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Euclidean self-dual gravity: Ashtekar variables without gauge fixing
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The Gotay-Nester-Hinds method is used in this paper to study the Hamiltonian formulation of the
Euclidean self-dual action. This action can be used to arrive at the complex Ashtekar formulation of general
relativity or a real connection formulation for Euclidean general relativity. The main result of the paper is a
derivation of the Ashtekar formulation for Euclidean gravity without using any gauge fixing. It is
interesting to compare this derivation with the one corresponding to the Holst action. In particular it is
worth noting that no “tertiary” constraints appear in the case considered in the present paper.
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I. INTRODUCTION

The Gotay-Nester-Hinds (GNH) method is used in this
paper to study the Hamiltonian formulation of the Euclidean
self-dual action. The self-dual action [1,2] played a very
important role in the establishment of the Ashtekar formu-
lation for general relativity (GR) as a new starting point for
the quantization of gravity. The self-dual formulation has
also drawn interest in the context of the quantization
proposal for GR put forward by Smolin in [3] and discussed
recently in [4-8]. At variance with the Hamiltonian treat-
ment of the Hilbert-Palatini action—which leads to a
version of standard geometrodynamics endowed with an
SO(3) internal symmetry—the self-dual version of the
Hilbert-Palatini action leads to the Ashtekar formulation
for either complex or real-Euclidean GR. Although at the
present moment the standard way to arrive at the real
Ashtekar formulation makes use of the Holst action [9], the
self-dual action is still widely considered as a means to
address a number of problems, in particular whenever the
complex formulation is useful (see, for instance, [10,11]).
For this reason it is interesting to revisit the Hamiltonian
formulation derived from it and consider several issues
that have not been completely cleared out in the past, in
particular regarding the stability of the secondary con-
straints when the Dirac method is used [12]. A very
powerful way to address these issues is to rely on the
geometric perspective provided by the GNH approach to
Hamiltonian dynamics [13,14]. In this setting the main
consistency condition is translated into a tangency require-
ment whose verification does not need the computation of
Poisson brackets and, thus, is significantly easier than its
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counterpart in the Dirac “algorithm”. This is specially
relevant whenever functional analytic issues are important,
for instance, when the primary constraint submanifold is
dense in phase space and, hence, there are no constraint
functions representing it. This happens even for such simple
systems as the Klein-Gordon field (see Ref. [14]). The
possibility of avoiding the computation of Poisson brackets
is also useful to study field theories defined on manifolds
with boundaries. Finally, for the case that we study here, the
computations are actually shorter and more transparent than
those necessary to reproduce the analogous steps in the
Dirac approach as in [12].

It is interesting to compare the GNH analysis of the Holst
action (discussed, for instance, in [15—17] from the standard
Dirac point of view and also in [18] from the perspective of
the GNH method). As we show here, on one hand, the
analysis of the self-dual action is shorter because no new
secondary constraints appear after the first batch of them
show up in the analysis, whereas, in the Holst case,
secondary constraints appear at two different stages. On
the other hand, the explicit verification of the tangency of
the Hamiltonian vector fields to the phase space submani-
fold determined by the secondary constraints in the case of
the self-dual action is rather intricate and requires careful
consideration.

One interesting consequence of the analysis that we
present in the paper is the possibility of deriving the
Ashtekar formulation for Euclidean GR without any gauge
fixing. The key insight to arrive at this result comes from the
form of the pullback of the canonical symplectic form to the
primary constraint submanifold. In fact it is possible to
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write this pullback in a way that leads to the introduction of
a function in the phase space that takes the sympletic
form to a simple “canonical” form (i.e. the analogous of
¥.dg; A dph). Tt is very interesting at this point to rewrite
the remaining elements of the Hamiltonian formulation
(constraints and Hamiltonian vector fields) with the help of
this new object. It is also worth to compare the result with
the one derived by the usual time-gauge fixing. As we will
show the results are compatible in an appealing way and the
role of one of the 30(3) factors of the 80(4) symmetry is
noteworthy. Those readers who want to arrive at this part of
the paper without going through the intricate details of the
tangency analysis, can skip Secs. Vand VIin a first reading
of this work.

The structure of the paper is the following. After this
introduction we will quickly discuss some basic facts about
the self-dual (actually the antiself-dual) action for Euclidean
GR in Sec. II. After that we will discuss in Sec. III the
Hamiltonian formulation for this action and perform the first
steps of the GNH analysis. Before completing the crucial
tangency tests to verify the consistency of the dynamics
obtained by using the GNH method we will discuss some
features of the secondary constraints (Sec. V) and solve the
equations that determine the components of the Hamiltonian
vector fields on the primary constraint submanifold
(Sec. V). With all this information we will give a detailed
account in Sec. VI of the tangency analysis, although we
will leave some details for Appendix A. Although the main
ideas involved are simple, the computation itself is quite
intricate. In Sec. VII we show how the Ashtekar formulation
appears quite naturally by following our approach, in fact,
this is probably the cleanest way to arrive at it from an action
principle. Furthermore, as we will explain there is no need in
principle to use any gauge fixing (at variance with the
situation in the case of the Holst action, see, for instance
[18,19]). We end the paper with some conclusions in
Sec. VIII. Appendix B gives some computations related
to the Gauss law in the Ashtekar formulation.

Some comments about our notation. As a general rule we
will employ boldface characters to denote four-dimensional
geometric objects and nonboldface letters for the three-
dimensional ones. The totally antisymmetric Levi-Civita
symbol in three dimensions will be denoted as ¢;;. The
“internal” indices i, j, k, ... will be raised and lowered with
the Euclidean metric Diag(+ + +) (so, in practice, their
position upstairs or downstairs is irrelevant). We will also
employ boldface characters to denote canonical momenta.
The exterior differentials in M, X and the phase space 7*Q
will be respectively denoted as d, d and d. The interior
product of a vector field X and a differential form $ will be
denoted either as iy or X—f. Throughout the paper £x
denotes the Lie derivative along a vector field X. Finally,
the scalar field ¢ satisfying ¢ = ¢pvol for a top-form ¢ and a

volume form vol will be often written as ((%;).

