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It has been established that black hole (BH) spacetimes obeying some general set of assumptions always
possess, at least, one light ring (LR) per rotation sense [Cunha and Herdeiro, Phys. Rev. Lett. 124, 181101
(2020)]. This theorem was originally established for asymptotically flat, stationary, axial symmetric,
1þ 3-dimensional circular spacetimes harboring a nonextremal and topologically spherical Killing
horizon. Following the mantra that a theorem is only as strong as its assumptions, in this work we
extend this theorem to nontopologically spherical (toroidal) BHs and to spacetimes harboring more than
one BH. As shown previously, we here show that each BH still contributes with, at least, one LR (per
rotation sense).
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I. INTRODUCTION

The shadow and ringdown of a black hole (BH) are
closely connected to its light rings (LRs) [1,2]. Hence, in
this new era of precision gravity, where it is possible to
directly measure gravitational wave events corresponding
to the collision of BHs, as well as directly seeing the
shadows of supermassive BHs, it is essential to deepen our
understanding of LRs.
It has been established that BH spacetimes must contain

at least one LR (per rotation sense), provided that some
general set of assumptions are satisfied [3] (see also [4,5]).
When such assumptions are violated, it might be possible to
have nontrivial results. For instance, it has been established
that the asymptotic structure of the spacetime has impli-
cations on the number of LRs around BHs [6]. In this
regard this paper aims to shed some light on the interplay
between the BH horizon’s topology and its LRs, i.e., to
inquire whether a BH with a nonspherical topology obeys
the same theorem as a spherical one. Moreover, it is
interesting to assess the robustness of such existence results
of LRs when several BHs coexist in the same spacetime.
Physically, one expects that when two BHs are very far
apart they will essentially be unaffected by each other,
hence each will have its own LR. But is this expectation
true given the nonlinearity of the theory? If so, does the
separation distance play a role? These are questions we aim
to address in the present work.
The topology of event horizons has been the focus of

several theorems in the literature. For instance, Hawking
showed in a seminal work that any stationary event horizon
is topologically a sphere and if it is spinning it must be
axisymmetric, provided that certain physically reasonable

assumptions hold (e.g., dominant energy condition) [7,8].
Later, Gannon was able to drop the assumption of statio-
narity and showed that, when the spacetime is allowed to be
dynamical, event horizons can be either spherical or
toroidal [9]. However, any putative such toroidal structures
should be short-lived according to the topological censor-
ship theorem [10]: if valid (see [11]), then no observer can
probe the topology of the spacetime, hence the “hole” of the
torus would have to collapse before any causal curve would
be able to cross it. This theorem also makes assumptions on
the matter content of the spacetime, namely, the null energy
condition must be satisfied. In fact, it has been predicted
that for generic BH binary systems the event horizon is very
briefly toroidal at some point in the evolution of the system
[12]. Such short-lived toroidal event horizons have indeed
been observed in binary BH merger simulations [13,14].
Some findings in this paper are concerned with the

properties of stationary toroidal BHs. Considering the
results mentioned above, it becomes apparent that these
toroidal BHs inherently challenge several energy condi-
tions with respect to the effective energy-momentum
tensor. Nevertheless, since the theorem presented in this
paper does not rely on specific field equations, its validity
extends across any metric theory of gravity, thereby leading
us to overlook these violations.
General relativity solutions containing multiple BHs

have been known for quite some time. In fact, Bach and
Weyl proposed in 1922 a solution describing two
Schwarzschild BHs placed at some finite distance in 4D
asymptotically flat spacetime [15]. This solution, however,
is plagued with a conical singularity preventing the collapse
of the two event horizons. This was latter generalized to
solutions containingN collinear neutral static BHs by Israel
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and Kahn [16]. This solution still requires conical singu-
larities, except in the N → ∞ limit, which can be inter-
preted as a higher-dimensional BH in a compactified
spacetime [17].
By introducing spin, it is possible to construct a double-

Kerr vacuum solution by resorting to solution generation
techniques, like inverse scattering [18]. When the BHs are
corotating, i.e., the spins are aligned, the spin-spin inter-
action is repulsive [19,20], but this is not enough to
maintain an equilibrium between the BHs without resorting
to conical singularities [21,22]. Another way to construct
multiple BH solutions is to immerse them in an external
gravitational field [23–25], but asymptotic flatness is lost in
those cases.
If one considers an electrovacuum instead, there is a

class of solutions that evades all these problems, the
Majumdar-Papapetrou solutions [26,27]. These represent
an arbitrary number of charged BHs in equilibrium in an
asymptotically flat 4D spacetime regular on and outside the
event horizons. In this case is the electric charge of the BHs
that counteracts the gravitational attraction and keeps them
in equilibrium. However, all the BHs must be extremal.
Recently, inspired by BH solutions with scalar hair [28],

it was found that scalar fields can, in fact, balance the
gravitational attraction yielding two BH asymptotically flat
solutions without the need for conical singularities or
extremal BHs. This was achieved for both static [29]
and for spinning BHs [30]. Only for the latter case,
however, the scalar field obeys the weak energy condition.
The main goal of this work is to establish a theorem on

the existence and number of LRs on a stationary and axial
symmetric spacetime containing an arbitrary number of
nonextremal event horizons. The paper is structured as
follows: in Sec. II, the assumptions on the spacetime are
introduced and discussed, and a general form for the
metric is presented. In Sec. III, the formalism of identify-
ing the LRs of a spacetime as critical points of a potential
defined on the 2-plane orthogonal to the Killing plane is
discussed. After asserting the formalism and the assump-
tions of this paper we will present each generalization of
the initial theorem [3] in a different section. In Sec. IV, a
generic spacetime with single toroidal BH is considered,
with an example of such a metric presented at the end to
illustrate our result. In Sec. V, the case of multiple toroidal
BHs is discussed. Section VI is devoted to discussing the
construction used to generate spacetimes with multiple
BHs and the number of LRs on such spacetimes. All is
then put together in Sec. VII, where spacetimes containing
an arbitrary number of toroidal and spherical BHs are
considered.

II. THE SPACETIME

We consider spacetimes that are asymptotically flat,
stationary, and axisymmetric, meaning that they possess
two Killing vector fields: a timelike vector at infinity ξ and

a spacelike vector η associated with time translations and
rotations, respectively. In addition, the spacetime is
assumed to contain one (or more) BH Killing horizons.
As was shown by Carter, if the spacetime is asymptotically
flat, the vector fields fξ; ηg commute [31], and it is possible
to define a coordinate system adapted to both the sym-
metries simultaneously, meaning that η ¼ ∂t and ξ ¼ ∂ϕ.
Further imposing circularity of the spacetime, its line
element can be written as, e.g., Sec. 7.1 of [32],

ds2¼ gttdt2þ2gtϕdϕdtþgϕϕdϕ2þgρρdρ2þgzzdz2; ð1Þ

where fρ; zg are the canonical Bach-Weyl coordinates,
which reduce to the usual cylindrical ones at spatial infinity.
The rotation axis is defined as the set of points, which is

left invariant by the action of the angular Killing vector
field η, hence at the axis

�
gϕϕ ¼ η · η ¼ 0;

gtϕ ¼ η · ξ ¼ 0:
ð2Þ

The radial coordinate ρ is defined such that the rotation axis
is located at ρ ¼ 0.

