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In this paper, we have conducted a thorough investigation into the shadow characteristics exhibited by
the axially symmetric Finslerian extension of a Schwarzschild black hole and supplementary numerically
simulated the motion behavior of photons near the black hole with respect to varying Finsler parameter ϵ
and observation inclinations θo. In this spacetime, the apparent shape and size of the black hole shadow
remain the same as the one in the Schwarzschild black hole, regardless of changes in the Finsler parameter
ϵ. However, the apparent position of shadow in the observer’s sky plane appears to shift along the
horizontal axis, and the distance moved is positively correlated with the value of the Finsler parameter ϵ.
Interestingly, with a fixed value of ϵ, the displacement of the visual position of shadow is rectified as the
observation angle decreases. In addition, it is demonstrated that the motion behavior of photons around the
axially symmetric Finslerian extension of a Schwarzschild black hole has a greater degree of deflection
than a Schwarzschild black hole, although their shadows are in some cases consistent in shape, size, and
apparent position. These results can serve as a valuable tool in distinguishing the axially symmetric
Finslerian extension of a Schwarzschild black hole from its counterparts in general relativity.
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I. INTRODUCTION

After formulating the theory of general relativity (GR),
Einstein postulated the existence of immensely compact
celestial objects in our Universe, specifically the black hole.
It is a region of spacetime with an incredibly potent
gravitational field, whereby any matter that crosses its
event horizon, including light, will be inexorably drawn
into it. In 1965, the presence of a black hole was confirmed
by the theoretical calculation of Penrose [1]. In 2015, the
Laser Interferometer Gravitational Wave Observatory
(LIGO) detected the gravitational wave signal, resulting
from the merger of two black holes, signifying a ground-
breaking moment in human history as the existence of
black holes is confirmed [2–4]. In a landmark achievement,
the Event Horizon Telescope Collaboration (EHT) unveiled
images of the black hole situated at the core of radio galaxy
M87* [5–10] and that of Milky Way’s center Sagittarius A�
[11–16], providing an unprecedented glimpse into these
mysterious celestial objects. Consequently, human explo-
ration of the Universe and its enigmatic black holes has
entered a novel epoch.

One of the most intriguing aspects of black holes is the
shadow, which has been a subject of extensive research
over time. The initial theoretical introduction regarding the
black hole shadow was proposed by Synge, who demon-
strated that the shadow of a spherically symmetric black
hole is a standard circle, thereby implying that the angular
diameter of the shadow can be expressed as a function
of the black hole mass and the radius coordinates of
the observer’s position [17]. Subsequently, Bardeen utilized
the notion of a critical curve to delineate the shadow of the
black hole, namely the inner region of a critical curve, and
obtained the radius of the shadow of a Schwarzschild black
hole r ¼ 3

ffiffiffi
3

p
M (M is the mass of the black hole) [18,19].

For the Kerr black hole, an observer located on the axis of
rotation would still perceive the black hole shadow as a
circular void, while an observer situated on the equatorial
plane would witness a gradual transformation of the
shadow from a disklike shape to that resembling a D
shape with increasing values of the rotation parameter.
When investigating the shadow of a phantom black hole
and considering the circumstances in which photons are
coupled to the Weyl tensor, Huang et al. discovered that the
coupling will cause photons with different polarization
directions to travel along different paths, resulting in a
double shadow of a black hole [20]. Through the study of
black hole shadows with mass vector fields, Cunha et al.
have discovered that the shadow presents a novel conical
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shadow in the case of specific parameters [21]. In [22],
Wang et al. investigated the shadow of the Konoplya-
Zhidenko rotating black hole and derived conditions for the
emergence of the D shape and conical shadows. Certainly,
extensive research has been conducted on the impact of
varying observer positions on the profile of a black hole
shadow [23]. In addition, the researches on black hole
shadow have achieved a number of significant progress,
such as the black hole event horizon, the photon sphere and
the shadow radius meet a series of inequalities [24], the
relevant parameters of the black hole can be extracted
through the shadow radius [25], among other findings can
be referred to [26–34].
The investigation of black hole shadows not only