II. ACTION AND EQUATIONS OF MOTION

Let X be a closed (i.e. compact without boundary),
orientable, three-dimensional manifold (this implies that X
is parallelizable) and M = R x X. The basic fields that we
will use to write the action are

e cQ (M), i=123
0 eQ (M), i=1273
acQ(M).

The fields & and e’ are chosen in such a way that @ ®
@ +e; ® e’ is a Euclidean metric of signature (+ + ++).
As a consequence (e, e') defines a nondegenerate tetrad.

Important geometric objects defined with the help of the
fields introduced above are the covariant exterior differ-
ential D, which acts on the e; according to

De; := de; + ;3,0 A e,

and the curvature 2-form
) A .
F' = dw' —i—iwf A @F.

The Euclidean self-dual action for GR can be written in the
form [12],

1 . 4 .
S(e,w,a)z/ (Eeijke’/\ef/\Fk—a/\ei/\F‘>. (2.1)
M

Notice that the first term is the Husain-Kuchar action [20].
The indices i, j, k = 1, 2, 3 can be considered as “SO(3)
indices” because (2.1) is invariant under the infinitesimal
gauge transformations

510)i = DAi,
51“ = O,

s’ = el e/A% (2.2)

with AF € C*(M). The action is also invariant under the
infinitesimal transformations
52(0i = O,
52“ = Yiei,

5,el = —Yla + eékeJYk, (2.3)

where Y* € C®(M). It is important to point out that §; and
0, are independent. Also, it is worth noting that these
transformation do not commute, in fact they satisfy

[61(A), 62(Y)] = 62(A x Y).

The internal symmetries of the action can be written in
other forms, for instance
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5_(A)a),~ = DAl
5 (A)a=—1A;e
5_(A)ei = %A,a + %gl‘jkejAk

El

At variance with §; and &, these transformations do
commute, 1.€.

[67(A).5+(Y)] = 0.
Taking also into account that

[67(A), 67 (M)] = 6~ (A x M),
[67(A), 67 (M)] = 6" (A x M),
we see that (2.4) provides an explicit realization of 80(4) =
80(3) x 80(3) as the symmetry group of the self-dual
action (2.1) [12]. Notice that
61 (A) =6 (A) +67(A), 5,(Y) =67(2Y).

The field equations coming from the action (2.1) are

D(a A e;) +€;e' ADe/ =0, (2.5)
€ijkej/\Fk+a/\Fi:0, (26)
ei VAN Fi - 0 (27)

They are equivalent to the Euclidean Einstein equations in
vacuum.

III. THE HAMILTONIAN FORMULATION
IN THE GNH APPROACH

In order to get the Lagrangian and Hamiltonian for-
mulations given by the self-dual action (2.1) we take
advantage of the foliation naturally associated with

i
de;

i . (2.4)

€
Yia+1ie;,e/ Yk
i 2 €ijk

M = R x X. The spatial sheets of this foliation are %, :=
{t} x X (t€R). The foliation also defines a canonical
evolution vector field d, given by the tangent vectors to the
curves ¢,:R - R x X:7+> (7, p) with p€X. For each
t € R we define the embedding j,:X - M:p + (¢, p) and
denote its pullback as j;. Notice that X, = j,(X).

By remembering that,

/ Ez/ dt/\latﬁz/dt/1dt£:/dt/],*lar£,
RxE RxE R Jx, R Js

we can compute the Lagrangian L := [y Ji1y, L defined on £
from the 4-form £ appearing in the action. The Lagrangian
thus obtained is defined on the configuration space

0 =C2(Z)P xQIZ)} xC*(X)* x QI(Z)} x C*(T)
x Q1 (X),

with elements of the form (¢!, e, w{, @', &, a), by inter-
preting the objects

e((1) = Ji1y€, e'(t) = jre,
w((1) = Ji15,0", o'(1) = jjw',
(1) = Ji1g@, a(t) = jie.

as defining curves in the configuration space @ and
considering also their velocities

de!

. . . . d .
v, (1) == i€y, (15,€') = i (1), v, (1) = Ji£, e = E(Jﬁe’) = a(f),
. o dot . . ‘ dw'
v, (1) = Ji£y, (19, 0') = th (1), v, (1) = Jif 0" = a(ﬁw') T (1),
da d da
g, (1) = Ji €5, (19,@) = d_rt(t)’ (1) = Ji€s 0 = a(]ﬁa) . = E(t)’

defined in terms of the Lie derivative £, along the vector field d,. Here we are leaving aside functional issues—necessary for
the complete definition of the configuration space—that play an important role in the rigorous Hamiltonian formulation of
this model. In any case, the results that we will obtain here are on par (and equivalent to) with those derived by using Dirac’s

method. The Lagrangian is
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1 . .
L(v) = / <<—el~jke’ Ael+ep A a)
s \\2

. 1 .
A K+ olD <§€’7ke] A ek +e; A a)
—ae; A F 4 el(epe! A FF+an Fi)>,

where we denote the velocity in the fiber of TQ corre-
sponding to (ef,e', wf, 0 o, a) as v:=(vi, vl vl,,
vl Vg, Vy) (as a consequence L: TQ — R depends both
on the components of the velocity and the fields defining the
configuration manifold Q). We also define F':= dw' +
1'% w; A wp and De' := de' + €% w; A ¢, (with the usual
generalization to forms of other degrees). An important
consequence of the nondegeneracy of the tetrad (e, ') is the
nondegeneracy of the triad e’ on any X,.