III. TOPOLOGICAL CHARGE OF LRs

In this paper, a LR is defined as a null geodesic whose
tangent vector k is a linear combination of the time
translation and axial Killing vectors. It was shown pre-
viously [33] that these orbits can be associated with the
critical points of two effective potentials (one per rotation
sense of the horizon) H� on the orthogonal subspace
spanned by ρ and z, given by

H�ðρ; zÞ ≔
−gtϕ �

ffiffiffiffi
D

p

gϕϕ
; D ≔ g2tϕ − gttgϕϕ: ð3Þ

This equivalence can be used to assign a topological
charge to each LR. To do so, one considers the normalized
gradient of H� given by

v ¼ ðvρ; vzÞ ¼
�
∂ρH�ffiffiffiffiffiffigρρ
p ;

∂zH�ffiffiffiffiffiffi
gzz

p
�
: ð4Þ

The normalization is such that ∂μH�∂μH� ¼ v2ρ þ v2z ≔
v2. At the critical points of the effective potentials, one has
v ¼ 0 ¼ v, so this is the condition for the existence of a LR.
The definition of a topological charge requires the con-
struction of a contour C on the fρ; zg plane, which is
simple, closed, and piecewise smooth. In addition, we can
consider an auxiliary bidimensional Cartesian space
fvρ; vzg, denoted V. When traversing C in the positive
sense, a curve C̃ will be defined in V. Since C is closed, C̃
will also be closed. Introducing polar coordinates on V as
vρ ¼ v cosΩ; vz ¼ v sinΩ, the winding number w of v is

CUNHA, HERDEIRO, and NOVO PHYS. REV. D 109, 064050 (2024)

064050-2



defined as the total variation of Ω divided by 2π, as C is
circulated in the positive sense,

w ¼ 1

2π

I
C
dΩ: ð5Þ

Nondegenerate critical points [34] of H� have w ¼ �1,
where w ¼ 1 corresponds to a maximum or minimum and
w ¼ −1 corresponds to a saddle point. If a contour
encircles several critical points, then the total topological
charge is the sum of the individual topological charges
associated with each one of the critical points.
The identification of LRs as critical points of the

potentials H� has been used to prove existence results
for LRs and their stability, for different kinds of spacetimes,
with or without BHs [2,6,33]. In [35], instead of focusing
on the effect of an event horizon, an ergosurface was
considered, and it was shown that if a spacetime satisfying
similar assumptions as described above possesses an
ergosurface it will have at least one LR outside the
ergosurface. There have also been generalizations to
higher-dimensional spacetimes [36]. More recently, similar
arguments have been extended to the study of timelike
circular orbits [37,38]. In a different direction, this
approach has also inspired a new field of study where
BHs are treated as defects in the thermodynamical param-
eter space, wherein a topological charge can be associated
with each defect, i.e., BH solution [39].

IV. TOROIDAL BH

A. The Killing horizon

The Killing horizon H corresponds to the translation
along the Killing vector fields of a regular closed curve H�
defined on the fρ; zg plane. In order to have a well-defined
topology, this curve should be simple (i.e., it cannot have
self-intersections), and no point in the curve should lie on
the rotation axis.
Having a BH Killing horizon means there is a Killing

vector field, χ ¼ ξþ ωHη;ωH ¼ const, which is null
on H, i.e., χμχμjH ¼ 0. In particular, χμχμ is constant on
the horizon. This means that ∇αðχμχμÞ is also normal to the
horizon, hence, there must exist some κ such that
∇αðχμχμÞjH ¼ −2κχαjH at the horizon. The value of κ is
constant over both orbits of χ and also over the horizon and
is known as the “surface gravity” of H [32]. Since χμχ

μ

does not depend on t and ϕ, one has�
0 ¼ ðgϕt þ ωHgϕϕÞjH;
0 ¼ ðgtt þ ωHgtϕÞjH;

ð6Þ

from where it is possible to deduce ωH ¼ −gtϕ=gϕϕjH and
DjH ¼ ðg2tϕ − gttgϕϕÞjH ≡ 0. SinceD corresponds to minus
the determinant of the Killing part of the metric, and
provided the metric outside H has a Lorentzian signature,
then one has D > 0 outside the horizon.

B. The contour

The toroidal topology of the horizon implies that, when
working in cylindrical coordinates, it is possible to define a
contour on the non-Killing plane, denoted C, such that H�
lies on its interior, denoted E. In the appropriate limit E
will correspond to the entire orthogonal 2-space. The
contour will be defined as the union of four line segments,
I i¼1;2;3;4, defined as I1 ¼ fρ ¼ δ;−h < z < hg; I2 ¼
fδ < ρ < R; z ¼ −hg; I3 ¼ fρ ¼ R;−h < z < hg; I4 ¼
fδ < ρ < R; z ¼ hg. This construction is illustrated
in Fig. 1.
We are only interested in the spacetime outside H; the

contributions from its interior must then be removed from
the total topological charge. To do so, one begins by
deforming C until it matches H�, which allows for the
computation of the winding number along that deformed
contour, denoted wH. Finally, the topological charge out-
side the event horizon wI will be the total charge of the
entire spacetime with the contribution from the horizon
subtracted, i.e., wE ¼ wI1 þ wI2 þ wI3 þ wI4 − wH, where

wI1 ¼
1

2π

Z−h
h

dΩ
dz

����
ρ¼δ

dz; wI2 ¼
1

2π

ZR
δ

dΩ
dρ

����
z¼−h

dρ;

wI3 ¼
1

2π

Zh
−h

dΩ
dz

����
ρ¼R

dz; wI4 ¼
1

2π

Zδ
R

dΩ
dρ

����
z¼h

dρ;

wH ¼ 1

2π

I
H

dΩ: ð7Þ

FIG. 1. Illustration of the integration contour C corresponding
to the union of the Ii, defined in the fρ; zg plane. The interior of
the contour E, as well as the cross section of the event horizonH�,
is defined on t ¼ const;ϕ ¼ const hypersurfaces.
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Then the total topological charge outside the BH is
obtained when taking the limits h → þ∞; δ → 0;
R → þ∞.
The behavior of the vector field must be studied in three

different limits, the asymptotic (I2;3;4), the axis (I1), and
horizon. Each of these will be addressed below.