uncovers the fundamental characteristics of black holes,
but also serves as an effective means to probe the character-
istics of spacetime. Currently, most theoretical investiga-
tions into black hole shadows are situated within the
framework of the theory of general relativity or various
modified theories of gravity, with adopting Riemannian
geometry as their background. Finsler geometry, a natural
extension of Riemannian geometry, is commonly acknowl-
edged as a type of Riemannian geometry that does not
impose the quadratic constraints [35]. Hence, Finsler geom-
etry encompasses Riemannian geometry as a special case
and offers higher degrees of freedom. Since the Finslerian
extension of a given Riemannian spacetime possesses a
smaller symmetry than the original Riemannian space-
time [36,37], Finsler geometry is employed to elucidate
some fundamental theories, such as the violation of Lorentz
invariance [38–42], the anisotropy of the Universe, etc.
[43–49]. In 1993, Rutz extended the vacuum field equations
of general relativity to Finsler spacetime, resulting in the
derivation of Finslerian gravitational field equations [50].
Given the preservation of symmetry in Finsler spacetime, the
axially symmetric Finslerian extension of a Schwarzschild
solution can be derived as a non-Riemannian exact solution
to the vacuum field equation in Finsler geometry [51]. In
order to maintain clarity in this paper, we will refer to this
type of black hole as the Finslerian Schwarzschild black hole
for short in following of the paper. Then, the Finsler
Reissner-Nordström solution was derived, which is asymp-
totic to the Finsler spacetime with normal flag curvature at
infinity [52]. Based on the study of the quasinormal modes
of a scalar and an electromagnetic field in Finslerian
Schwarzschild spacetime, it is found that the spherical
symmetry of the black hole is broken, and the axial
symmetry is displayed [53], a phenomenon also observed
in Finsler Reissner-Nordstrom spacetime [54]. Additionally,
the orbits of the Finslerian Schwarzschild black hole have
been tested and constrained by the astronomical observation
data [55]. The shadow of a black hole harbors copious
amounts of information. As a universal approach for
exploring the properties of spacetime, the primary objective
of thiswork is to comprehend the structural characteristics of

Finsler spacetime from the perspective of shadow. In the
context of Finslerian Schwarzschild spacetime, we examine
the geodesic motion of photon surrounding a black hole and
explore the apparent shadow of the black hole that can be
obtained by the observer. In addition, the photon trajectory
near the Finslerian Schwarzschild black hole is numerically
simulated with the different observation angles and Finsler
parameter ϵ. In particular, we expect to gain profound
insights into the geometric structure of the Finsler space-
time and effectively differentiate it from the Schwarzschild
case.
The remainder of the present paper is outlined as follows.

In Sec. II, we will provide a brief introduction to Finslerian
Schwarzschild spacetime and investigate the photon
motions on this spacetime. In Sec. III, the celestial
coordinates of distant observers are established in the
Finslerian Schwarzschild spacetime. The apparent position
and shape of the black hole shadow in the sky plane of the
observer are studied under different Finsler parameter ϵ and
observation inclinations θo. Section IV ends with a brief
discussion and conclusion.

II. BRIEF INTRODUCTION OF THE FINSLERIAN
SCHWARZSCHILD BLACK HOLE

AND ITS PHOTON MOTIONS

As a natural extension of Riemann geometry, Finsler
geometry liberates itself from the quadratic constraint on
the form of metric [35]. In contrast to Riemann geometry,
where the inner product is solely defined on the tangent
bundle, Finsler geometry defines its inner product based on
the unique Finsler structure F. When λ > 0, the Finsler
structure F demonstrates the remarkable property that
Fðx; λyÞ ¼ λFðx; yÞ, in which x∈M represents position
(M is the Finsler manifold), and y≡ dx=dτ represents
velocity (τ is the proper time), respectively. The Finslerian
metric can be described as [35]

gμν ≡ ∂

∂yμ
∂

∂yν

�
1

2
F2

�
: ð1Þ

The Finslerian spacetime can be characterized by the
Finsler structure F, which is not positive definite at every
point of the Finsler manifold. The causal structure of
Finsler spacetime is determined by F2, and in the case
where it is quadratic in y, the Finslerian metric reduces to a
Riemannian metric. When F assumes a positive, zero, or
negative value, it corresponds to spacelike curves, null, or
timelike curves, respectively. As stated in [50], the vacuum
field equation of Finslerian gravity is characterized
by the vanishing of the Ricci scalar (Ric ¼ 0) and is
shown as