The fiber derivative that defines the canonical momenta
is given by

1 . .
FL(v)(w) = / <§eijke’ Ael+ e A a> Awk. (3.1)
x

hence, the primary constraint submanifold M in the phase
space is defined by the conditions

p., =0,
p. =0,
Pu, = 0.
Po(W) = /z(éeijkei Ael+ep A a> A wk,
Po, =0,
Pa=0

The Hamiltonian is defined on the primary constraint
submanifold by H = EoFL~!" where E := (FL(v),v) — L
is the energy (a real function in 77Q). As in this case the
energy E only depends on the configuration variables the
functional form of the Hamiltonian coincides with that of
E, hence

. . 1 .
H(p) = /)2 <ate,~ A F' — oD <2 €jjre’ A ek +e; A a)

—ef(e,-jkej/\Fk—l—a/\F,-)) (3.2)

Here we denote the momenta in the fiber of 7*Q over the
point (e, e', o, 0’ . a,a)€Q as P:=(p,.PesPu,: Por
P, Po)- The Hamiltonian depends on p only through its
base point.

A vector field in phase space Y€ X(T*Q) has the
following component structure

Y= (VLYY Y Y Yo Yy Yy Yy Y, YY),

Po

where we use boldface characters for those components of
Y that are dual objects. Notice that Yi,Yi Y,€Q!(X)
and Y. .Y}, .Y, €C®(X).

We can then write the action of the exterior differential in
phase space d on a vector field Y as

dH(Y) = L (—Y;’,I(eijkef' AFF+anF)+YE
A (o F; +€ijk(Dw{) A ek — Dol A a+ €ijke{Fk)
+Yi,D (a A e; —%eijkef A ek> + Y A (D(aye;
+epejel —ael) —awle; A e —epala n eb)
+Yye; NF +Y, A (Do} A e;— e{Fi)>. (3.3)
The action of the canonical symplectic form £ on

Y,Z € X(T*Q) can be written in terms of the components
of these vector fields as

QZ,Y) = Yp, (Ze) = Zy, (Ye) + Yy (Z,) = Zy (Y.)
+ Yy, (Zo) =2y, (Yo,) + Yy, (Z0)

=Z,,(Y,) + Yy, (Za) = Zp, (Yo

+Yp, (Z,) = Z,, (Y,).

The vector fields Y& X(7T*Q) tangent to the primary
constraint submanifold M, have the form

Y= (Y. Y. Yy, Yo, Y4 0,0,0,Y,0,0)

with
Y() :/(el’jkYé /\ej—a/\ Y];—Ya/\ek) N -
z

One of the central ideas in the GNH approach is to work
directly on the primary constraint submanifold M. In the
present case this is especially easy as M, is precisely
the configuration space Q. This means that vector fields on
this manifold have the form

Yo= (Y., Y0, Y, Y, Yo, Y,).

The pullback of Q to My—another of the basic elements of
the GNH approach—can be written as
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w(Zy,Yy) = L(Y’e A (eje! NZE+anZ,,)

+YUN(Zy A e —
+Y, ANZL Ae).

enZl N ek —Zi A a)
(3.4)

The basic equation of the GNH approach iy, @ = dH can
now be easily solved by equating the terms proportional to
the different components of the vector field Y in (3.3) and
(3.4). By doing this one finds the secondary constraints,

eijkejAFk+a/\Fi :O, (35)
L

D Eeijke//\e +e; Aal =0, (3.6)

e; ANFI =0, (3.7)

and the following equations for the components of the
Hamiltonian vector field Z

(€yjxe’ +83a) A (Z5 - Dok) = (S + eyel ) F*, (3.8)
(€ijxe! = 6a) A (Zg — Det —€5,,e” o) + e; A (Zy — day)
= elda + (eijke{ — a5y ) Dek (3.9)

A (ZL, — Dwl) = elF;. (3.10)

There are no conditions on Z., Z|

w, and Z, so they are
arbitrary and, hence, the dynamics of e/, wi and a, is also
arbitrary.

The next step in the GNH method is to check if the vector
fields whose components satisfy (3.8)—(3.10) are tangent to
the submanifold of M, defined by the secondary constraints
(3.5)—(3.7). Before performing this analysis—which turns
out to be rather intricate—it is necessary to analyze in detail
the secondary constraints and also to solve for Zi, Z and
Z, in (3.8)~(3.10). We devote the next two sections to
this issue.

IV. SOME DETAILS ON THE SECONDARY
CONSTRAINTS

In order to study the tangency of the Hamiltonian vector
fields given by (3.8)—(3.10) it is necessary to disentangle
part of the content of the constraints (3.5) and (3.7). We do
it here. First we point out that the curvature F; can be
written as

1 )
Fi = El]:l‘jejkl/ﬂEk AN €y

with

F. Ne;
F;: = ! 1.
g < vol, )

Here vol, :=3;€;¢' A e/ A eF is a volume form on X
because the e’ are linearly independent everywhere.
As the e' are linearly independent we can write @ = a;e’
and put the secondary constraint (3.5) in the form
eijkej A Fk+a/\ Fi = (ﬂ:

jal — e FFvol, =0,

which is equivalent to

F; af - e,Jk[F/k =0. (4.1)
It is also straightforward to rewrite (3.7) in terms of

F;;, indeed

i 1 i jkt 1 JKE vol. = Fi.vol
e /\F,-—Ee,»/\[Fje ek/\e,f—ie,-kfe F';vol, =F';vol,,
and, hence, the secondary constraint (3.7) is equivalent to

If we expand now [;; in terms of a symmetric-traceless part

S;j» a trace S and an antisymmetric part €;;;Ag

1
5 S+ el/kA

= Sij
+3

the constraint (4.2) implies S = 0 and (4.1) becomes
(25,1 + e,jkak)Aj = S,»jaj,

which can be solved for A; in terms of the symmetric-
traceless object §;;

1

A= ¢
Y24+ a?)