1. Asymptotic limit

In cylindrical coordinates, spatial infinity occurs when
either

ρ → ∞ or z → �∞: ð8Þ

Where Minkowski spacetime is recovered, in cylindrical
coordinates this corresponds to

ds2 ¼ −dt2 þ ρ2dϕ2 þ dρ2 þ dz2: ð9Þ

Therefore, the effective potentials behave in this limit as

H� ≃� 1

ρ
; ð10Þ

and the vector fields v� go like

(
v�ρ → ∓ 1

ρ2
⇒ v�ρ

jv�j → ∓1;

v�z → 0:
ð11Þ

Therefore, when taking h; R → ∞, v will be constant along
I2, I3, and I4, thus wI2;I3;I4 ¼ 0.

2. Axis limit

The definition of the rotation axis, Eq. (2), states that
gϕϕ ¼ 0 ¼ gtϕ. How these functions approach zero can be
constrained if one imposes some degree of regularity at the
axis. The absence of conical singularities on the axis
implies that, near the axis [40],

gϕϕðρ; zÞ ≃ gρρð0; zÞρ2 þ � � � : ð12Þ

Moreover, regularity of the Ricci scalar imposes that

lim
ρ→0

gtϕ
gϕϕ

< ∞; ð13Þ

that is, gϕϕ cannot tend to zero faster than gtϕ in the axis
limit [3,41].
The remaining metric components must be finite at the

axis. Thus, when approximating the axis, the effective
potentials take the form

H� ∼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
gttð0; zÞ
gρρð0; zÞ

s
1

ρ
; ð14Þ

from which it becomes clear that

v�ρ ∼ ∓ 1

ρ2
; v�z ∼� 1

ρ
: ð15Þ

Hence,

lim
ρ→0

v�ρ
jv�j ¼ ∓1; ð16Þ

lim
ρ→0

v�z
jv�j ¼ 0: ð17Þ

This means that at the axis v� will always be normal to it
and coincide with the vector field in the asymptotic limit,
which means that v� is constant along the segment I1,
meaning that wI1 ¼ 0. This, together with the result from
the previous section, implies that wI ¼ −wH, i.e., any
contributions must come from the behavior of the potentials
near the horizon.

3. Horizon limit

Near the horizon, we can define a set of Gaussian normal
coordinates fX; Yg such that gXX ¼ 1 and XjH ¼ 0 [42].
Near the horizon, the potentials are then given by [3,44]

H� ¼ ω�
ffiffiffiffi
D

p

gϕϕ
≃ ωðX ¼ 0; YÞ � κXffiffiffiffiffiffiffi

gHϕϕ
q ; ð18Þ

where a possible Y dependence of ωjX¼0 was introduced.
This means that

∂XH�jX¼0 ¼ � κffiffiffiffiffiffiffi
gHϕϕ

q : ð19Þ

Now we analyze ∂YH�jH. Because of the toroidal topology
of the event horizon it contains no fixed points of the SOð2Þ
group, hence gHϕϕ > 0 (i.e., it never vanishes), so

∂YH�jH ¼ ∂ωjX¼0

∂Y
; ð20Þ

but regularity of the Ricci scalar on the horizon imposes
that

ωH ≔ lim
X→0

ω ð21Þ

is constant and corresponds to the angular velocity of the
horizon [44]. So one obtains

∂YH� ¼ 0: ð22Þ

This means that the vector field v, in local coordinates on
the horizon, points radially inward or outward (with respect
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to the new radial coordinate x), which means that its
winding number when going around H� is wH ¼ þ1. This
manifests the fact that the horizon is a level surface of H�.
For topologically spherical BHs the horizon is also a level
surface of H� with the exception of the poles, wherein the
behavior of H� is not regular.
For a differential geometry proof of this statement notice

that, since v is normal to H, it will make a constant angle
π=2 with the tangent vector to H, denoted t. Therefore, v
and twill have the samewinding number. Furthermore, it is
known that the winding number of the tangent vector of
positively oriented closed curves is þ1 (see, for example,
Sec. 1.7 of [45]).
Finally, one concludes that the total topological charge

outside a toroidal event horizon is wI ¼ −1. Therefore,
there has to be at least one standard (w ¼ −1) LR outsideH
per rotation sense (i.e., for each � sign of H�). Additional
ones must come in pairs with opposite topological charge in
order to preserve the total topological charge. It is worth
noting that this result was reached without making use of
any field equations, hence it is valid for any metric theory of
gravity that satisfies the initial spacetime assumptions.

C. An illustrative example of a toroidal BH metric

Nontopologically spherical BHs (in four dimensions that
asymptotically approach Minkowski spacetime) are rather
exotic and not common in the literature. In this sense, this
subsection is devoted to a particular example of a line
element containing a toroidal static BH. This metric is
asymptotically Minkowskian (see Appendix B), however,
its curvature decays slower than that of the Schwarzschild
solution; thus, asymptotic flatness is not guaranteed in a
rigorous sense—see, e.g., Chap. 11 of [32] or Sec. 6.9 of
[46]. Nonetheless, it can be written in a coordinate system
simultaneously adapted to both Killing vector fields, and
the auxiliary vector field v has the correct asymptotic
behavior. Therefore, since all other assumptions of the
theorem are satisfied, this solution should respect it, i.e., it
should have a total topological charge w ¼ −1 in the
spacetime outside the event horizon.
The considered metric was proposed in [47] and origi-

nally written in ring coordinates (see also [48]). Below, we
choose a slightly different coordinate system for the line
element,

ds2 ¼ −
1þ λy
Λðσ; yÞ dt

2 þ R2

ðcos σ þ yÞ2
�
dσ2 þ ð1 − λ cos σÞ2

Λðσ; yÞ

×

�
1

1þ λy
dy2

y2 − 1
þ y2 − 1

1 − λ
dϕ2

��
; ð23Þ

where −π < σ ≤ π and y∈ �−∞;−1�, with the coordinates
t and ϕ representing the usual time and azimuthal angular
coordinates. See Appendix A for a discussion on the
connection of this coordinate system to toroidal

coordinates. Spatial infinity in this coordinate system
corresponds to the point ðy ¼ −1; σ ¼ 0Þ, where the metric
(23) is singular, but this is merely a coordinate singularity
which can be removed by an appropriate change of
coordinates, see Appendix B. The term Λðσ; yÞ is a strictly
positive and smooth function that determines the far field
behavior of the spacetime. Following [47], we can make the
following explicit choice:

Λðσ; yÞ ¼ ð1 − λÞ
�
1þ

ffiffiffi
2

p
M

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cos σ − y

p �
; ð24Þ

where M is the total (Komar) mass, which will be set to
unity unless stated otherwise.
In addition, R > 0 and 0 < λ < 1 are free parameters

related to the horizon ring size scale and location. The
horizon, in particular, is located at y ¼ −1=λ, which
restricts the range of the y coordinate to �−1=λ;−1� inside
the domain of outer communication.
The horizon is a closed 2D orientable surface with

vanishing Euler characteristic and S1 × S1 topology, i.e.,
it is a torus [49]. The Hawking temperature of the horizon is
finite and nonzero for 0 < λ < 1,

