼ −μc2xẋ
�
1 −

1

2

�
3þ 1

3
ν

�
x2 −

14

9

ΛG2m2

c4x6
þ ΛG2m2

18c4x4
ð103þ 95νÞ

−
33

2

ΛG2m2

c4x4
ð1 − 3νÞsin2ð2ϕ0PNÞ þOðx4;Λc−4x−2;Λ2Þ

�

−
11

2
μΛGmcxð1 − 3νÞ sinð4ϕ0PNÞ þOðΛx2;Λ2Þ; ð80Þ

where the PN parameter x was used to express the frequency as ϕ̇ ¼ ω ¼ c3x3
Gm . We equate the formulas (76) and (80) leading

to the following expression to solve for the unknown PN parameter x, that is,

Z
μc2x

�
1 −

1

2

�
3þ 1

3
ν

�
x2 −

14

9

ΛG2m2

c4x6
þ ΛG2m2

18c4x4
ð103þ 95νÞ − 33ΛG2m2

2c2x4
ð1 − 3νÞsin2ð2ϕ0PNÞ

�

×

�
32

5

c5

G
ν2x10

�
1 −

�
1247

336
þ 35

12
ν

�
x2 −

ΛG2m2

c4x6
−

ΛG2m2

432c4x4
ð97 − 2692νÞ

�

þ 11μΛGmcx
2

ð1 − 3νÞ sinð4ϕ0PNÞ
�

−1
dx ¼ −ðtc − tÞ: ð81Þ

Expanding in Taylor series, we arrive at the following expression:
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ΘðtÞ ¼ 1

256
x−8

�
1þ 256

192

�
743

336
þ 11

4
ν

�
x2 −

20

63

ΛG2m2

c4
x−6 −

1

54

ΛG2m2

c4
ð573þ 2444νÞx−4

þ 132ΛG2m2

c4
ð1 − 3νÞx8

Z
1

x13
sin2ð2ϕ0PNÞdxþOðx4;Λc−4x−2;Λ2Þ

�
; ð82Þ

where ΘðtÞ ≔ c3ν
5Gm ðtc − tÞ, and tc is the time of coales-

cence. The inversion of the later equation reads

x ¼ 1

2
Θ−1=8 þ

�
743

16128
þ 11

192
ν

�
Θ−3=8

−
80

63

ΛG2m2

c4
Θ5=8 −

1

54

ΛG2m2

c4
ð573þ 2444νÞΘ3=8

þ 33

1024

ΛG2m2

c4
ð1 − 3νÞΘ−9=8IðΘÞ; ð83Þ

with IðΘÞ ≔ R
1
x13 sin

2ð2ϕ0PNÞdx. Additionally, notice that
if we introduce ϕ0PN into IðΘÞ and we expand it at PN
order, the lowest order of such integral is OðΛc−4x−14Þ,
then the next order is OðΛc−4x−24Þ, and so on. This
implies that the lowest order of the term 132ΛG2m2

c4 ð1 −
3νÞx8 R 1

x13 sin
2ð2ϕ0PNÞdx must be OðΛc−4x−6Þ; conse-

quently, the next order is OðΛc−4x−16Þ. Hence, under this
approach, the integral diverges. As a consequence of this
fact, it is convenient to evaluate the complete integral
considering no expansion (see Appendix E for the explicit
calculation). Note that the precise solution is a complex
function; however, given our next numerical examples,
only the real part is considered since its imaginary upshot
is very small compared to its real counterpart.

D. Computation of the phase of oscillation of the
GW of a compact two-body system

First, to compute the phase of oscillation ϕ, we know that

dϕ
dt

¼ dϕ
dΘ

dΘ
dt

¼ −
c3ν
5Gm

dϕ
dΘ

: ð84Þ

Therefore, we have

dϕ
dΘ

¼ −
5Gm
c3ν

dϕ
dt

¼ −
5Gm
c3ν

ω

¼ −
5Gm
c3ν

c3x3

Gm
¼ −

5

ν
x3; ð85Þ

where we have used the relation ω ¼ c3x3
Gm . Moreover, from

(83), we obtain

x3 ¼ 1

8
Θ−3=8 þ

�
743

21504
þ 11

256
ν

�
Θ−5=8

−
20

21

ΛG2m2

c4
Θ3=8 −

1

72

ΛG2m2

c4
ð572þ 2444νÞΘ1=8

þ 99

4096
ð1 − 3νÞΛG

2m2

c4
Θ−11=8IðΘÞ: ð86Þ

Finally, we integrate Eq. (85), resulting in the following
expression:

ϕðtÞ ¼ ϕ0 −
1

ν

�
Θ5=8 þ

�
3715

8064
þ 55

96
ν

�
Θ3=8

−
800

231

ΛG2m2

c4
Θ11=8

−
5

81

ΛG2m2

c4
ð572þ 2444νÞΘ9=8

þ 495

4096
ð1 − 3νÞΛG

2m2

c4

Z
Θ−11=8IðΘÞdΘ

�
; ð87Þ

where ϕ0 is the value of the phase at the instant of
coalescence. First, note that in the limit Λ → 0, Eq. (87)
matches the known phase of the waveform propagation of a
GW [22,23]. Second, we present Fig. 1, which is the
graphic representation of the Newtonian phase ϕ0PNðtÞ,

ϕ0PN ¼ −
5

ν

�
1

5
Θ5=8 −

160

231

ΛG2m2

c4
Θ11=8

�
; ð88Þ

where we consider the binary compact system with both
identical masses, such m ¼ 1031 kg; and ϕ0 ¼ 0, Λ ¼
10−52 m−2 [4], and tc ¼ 1s. The orange line includes Λ,
while the blue one does not (Λ ¼ 0). Note that both lines
are superimposed on each other; thus, the effect of Λ in
ϕ0PN is negligible. To bear out this result, it is convenient to
carry out a numerical comparison of the phase that contains
Λ given by (78) with respect to the standard Newtonian
phase without a cosmological constant given by

ϕ0PN;Λ¼0 ¼ −
1

ν
Θ5=8: ð89Þ

Thus, the relative correction that the cosmological constant
Λ causes at t ¼ 0 (time where it reaches its maximum
value) reads
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				ϕ0PN − ϕ0PN;Λ¼0

ϕ0PN;Λ¼0

				 ¼ 5.74 × 10−42: ð90Þ

Lastly, we observe that at 1PN order, that is, Eq. (87),
the behavior of ϕðtÞ due to Λ in ϕ1PN is not modified
whatsoever.