<45U + a,»aj - 2€ijk0¥k)ija s

where o := a;a’. We then conclude that, when the con-

straints hold

1

F..o—S. 1+ -
Y +2(4—|—0{2)

ij e,-jk(45kf + dra, — 2€kfma’”)Sfpa”,

(4.3)

with §;; symmetric and traceless. Notice that this is not the
full solution to the constraints (3.5)—(3.7) but, rather, a
restriction on the form of the curvature F;. In order to fully
solve the constraints one should find the connection A;
from (4.3).
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V. THE HAMILTONIAN VECTOR FIELDS
In this section we will solve Egs. (3.8)—(3.10) for Zi, Zi,
and Z,. For this purpose it helps to define
Xk =7k — Def — b ef ",
Xt = 7 — Dok,
Xy =2, — da,.

so that (3.8)—(3.10) become

(€ixe’ + Sua) A XE = (S, + €€l FF, (5.1)
(€ijue! = 6ia) AXE+e; A Xy = eda+ (el-jke{ — a6 )Dek

(5.2)
ei A Xéu = efFi. (53)

We solve now these equations taking into account that the
secondary constraints (3.8)—(3.10) hold.

A. Solving equation (5.1)

By expanding the 1-forms X% = W* e and a = a;e’ we
can write (5.1) as the following linear, inhomogeneous
equation for W;;,

Wij —5,'1'Wkk —€[pqaijq +at[Fji +€quetp|]: =0. (54)

qi

We expand now W;; in irreducible components as

1
Wii=wi+5

: (5.5)

o;jw + ¢€; ]kw
with w;; symmetric and traceless. From (5.5) we see that
o1 .
wh = EEUijk’ w=W'. (5.6)

Multiplying (5.4) by €/ and o' respectively we get

€W i — a, Wit + al W ; — aFF i — Fiel =0,

;Wi — o Wi + aF ;00 + € elFa, = 0.

Adding both expressions, taking into account (5.6) and
using the constraints in the form (4.1) and (4.2) we find

Wi = 5 etjl]:ji.
In order to find w we take the trace of (5.4), which gives

—ZWZ €j a,ij + €ijk€ti|]:jk = 0,

after making use of the constraint F/; = 0. From the
previous expression, the value of w' computed above
and the constraint (4.1) we get

w= e,-jke{[ij.

A crucial simplification of Eq. (5.4) can be achieved by
using W'; =w, noting that W;, = W,; —2¢,;w* and
introducing this expression in the third term of (5.4). By
doing this we find that (5.4) can be rewritten as

(6 +€,qpa”)W"j —1—0(1[[:]-,» —ajetk[l:kl- +€qu€tp|]:qi :O, (57)
which can be easily solved by inverting the 2 x 2 matrix
0ig + €igpa® as the index j in W, is a mere spectator. The

result is

1
LA )

(5ik + aiak - Gikf(lf)Mkj, (58)

with

Mkj = ajetqﬂ:qk —€ e{)ﬂ:qk - at[ij- (59)

irq

B. Solving equation (5.2)

By following exactly the same steps as in the previous
subsection it is possible to solve Eq. (5.2). In this case we
expand X% = Ef e? and X, = X;e’. We also take into
account that the constramt (3.6) is equivalent to

da A e; = a A De; —e;jpel A Det.

This means that on the constraint submanifold defined by
the secondary constraints we have

1 dane;\ . | .
da:§€ijk (W) ef /\ek: (EB’fafe,»jk—i—Bjk) €]/\€k,

(5.10)

where B;; := (D\%fe’).
Taking all this into account, on the constraint hypersur-
face Eq. (5.2) can be written as

Eij—5ijEkk+€ipq(X E; lijk

r=ijq —
k —
+ Bika etj + €i quetj = O,

aBj; + € efBY;
(5.11)
where the X; can be taken to be completely arbitrary.

The resolution of this equation follows the same steps as
that of (5.4) so we just quote the result here:

1
Eij:1+a

5 (5ik + aiak + eikfaf)Nkj, (512)
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with

1
Nij =8y (ekfmef B + exomatel B™a, + 5 (e,

1
- a)(aBa) + 3 (e Q)€rpmad B

1 1 1 1
-3 (e, a)B + (aBe,) + a- X — = a(aBa) — = qeppma* B — 50&[8)

2

+ (Xj(Beti - 2€ipq

£ ym £ ‘m P4 t
— €ipm@ X" + aBisa” + a€ip,B") — €j,,el B — B e —

where the following shorthand notation has been used:

= i . ij — B
e - a = eua, aBa = a;B8"a;, B := B',,

aBe, := a;B'e,;, a-X = aX.
C. Solving equation (5.3)

Equation (3.10) can be easily written in the form
kW = e, /. Tt is obvious from the discussion pre-
sented in Sec. VA (and straightforward to check) that W;
as given in (5.8), satisfies (3.10).

J°

VI. TANGENCY ANALYSIS

The consistency of the Hamiltonian dynamics requires
that the Hamiltonian vector fields obtained by solving
(5.1)~(5.3) must be tangent to the submanifold of M
defined by the secondary constraints (3.5)—(3.7). These
tangency conditions can be easily obtained by computing
the derivatives of the functions defining the constraints
along the field (i.e. ixd). By doing this one gets

(€14 Zt + 80 Za) N F* + (eijpe! +8ya) ADZE =0, (6.1)
D(eije! NZe—Zy Nei=anZy)+Zs,
A (e N e —eanem) =0, (6.2)

Before checking if the Hamiltonian vector fields given by
(5.8) and (5.12) satisfy the conditions (6.1)—(6.3) it is
convenient to simplify them, in particular by removing the
covariant differential D of the components of the vector
field Z. As we show next (6.1)—(6.3) can be written in the
more convenient form,

Xt ANFX+ X, A F;+D(ejre! +8a) AXE=0, (6.4)
(5ijek — el-jka) A el A X(Ij) + (atéik + eijketj)a VAN Fk
+ e{ei A Fj = 0, (65)

2

el B — e (aBa) — e€rena' B — 2By el + eyBY; — 2X;

€iquPqetj+€iijk+atBji, (513)

X, ANF;+ X, A De; = 0. (6.6)

In the case of (6.1) one first takes the covariant exterior
differential D of (3.8) to get

(eijxej + o) A DZK = (e,-jkDej + 6yda) A (ZK — Dwk)
+ D, €™ (e3¢ + 5,)

AN F,f — (5ikdat =+ €ijkDe{) A Fk,

then introduces this expression into (6.1) and simplifies the
result by using the constraints (3.5) and (3.7) to get (6.4).