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p

4πRλ
: ð25Þ

Using standard methods, e.g., [50], it is possible to show
that the metric (23) has always a LR on the equatorial plane
(σ ¼ 0) outside the horizon, located at

yLR ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffi
2þ 2

λ

r
: ð26Þ

It is interesting to note that the location of the LR is
independent of the choice for Λðσ; yÞ. This result is
consistent with toroidal BH spacetimes having at least
one standard LR (provided they satisfy the previously
stated assumptions).
To further illustrate our result, we also computed the

effective potentialsH� for the metric (23). The correspond-
ing vector field vþ is plotted in Fig. 2, for both the flat space
limit ðλ ¼ 0;M ¼ 0Þ (top panel) and for a BH toroidal
metric with ðλ ¼ 0.1; R ¼ 1;M ¼ 1Þ (bottom panel). These
figures serve to illustrate how the boundary conditions at
the event horizon are fundamental to the existence of a LR,
namely, how the vector field is normal to the horizon,
leading to a saddle point of the effective potential Hþ. A
closer look near the critical point for the BH metric is
provided in Fig. 3, where it is possible to better observe the
circulation of the vector field around the critical point.
To make a connection with cylindrical-like coordinates,

we performed a coordinate transformation between toroidal
and cylindrical coordinates as if in flat space, see
Appendix B, which suffices to have a well-defined effective
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potential. We displayHþ in Fig. 4, where it is clear that the
horizon is a level set and the LR is a saddle point: The latter
is clearly depicted by the LR level curve, shown as a thick
black line.
Since four-dimensional BHs with toroidal topology are

not commonly discussed in the literature, an additional
analysis of the metric (23) can be found in Appendix B. For
further illustration purposes, we display here some shadows
of this toroidal BH in Fig. 5, where it is possible to
appreciate the topology of the horizon, and the exotic
features it produces in these shadows. These images were
obtained with a setup equivalent to the one described in
[2,51]. Some further details on computing these shadows
are described in Appendix B 4.

V. MULTIPLE TOROIDAL BHs

It is straightforward to generalize the previous construc-
tion to a spacetime possessing n disconnected toroidal BHs,
Hi; i ¼ 1;…; n, all with a common axis, necessary in order

to preserve axial symmetry. The orthogonal subspace of
such configuration is represented in Fig. 6, as well as the
integration contour.
At each event horizon one can construct a system of local

Gaussian normal coordinates, meaning that the contribu-
tion of each toroidal event horizon to the total topological

FIG. 2. Vector field v in toroidal coordinates on flat spacetime
and the spacetime of Eq. (23). The LRs location is signaled with a
red dot.

FIG. 3. A closer look at the vector field in the vicinity of the LR.
Here it is clearer that, when traversing the black contour in the
counterclockwise direction, the vector field (shown in red) will
rotate in the clockwise direction, hence it will have a winding
number of −1, as previously established.

FIG. 4. The contour plot of the effective potential Hþ for the
metric (23) in cylindrical-like coordinates, the saddle point,
corresponding to the standard LR, is represented with a red
dot. The level curve containing the critical point is represented
with a thick black line.
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charge is wHi
¼ −1. Therefore, the total topological charge

of the spacetime would be

wE ¼
Xn
i¼1

wHi
¼ −n: ð27Þ

This, in turn, means that in such a spacetime there has to be
at least one standard LR per BH (and rotation sense).
Therefore, we can conclude that the existence of LRs
are robust enough to the introduction of nonlinear inter-
actions between multiple toroidal BHs, regardless of their
separation distance, so they obey a sort of “superposition
principle.” What if we consider multiple (topologically)
spherical BHs? Such a case is considered in the following
section.

VI. MULTICOLLINEAR BH SOLUTIONS

Einstein’s theory of relativity is exactly solvable for
electrovacuum in four dimensions if two commuting
Killing vector fields exist [52,53]. This can be used to
construct analytical solutions, such as multi-BH space-
times, known as Weyl solutions. The generation of these
solutions is intimately connected to a set of boundary
conditions defined on the z axis, defined in terms of a rod
structure [54]. This is due to a partial linearization of
Einstein’s equations, wherein some of the expressions
reduce to Laplace-type equations, whose solution is deter-
mined by the rod structure. These Laplace equations can be
regarded as the Poisson equation of Newtonian gravity
where the sources lie along the z axis. Although this partial
linearization is generically spoiled outside electrovacuum,
the rod-structure setup can nevertheless be applied in the
presence of matter content, as exemplified by the numerical
construction of two BH solutions balanced by a scalar field
in the literature, for both static [29] and rotating [30]
configurations.
These constructions motivate the use of such rod

structures on the z axis for the metric (1), in order to
describe a spacetime with multiple collinear (topologically
spherical) BHs in equilibrium, provided that the spacetime
is still axial symmetric and stationary.
To introduce the rod structure one should work in Bach-

Weyl coordinates ft;ϕ; ρ; zg, which are asymptotically
cylindrical. The radial coordinate ρ is defined as the square
root of the modulus of the determinant of the Killing part of
the metric, hence all points left invariant by the action of the
Killing vector fields have ρ ¼ 0, i.e., they lie along the
z axis. Since we are interested in multi-BH solutions, we
consider fixed points of the spacelike vector, η ¼ ∂ϕ, and of
the null event horizon generator χ. A necessary condition
for the regularity of the solution is that each point of the
z axis is a fixed point of precisely one of the Killing vector
fields, except in isolated points, the “common points.”
Assuming that the spacetime contains N aligned (topo-
logically) spherical BHs, we can denote these common
points as fa1;…; a2Ng. It is then possible to divide the
z axis into 2N þ 1 intervals ½ai; aiþ1�; i∈ f0;…; 2Ng, where
a0 ≔ −∞ and a2Nþ1 ≔ þ∞ are not common points. These
line segments are known as the rods of the solution [54].
Each rod is either spacelike and part of the rotation axis,

or it is timelike and one of the BHs. For multialigned BHs

FIG. 5. Shadows of the BHs described by Eq. (23), with
λ ¼ 1=2; R ¼ 1; M ¼ 1, for two different inclinations: on the
left the observer lies on the equatorial plane, while on the right it
has an inclination of 10° with respect to the equatorial plane. We
refer the reader to Appendix B 4 for more details on how the
inclination is defined. Top: images are obtained with a colored
pattern on the celestial sphere, while on the bottom only the
shadows is depicted.