V. GRAVITATIONAL WAVEFORMS
IN THE TIME DOMAIN

To compute the time domain, we must introduce the
orthonormal triad N̂, p̂, and q̂; with N̂ as the unit vector,
which is a radial vector pointing from the source to the
observer; p̂ lies on the intersection of the orbital plane with
the plane of the sky, i.e., the plane which is orthonormal
to the direction N̂, and q̂ ¼ N̂ × p⃗. We also have to
consider the parameters ι and ϕ that are the inclination
angle relative to N̂ and the orbital phase of the motion of the
body 1, measured counterclockwise from the line of nodes,
which is given by the line of intersection between the two
planes (plane of sky and orbital plane), and n̂ is the unitary
vector of r⃗. Thus, we have that

p̂ ¼ ð1; 0; 0Þ; ð91Þ

q̂ ¼ ð0; cos ι;− sin ιÞ; ð92Þ

n̂ ¼ p̂ cosϕþ ðq̂ cos ιþ N̂ sin ιÞ cosϕ; ð93Þ

λ̂ ¼ −p̂ sinϕþ ðq̂ cos ιþ n̂ sin ιÞ cosϕ; ð94Þ

where v⃗ ¼ rωλ̂ for circular orbits. The gravitational wave-
forms in the time domain are linear combinations of the
polarizations waveforms hþðtÞ and h×ðtÞ defined by the
projections

hþ ¼ 1

2
ðp̂ip̂j − q̂iq̂jÞhij; ð95Þ

h× ¼ 1

2
ðp̂iq̂j þ q̂ip̂jÞhij: ð96Þ

We have already computed the waveforms extracted after
applying their projections [see (54)], and recall that we
have taken the particular case for a circular motion ṙ ¼ 0.
Therefore, both polarizations become

hþ ¼ 2Gμ
c2R

�
Gmω

c3

�
2=3

fH0þ þ xH1=2
þ þ x2H1þ

þOðx3;Λc−1;Λ2Þg; ð97Þ

h× ¼ 2Gμ
c2R

�
Gmω

c3

�
2=3

fH0
× þ xH1=2

× þ x2H1
×

þOðx3;Λc−1;Λ2Þg; ð98Þ

with

H0þ ¼ −ð1þ cos2ιÞ cos 2ϕ

þ Λc2

ω2

�
−

1

12
sin2ιþ 5

36
ð1þ cos2ιÞ cos 2ϕ

�
; ð99Þ

H1=2
þ ¼ −

Δm
m

1

8
sin ι½ð5þ cos2ιÞ cosϕ

− 9ð1þ cos2ιÞ cos 3ϕ�
�
1 −

Λc2

3ω2

�
; ð100Þ

H1þ ¼ 1

6
f½19þ 9cos2ι − 2cos4ι� − ν½19 − 11cos2ι − 6cos4ι�g cos 2ϕ −

4

3
sin2ιð1þ cos2ιÞð1 − 3νÞ cos 4ϕ

þ Λc2

ω2

�
13

24
−

9

16
cos2ιþ 1

48
cos4ιþ 275

72
νsin2ιþ cos 2ϕ

�
−
371

432
−

35

144
cos2ι −

35

108
cos4ι

þ ν

�
331

144
þ 65

144
cos2ιþ 35

36
cos4ι

��
þ cos 4ϕ

�
5

18
þ 11

54
cos2ι −

13

27
cos4ιþ ν

�
−
5

6
−
69

72
cos2ιþ 13

9
cos4ι

���
; ð101Þ

FIG. 1. Plot of the GW Newtonian phase ϕ0PNðtÞ (88) for a
binary compact system of identical masses with m ¼ 1031 kg,
ϕ0 ¼ 0, Λ ¼ 10−52 m−2, and tc ¼ 1s. The blue line includes Λ,
while the orange one does not (Λ ¼ 0). Note that both lines are
superimposed on each other; thus, the effect of Λ in ϕ0PN is
negligible.
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H0
× ¼ −2 cos ι sin 2ϕþ Λc2

9ω2
cos ι sin 2ϕ; ð102Þ

H1=2
× ¼ −

Δm
m

3

8
sin 2ι

��
1þ 2

9

Λc2

ω2

�
sinϕ −

�
3 −

20

9

Λc2

ω2

�
sin 3ϕ

�
; ð103Þ

H1
× ¼ cos ι

���
17

3
−
4

3
cos2ι

�
þ ν

�
−
13

3
þ 4cos2ι

��
sin 2ϕ −

8

3
ð1 − 3νÞsin2ι sin 4ϕ

þ Λc2

ω2

��
−
92

27
þ 1

3
cos2ι

�
þ ν

�
79

18
−
13

6
cos2ι

��
sin 2ϕþ Λc2

ω2

�
359

216
−
359

72
ν

�
sin2ι sin 4ϕ

�
: ð104Þ

The following identities, which come from the combi-
nations of the definitions (95) and (96) with (91)–(94), were
utilized to compute the above polarizations hþ, h×:

ðn̂in̂jÞþ ¼ 1

4
sin2ιþ 1

4
½1þ cos2ι� cos 2ϕ; ð105Þ

ðλ̂iλ̂jÞ× ¼ −
1

2
cos ι sin 2ϕ; ð106Þ

ðn̂ðiλ̂jÞÞþ ¼ −
1

4
½1þ cos2ι� sin 2ϕ; ð107Þ

ðn̂in̂jÞ× ¼ 1

2
cos ι sin 2ϕ; ð108Þ

ðλ̂iλ̂jÞþ ¼ 1

4
sin2ι −

1

4
½1þ cos2ι� cos 2ϕ; ð109Þ

ðn̂ðiλ̂jÞÞ× ¼ 1

2
cos ι cos 2ϕ; ð110Þ

ððriÞ2rðirjÞÞ× ¼ 1

4
r4 cos ι sin 2ϕ; ð111Þ

ððriÞ2rðirjÞÞþ ¼ 1

16
r4½3þ 5 cos 2ϕ

− 3cos2ιð1 − cos 2ϕÞ�; ð112Þ

½ðviÞ2rðirjÞ�× ¼ ½rivivðirjÞ�×
¼ 1

4
r4ω2 cos ι sin 2ϕ; ð113Þ

½ðviÞ2rðirjÞ�þ ¼ ½rivivðirjÞ�þ
¼ 1

16
r4ω2 sin2 ιð1 − cos 4ϕÞ; ð114Þ

N̂ · n̂ ¼ sin ι sinϕ; ð115Þ

N̂ · λ̂ ¼ sin ι cosϕ: ð116Þ

Here, all repeated indices do not indicate sum. From
Eqs. (99)–(104), one can observe that all Hi’s present
nearly the same structure; that is, they have a constant term
multiplied by a trigonometry function, which contains the
phase ϕ, except the first term of H0þ and the first four terms
of H1þ with Λ. Thus, considering constant frequencies
ϕ ¼ ωðt − R=cÞ, we can say that the presence of Λ makes
the amplitude of the waveforms change in magnitude, and
their roots (points where the function vanishes) are modi-
fied in the hþ polarization (see Figs. 3 and 4). We close this
section with four remarks:

(i) The first case is presented in Fig. 2 with
ω ¼ 10−17 s−1; one can see that the two lines (blue
with Λ ≃ 10−52 m−2 [4]; orange Λ ¼ 0) in both
polarizations hþ and h× are superimposed on each
other. Thus, the effect of Λ is almost negligible. To
observe this, we compute the highest value of the
approximation error of the two polarizations that
contains the presence of the cosmological constantΛ
with respect to the standard polarizations (without
Λ), obtaining as a result 0.8% and 0.5% for hþ and
h×, respectively.

(ii) In the second case with ω ¼ 10−18 s−1 (see Fig. 3),
we can notice that Λ begins to have importance. We
observe that Λ modifies the amplitudes of hþ and
h×, and it reduces their sizes compared to the case
with null Λ. This is a direct consequence that the
cosmological constant “stretches” the spacetime
making that the objects within it move away from
each other. In this example, it turns out that the
highest value of the relative change of the polar-
izations containing the Λ terms with to respect the
standard polarizations (without Λ) are 80% for hþ
and 50% for h×.

(iii) For the particular frequenciesω0¼c
ffiffiffiffiffiffi
5Λ

p
=6¼1.12×

10−18s−1 and ω0¼c
ffiffiffiffiffiffi
2Λ

p
=6¼7.07×10−19s−1, the

amplitudes of hþ and h× are canceled respectively, at
0PN order. Thus, if the system oscillates at one of this
particular frequencies, Λ would annihilate such
amplitudes at Newtonian order. Nevertheless, we
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observe that the spacetime is still altered by Λ in an
oscillatory way since the correction of the waveforms
at 0.5PN order or higher, in fact, prevail [see (97)
and (98)].

(iv) Then, for ω < ω0, as shown in Fig. 4, the effect of Λ
becomes very evident. The ripples of the spacetime
are now “stretched” by the cosmological constant.
In fact, one can drop all expressions without Λ from
(97) and (98), and we will get nearly the same
output; therefore, the waveforms of the GW depend
mostly on those terms with Λ ≠ 0. Furthermore,
observe that in the case of the plot of hþ the crest
and trough are displaced downward as a conse-
quence of the shift constants, such as the coefficient
−c2 sin2 ι=ð12ω2Þ that multiplies Λ in (99). Finally,
in this instance, the highest values of the relative
corrections between the polarizations that contain Λ
terms and the standard polarizations (without Λ) are
considerably much larger, having as a result 8000%
for hþ and 5000% for h×.

On the other hand, there is an exception among all
aforementioned examples, that is case iii. There is no
difference between the plots of 0PN and 1PN orders due to

the very small value of the frequency ω. The corresponding
terms at 1PN are practically negligible in comparison to the
0PN ones. Nonetheless, for the case of higher frequencies,
i.e., ω ≥ 10−18 s−1, there might be a difference between
results at 0PN and 1PN, but the presence of Λ is negligible
for numerical purposes. Hence, we can confirm that at
higher orders of the post-Newtonian method, the presence
of Λ will not affect the polarizations hþ and h×.
Finally, in [28], it is mentioned that the perturbation is

not sharp, and there is also a tail term. The analysis given in
[36] shows that the sharp term is comparable with the tail
term, no matter how small Λ is. In our work, as it is
mentioned in the cases given in remarks ii, iii, and iv, the
effect of Λ is notorious.

VI. CONCLUDING REMARKS

In this paper, we have studied from scratch the propa-
gation of GWs including the cosmological constant Λ in a
binary compact system. Using the direct integration of
the relaxed EFE at 1PN, and taking into account that the
terms OðΛhÞ were dropped given that, from the beginning,
we assume that Λ ≃ 10−52 m−2 [4] is very small and

FIG. 3. Plots of the gravitational waveforms hþ (top) and h×
(bottom) for a binary compact system of identical masses at 1PN
order. The parameters are given by m ¼ 1031 Kg, R ¼ 200×
1022 m, ω ¼ 10−18 s−1 and the inclination angle ι ¼ π=2 (top),
ι ¼ 0 (bottom). The blue line includes Λ, while the orange one
does not (Λ ¼ 0). Note that with this particular frequency, the
effect of Λ starts to be observable.

FIG. 2. Plots of the gravitational waveform hþ (top) and h×
(bottom) for a binary compact system of identical masses at 1PN
order with parameter values m ¼ 1031 kg, R ¼ 200 × 1022 m,
ω ¼ 10−17 s−1, Λ ¼ 10−52 m−2 and the inclination angle ι ¼ π=2
(top), ι ¼ 0 (bottom). The blue line includes Λ, while the orange
one does not (Λ ¼ 0). Note that two lines, in both polarizations,
are superimposed on each other; thus, the effect ofΛ is negligible.
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positive [24]. We also compute the waveforms (54), where
the equations of motion at 1PN (B38) were derived from
the Lagrangian taken at the center of mass frame,
expressed in (B36). Furthermore, observing the solutions

for h00 and g
ð2Þ

00 given by (24) and (A12), correspondingly,
we find that Λ can be interpreted as a PN factor since
globally we can factorize 1=c2, and this power of c is the
1PN approximation.
Focusing on the particular case of a binary quasicircular