In order to rewrite the tangency condition (6.2) in a
simpler way one first writes (3.9) in the form,

€t NZE—Z Ne;—anZ,

=D(e;pele’ +ael —ae’) +wfep A e;— e yamfe’ Ael,

and then takes the covariant differential of this expression
which, by using the constraints (3.6) and (3.7), gives

D(el’jkej AN Zlg - Za AN e, —a A\ Zei)
= aeipe! N FE—el(epa+ 6je;)
k

A FF 4 (e8; — €;pa) A e/ A Dot
Introducing this now into (6.2) gives (6.5).

Finally, in order to arrive at (6.6) one first takes the
exterior covariant differential of (3.10) to get

e; A DZ;U = De,- A Zéu —Dei AN Dw; +€ijkei

A FioF — Del A F;,

and then introduces this expression into (6.3).

In the remaining of this section we will check that the
tangency conditions (6.4)—(6.6) hold on the submanifold of
M, defined by the secondary constraints (3.5)—(3.7). We
will start from the easiest to the hardest ones. As we will
see, the computations are quite involved. Although, by
necessity, we will have to skip many details we will provide
enough information to enable the motivated readers to
complete them.
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One source of difficulties is the possibility of having
many different ways to write a particular expression by
making use of the constraints (3.5)—(3.7). One possible way
to avoid this problem is to use (4.3) and write everything in
terms of S;;. Although this is possible in principle, in
practice the computations are very long. A better strategy—
that ultimately works—is to use the fact that the constraints
imply F;; = S;; + ¢ jkAk, with §;; symmetric and traceless,
and use S;a/ = (25, + €;3a*)A’ [equivalent to (4.1)],
whenever possible, to write everything in terms of A*.

A. Checking condition (6.5)

The only tangency condition which is easy to check is
(6.5). In order to see that it holds it suffices to left-wedge-
multiply (5.1)—the equation that must be solved to obtain
X, —by a to get

a A (eje + dpa) A X5 = (Spay + €ijke{)a A Fk,

Plugging this into (6.5) leads to
ek/\ei/\X{j)+€{€i/\Fj:0,

which can be immediately seen to hold as a consequence
of (5.3).

B. Checking condition (6.6)

In order to check the tangency requirement expressed by
(6.6) we will first rewrite it as an equivalent condition in
terms of the M;; and N;; introduced above [see Egs. (5.9)
and (5.13)],

BYM;; + (a'Byj) (M) + €7 a;M ;o B + FIN;
+ (a"[F,-j)(aka-") - €ijk(1iNjf|ka =0.

In principle one just has to substitute (5.9) and (5.13) in the
previous expression and show that the result is zero. A
possible way to do this is to use tensor manipulating
packages such as xAct [21]. However, in our opinion it is
instructive to do the computation by hand as some
important simplifications are quite nontrivial. To this end
it is helpful to separately consider the terms depending on
X;, a; and e. In the first two instances (X; and «) the
computations are quite direct and the cancelations of the
different terms obvious. The only hints worth mentioning
here are

(i) Use F;; =S, +e€ jkAk, taking into account, when-

ever necessary, that S;' = 0;

(ii)) Use the constraints in the form (4.1) to write
Flia; = 2A". Also use S;;a/ = 24, + €;;;A’a* when-
ever the combination S;;a/ appears;

(iii) Replace B;; — B;; by €; 1" By,, whenever possible.
By doing this all the terms involving X;, and those
proportional to ¢, cancel.

The computation of the terms proportional to e! is
significantly harder, so we will give more details about
it. In this case the terms coming from the direct sub-
stitution of (5.9) and (5.13) into the tangency condition do
not cancel automatically in an obvious way. In fact, the
result is

i ¢j mek imjf ¢ k ij qk ¢
—€jrerS (BT — € eB S — € BYST et

— el (B ap)AF = 3(e, - A)e; ' B
+ 3¢ Al (e B7) + Sejal (B ey ) A*
— 2B€ijkaie{Ak + 2€ijkaiej(kaAf)
+ (e, - @)e;xA'BK 4+ 2(A - a)e; jpeiBF

- 2€ijk(af[EBf")e{Ak

+2(aBa)e; peiAlak + 20%¢; Ale] (BY ay)
—2(e,- a)e; (B ay)Ala

—2(A- a)eale] (B ay).

Several features of the previous expression stand out, in
particular, all the terms involve €;;;, some of them depend
on §;;, and the remaining ones are either linear or cubic
in a;.

In order to show that the S-dependent terms cancel out it
suffices to realize that 0= ej;8/, implies €8/ ,—

Jo

€jreS'i — €48, = 0, where we have used S;' = 0.

The strategy to show that the other terms cancel is similar
to this but more involved so we leave some of the details for
Appendix A.