Ric¼ 1

F2

�
2
∂Gμ

∂xμ
−yλ

∂
2Gμ

∂xλ∂yμ
þ2Gλ ∂

2Gμ

∂yλ∂yμ
−
∂Gμ

∂yλ
∂Gλ

∂yμ

�
: ð2Þ
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Here, Gμ is geodesic spray coefficients, expressed as

Gμ ¼ 1

4
gμν

�
∂
2F2

∂xλ∂yν
yλ −

∂F2

∂xν

�
: ð3Þ

Here, we must point out that there are various generaliza-
tions of Einsteins gravitational field equations in Finslerian
gravity, and the vacuum field equation proposed in Ref. [50]
cannot be derived through an action principle [56]. In [51], a
Finslerian Schwarzschild solution was derived from the
Finslerian gravitational field equations, which distinguishes
itself from the Schwarzschild solution in a two-dimensional
subspace. The modified form of this solution, with geom-
etrized units ðG ¼ c ¼ 1Þ, is as follows:

F2 ¼ −fðrÞytyt þ fðrÞ−1yryr þ r2F̄2; ð4Þ

in which

fðrÞ ¼ 1 −
2M
r

: ð5Þ

In the above, M is the mass of the black hole, while F̄
represents a two-dimensional Finsler space endowed with
positive constant flag curvature. One of the major
differences between Riemannian geometry and Finsler
geometry is that Finsler spaces with constant flag curvature
are not equivalent to each other. In this work, we con-
template a Finsler space F̄ that takes on the following
configuration [51]:

F̄¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ϵ2 sin2θÞyθyθþsin2θyφyφ

p
−ϵsin2θyφ

1−ϵ2 sin2θ
: ð6Þ

F̄ introduces a departure from spherical symmetry while
preserving axial symmetry. This characteristic has already
been verified in the extended black hole within this two-
dimensional Finsler space through the quasinormal modes
[53,54]. The term ϵ represents the deformation parameter of
Finsler space that characterizes the deviation between
Finsler space F̄ and Riemannian two-sphere, satisfying
the condition 0 ≤ ϵ < 1. It is evident that in the case of
ϵ ¼ 0, the Finslerian Schwarzschild spacetime reverts back
to Schwarzschild spacetime.
To scrutinize the motion behavior of photons near the

Finslerian Schwarzschild black hole is imperative in order
to analyze its shadow. As the Finsler structure F̄ remains
constant along the geodesic, and the motion of photons
satisfies the Euler-Lagrangian equation [57], that is

d
dτ

∂F2

∂yμ
−
∂F2

∂xμ
¼ 0: ð7Þ

The general form of geodesic equation is

d2xμ

dτ2
þ 2Gμ ¼ 0; ð8Þ

which preserves the Finsler structure. By exploiting the
unique symmetry of Finslerian Schwarzschild spacetime
[51], we can derive four constants of motion from the
geodesic equation (8), which are

ṫ ¼ E
fðrÞ ; ð9Þ

ṙ2 ¼ E2 − fðrÞK
2

r2
; ð10Þ

θ̇2 ¼ K2

r4
sin2 θðK − ϵJÞ2 − J2

sin2 θðK − ϵJÞ2 ; ð11Þ

φ̇ ¼ K
r2
ϵ sin2 θðK − ϵJÞ þ J

sin2 θðK − ϵJÞ : ð12Þ

Here, the overdot denotes differentiation with respect to the
proper time τ. The conserved quantities E and J come from
the Killing vector of the Finslerian Schwarzschild black
hole [51], representing the energy and angular momentum
of the photon, respectively. The constant K stems from
geometric structure (6) of Finslerian Schwarzschild space-
time [55]. The behavior of photons in close proximity to the
black hole can be analyzed utilizing Eqs. (9)–(12), thereby
enabling a more specialized examination.