motion, we derive the energy and the radiated power given
by (69) and (71), respectively. Then, we substitute these
results into the balance equation (79), where the PN
parameters γ and x were introduced, in order to obtain
the phase (87) in the time domain at 1PN order. We notice
that this expression depends on explicitly on their own
quasicircular orbital phase ϕðtÞ of lower order; never-
theless, we can use the Newtonian phase (78) to compute
the integral (E3) (given in Appendix E). On the other hand,
from Fig. 1, we can observe that ϕ behaves the samewith or
without Λ, therefore adding the cosmological constant does
not affect the phase. However, the impact of Λ starts
becoming noticeable on the amplitudes of the polarizations
hþ and h× (see Figs. 3 and 4) when taking a constant
frequency ω < 10−18 s−1. Moreover, we find that given the
particular frequencies ω0 ¼ c

ffiffiffiffiffiffi
5Λ

p
=6 and ω0 ¼ c

ffiffiffiffiffiffi
2Λ

p
=6

the amplitudes of hþ (97) and h× (98) vanish at Newtonian
order; nonetheless, at higher orders, the propagation of the
GWs holds.
In the near future, we can extend our study now

consideringOðΛhÞ terms [25], given that in the early stages
of the Universe (inflationary period [37–39]) the value of Λ
could have been much larger. Also, we may investigate
heavier objects, such as a system of black holes at the center
of two galaxies weighing billions of solar masses, since they
emit GWs with lower frequencies. This, indeed, opens the
possibility to explore detectable signals from the most
recent NANOGrav survey [40]. Furthermore, comple-
menting our work applied to the scalar-Gauss-Bonnet-
gravity [41] could shed light to understand the behavior
of Λ together with the scalar field. On the other hand, we
can explore the coordinate transformation from the
Cartesian coordinates given in the spatial components of
(27) which leads to the Schwarzschild-de-Sitter metric [24]
(see also [25,42]). We can also expand this PN approach
from the very beginning in the Brans-Dicke theory [43] (see
also [44]).
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sdoctorales por México, Modalidad 1: Estancia Posdoctoral
Académica and by SNI-CONAHCYT. C. M. wants to
thank SNI-CONAHCYT and PROSNI-UDG.

APPENDIX A: METRIC AT NEWTONIAN ORDER

This appendix is devoted to compute the components of
the metric at Newtonian order. We follow the method
developed in [45]. To begin, we make the expansion of the
metric in the PN approximation as follows:

g00 ¼ −1þ g
ð2Þ

00 þ � � � ðA1Þ

g0i ¼ g
ð3Þ

0i þ � � � ðA2Þ

gij ¼ δij þ g
ð2Þ

ij þ � � � ; ðA3Þ

where the number over the objects means the power of the
factor of the velocity ratio v=c. The temporal and spatial
components of the Ricci tensor take the following form:

R
ð2Þ

00 ¼ −
1

2
∇2 g

ð2Þ
00; ðA4Þ

R
ð2Þ

ij ¼
1

2

�
∂i

�
1

2
∂j g

ð2Þ
00 −

1

2
∂j g

ð2Þ
kk þ ∂k g

ð2Þ
jk

�

þ ∂j

�
1

2
∂i g

ð2Þ
00 −

1

2
∂i g

ð2Þ
kk þ ∂k g

ð2Þ
ik

�
−∇2 g

ð2Þ
ij

�

¼ 1

2
½∂iΓj þ ∂jΓi −∇2 g

ð2Þ
ij�; ðA5Þ

where we define Γi ≔ 1
2
∂i g

ð2Þ
00 − 1

2
∂i g

ð2Þ
kk þ ∂k g

ð2Þ
ik. Since we

are considering a system of n compact bodies, the expres-
sion energy-momentum tensor that describes it is given by

Tμν ¼ 1ffiffiffiffiffiffi−gp
X
a

ma
dτa
dt

dxμa
dτa

dxνa
dτa

δ3ðx⃗ − x⃗aðtÞÞ; ðA6Þ

with τa as the proper time of the particle a and t as the time
coordinate. Furthermore, the EFE (2) can be rewritten as
follows:

Rμν ¼
8πG
c4

�
Tμν −

1

2
Tgμν

�
þ Λgμν

≔ Sμν; ðA7Þ

with Sμν playing the role as the source of the EFE. The
sources components S00 and Sij at lowest order corre-
spondingly read

S00 ¼
4πG
c4

T
ð0Þ

00 − Λ; ðA8Þ

Sij ¼
4πG
c4

δij T
ð0Þ

00 þ Λδij; ðA9Þ

where we use the result T
ð0Þ

00 ≃ −T
ð0Þ
. From the EFE, we find

the following set of equations:

−
1

2
∇2 g

ð2Þ
00 ¼

4πG
c4

T
ð0Þ

00 − Λ; ðA10Þ

1

2
½∂iΓj þ ∂jΓi −∇2 g

ð2Þ
ij� ¼

4πG
c4

δij T
ð0Þ

00 þ Λδij: ðA11Þ

Recalling that T
ð0Þ

00 ¼
P

a maδ
3ðx⃗ − x⃗aðtÞÞ, the solution of

(A10) is shown as

g
ð2Þ

00 ¼
2G
c2

X
a

ma

ra
þ Λ

3
jx⃗j2; ðA12Þ

with x⃗, x⃗a as the vector field point and the vector position of
the particle a, respectively, and ra ≔ jx⃗ − x⃗aj. On the other
hand, to solve (A11), it is convenient to choose the gauge
Γi ¼ 0. Therefore, the solution is given by

g
ð2Þ

ij ¼
�
2G
c2

X
a

ma

ra
−
Λ
2

�
1

3
jx⃗j2 þ x2i

��
δij; ðA13Þ

with no sum over the index i. Notice that g
ð2Þ

ij is a diagonal
matrix, but it is not proportional to the identity. The solution
(A13) satisfies (A11) as long as the gauge1 Γi ¼ 0 holds.
Furthermore, observe that the solutions (A12) and (A13)
meet the gauge Γi ¼ 0 as well.