C. Checking condition (6.4)

As in the previous subsection we will write the tangency
condition (6.4) as an equivalent expression in terms of the
M;; and N;;. To avoid having “dangling indices” we will
multiply it by an arbitrary object C; (which can be removed
at the end). By doing this we get
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€ijkCiijMkf + eijkaiCjka(amMmb"> - (aiBij><CkMkj> + (C : a)BUMij
— €% CF Ny — €*q,CF, 7 (a" N ,ip) = (a;F)(C*Ny;) + (C - a)FUN,
+(C'M ) (B ay) + (C - a)(a'M,;) (B ) — €74, CiM (B " at,)

+ (CiMij)Cjkakg + (C . a) (aiMij)ejkakf - €ijkaiCijf€fmann + CZ[FUX] = O,

where we have used the shorthand C - @ = C;a'. As above,
it is helpful to separately consider the terms depending on
X;, a, and e’

The computation showing that the terms proportional to
X; in (6.7) cancel is straightforward. The only hint worth
mentioning here is to make use of the identity

o’ age ; CAIXF = (a- C)e;pA'X ok — (a- A)e;pXal CF

+ ((Z . X)eijkCiAjak,

which can be derived from az€;; = 0.
The terms proportional to @, in (6.7) can be written as

—GiJkWiijka + Gijkﬂiijka - gijk(Sifrlf)Bjk

=26 an ;(ByeA”) + 267 A1 (a By ) + 2(n - A)e*a;B
+ 4k, (B, as) Ay + 2B n,A ;ar — 2(A - @)y, B,
- 4€ijk(Bi£’7f)Ajak + Zeijk(”foi)Ajakv

where we have introduced the shorthand 7; := o,C;.
In order to see that the S-dependent terms cancel out we

make use of eli/*S;7] = 0. Checking that the terms linear in

(6.7)

a; in the previous expression cancel out is a little bit more
involved, so we leave some of the details for Appendix A.

Finally, we discuss the computation of the terms propor-
tional to e/ in (6.7). This is, by far, the longest computation
necessary to complete the Hamiltonian analysis of the
Euclidean self-dual action. The first step is to introduce the
ei-proportional terms of M ;and N;; into (6.7) and simplify
the result by using, in particular, S;;0/ = 24, + €;A/a".
After doing this some terms involving S;; still remain. This
is somewhat disturbing because this could force us to write
everything in terms of S;; (rather than A;) which would
make the computations much longer. Fortunately, by
replacing B;; — Bj; by €;,¢"""By,,, whenever possible, it
is possible to show that all the S-dependent terms can be
grouped in the expression

(CSa)e;elB* + (e Sa)e;;; C'BX — (e, - C)S” ape;BF,
(6.8)

where we have used the shorthand notation CSa := C'S;;a/,
eSa = e S and e - C:=¢C;. As we see, the combi-
nation S;;&’ appears in all the terms of (6.8) so we can write
it in terms of A; as explained above. The result is

2(C-A)ejpeiB* + (C - ¢)(ABa) + (a- e,)(CBA) + (e, - A)(aBC) — (e, - A)(CBa)
—(C-e)(aBA) — (a- e;)(ABC) + 2(e, - A)e; 3, C'B* + (a - C)(eBA) + (A - C)(aBe,)
— (C-A)(e,Ba) — (a- C)(ABe,) —2(e, - C)e;j A'B*,

where, as in previous instances, we have used some self-explanatory notation. By adding this to the rest of the terms (the
ones that can be directly written in terms of A;) the final result for the terms proportional to e! in (6.7) is

3(e - A)e; C'B* — 26,4 Cel (B A,) = 3(e, - C)e;p ATBH
+ 2Be; ;3 el ATCF + 36,3 A'CI (e, BY) + 2¢;el (B C,)A* — 5€,, (B e, ) AI CH
+2(e, - A)eyjpa' C/ (B ay) + 2(aBa)e;jpeiC/AF — 3(C - a)e;Ale! (B ay)
+2(C - e)ejp(Bas)Ala* — (A - C)(e, - a)e;jpa'B* — (CBa)e;jpelAla*
+ €;3eiAVa* (aBC) 4 2(A - a)eijkCie{([kaaf) + (A-a)(e - C)e;pa' B
+ (C- a)e;jpel(a,BY)A* + a’e;el(B7 Cp) AR — oPe;jel(C,BY)A* + 2(eBa)e; ' A CF,

where it is worth pointing out that all the linear, cubic and quartic terms in a; are zero as a consequence of direct
cancellations. This last expression can be shown to vanish. As in previous instances we leave some details about how this

happens for Appendix A.
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VII. HAMILTONIAN FORMULATION: ASHTEKAR
VARIABLES AND THE TIME GAUGE

The Hamiltonian formulation obtained after comple-
ting the GNH procedure is formulated in a manifold M,
spanned by the fields (e, e’, w, @', a;, ). The vector
fields in this manifold have components Yo = (Y., Y%, Y., .
i Yo Yo).

By using the standard notation for 2-forms in field spaces
the presymplectic 2-form on M, can be written as

. 1 .
w:/dw’Ad]<§€ijkef A ek 4 e; /\0{), (7.1)
T

which acting on vector fields Y, Z in M, gives (3.4). The
secondary constraints can be written as

€ijkej /\Fk+a/\F1 :O,
1 ; L
D Eeijke N e +e,~/\a :O,
€; AN Fi = O,
and the Hamiltonian vector fields are
Zi, = Del — é'*wje, + E'jel,

Zi, = Do+ W' e/,

@

Z, arbitrary,

Zi arbitrary,
Zi, arbitrary,
Z, ~arbitrary,

with W;; given by (5.8), (5.9) and E;; by (5.12), (5.13).

The forms of the pullback of the symplectic form (7.1)
and the fiber derivative (3.1) strongly suggest the intro-
duction of the object

1 .
H;:= Ee,-jkef Aek+e na,

which would be canonically conjugate to ®; in the sense
that

w:/dwiﬁ(\dH,-.
b

An important observation at this point is the following.
Notice that the number of independent components in H;
and e; are the same, hence it makes sense to write e; in terms
of H' (or a suitably dualized object as we discuss below) to
get a cleaner Hamiltonian description of Euclidean gravity.
In fact, by proceeding in this way one arrives at the Ashtekar
formulation for Euclidean gravity without having to use any

gauge fixing. This is in marked contrast with the situation in
the case of the Holst action [19] and is significantly simpler.