III. SHADOW OF THE FINSLERIAN
SCHWARZSCHILD BLACK HOLE FOR
OBSERVERS AT INFINITE DISTANCE

The photon emitted from the source travels along the
geodesic path as it passes near the black hole, and any
photon absorbed by the black hole without reaching the
observer’s position creates a dark region in the sky plane of
the observer, namely the black hole shadow. One can
determine the apparent position of black hole shadow on
the sky plane of the observer by introducing the following
celestial coordinates [58–62]:

α ¼ lim
ro→∞

�
−r2o sin θo

dφ
dr

����
ðr¼ro;θ¼θoÞ

�
; ð13Þ

β ¼ lim
ro→∞

r2o
dθ
dr

����
ðr¼ro;θ¼θoÞ

; ð14Þ

in which the term ro represents the distance between the
observer and black hole, while θo denotes the inclination
angle between the observer’s sight line and the axis of black
hole; see Fig. 1. Here, the coordinates ðα; βÞ represent the
apparent perpendicular distance of the image as seen from
the axis of symmetry and the apparent perpendicular
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distance projected on the equatorial plane, respectively,
and the line connecting the observer and the origin as the
γ− axis, with its positive direction as shown in Fig. 1.
Without loss of generality, we can choose the φo ¼ 0 so
that the y and α axis recombine.
Here, we must point out that the Finslerian

Schwarzschild spacetime (4) does not approach Minkowski
spacetime at infinity. The physical reasons why we choose
the celestial coordinates (13) and (14) for the observers at
infinity are listed as follows. In the local reference frame of
an observer, the Lorentz violation in the vicinity of Earth is
considered to be approximately negligible, thereby pre-
serving the Minkowski spacetime property in close prox-
imity to Earth [63]. In astrophysics, the measurement of
celestial positions and angles primarily relies on the
application of spherical trigonometry, which also serves
as a crucial scientific tool in astronomical observation
[64,65]. In the context of Finslerian Schwarzschild space-
time, Eqs. (13) and (14) can be reduced by utilizing the null
geodesic Eqs. (10)–(12), which yield

αFS ¼ −
ϵKðK − ϵJÞ sin2 θo þ KJ

E sin θoðK − ϵJÞ ; ð15Þ

βFS ¼ �K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK − ϵJÞ2 sin2 θo − J2

p
E sin θoðK − ϵJÞ : ð16Þ

Hence, Eqs. (15) and (16) play a crucial role in determining
the apparent position of the Finsler-Schwarzschild black
hole shadow in the sky plane of observer (α – β plane). By
combining Eqs. (15) and (16), one can obtain that

�
αFS þ

ϵK sin θo
E

�
2

þ β2FS ¼
�
K
E

�
2

: ð17Þ

In practice, a closed curve divides the observed shape
into two regions based on whether or not the optical
geodesic intersects the event horizon of the black hole.
This curve is called the apparent boundary or critical curve,
and the inner region of the apparent boundary is defined as
the black hole shadow. The critical curve ultimately
converges at the location of photon sphere. By utilizing
the condition for the position of the photon ring, where
ðṙ ¼ 0; ∂rṙ2 ¼ 0Þ, we can derive

E2

1 − 2M=r
¼ K2

r2
; ð18Þ

and

r ¼ 3M: ð19Þ

From Eqs. (18) and (19), one can obtain K
E ¼ 3

ffiffiffi
3

p
M, which

is useful for Eq. (17). It reveals that the shadow of the
Finslerian Schwarzschild black hole that appears in the
observer’s sky is a circle with radius rFS ¼ 3

ffiffiffi
3

p
M and its

center at ð− ϵK sin θo
E ; 0Þ. Thus, one can find that the shape of

the shadow of the Finslerian Schwarzschild black hole is
the same as the one in the Schwarzschild black hole. The
major difference between the shadow of the Finslerian
Schwarzschild black hole and the Schwarzschild black hole
comes from the center of shadow. In the following sub-
section, we will test this theoretical results from numerical
approach.