APPENDIX B: TWO-BODY LAGRANGIAN
OF A COMPACT SYSTEM

In this section, the interaction of a compact two-body
system at the first post-Newtonian correction order with
cosmological constant is considered. To begin the analysis,
we propose the following ansatz of the components of the
metric as follows:

g00 ¼ −e2U þOðc−4;Λc−2Þ; ðB1Þ

g0i ¼ 4gi þOðc−5;Λc−3Þ; ðB2Þ

1See [46] to notice that the gauge Γi ¼ 0 is equivalent to fix the
spatial components of the De Donder gauge condition
∂μð ffiffiffiffiffiffi−gp

gμiÞ ¼ 0, which is used in the linearized form of the
waveform corresponding to ∂μhμi ¼ 0.
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gij ¼ δije−½2UþΛ
2
ðjx⃗j2þðxiÞ2Þ� þOðc−4;Λc−2Þ; ðB3Þ

with no sum over the index i in the last term of gij.
Introducing the objects (B1)–(B3) into the temporal and
spatial-temporal components of the Ricci tensor we find

R00 ¼ ∇2U þ 1

c
∂t

�
1

c
3∂tU þ 4∂igi þ

2

c
Λx⃗ · ˙x⃗

�
; ðB4Þ

R0i ¼ −2∇2gi þ 2∂i

�
1

c
U̇ þ ∂jgj þ

3

4c
Λðx⃗ · ˙x⃗Þ

−
Λ
4c

ðxiẋiÞ
�
; ðB5Þ

again with no sum over the index i in the last term of R0i.
Recalling that the source of the EFE can be defined from
(A7), we find that at Newtonian order, namely, when the
factor v=c → 0,

S00 ¼
4πG
c4

ðT00 þ TiiÞ − Λ; ðB6Þ

S0i ¼
8πG
c4

T0i: ðB7Þ

Consequently, plugging back the components of the Ricci
tensor (B4) and (B5), and the components of the source
(B6) and (B7) into the EFE (A7) yields

∇2U þ 1

c
∂t

�
1

c
3∂tU þ 4∂igi þ

2

c
Λx⃗ · ˙x⃗

�

¼ 4πG
c4

ðT00 þ TiiÞ þ g00Λ; ðB8Þ

− 2∇2gi þ 2∂i

�
1

c
U̇ þ ∂jgj þ

3

4c
Λðx⃗ · ˙x⃗Þ − Λ

4c
ðxiẋiÞ

�

¼ 8πG
c4

T0i; ðB9Þ

with no sum in the index i in the last term of the second
equation. Using the energy-momentum tensor given in
(A6), the components of the matter sources shown in (B8)
and (B9) become

T00 ¼ c2
X
a

ma

�
1þ U þ v2

2c2
ð1þ Λjx⃗j2Þ

þ Λjx⃗j2
�
δ3ðx⃗ − x⃗aðtÞÞ; ðB10Þ

T0i ¼ −c
X
a

mavaiδ3ðx⃗ − x⃗aðtÞÞ; ðB11Þ

Tii ¼
X
a

mav2a½1þ Λjx⃗j2�δ3ðx⃗ − x⃗aðtÞÞ: ðB12Þ

On the other hand, to solve (B8), it is convenient to use the
“Coulomb-like” gauge [45] considering the presence of the
cosmological constant as follows:

1

c
3U̇ þ 4∂igi þ

2

c
Λx⃗ · ˙x⃗ ¼ 0: ðB13Þ

Therefore, regarding this particular gauge, (B8) takes the
following form:

∇2U ¼ 4πG
c4

ðT00 þ TiiÞ þ Λg00: ðB14Þ

Next, we define the object ξi that satisfies the subsequent
relation,

∇2ξi ¼ ∇2gi − ∂i

�
1

c
U̇ þ ∂jgj þ

3

4c
Λðx⃗ · ˙x⃗Þ − Λ

4c
ðxiẋiÞ

�
;

ðB15Þ

with no sum in the i index, and we define

gi ≔ ξi þ
1

4c
∂iχ̇ þ

Λ
18c

∂iðx3ẋþ y3ẏþ z3żÞ: ðB16Þ

Remarkably, the addition of the last term of (B16) ensures
that the Coulomb-like gauge (B13) holds. Moreover, the
third term with Λ has no rotational symmetry; hence, the
Coulomb-like gauge breaks the rotational symmetry of
the component of g0i at order OðΛc−1Þ. We then apply the
Laplacian operator to both sides of previous relation,
having

−
1

4c
∂i∇2χ̇ ¼ ∇2ξi −∇2gi þ

Λ
3c

∂iðx⃗ · ˙x⃗Þ

¼ −∂i
�
1

c
U̇ þ ∂jgj

�

− ∂i

�
3

4c
Λðx⃗ · x⃗Þ − 1

4c
ΛðxiẋiÞ

�

þ Λ
3c

∂iðx⃗ · ˙x⃗Þ; ðB17Þ

with no sum in the index i and where we have used (B15).
Integrating the above relation, we obtain

−
1

4c
∇2χ̇ ¼ −

�
1

c
U̇ þ ∂jgj þ

3Λ
4c

ðx⃗ · ˙x⃗Þ

−
Λ
4c

ðxiẋiÞ −
Λ
3c

ðx⃗ · ˙x⃗Þ
�
; ðB18Þ

with no sum over the index i. Note that the last expression
represents three equations given that i ¼ 1, 2, 3; and this
fact is a direct consequence that the rotational symmetry is

ESCOBEDO, MORENO, and HERNÁNDEZ-JIMÉNEZ PHYS. REV. D 109, 064051 (2024)

064051-16



broken due to the presence of Λ. However, if we add them
all together, we obtain

−
1

4c
∇2χ̇ ¼ −

�
1

c
U̇ þ ∂jgj

�
−

1

3c
Λðx⃗ · ˙x⃗Þ: ðB19Þ

Then, we apply the Coulomb-like gauge (B13), having

1

4c
∇2χ̇ ¼ ∂t

�
1

4c
U −

Λ
12c

jx⃗j2
�
: ðB20Þ

Next, we integrate with respect to time both sides,

∇2χ ¼ U −
Λ
3
jx⃗j2: ðB21Þ

On the other hand, replacing (B15) in (B9) yields

∇2ξi ¼ −
4πG
c4

T0i: ðB22Þ

Now, to solve (B8), we begin solving it at lowest order. So,
that relation becomes

∇2U ¼ 4πG
c4

ðT00 þ TiiÞ − Λ

≃
4πG
c2

X
a

maδ
3ðx⃗ − x⃗aðtÞÞ − Λ

¼ ∇2

�
−
G
c2

X
a

ma

ra
−
Λ
6
jx⃗j2

�
; ðB23Þ

with ra ≔ jx⃗ − x⃗aðtÞj, and note that we have used the
relations δ3ðx⃗ − x⃗aðtÞÞ ¼ − 1