FIG. 6. The orthogonal subspace of a spacetime harboring
several disconnected toroidal event horizons.
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the semi-infinite rods ½a0; a1� and ½a2N; a2Nþ1� are spacelike
[55] and correspond to the rotation axis.
To determine the number of LRs in such a spacetime, we

have to compute the winding number of the vector field
along a contour which, in the appropriate limit, encom-
passes all the spacetime outside the event horizons. This
contour is similar to the one considered for the case of
toroidal BHs, except now all BHs intersect the axis. Since
we still assume asymptotic flatness, the behavior of the
vector field in the asymptotic limit will be the same.
Furthermore, it is assumed that there are no event horizons
inside the contour, such that the total winding number is
given by wE ¼wI1 þwI2 þwI3 þwI4 ¼wI1, since wI2;3;4 ¼ 0
on account of asymptotic flatness.
Therefore, we have to study the behavior of the effective

potentials H� near ρ ¼ 0. However, the behavior along the
z axis will differ depending on whether we are at an event
horizon or at the rotation axis, and these two cases must be
studied carefully. If the metric is expressed in coordinates
adapted to the Killing vector fields which vanish on the
axis, namely, η ¼ ∂ϕ and χ ¼ ∂u, then it takes the following
form near a spacelike rod (axis) [54]:

ds2 ¼ −AðzÞdu2 þ 1

AðzÞ ½ρ
2dϕ2 þ c21ðdρ2 þ dz2Þ�; ð28Þ

and near a timelike rod (BH)

ds2 ¼ BðzÞdϕ2 þ 1

BðzÞ ½−ρ
2du2 þ c22ðdρ2 þ dz2Þ�: ð29Þ

Here A and B are strictly positive functions of z. The
absence of a cross term means that these are locally
corotating coordinates. In order to avoid conical singular-
ities at the axis, the period of the angular coordinate ϕ
needs to be 2πc1, which implies c1 ¼ 1 given the usual 2π
azimuthal angle identification. Curiously, we can relate this
analysis close to the rotation axis with the one close to a
BH, since the form of the two line elements [(28) and (29)]
is actually very similar. This point can be made clearer by
Wick rotating the timelike coordinate u into a spacelike
coordinate ũ ¼ iu. By then applying a similar reasoning to
ũ as the one performed in ϕ, one concludes that the
coordinate ũ needs to have a period of 2πc2. This
periodicity is actually related to the Hawking temperature
of the horizon via TH ¼ ð2πc2Þ−1. Since we will only
consider nonextremal BHs, then 0 < c2 < ∞, which
implies that the local line element expansion (29) is not
well defined for extremal BHs.
Since these coordinate systems, at each rod, are locally

corotating near the axis, the effective potentials reduce to

H� ≃�
ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gϕϕ

r
; ð30Þ

where the behavior of the metric functions will depend on
the nature of the rod. Each case will be considered
separately below, as well as the behavior at the common
points. For clarity sake, we shall focus below on the
potential Hþ, but a virtually identical analysis applies
to H−.

A. Spacelike rods (axis)

Near a spacelike rod (axis) the potential goes like

Hþ ∼
AðzÞ
ρ

: ð31Þ

Thus, since AðzÞ ≠ 0 (otherwise we would be at a common
point),

v ¼ ðvρ; vzÞ ∼
�
−

1

ρ2
;
1

ρ

�
; ð32Þ

which implies that the normalized vector field at a spacelike
rod is

v
v

����
ρ¼0

¼ ð−1; 0Þ: ð33Þ

Thus, at a spacelike rod the vector fields point toward the
rotation axis (which is consistent with the previous con-
clusion in the toroidal BH section). It should be noted that
the vector coincides with the asymptotic limit behavior,
hence the only nonvanishing contribution to the topological
charge will come from the BHs.

B. Timelike rods (BH)

Near a timelike rod (BH),

Hþ ≃
ρ

BðzÞ : ð34Þ

Once again, we do not consider the common point, there-
fore BðzÞ ≠ 0, meaning that at the event horizons

v
v

����
ρ¼0

¼ ð1; 0Þ: ð35Þ

Thus, at an event horizon, the vector fields point outward.
This correspond to a difference of π when compared with
the field at the rotation axis. However, to compute the
winding number it is necessary to know how this phase of π
is obtained when crossing the common points. To deter-
mine how the vector field rotates at the common points, it is
necessary to have a more detailed analysis and to proceed
with care, as discussed below.
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C. Common points (BH poles)

In this section, we will study the behavior of v when
approaching the common points either from the timelike
(BH) or spacelike (axis) rods. In doing so, we consider
ρ ≪ 1, but ρ ≠ 0, such that the expansions (29) and (28)
can still be considered valid, and the derivatives A0 and B0
are well defined (these derivatives are not well defined at
the common points).
We start by considering a section of a spacelike rod (axis)

such that the vector field reads

v ¼
�
−
AðzÞ3=2

ρ2
;

ffiffiffiffiffiffiffiffiffi
AðzÞp
ρ

A0ðzÞ
�
: ð36Þ

Notice how vρ < 0, i.e., the vector field is always pointing
toward the axis. Regularity of the Ricci scalar also implies
that near a common point one has AðzÞ ≃�ðz − z�Þn; n ≥ 2
(here z� denotes a common point), with the sign determined
by both the parity of n∈N and the location of the rod with
respect to z� (i.e., whether it is above or below the latter).
However, the limiting behavior to the common point is
unaffected by the specific power n considered. For the sake
of simplicity, we shall focus on the simplest case n ¼ 2 in
our computations, while keeping in mind that the results are
valid for any n > 2. Using the regularity restriction above,
the normalized vector field reads

v
v
≃
� jz− z�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ρ2þðz− z�Þ2
p ;

2ρjz− z�j
ðz− z�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ2þðz− z�Þ2

p �
: ð37Þ

Therefore, it is clear that in the limit of approaching the
common point z� from the axis side,

v
v
¼ ð0;�1Þ; z → z�� ; ð38Þ

where zþ� (z−� ) denotes whether z� is approached from
positive (negative) values of the coordinate z. Equation (38)
is then stating that if z� is being approached from
above (z > z�), then v points upward. However, if z� is
approached from below (z < z�), then v points downward.
Since v points toward the axis when very near the rod, then
these limits correspond to a rotation of −π=2 and þπ=2,
respectively, as the common point is reached from the
axis side.
Consider now that we approach z� from the side of a

timelike rod (BH). Then the vector field reads

v
v
≃
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2BðzÞ

p ;−
ρB0ðzÞffiffiffiffiffi
c2

p
BðzÞ3=2

�
: ð39Þ

Notice now how vρ > 0, i.e., the vector field points always
away from the axis. The function B is subject to the same
regularity conditions as A, so we assume B ≃ ðz − z�Þ2 and
obtain

v
v
≃
� jz − z�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ρ2 þ ðz − z�Þ2
p ;−

2ρðz − z�Þ
jz − z�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ2 þ ðz − z�Þ2

p �
:

ð40Þ

Therefore,

v
v
¼ ð0;∓1Þ; z → z�� : ð41Þ

This conclusion is actually consistent with the results of
(38): the limiting approach to a common point from below
in the neighborhood of a spacelike rod (axis) must be
compared with the limit to that same common point, but
from above near a timelike rod (BH) and vice versa. This
comparison is important, since the field v should have a
well-defined limit at each common point, regardless of the
rod from which it is being approached.
Let us examine the path along the contour segment that

runs down through the z axis. We begin at a spacelike rod
(axis) where the vector points toward the axis. As we
progress, we eventually arrive at a common point, which is
approached from above. As this common point is
approached, according to Eq. (38), the vector points
upward and has rotated by −π=2. Moving beyond this
common point, we find ourselves near a timelike rod (BH)
where the vector field must point away from the axis, with
vρ > 0. Consequently, it will undergo an additional rotation
of −π=2. This implies that the total circulation of the vector
when crossing this initial common point is −π. It is
important to note that, based on our assumption, all
timelike rods (BHs) are finite as they extend down the
axis. Thus, we will encounter a new common point further
down. At this subsequent common point, the vector
transitions from pointing away from the axis to pointing
downward, as dictated by (41), corresponding to a rotation
of −π=2, since vρ > 0. Upon crossing this common point,
we return to a spacelike rod (axis), where the vector field
changes from pointing downward to pointing toward the
axis with vρ < 0. Consequently, the vector field gains an
additional winding of −π=2, totaling −π after crossing this
common point, similar to the previous transition from a
spacelike to timelike rod. This analysis allows us to
conclude that the winding number associated with a single
timelike rod (representing a single topologically spherical
BH), delimited by two common points, is w ¼ −1, since
the vector v undergoes a rotation of −2π.

D. Total topological charge

Since the first and last rods are spacelike and we have N
horizons, then one has 2N common points, and the vector
field rotates 2Nπ clockwise. Since the contour is being
traversed in the counterclockwise direction, this gives a
contribution to the winding number of
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wI1
¼ 1

2π

I
I1

dΩ ¼ −N: ð42Þ

As discussed previously, asymptotic flatness implies that
this is the only contribution to the winding number, then the
total winding number is

w ¼ 1

2π

I
C
dΩ ¼ −N: ð43Þ

Since the total topological charge counts the number of
LRs, we conclude that there is at least one standard LR per
BH (and rotation sense). So, similar to the case of multiple
toroidal BHs, LRs around spherical BHs are robust against
the nonlinear interaction between multiple BHs and coexist
regardless of the separation between the horizons.
As an illustration of this result, we plot the vector field v

for an analytical solution containing two event horizons in
equilibrium obtained in [56] which satisfies all our assump-
tions. This is a Kaluza-Klein solution corresponding to the
dimensional reduction of a five-dimensional vacuum sol-
ution of Einstein’s equations. The two BHs in the solution
are either purely electric or purely magnetic and are
balanced by the dilaton field. This solution is composed
of five rods: three spacelike and two timelike (i.e., the
BHs), which are determined by four fixed common points.
Additionally, one needs to specify two extra points along
the axis to fully specify a particular solution in this model.
Thus, in our notation, the solution is specified by a
set fz1; a1; a2; a3; a4; z2g.
In Fig. 7, it is possible to verify that the vector field has

two critical points, as expected from the result derived
earlier. Moreover, it is possible to appreciate the change on
its behavior along the z axis depending on the nature of the
rod, pointing outward for event horizons and inward for
the rotation axis. In the bottom panel, it is clear that the
circulation of the vector field around the critical points
yields ω ¼ −1, corresponding to a standard LR (the same
occurs for the other LR).

VII. COMBINING TOPOLOGICALLY SPHERICAL
AND TOROIDAL BHs

Since the rod structure can coexist with toroidal BHs,
which do not intersect the symmetry axis, it means that it is
possible to combine the two previous results with multiple
BHs into a single theorem: consider a 3þ 1-dimensional
spacetime that is asymptotically flat, stationary, and circular
that is harboring n toroidal BHs and N topologically
spherical BHs, all sharing a common axis of symmetry.
Then, as implied by the previous results, there will be at
least one standard LR per BH, i.e., at least nþ N LRs. Any
additional LRs, if they exist, must come in pairs with
opposite charges. This result is curiously stating that LRs
satisfy a de facto superposition principle, although the
interaction between the BHs is fully nonlinear.

VIII. DISCUSSION AND FINAL REMARKS

In this work we have generalized the theorem put
forward in [3] by dropping some of its assumptions,
namely, the number of BHs and their topology.
Since we preserved the assumption of axial symmetry,

the only other possible option for the topology of the
horizon (beyond spherical) is toroidal topology. We first
considered spacetimes with a single toroidal BH and
reached the conclusion that they satisfy a result similar
to their spherical counterparts, i.e., each BHmust possess at

FIG. 7. Vector field v for the double BH spacetime of [56] with
parameters z1 ¼ −7, a1 ¼ −6, a2 ¼ −2, a3 ¼ 2, a4 ¼ 6, z2 ¼ 7.
The critical points, corresponding to the LRs are represented as
the red points. Bottom: corresponds to a region close to the
“upper” LR.
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least one standard LR per rotation sense, and if additional
ones exist they must come up in pairs with opposite
winding numbers.
Is this result dependent on the number of BHs? It is

intuitive that when two BHs are very far apart they interact
weakly, and so it is not unexpected that each BH would
have its own LR in that situation. However, when the BHs
are much closer together, and nonlinear interactions
become relevant, it is nontrivial whether individual LRs
would survive the interaction. However, by further general-
izing the result with multiple toroidal BHs it is possible to
conclude that they actually do survive. So LRs obey a
curious sort of superposition principle that holds in a
nonlinear regime.
Motivated by this result, we then extended the original

setup of [3] into a collection of collinear (and topologically
spherical) BHs, all aligned along the symmetry axis. Once
again it was possible to assert that each BH contributes with
a standard LR, at least, to the spacetime.
Finally, by combining both results, one can conclude that

the superposition still holds regardless of the topology and
number of the horizons, as long as the spacetime sym-
metries are maintained. Meaning that each BH is intrinsi-
cally connected to a LR.
As a by-product of our analysis, we also studied the line

element proposed in [47], describing a spacetime with a
toroidal BH satisfying the assumptions of the theorem. The
study focused mainly on the nature of the horizon and on its
shadow. The shadows produced here are, to the authors’
knowledge, the first ones produced for a fully four-dimen-
sional toroidal BH, despite lensing images of five-dimen-
sional toroidal BHs having already been reported [57].
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APPENDIX A: TOROIDAL COORDINATES

Toroidal coordinates fτ; σ;ϕg are a three-dimensional
orthogonal coordinate system [61], resulting from the
rotation of the two-dimensional bipolar coordinate system
around the central axis that separates the two foci, F1 and
F2. These foci become a ring of radius a on the XY plane of
the Cartesian coordinate system fX; Y; Zg, where the Z
axis is the symmetry axis. The toroidal coordinates lie on
the following ranges, τ > 0;−π < σ < π; 0 < ϕ < 2π. The
toroidal coordinates are related to the Cartesian ones via the
relations

X ¼ a
sinh τ

cosh τ − cos σ
cosϕ;

Y ¼ a
sinh τ

cosh τ − cos σ
sinϕ;

Z ¼ a
sin σ

cosh τ − cos σ
ðA1Þ

and to cylindrical coordinates via

ρ ¼ a
sinh τ

cosh τ − cos σ
;