A. The observation position is located
on the equatorial plane

Due to the reversibility of the light path, one can simulate
the trajectories of light rays from the observer at infinity to
the vicinity of the Finslerian Schwarzschild black hole
within the framework of geometric optics, namely the
backward ray-tracing code [59,60]. A significant amount of
light rays are emitted from the observer and propagate in
all directions, experiencing gravitational influence from the
black hole as they traverse through spacetime. Some of the
light that is extremely close to the black hole will be
captured by the black hole, thereby giving rise to the
formation of the black hole shadow. Hence, we are
concerned with the light ray that can be received by the
observer. During the process of conducting numerical
simulations, we set the position of the observer at
ro ¼ 200M, as 200M can be considered effectively infinite
compared to the gravitational radius.
When the observed inclination is θo ¼ π=2, we numeri-

cally simulate the position of those observable light rays in
the sky plane of observer ðαi; βiÞ with different values of ϵ;

FIG. 1. The schematic representation of celestial coordinates,
and the α – β plane is the observer’s sky, in which the black
sphere at the origin represents the black hole, and the blue line
represents the light ray emitted from the source that can be
received by the observer.
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see Fig. 2. Among them, the region without the red dot
corresponds to the shadow region of the black hole, and we
use the blue dashed line to numerically fit the outer
boundary of the shadow region.
As the Finslerian parameter ϵ varies, one can find that the

blue dashed line consistently manifests as a closed circle,
indicating that the shadow shape of the Finslerian
Schwarzschild black hole takes on a circular appearance
in the observer’s sky. This result aligns with Eq. (17), as it
represents the mathematical expression of a circular shape.
However, the apparent position of the black hole shadow
undergoes a right shift along the horizontal axis, as the
parameter ϵ increases. The value of ϵ is taken as ϵ ¼ 0, 0.3,
0.5, 0.8, and the numerical coordinates of the apparent
position (the location of the blue dot XC) at the center of the
shadow are (0, 0), (1.559, 0), (2.598, 0), and (4.157, 0),
respectively. It shows that the coordinate position of the
shadow center is positively correlated with parameter ϵ,
satisfying the relation XC ∼ 5.20Mϵ, which also represents
the distance the shadow moves on the horizontal axis. From
these numerical results, it can be found that the relation

between the coordinate position of the shadow center and
the parameter ϵ corresponds to the theoretical position of
the shadow center, i.e., ð− ϵK sin θo

E ; 0Þ, which is obtained in
Eq. (17). It should be noted that the backward ray-tracing
method is employed in our numerical calculations. The
observed light rays are outputted in reverse, with the initial
position being the observer’s position ðro → ro; θo → θo;
φo → 0Þ, and the initial velocity being reversed
ðṙo → −ṙo; θ̇o → −θ̇o; φ̇o → −φ̇oÞ. As mentioned in [55],
the Finsler space (6) is irreversible under yφ → −yφ,
meaning that the apparent position of black hole shadow
moves to the opposite direction of Eq. (17).
For the different values of parameter ϵ, the projection of

numerical simulation of the trajectory of light emitted from
the observer’s position on the α − γ plane is shown in Fig. 3.
The green line depicts the trajectory of light ray falling into
the event horizon of the black hole, while the blue line
represents the deflected light that can be detected by an
observer. The red line corresponds to the critical curve,
which plays a pivotal role in shaping the formation of the
photon ring (the red circle). The red dot on each panel

(a) (b) (c) (d)

FIG. 2. The apparent shape of the shadow of the Finslerian Schwarzschild black hole on the sky plane of observer. Here, the solid line
represents the location of event horizon, and the red dots indicate the point where the tangent line of light rays that can be received by the
observer intersects the α – β plane. The blue and black dots represent the center of the shadow and the event horizon, respectively.
(a) ϵ ¼ 0; θo ¼ π=2, (b) ϵ ¼ 0.3; θo ¼ π=2, (c) ϵ ¼ 0.5; θo ¼ π=2, and (d) ϵ ¼ 0.8; θo ¼ π=2.