4π∇2ð 1raÞ and ∇2jx⃗j2 ¼ 6.
Thus, the solution at lowest order is

U ¼ −
G
c2

X
a

ma

ra
−
Λ
6
jx⃗j2: ðB24Þ

We remark that the substitution of (B24) into the compo-
nents of the metric (B1) and (B3) leads to the same results
previously given in (29) and (31) using the DIRE
approach. This, in fact, reflects that both approaches PN
and PM are related to each other in the near zone of the
faraway waveform. Furthermore, from (A12) and (A13),
one can realize that the ansatz given by (B1) and (B3) is

satisfied providing thatU ¼ − 1
2
g
ð2Þ

00 ¼ − G
c2
P

a
ma
ra
− Λ

6
jx⃗j2;

hence, such ansatz matches the solution of g
ð2Þ

00 and g
ð2Þ

ij.
Moreover, from (B21) and (B22), and using the result

(B24), we find that

χ ¼ −
G
2c2

X
a

mara þ
Λ
24

jx⃗j4; ðB25Þ

ξi ¼ −
G
c3

X
a

ma
vai
ra

: ðB26Þ

This leads to

gi ¼ −
G
8c3

X
a

ma

ra
½7vai þ n̂aiðn̂a · v̂aÞ�

þ Λ
24c

jx⃗j2
�
dxi
dt

þ 2
xi
jx⃗j2 ðx⃗ · v⃗Þ

�
−

Λ
6c

ðxiÞ2ẋi; ðB27Þ

with no sum in the index i in the last term, where
n̂a ¼ r⃗a=ra and v̂a ¼ dr⃗a=dt. These results (B24) and
(B27) do comply the Coulomb-like gauge (B13) at order
Oðc−3;Λc−1Þ. Subsequently, using the previous result at
Newtonian order, one can get the following result:

U ¼ −
G
c2

X
a

ma

jx⃗ − x⃗aðtÞj

−
G
c4

X
a

ma

jx⃗ − x⃗aðtÞj
�
3

2
v2a −G

X
b≠a

mb

rab

�

−
GΛ
3c2

X
a

majx⃗aðtÞj2
jx⃗ − x⃗aðtÞj

−
Λ
6
jx⃗j2 þ Λ

c2
G
X
a

mara þOðc−4;Λc−2Þ: ðB28Þ

Here, r⃗ab ≔ r⃗a − r⃗b. On the other hand, considering a
compact two-body system, the two-body Lagrangian can
be obtained à la Droste-Fichtenholz, a technique which, at
this order, is equivalent to the Fokker Lagrangian [23]. To
obtain the Lagrangian that describes the interaction of
compact bodies, i.e., which are regarded as point particles,
we begin computing the equations of motion of a particle of
mass m1 moving in the near zone which follows the
geodesic equation. This action is given by

S ≔
Z

dtLm1
¼ −m1c

Z
dt

�
−gμν

dxμ

dt
dxν

dt

�
1=2

¼ −m1c2
Z

dt

�
−g00 − 2g0i

vi1
c
− gij

vi1v
j
1

c2

�
1=2

; ðB29Þ

where Lm1
is the Lagrangian of the geodesic of the mass

m1, and vi1 means the velocity of the particle 1. We expand
the integrand given by such Lagrangian to 1PN order as
follows:
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Lm1
¼ −m1c2eU

�
1 − 8gi

vi1
c
e−2U − e−4Ue−

Λ
2
jx⃗j2

�
e−

Λ
2
x2
1
v21x
c2

þ e−
Λ
2
y2
1

v21y
c2

þ e−
Λ
2
z2
1

v21z
c2

��
1=2

¼ −m1c2
�
1 −

1

2c2
v21 þ U −

1

8c4
v41 þ

3

2c2
v2U þ 1

2
U2 −

4

c
givi1 þ

Λ
4c2

v21jx⃗1j2 þ
Λ
4c2

ðx21v21x þ y21v
2
1y þ z21v

2
1zÞ

�

þOðc−4;Λc−2;Λ2Þ; ðB30Þ

where we utilized the ansatz of the metric given in (B1)–(B3) and evaluate the Lagrangian at the position of the mass m1,
implying that we must assess the potentialsU and gi on the trajectory, where their self part ∝ m1 orm2

1 diverges, ignoring all
the contributions to the field from the body m1. These ill-defined (formally infinite) potentials that diverge are regularized
(see, for instance, [22]) yielding

U ¼ −
Gm2

c2r12

�
1þ 3

2c2
v22

�
−
GΛm2

3c2r12
jx⃗2j2 −

Λ
6
jx⃗1j2 þ

ΛG
c2

m2r12; ðB31Þ

gi ¼ −
Gm2

8c3r12
½7v2i þ n̂2iðn̂2 · v⃗2Þ� þ

Λ
24c

jx⃗1j2½v1i þ 2ðn̂1 · v⃗1Þn̂1i� −
Λ
6c

ðxi1Þ2ẋ1i: ðB32Þ

Substituting the regularized potentials (B31) and (B32) into the Lagrangian (B30) leads to

Lm1
¼ −m1c2 þ

1

2
m1v21 þ

Gm1m2

r12
þ 1

8c2
m1v41 þ

Gm1m2

2c2r12
½3ðv21 þ v22Þ − 7v⃗1 · v⃗2 − ðn̂12 · v⃗1Þðn̂12 · v⃗2Þ� −

G2m1m2
2

2c2r212

þ GΛm1m2

3r12

�
r22 −

1

2
r21

�
þ Λc2m1r21

6
− ΛGm1m2r12 þ

Λ
6
m1r21½v21 þ 2ðn̂1 · v⃗1Þ2�

−
11

12
Λm1ðx21v21x þ y21v

2
1y þ z21v

2
1zÞ þOðc−4;Λc−2;Λ2Þ: ðB33Þ

The Fichtenholz Lagrangian that describes the motion of two compact bodies is constructed in such a way to give the
same equations of motion as (B33) whenm1 → 0. Hence, the Lagrangian that governs the motion of two compact bodies in
interaction is given by