Z ¼ a
sin σ

cosh τ − cos σ
;

ϕ ¼ ϕ: ðA2Þ

It is helpful to study the coordinate surfaces on this
coordinate system. The surfaces of constant ϕ correspond
to the planes

Y ¼ X tanϕ: ðA3Þ

The coordinates of constant σ correspond to spheres of
different radii

ðX2 þ Y2Þ þ ðZ − a cot σÞ2 ¼ a2

sin2 σ
; ðA4Þ

which all pass through the focal ring, X2 þ Y2 ¼ a2, but are
not concentric. The surfaces of constant τ are noninter-
secting tori of different radii

Z2 þ ðρ2 − a coth τÞ2 ¼ a2

sinh2 τ
; ðA5Þ

which surround the focal ring.
In toroidal coordinates, the Minkowski spacetime reads

ds2 ¼ −dt2 þ sinh2 τ
ðcos σ − cosh τÞ2 dϕ

2 þ dτ2 þ dσ2

ðcos σ − cosh τÞ2 :

ðA6Þ

It should be noted that spatial infinity in this coordinate
system is located at τ ¼ 0, σ ¼ 0.
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APPENDIX B: BRIEF STUDY OF THE
TOROIDAL BH METRIC

This appendix is devoted to the study of some properties
of the metric (23), originally proposed in [47] in ringlike
coordinates fx; yg, with the transformation to toroidal-like
coordinates being

x ¼ − cos σ; y ¼ − cosh τ: ðB1Þ

The metric (23) was written using a combination of both
ring and toroidal-like coordinates.
Regarding the regularity of the spacetime, the expres-

sions for some curvature invariants, namely, the Ricci scalar
and Kretschmann invariant, were analyzed, and we con-
cluded that, as long as the Λ is smooth (with smooth
derivatives as well) and a strictly positive function, then the
line element (23) appears to be regular on and outside the
horizon. The explicit expressions are fairly long and not
particularly elucidating and will not be displayed here.
Below, we further aim to discuss (i) the horizon

embedding and geometry, (ii) the nature of the Killing
horizon, (iii) the asymptotic behavior, and (iv) the BH
shadow and lensing images of the spacetime.

1. The geometry of the Killing horizon

The line element (23) contains a Killing horizon at
y ¼ −1=λ. What is the geometry of this surface? By
absorbing the scale factor R in a metric redefinition, the
spatial cross sections of the horizon are described by the
line element

ds2H ¼ 1

ð1λ − cos σÞ2 dσ
2 þ 1þ λ

Λjy¼−1=λ
dϕ2: ðB2Þ

Since 0 < λ < 1 and the function Λ is strictly positive, the
metric (B2) has no apparent singularities and is everywhere
Euclidean.
We can consider the isometric embedding of this surface

in Euclidean 3-space E3, in order to have further insights on
its geometry. Standard methods of differential geometry
found in [45] will be applied in our computations. We start
by noting that the line element (B2) describes a surface of
revolution. Such surfaces are formed by revolving a given
curve α around the axis of revolution; the curve α is known
as the generating curve. For a generic αðσÞ ¼ ðXðσÞ; YðσÞÞ,
where σ parametrizes the curve, a possible surface of
revolution is

Sðσ;ϕÞ ¼ ðXðσÞ cosϕ; XðσÞ sinϕ; YðσÞÞ: ðB3Þ

Assuming the surface S is defined in E3, the induced metric
on it is

ds2ind ¼ ðX02 þ Y 02Þdσ2 þ X2dϕ2: ðB4Þ

By comparing (B4) with (B2), we obtain

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ

Λjy¼−1=λ

s
; ðB5Þ

Y 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	
1
λ − cos σ



2
− ð1þ λÞ
4Λj3y¼−1=λ

ðΛ;σjy¼−1=λÞ2
vuut : ðB6Þ

For the choice of Λ used in the main text, i.e., in (24), Y
increases monotonically, Y 0 > 0. This means that the
generating curve α and the corresponding surface of
revolution S are both not closed, see Fig. 8.
The embedding at first sight appears to suggest that the

horizon surface is not compact. However, one can see that
S is indeed a compact surface by recalling that there exists
an identification σ ∼ σ þ 2π, joining together the points at
the top and bottom of S, see Fig. 8.
This apparent problem is not unique to the metric (B2).

Consider, for example, the flat torus, whose metric is
ds2 ¼ dx2 þ dy2, where fx; yg are the usual Cartesian
coordinates, but with the identification ðx; yÞ ∼ ðxþ 1; yÞ∼
ðx; yþ 1Þ. The isometric embedding of this torus will also
not be evidently compact: in fact, it will be an open cylinder

FIG. 8. The isometric embedding of the horizon in (23), for
λ ¼ 1=2; R ¼ 1;M ¼ 1. The red lines indicate the set of points
where the Gaussian curvature of the surface vanishes.
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directed along the symmetry axis. However, similar to
before, an identification of the open ends has to be
considered. This is also less surprising once one notices
that the Gaussian curvature of the flat torus vanishes
everywhere. Since the isometric embedding preserves the
Gaussian curvature, it is then clear that the embedding of
the flat torus must also have vanishing Gaussian curvature
everywhere, and so it cannot be a usual toroidal surface in
E3. These statements assume that the embedding is at least
C2 smooth.

2. Nature of the horizon

Does the metric (23) describe a spacetime with a toroidal
BH? To assess if that is indeed the case, we shall examine
whether the horizon at y ¼ −1=λ is compatible with an
“apparent horizon,” i.e., whether the expansion of outward-
pointing, future directed, null geodesic congruences at the
horizon’s surface vanishes or not.
To study such congruences, a typical approach is usually

to move to horizon-penetrating radial null coordinates.
However, in the spacetime (23) it is hard to construct such a
coordinate system, since toroidally outgoing null curves,
i.e., integral lines of the y coordinate, are (in general) not
geodesics, and there is no known coordinate chart for
which the geodesic equations decouple and allow full
integrability.
Nevertheless, we can overcome this challenge by virtue

of a limiting procedure, where we consider the following
toroidally outgoing null curves, which are not necessarily
geodesics, in the coordinate system ðt; σ;ϕ; yÞ:

v ¼
�
1; 0; 0;

ffiffiffiffiffiffiffiffi−gtt
gyy

r �

¼
�
1; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
ð−y − cos σÞΔðyÞ

Rð1 − λ cos σÞ
�
; ðB7Þ

where we have defined ΔðyÞ≡ 1þ λy. These curves are
future directed and point outward with respect to closed
toroidal surfaces, since vy > 0. The parallel transport
equation yields

vμ∇μvν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
ð−y − cos σÞðΔΛ;y − Δ0ΛÞ
Rð1 − λ cos σÞΛ vν

þ sin σΔ
ð−y − cos σÞ

Rð1 − λ cos σÞΛ δνσ: ðB8Þ

At the horizon, the geodesic equation is satisfied, and the
vector field v is tangent to a congruence of outgoing null
geodesics, with

vμ∇μvνjH ¼ fHvνjH; fH ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1

λ2
− 1

r
Δ0jH
Rλ

: ðB9Þ

The expansion of this congruence is then

Θ ¼ ∇μvμ − fH

¼ Δ
2Λðyðy − cos σÞ − 2Þ þ ðy2 − 1Þðyþ cos σÞΛ;y

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
ð1 − λ cos σÞΛ

:

ðB10Þ

This expression is only valid for geodesics at the horizon,
where Δ ¼ 0, and thus we have a vanishing null expansion
Θ ¼ 0 at the Killing horizon, which is indeed consistent
with an apparent horizon. Interestingly, the surface gravity
can also be computed from this procedure as the vector
field (B7) reduces to the timelike Killing vector field at the
horizon, so fH ¼ −2κ and κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
=2Rλ.