(a) (b) (c) (d)

FIG. 3. The projection of trajectories of light rays in the vicinity of the Finslerian Schwarzschild black hole on (α − γ) plane with a
different value of the Finsler paramater ϵ, and the black and red circles represent the location of the event horizon and the photon ring,
respectively. (a) ϵ ¼ 0; θo ¼ π=2, (b) ϵ ¼ 0.3; θo ¼ π=2, (c) ϵ ¼ 0.5; θo ¼ π=2, and (d) ϵ ¼ 0.8; θo ¼ π=2.
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indicates the intersection of the tangent line of the critical ray
along the observer’s line of sightwith theα – β plane, and the
points corresponding to the forward and retrograde critical
curves are denoted asA andB, respectively. Actually, points
A andB describe the position of the shadow cast by the black
hole, and their distance AB is the diameter of the shadow. It
can be found that the positions of points A and B will
undergo a shift with respect to a variable parameter ϵ, while
the position of the photon ring remains unchanged. When
the parameter ϵ is set to ϵ ¼ 0, 0.3, 0.5, 0.8, the numerical
results of the distance between point A and point B
are AB ¼ 10.3903M; 10.3921M; 10.3934M; 10.3947M.
The results indicate that the numerical results of the diameter
of the apparent shadow are consistent with the theoretical
diameter of the shadow derived from Eq. (17), namely
AB ∼ 2rFS ¼ 6

ffiffiffi
3

p
M. In addition, the position of point A

appears within the event horizon of the black hole if the
parameter ϵ is set to a larger value (ϵ ¼ 0.8), resulting in the
red dot within the event horizon as depicted in Fig. 2(d).

B. The observation position is located on a
nonequatorial plane

To gain a more comprehensive understanding of the
geometry feature of Finslerian Schwarzschild spacetime,
we expand the observer’s position beyond the equatorial
plane. In our setup, the radius coordinate ro of the observer
is fixed as ro ¼ 200M, and the value of ϵ is taken as
ϵ ¼ 0.8. When the position of the observer gradually moves
from the equatorial plane of the black hole to the pole
0 < θo < π=2, we still give the position on observer’s sky
(α – β plane) of those rays that can be perceived by the
observer, as shown in Fig. 4.
The result shows that the contour of the black hole

shadow remains a spherical structure, and variations in the
observer’s inclination angle do not result in any distortion
or alteration in the size of the black hole shadow. However,
as the inclination angle decreases, the apparent position of

the black hole shadow in the observer’s sky gradually
shifts from the right side of the plane to the left along
the horizontal axis until it aligns with the center of the
event horizon. The observation inclination is successively
θo ¼ π=2, θo ¼ π=3, θo ¼ π=6, and θo ¼ 0, and the
numerical coordinates of the apparent position at the center
of the shadow are (4.157, 0), (3.602, 0), (2.087, 0), and
(0, 0), respectively. It can be found that the coordinate
position of the shadow center satisfies the relationship
XC ∼ 4.16M sin θo, which closely aligns with the theoreti-
cal result ð− ϵK sin θo

E ; 0Þ obtained in Eq. (17). In other words,
the increase in the value of ϵ leads to a shift in the apparent
position of the shadow, but this shift is gradually corrected
by a decrease in the observed inclination.
The shadow in the case of ϵ ¼ 0.8 and θo ¼ 0 exhibits an

apparent shape, size, and location that are similar to those
in the Schwarzschild case (ϵ ¼ 0; θo ¼ π=2), that is,
Figs. 2(a) and 4(d). In reality, the process of forming this
visual similarity is fundamentally different, which will be
illustrated in terms of photon trajectories. In Fig. 5, we
show the projection of trajectory of light rays near the black
hole on the α − γ plane at different observation angles. The
observation angle of inclination decreases from left to right
panels in the order of θo ¼ π=2, θo ¼ π=3, θo ¼ π=6, and
θo ¼ 0 with the fixed parameter ϵ ¼ 0.8. It can be found
that the decrease in observed inclination is accompanied
by a gradual leftward shift of the shadow’s position, i.e.,
the corresponding positions of red dots A and B, along the
horizontal axis until its center aligns with the center of
the event horizon. For the case where the observation
inclination are θo ¼ π=2; π=3; π=6, and 0, the numerical
result of the distance between points A and B are
AB ¼ 10.3947M; 10.3934M; 10.3927M, and 10.3905M,
respectively. The numerical results reveal that the distances
of points A and B closely approximate AB ∼ 6

ffiffiffi
3

p
M, which

consistency aligns with the theoretical radius derived from
equation (17). Comparing Figs. 5(d) and 3(a), it becomes