To begin with it is convenient to define the following
object

P—»] _ 1 AN H i (7 2)
a V 1 + (12 VOIe ’ .
that should be understood as an element of the double dual
of the tangent space at each point of X. As the double dual of

a finite-dimensional vector space V' is canonically isomor-
phic to V, (7.2) determines a unique vector field on X that

we also call H;. Given a 1-form € Q!(Z) we have

1 p A H;
lﬁlﬁ = 5 .
Vit a VOIe
Taking this into account it is immediate to see that
17 el = ;(5/' —efay)
H; - /1 +(X2 i i Yk)-

In the following it will be useful to introduce the 1-forms #;
defined by

1
V14 a?

These satisfy the following important properties

hi = (ei + aia + €ijkajek).

1 .
Hi = Eeijk/’l] A I’lk,
1,y = bijs

vol, = /1 + a?vol,,

where vol, == Le;,h' A B/ A h* is a volume form on X.
Notice that the last property implies that

L <‘ . Hl>
Hi = .
vol,

We will now write the constraints in terms of w; and H i
First we compute

(7.3)

1 Fl = 1+a (Fa; — " Fy —Fa)e;,  (74)
and
ciik - - F :L(a(e"jkﬂ? —Fla;) = F). (7.5)
i, k m i Jjk J k). .

Obviously, the constraints (3.5), (3.7) in the form (4.1),
(4.2) imply
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lI?iFi == 0, (76)

€ijkl;1ilI:Iij =0, (7.7)
which look very much like the vector and scalar constraints
in the Ashtekar formulation for Euclidean gravity.

Conversely, the conditions (7.6) and (7.7) are
equivalent to

[!:ijaj — €ijk[ij - [F]]al =0, (78)

a;(e"*F; — Flia;) = F/; = 0. (7.9)
Multiplying the first of these two equations by «; and
adding it to the second leads to (1 + a®)F/; = 0 i.e. (4.2),
and introducing this into (7.8) we find (4.1).

Finally, in order to get the remaining constraint—
equivalent to the usual Gauss law as will be shown later—
we first compute [remember that for a vector field X € X(X)
its divergence with respect to a given volume form vol is
defined by (divX)vol = £xvol where £5 denotes the Lie
derivative along X]

(divhﬁi)volh = £ﬁ;VO|h = dlljlivolh

1 .
= d<§€ijkhj VAN hk> = dHi,

whereas €, @0’ A H* can easily be seen to be equal to
€k 1z’ )vol,. Hence, we conclude that the constraint
(3.6) written in the form DH; = 0 is equivalent to

div,H; + €100 = 0. (7.10)

In order to make contact with the standard Ashtekar
variables we introduce a fiducial volume form vol, (which,
if one wishes, may even be defined locally in terms of
coordinates x’, i = 1, 2, 3) and write

o= / do'AdH; = / (dw’ AdH ;)vOl,.
b b
This should be understood as

w(X,Y) = /(Y;,ﬂxg) — Xp, =i, )voly,
z

with

(" VAN Eijkl’lj VAN YIZ
i vol,

and

W k
Yo g — aneph! NY)
Hi vol, '

for any 1-form a € Q'(X). o .
The relation between H; and H; is H; = (det h)H; with

vol
det h = <—h)
voly
In terms of H ; the constraints (7.6) and (7.7) can be
immediately seen to be equivalent to

17, F =0, (7.11)

€ijkl[:,il,:1ij =0, (7.12)
which are the vector and scalar constraints written in terms
of the Ashtekar variables for Euclidean gravity.

As explained in Appendix B, the constraint (7.10) in
terms of H; and w; becomes

divoH; + €100’ =0, (7.13)

which, again, is exactly the usual Gauss law in the Ashtekar
formulation. Notice that the divergence in (7.13) is actually
independent of the choice of the volume form vol, as the
argument presented in Appendix B shows.

Another useful way to understand the constraints can be
gained by introducing the objects

Fi A h; Dh; A h;
h[Fij = i J , hBij = (— T,
vol, vol,

In terms of them the constraints become

h
Fiijg =0,
h —
Bjip =0,
hl]:il‘ - 0

Let us look now at the Hamiltonian vector fields in terms
of the new variables. A direct computation using the
definition of h; and ”[Fl-j gives the following expression
for ZK on the final constraint submanifold (which means
that we can make use of the constraints to simplify it)

7K = Dok — &,"F* e’ — epppl"F ™R, (7.14)

N (e ) Al e +aa — €Uketjak

o = ————", el:
V4 ' V1+ 2

Although it is possible to get le by a direct, brute force
approach, there is a much better—albeit slightly

(7.15)
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indirect—way to do it. The starting point is the identity
€l-jkhj A Z;Cl = €l'jkej A Z]é + Zei A a+ e,- A Za,

which comes directly from the definition of H;. On the
other hand, from (3.9) we find

€ine! NZE+ZyNa+e; N Z,
= e;xe! A Def +wl(e; A e;)) —a A De; — e (an el)of

+ ¢; A dag + elda + e e/ Dek — aDe;.

By writing the terms on the right-hand side of the previous

expression in terms of #; and using (7.15) we obtain the

following equation for Zk:
€ijkhj AN Zé = D(eijké{hk - &th’i) + O){hj A hi'

This equation involving differential forms can be solved by

using the method explained in Appendix C of [18]. The
solution on the final constraint submanifold is

1
Zy = Def + ¢, h " — 5 0BAE - €mn" B HY

+ ek, X he + &/ "B by, (7.16)

with

Iy 1 da, A B/ A hF
At this point it is very interesting to compare the formu-
lation that we have obtained in terms of the h; with the
original one in the time gauge a = 0. The latter can be
immediately obtained by substituting & = 0 in the pre-
symplectic form (7.1), the constraints (3.5)—(3.7) and the
Hamiltonian vector fields ZX, Z~.