L ¼ −m1c2 −m2c2 þ
1

2
m1v21 þ

1

2
m2v22 þ

Gm1m2

r12
þ 1

8c2
m1v41 þ

1

8c2
m2v42

þGm1m2

2c2r12
½3ðv21 þ v22Þ − 7v⃗1 · v⃗2 − ðn̂12 · v⃗1Þðn̂12 · v⃗2Þ� −

G2m1m2

2c2r212
ðm1 þm2Þ

þ Λ
6
c2ðm1r21 þm2r22Þ þGΛm1m2

�
r21 þ r22
6r12

− r12

�
þ Λ

6
m1r21v

2
1 þ

Λ
6
m2r22v

2
2

þ Λ
3
m1ðn̂1 · v⃗1Þ2r21 þ

Λ
3
m2ðn̂2 · v⃗2Þ2r22 −

11

12
Λ½m1ðx21v21x þ y21v

2
1y þ z21v

2
1zÞ þm2ðx22v22x þ y22v

2
2y þ z22v

2
2zÞ�

þOðc−4;Λc−2;Λ2Þ; ðB34Þ

with n̂1 ¼ x⃗−x⃗1ðtÞ
jx⃗−x⃗1ðtÞj, n̂2 ¼

x⃗−x⃗2ðtÞ
jx⃗−x⃗2ðtÞj. The first two lines of the Lagrangian correspond to the case of a null Λ. Besides, this

formula depends explicitly of the components of the position and the velocity of the particles. On the other hand, this
computation can be repeated taking into account the interaction of n particles, giving as a result
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L ¼
X
a

mav2a þ
X
a≠b

Gmamb

2rab
þ
X
a

1

8
mav4a −

X
a≠b

Gmamb

4rab
½7v⃗a · v⃗b þ ðn̂ab · v⃗aÞðn̂ab · v⃗bÞ�

þ 3G
2

X
a

X
b≠a

mambv2a
rab

−
G2

2

X
a

X
b≠a

X
c≠a

mambmc

rabrac
þ Λ

6
c2
X
a

mar2a þ
GΛ
6

X
a

mamb

rab
r2a −

GΛ
2

X
a≠b

mambrab

þ Λ
6

X
a

mar2av2a þ
Λ
3

X
a

maðn̂a · v⃗aÞ2r2a −
11

12
Λ
X
a

maðx2av2ax þ y2av2ay þ z2av2azÞ þOðc−4; c−2Λ;Λ2Þ; ðB35Þ

where a ¼ 1;…; N labels the particle, rab is the distance between the particle a and b, and n̂ab is the unit vector from a to b.
Considering the center of mass frame given by (49) and (50), the Lagrangian (B34) becomes

L ¼ −mc2 þ 1

2
μv2 þ Gμm

r
þ 1

8c2
μv4ð1 − 3νÞ þGμm

2c2r

�
ð3þ νÞv2 þ νðn̂ · v⃗Þ2 −Gm

r

�
þ Λ

6
c2μr2

−
1

6
GΛμrð5þ 2νÞ þ 1

6
Λμð1 − 3νÞr2v2 þ Λ

3
μðn̂ · v⃗Þ2ð1 − 3νÞr2

−
11

12
Λμð1 − 3νÞðx2v2x þ y2v2y þ z2v2zÞ þOðc−4;Λc−2;Λ2Þ; ðB36Þ

with r⃗ ¼ x⃗1 − x⃗2, n̂ ¼ x⃗1−x⃗2
jx⃗1−x⃗2j, and v⃗ ≔ v⃗1 − v⃗2 are the relative vector distance, the relative unit vector, and the relative

velocity vector between the particles 1 and 2, correspondingly, and x, y, z are the Cartesian components of the relative
vector position r⃗ with vx, vy, and vz as their respective velocities components. The objects without the vector symbol stand
only for the magnitude of the vector. The two-body Lagrangian (B36) is one of the main results of this work. It describes the
interaction of a compact two-body system with relativistic correction considering the presence of the cosmological constant.
Using the Euler-Lagrange equations,

d
dt

�
∂L
∂vi

�
−
∂L
∂ri

¼ 0; ðB37Þ

the equation of motion of a compact two-body system is displayed as follows:

ai ¼ −
Gm
r2

n̂i þ Gm
c2r2

��
Gm
r

ð4þ 2νÞ − v2ð1þ 3νÞ þ 3

2
νðn̂ · v⃗Þ2

�
n̂i þ ð4 − 2νÞðn̂ · v⃗Þvi

�
þ Λ

3
c2rn̂i

þ Λð1 − 3νÞ
�
−
5

3
rðn̂ · v⃗Þ þ 11

3
ðriṙiÞ

�
vi − GmΛ

�
2

�
3

4
þ ν

�
þ 11

6
ð1 − 3νÞ ðriÞ

2

r2

�
n̂i

− Λrð1 − 3νÞ
�
1

2
v2 þ 11

6
ðviÞ2

�
n̂i þOðc−4;Λc−2;Λ2Þ; ðB38Þ

with no sum over the repeated index i; so this implies that is not possible to express the equations of motion using vector
notation, unlike the case where Λ ¼ 0. The energy of the system is given by ∂L

∂vi v
i − L, that is,

E ¼ mc2 þ 1

2
μv2 −

Gμm
r

−
Λ
6
c2μr2 þ 1

c2

�
3

8
μð1 − 3νÞv4 þGμm

2r

�
ð3þ νÞv2 þ νðn̂ · v⃗Þ2 þ Gm

r

��

þGΛ
6

μmrð5þ 2νÞ þ 1

3
ð1 − 3νÞΛμr2

�
1

2
v2 þ ðn̂ · v⃗Þ2

�
−
11

12
Λμð1 − 3νÞðx2v2x þ y2v2y þ z2v2zÞ: ðB39Þ

Both in the acceleration (B38) and the energy (B39) hinge on explicitly of the Cartesian components of the relative
position and velocity as a consequence that the cosmological constant breaks the rotational symmetry of the system. Next,
taking the orbital plane coordinates,

n̂ ¼ ðcosϕ; sinϕ; 0Þ; ðB40Þ
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ϕ̂ ¼ ð− sinϕ; cosϕ; 0Þ; ðB41Þ

ẑ ¼ ð0; 0; 1Þ; ðB42Þ

we have that the components of the acceleration can be
written as

ai ¼ ð̈r − rϕ̇2Þn̂i þ 1

r
d
dt

ðr2ϕ̇Þϕi: ðB43Þ

Therefore, comparing (B38) and (B43), and adding the
three different equations for each component, given that
i ¼ 1, 2, 3, we obtain