(a) (b) (c) (d)

FIG. 4. The apparent shape of the shadow of the Finslerian Schwarzschild black hole in the observer’s sky with different observation
inclination. The black circle represents the location of the event horizons, while the red dots indicate where the tangent line of a light ray
intersects with the observation plane and can be received by the observer. (a) ϵ ¼ 0.8; θo ¼ π=2, (b) ϵ ¼ 0.8; θo ¼ π=3,
(c) ϵ ¼ 0.8; θo ¼ π=6, and (d) ϵ ¼ 0.8; θo ¼ 0.
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apparent that the trajectory of light in close proximity
to the black hole is markedly distinct in both path
and degree of deflection; although the apparent shape
and position of their black hole shadows appear to be
the same in the sky plane of observer, their spacetime
structures are fundamentally dissimilar. In addition, the
curvature of spacetime caused part of rays in Fig. 5(a) and
in Fig. 5(b) to undergo severe deflection, and the tangents
of these rays that intersect with the α – β plane are inside the
event horizon, resulting in the presence of red dots within
the event horizon region that correspond to Figs. 4(a)
and 4(b).
In Fig. 5, it seems that some light rays pass through the

event horizon of the black hole and are received by the
observer. This phenomenon also occurs in Figs. 2(d), 4(a),
and 4(b). The Finslerian Schwarzschild black hole does not
allow the light rays to travel through the event horizon.
Therefore, such phenomena should stem from the visual
image of the light rays that were observed by the observer,
which is located on coordinate ðα; βÞ (13), (14). To
accurately depict this phenomenon, the three-dimensional
diagram illustrating the photon’s trajectory can be

employed; see Fig. 6. The blue lines depict light rays that
are detectable by the observer, and the green lines illustrate
light rays captured by the black hole, while the red lines
represent the critical curve forming the photon sphere. As
can be seen from Fig. 6, some light rays exhibit extreme
deflection behavior near the black hole for the parameter ϵ
is taken to a larger value, resulting in these light ray tracks
crossing the event horizon when projected on the α − γ
plane, which relate to Figs. 5(c) and 5(d). Therefore, the
light ray passing through the event horizon of the black
hole is a result of its trajectory being projected onto a
specific plane, rather than representing the actual path of
light crossing the event horizon. To a distant observer, the
representational appearance of the black hole shadow
obtained in Figs. 6(a) and 6(d) is almost indistinguishable,
and the apparent position of the shadow in the sky plane of
observer remains unchanged. However, the geometric
structure of Finslerian Schwarzschild spacetime depicted
in Fig. 6(d) exhibits a higher degree of complexity
compared to the Schwarzschild case, resulting in the
photon motion appearing richer and the degree of deflec-
tion being greater.

(a) (b) (c) (d)

FIG. 5. The projection of trajectories of light rays in the vicinity of the Finslerian Schwarzschild black hole on (α − γ) plane with
different observed inclination θo, and the black and red circles represent the location of the event horizon and the photon ring,
respectively. (a) ϵ ¼ 0.8; θo ¼ π=2, (b) ϵ ¼ 0.8; θo ¼ π=3, (c) ϵ ¼ 0.8; θo ¼ π=6, and (d) ϵ ¼ 0.8; θo ¼ 0.

FIG. 6. The three-dimensional representation of the trajectory of light in close proximity to the Finslerian Schwarzschild black hole
under the different observed inclination θo or Finsler parameter ϵ, in which the black ball symbolizes the black hole, while the
surrounding red region indicates the location of photon sphere. (a) ϵ ¼ 0; θo ¼ 0, (b) ϵ ¼ 0.8; θo ¼ 0, (c) ϵ ¼ 0.8; θo ¼ π=3,
and (d) ϵ ¼ 0.8; θo ¼ π=2.
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IV. CONCLUSIONS AND DISCUSSIONS

In Finslerian Schwarzschild spacetime (4), we have
investigated the characteristics of the apparent position
and shape of a black hole shadow in the observer’s sky.
Additionally, we also numerically simulate the trajectory of
light near black holes under different Finsler parameter ϵ
and observation inclination angles θo. To ascertain the
apparent position and shape of shadow in the observer’s
sky, one typically constructs the celestial coordinates ðα; βÞ
in the Finslerian Schwarzschild spacetime. With the aid of
the condition that the position of imposed by photon ring,
one can find that the celestial coordinates of Finslerian
Schwarzschild black holes satisfy a circular equation with
radius of rFS ¼ 3

ffiffiffi
3

p
M, and the center of the circle is

located at ð− ϵK sin θo
E ; 0Þ.