3. Spatial infinity

As discussed in the main text, spatial infinity corre-
sponds to a singular point in the coordinate system used for
the metric (23). In this section, we shall expand further on
this point.
Furthermore, one should verify that the spatial infinity is

topologically spherical and does not share the same top-
ology as the event horizon. To do so, one performs a
coordinate transformation to the spherical-like coordinates
fr̃; θ;ϕg, using the flat space relations

cos σ ¼ r2 − R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − R2Þ2 þ 4r2R2 cos2 θ

p ; ðB11Þ

y ¼ −
r2 þ R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 − R2Þ2 þ 4r2R2 cos2 θ
p ; ðB12Þ

r ¼ r̃þM
2
cos ð2θÞ: ðB13Þ

Doing so, and taking the asymptotic limit r̃ → ∞, the line
element becomes

ds2 ¼ −
�
1 −

2M
r̃

�
dt2 þ

�
1 −

2M sin2 θ
r̃

�
dr̃2

þO
�
1

r̃

�
dθdr̃þ r̃2dθ2 þ r̃2 sin2 θdϕ2: ðB14Þ

This means that the metric approaches Minkowski space-
time at infinity, and that the Komar mass of the spacetime at
spatial infinity is indeed M. However, the gravitational
curvature decays slower than in the Schwarzschild solution.

4. Shadows of a toroidal BH

In this section, we provide further details on how the
lensing images of the toroidal BH, displayed in Fig. 5, are
obtained. The starting point will be to fix the observer’s
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position and construct a local coordinate system (for
details, see, e.g., [2,51]). In order to produce images
comparable to previous results in the literature, we set
our observer in r ¼ const hypersurfaces, where by
Eqs. (B11) and (B12) the coordinate r is given by

r ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y − cos σ
yþ cos σ

r
: ðB15Þ

The images obtained will be virtually independent of the
observer’s azimuthal ϕ coordinate, due to axial symmetry.
However, the images will depend on the inclination of the
observer with respect to the equatorial plane, determined by
the latitude angle θ according to the flat space relations
(B11) and (B12), which yield

cos θ ¼ sin σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − cos2 σ

p : ðB16Þ

The observation frame is defined by a vector basis
fêðtÞ; êðϕÞ; êð1Þ; êð2Þg at the observer’s location with a
Minkowski normalization,

êðμÞ · êðνÞ ¼ ηðμÞðνÞ; ðB17Þ

where ηðμÞðνÞ is the Minkowski metric. Both êðtÞ and êðϕÞ are
adapted to the Killing coordinates,

êðtÞ ¼
∂tffiffiffiffiffiffiffiffi−gtt

p ; êðϕÞ ¼
∂ϕffiffiffiffiffiffiffigϕϕ

p : ðB18Þ

In contrast, the vector êð1Þ will be chosen as the “normal
direction” to r ¼ const hypersurfaces, defined via the
1-form,

τ ¼ Adr ¼ Aðrydyþ rσdσÞ; ðB19Þ

where ry ≔ ∂r=∂y and rσ ≔ ∂r=∂σ, and whose expressions
are

ry ¼ R
cos σ

ðcos σ þ yÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ cos σ
y − cos σ

r
;

rσ ¼ R
y sin σ

ðcos σ þ yÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ cos σ
y − cos σ

r
: ðB20Þ

The vector êð1Þ is then defined via the metric mapping of
the 1-form τ into a vector, i.e., êμð1Þ ¼ gμντν, which yields

êð1Þ ¼ A

�
ry
gyy

∂y þ
rσ
gσσ

∂σ

�
: ðB21Þ

Further requiring that êð1Þdr > 0 ⇒ A > 0, i.e., the
vector êð1Þ is pointing outward, then leads to

A ¼
�
r2y
gyy

þ r2σ
gσσ

�−1=2
: ðB22Þ

The remainder vector êð2Þ is partially fixed by the
Minkowski normalization conditions. First, one writes

FIG. 9. Shadows of the BHs described by Eq. (23), with
λ¼ 1=2, R ¼ 1, M ¼ 1, for the inclinations θ ¼ f0°; 3°; 7°; 10°g
(from top to bottom). The images on the left have a colored
celestial sphere, while the ones on the right depict only the
shadows.
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êð2Þ ¼ ζ∂y þ χ∂σ and makes the choice χ < 0. Then,
solving for χ and ζ yields

ζ ¼ − rσχ
ry

; χ ¼ −jryjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gyyr2σ þ gσσr2y

q : ðB23Þ

The components of the locally measured 4-momentum,
pðaÞ ¼ êμðaÞpμ, are

pðtÞ ¼
Effiffiffiffiffiffiffiffi−gtt

p ;

pðϕÞ ¼
Lffiffiffiffiffiffiffigϕϕ

p ;

pð1Þ ¼ A
�
py

ry
gyy

þ pσ
rσ
gσσ

�
;

pð2Þ ¼ ζpy þ χpσ: ðB24Þ

The quantities E and L above represent (respectively) the
conserved energy and angular momentum of the photon
along each light ray. Given the relations above, we can then
connect the locally measured 4-momentum in terms of
observation angles α, β defined within the frame

pðtÞ ¼ p;

pðϕÞ ¼ p cos α sin β;

pð1Þ ¼ p cos α cos β;

pð2Þ ¼ p sin α: ðB25Þ

For the purposes of numerically integrating the null geo-
desics, it is useful to express the 4-velocity components
ẋμ ¼ gμνpν in terms of the locally measured 4-momentum.
The nontrivial components yield

ẏ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gσσr2yþgyyr2σ

q �
rσsignðryÞsinαþ ry

ffiffiffiffiffiffiffi
gσσ
gyy

r
cosαcosβ

�
;

σ̇¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gσσr2yþgyyr2σ

q �
−jryjsinαþ rσ

ffiffiffiffiffiffiffi
gyy
gσσ

r
cosαcosβ

�
:

ðB26Þ

These equations can be propagated backward in time from
the observer’s position in order to obtain the lensing image
and shadow of the BH. We display in Fig. 9 some
additional images with different inclinations θ.
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