̈r ¼ rϕ̇2 −
Gm
r2

þ Λ
3
c2rþ Gm

c2r2

�
1

2
ð6 − 7νÞṙ2

− ðrϕ̇Þ2ð1þ 3νÞ þ 2Gm
r

ð2þ νÞ
�

−
1

3
Λrð1 − 3νÞṙ2 þ 1

9
Λr3ð1 − 3νÞϕ̇2

−
Λ
18

Gmð38þ 3νÞ þOðc−4;Λc2;Λ2Þ; ðB44Þ

d
dt

ðr2ϕ̇2Þ ¼ 2ð2 − νÞGm
c2

ṙ ϕ̇þ2Λð1 − 3νÞr3ṙ ϕ̇ : ðB45Þ

APPENDIX C: RADIATED POWER FORMULA

In this section, we show that the radiated power formula
does not contain Λ provided that the condition Λh → 0 is
satisfied. Thus, from (10), we can observe that the radiated
power, taking into account Λ, reads

P ¼ c
Z �

ð−gÞt0kLL − 2
c4

16πG
Λg−1=2g0k

�
dSk

¼ c
Z �

ð−gÞt0kLL −
c4

8πG
Λg−1=2ðη0k þ h0kÞ

�
dSk

¼ c
Z �

ð−gÞt0kLL −
c4

8πG
g−1=2ðΛh0kÞ

�
dSk

≃ c
Z

ð−gÞt0kLLdSk; ðC1Þ

where dSk is an outward-directed surface element on the
2-dimensional surface S. Considering the shortwave
approximation (see, for example, [19]), which is based
on expansion of the gravitational potentials in powers of
λ=R ≪ 1, with λ as the wavelength of the source and R as
the distance between the source and the observation point,
we write

hαβ ¼ ðλ=RÞfαβ1 þ ðλ=RÞ2fαβ2 þ � � � ; ðC2Þ

where fαβn with n ¼ 1; 2; 3;…, is a function of the retarded
time τ ≔ t − R

c. Substituting (C2) in t0kLL, given by (5), from
there, we replace it into (C1), yielding

P ¼ c3R2

32πG

Z
ḣijTTḣ

TT
ij d

3x: ðC3Þ

Observe that the assumption Λh → 0, due to the very
small value of Λ, implies that the flux of the radiation
power P does not contain Λ, giving as a result the
expression (70). Nonetheless, in the waveform (54), Λ
does appear explicitly.

APPENDIX D: ENERGY LOSS RATE OBTAINED
FROM THE SYMMETRIC TRACE-FREE

MULTIPOLE DECOMPOSITION

It is well known that the EW multipoles are related with
the symmetric trace-free multipoles at 1PN order as follows
[21,47]:

IijSTF ¼ IhijiEW þ 1

21



11IhijikkEW − 12IkhijikEW þ 4IkkhijiEW

�
; ðD1Þ

İijkSTF ¼ 3IijkEW; ðD2Þ

JijSTF ¼
1

2
ϵhiklI

jikl
EW : ðD3Þ

Then, recalling the results of the EW multipoles (42), (43),
and (47), and considering the interaction of only two
particles at the center of mass frame coordinates (49)
and (50), the STF moments (D1)–(D3) become

IijSTF ¼ μrhirji þ μ

7c2
ð−5þ 8νÞGm

r
rhirji

þ μ

c2
29

42
ð1 − 3νÞv2rhirji þ 11

21c2
μð1 − 3νÞr2vhivji

−
Λμ
2

ð1 − 3νÞr2rhirji; ðD4Þ

İijkSTF ¼ −3
μΔm
mc2

vhirjrki; ðD5Þ

JijSTF ¼
μΔm
c2m

ϵklhirjirkvl: ðD6Þ

At 1PN approximation, the radiated power in terms of the
STF multipoles is given by [21,22]

P ¼ −
G
c5

�
1

5
I
:::ij
STF I

:::STF
ij þ 1

c2

�
1

189
I
ð4Þ

STF
ijk I

ð4Þ
ijk
STF

þ 16

45
J
:::STF
ij J

:::ij
STF

�
þOðc−4; c−2Λ;Λ2Þ

�
: ðD7Þ
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Therefore, plugging back the results (D4)–(D6) into (D7)
yields the energy loss rate of a circular motion of a binary
compact system given by (71).

APPENDIX E: COMPUTATION
OF THE INTEGRAL IðΘÞ

In this appendix, we compute the integral

IðΘÞ ¼
Z

sin2ð2ϕ0PNÞ
x13

dx; ðE1Þ

considering the Newtonian phase (78) neglecting the
additional Λ term since ðΛG2m2Þ=c4 ≪ 1; i.e., we only
take ϕ0PN ≃ −x−5=ð32νÞ, and the post-Newtonian param-
eter x ¼ Θ−1=8=2. Therefore,

ϕ0PN ¼ −
Θ5=8

ν
: ðE2Þ

Then, we have

IðΘÞ ¼
Z

sin2ð2ϕ0PNÞ
x13

dx

¼ −512
Z

dΘΘ1=2sin2
�
2Θ5=8

ν

�

¼ ν

1500
Θ1=4 ×

�
−
500

ν
Θ5=4þ105ν cos

�
4Θ5=8

ν

�
þ 300νΘ5=8 sin

�
2Θ5=8

ν

�

þ 21ν

�
E3

5

�
4iΘ5=8

ν

�
þ E3

5

�
−
4iΘ5=8

ν

���
; ðE3Þ

with EnðxÞ ≔ xn−1Γð1 − n; xÞ as the exponential integral function with Γð1 − n; xÞ ¼ R
∞
x t−ne−tdt as the incomplete

Gamma function. On the other hand, we also compute the following expression:

Z
Θ−11=8IðΘÞdΘ ¼ −

2ν

3375
Θ−1=8

�
500Θ5=4 þ 135ν2 cos

�
4Θ5=8

ν

�

þ18ν2
�
E6

5

�
4iΘ5=8

ν

�
þ E6

5

�
−
4iΘ5=8

ν

��
þ63ν2

�
E3

5

�
4iΘ5=8

ν

�
þ E3

5

�
−
4iΘ5=8

ν

���
: ðE4Þ
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