By utilizing the ray-tracing method, one can computa-
tionally simulate the apparent position and shape of the
black hole shadow in the observer’s sky while varying the
Finsler parameter ϵ, with a fixed observation inclination
angle of θo ¼ π=2. The observation indicates that an
increase in the Finsler parameter ϵ results in a horizontal
displacement of the apparent shadow position, while
maintaining an unaltered apparent shape and size. This
result shares certain similarities and distinctions with the
shadow cast by a Kerr black hole [18,66], which also
possesses axial symmetry. Specifically, as the dimension-
less spin parameter χ of the Kerr black hole increases, the
position of the shadow also exhibits a phenomenon of
horizontal displacement akin to that observed in Finslerian
Schwarzschild spacetime. However, its shape deviates from
a perfect circle and tends toward a D-shaped configuration,
contrasting with the result in Finslerian Schwarzschild
spacetime. For ϵ ¼ 0.8, the position of the shadow has
shifted a great distance to the right, and the left contour of
the shadow even overlaps with the position of black hole in
the observed plane. In this system, the photon trajectory is
deflected to a large extent near the black hole, where the
intersection of the tangential vector of the critical curve
with the ðα; βÞ plane is the apparent position of the shadow
in the observer’s sky. As the value of the parameter ϵ
changes, its intersection position shifts horizontally, result-
ing in a corresponding shift in the apparent position of
shadow in the observer’s sky. In addition, the numerical
results show that the shift distance of the apparent position
of shadow is positively correlated with the Finsler param-
eter ϵ, which corresponds to the position of the center of the
circle.

Furthermore, we also explore the shadow characteristics
of Finslerian Schwarzschild black holes at various observed
positions. The Finsler parameter fixed at ϵ ¼ 0.8, the
observer inclination angle gradually varies, transitioning
from the equatorial plane (θo ¼ π=2) of the black hole
toward its pole (θo ¼ 0). Interestingly, the movement of
the apparent position of the shadow is restored with the
decrease of the observed inclination. In the case of θo ¼ 0,
the shape, radius, and position of the black hole shadow are
nearly indistinguishable from those in the case where ϵ ¼ 0
(Schwarzschild case). This characteristic exhibits similar-
ities to the shadows cast by a Kerr black hole. With a
reduction in the observational inclination angle, the
differentiation between the Kerr shadow and that of the
Schwarzschild case becomes increasingly minimal.
Likewise, at θ0 ¼ 0, they exhibit a high degree of similarity
that makes them nearly indistinguishable. However, the
consistency in shadow appearance does not necessarily
imply equivalence in spacetime structure between this case
and Schwarzschild spacetime. The result shows that the
motion behavior of photon in Finslerian Schwarzschild
spacetime is more intricate, and the photon trajectory has a
greater degree of deflection near the black hole than in
Schwarzschild spacetime. Therefore, as a property of
spacetime itself, the black hole shadow is determined by
the geometric structure of spacetime, but it also reflects the
characteristics of the geometric structure of spacetime,
helping us to understand the intrinsic properties of
Finslerian Schwarzschild spacetime more intensely.
The Finslerian Schwarzschild spacetime (4) does not

approach to Minkowski spacetime at infinity. The astro-
nomical measurement is the main reason why we choose
the celestial coordinates (13) and (14) for the observers
at infinity. It means that we choose a Minkowskian
observer at infinity to observe the shadows of Finslerian
Schwarzschild black hole. If future observations for
shadow of axial symmetric black hole shadow show signs
of the Finslerian black hole, it better use the measurement
of Finsler geometry. Reference [67] has studied the
gravitational lensing effect in Finsler spacetime in which
it presents a definition of angles in an intrinsic Finslerian
way. The physical consequences of using this definition of
angles is an interesting subject to investigate in the future.
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