The role of a gauge fixing is to reduce (or eliminate) the
arbitrariness due to the presence of arbitrary components in
the Hamiltonian vector fields by fixing some or all of them.
This can be done directly, or by demanding that the
dynamics must be confined to a submanifold of M, obtained
by adding a gauge fixing condition to the secondary
constraints. In the latter case we have to see what happens
with the Hamiltonian vector fields. For the time gauge that
we are considering here we must have Z, = 0, or, equiv-
alently, X, = —da,.

The formulation in the time gauge can be summarized as
follows: The presymplectic form is

. 1 ;
o= / do'Ad (—eijkef A ek),
s 2

The secondary constraints become

(7.17)

€ijkej A Fk == 0,

1 .
D<§€ijk€] A €k> = 0,

el‘/\FiZO,

or, equivalently,

Finally, the Hamiltonian vector fields are

7K = DoF — a,F* e — e, el"F el

1
7k = Def + by el 0l — Eat[EBek — epppe" B e’

4 ekfmxmef 4 atkaef,

with

¥ 1 da, A el A e*
L= —— _ .
R e

As we can see a remarkable thing happens: the form of
the presymplectic form, the constraints and the Hamiltonian
vector fields obtained either by working with the #;
variables or going to the time gauge in the original
formulation is exactly the same once we replace the arbitrary
objects a, and e/ by the, also arbitrary, & and &.. An
interesting observation regarding this replacement of param-
eters is the fact that this comes from one of the 80(3) factors
of the 80(4) symmetry of the action. Indeed, the infinitesi-
mal transformations (2.3) imply

o = Yiey,

oei =—Y'a + 6’jke{Yk,

which is given by the matrix

-1, 0 Y3

7(Y;) =
-Y, -Y; 0 Y
-Y; Y, -Y, 0

The exponential of this matrix gives the matrix correspond-
ing to a finite transformation

inY
T(Y)=cosYldy+=—(Y). Y=/ T34 7547%
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If we write Y; = —% arctan a with a := \/af + a3 + a3,

which is equivalent to ; = — YT tan Y, witha; € (-1, 1); the
form of the previous finite transformation becomes

1 —a —a, —oy
T(a;) = 1 a 1 -3 ’
Vit |a a3 1 -
a; —on Q) 1

which gives (7.15).

Several comments are in order now:

(1) Both the 1-form w; and the 2-form H; are invariant
under the transformations coming from (2.3). This
immediately allows us to perform a symmetry
reduction and eliminate one of the two original
30(3) symmetries form the final Hamiltonian for-
mulation.

(2) The primary constraint hypersurface My is spanned
by (e, h', w, @', a, a) or equivalently by the set of
fields obtained by replacing h; by H,, H ;or H. In
the latter case we arrive at the usual Ashtekar
formulation, but the other A-variables also provide
interesting and equivalent phase space approaches to
the dynamics of Euclidean GR.

(3) The field dynamics given by the vector fields
obtained above, in particular that of @; and h; can
be disentangled by introducing the uniquely defined
vector field £ € X(X) obtained by solving 1:h' = &}
(uniqueness is a consequence of the nondegeneracy
of the triads). A straightforward computation then
gives

Zt = D(of — 1:0%) + £:0* — &"F* .

As expected, a part of the dynamics corresponds

to the infinitesimal diffeomorphisms defined by &

and 80(3) gauge transformations parametrized by

wf — 1z0*. The nontrivial dynamics of Euclidean
GR comes from the —&,/F*h, term.

(4) Proceding in a similar way one can rewrite Z¥ in a
similar fashion and interpret part of the dynamics,
again, as infinitesimal diffeomorphisms and local
80(3) transformation given by the parameters £ and
wf —1z0*. The cleanest way to see this is by
introducing Z% as giving the dynamics of the
2-form H;. In this case it is possible to show that

Zi, = e H (of —1:0") + £:H' — D(ah'),
where A’ should be written in terms of H'. Notice

that the GR dynamics is given here by the very
simple term —D(¢h').

(5) Finally, the dynamics of A’ can also be written in the
same way. The result is exactly the one correspond-
ing to the usual Ashtekar variables.

(6) The rest of the fields (e, w,, @', &, @) are arbitrary as
there are no restrictions on the components of the
Hamiltonian vector field giving their dynamics. This
implies that we can choose them as any function of
the dynamical fields and treat them as arbitrary
external objects subject to the sole restriction of
providing nontrivial dynamics for the system (for
instance, & should be different from zero every-
where on X).

VIII. CONCLUSIONS AND COMMENTS

The main result of this paper is to show how the Ashtekar
formulation for Euclidean gravity can be obtained from the
self-dual action without introducing any gauge fixing. It is
illuminating to compare the results presented here with the
usual procedure using the time gauge for the Holst action
(compare with Ref. [19]). It is also interesting to look at the
arguments presented in [16,17] and inspired by [22,23] in
the same setting. At variance with the results of these works,
in the present paper we have shown that one can explicitly
reduce the symmetry generated by one of the 30(3) factors
in 80(4) = 80(3) x 80(3) and remove the arbitrariness in
the components of the Hamiltonian vector fields that show
up when using the GNH method. It should be clear at this
point that, a completely analogous argument leading to the
Ashtekar formulation without gauge fixing should apply in
the case of using Dirac’s approach.

A secondary purpose of the paper is to complete the
discussion of the consistency of the Hamiltonian formu-
lation for Euclidean GR, which one of the authors has to
admit, was not finalized in previous work on the subject
starting from the action used here [12]. There, once the
constraints generating the two 80(3) factors in 30(4) were
identified, the Dirac algorithm was stopped without check-
ing their stability. In this sense it is instructive to compare
the computations needed to complete the Hamiltonian
analysis of the Holst action in the GNH framework [18]
with the ones presented here. Quite surprisingly for us, the
complexity of the self-dual case is far greater than that of the
case of using the Holst action. This is so even considering
that the Hamiltonian analysis of the Holst action produces
secondary constraints in two stages and not in one as it
happens in the case analyzed in this paper.

It is important to point out that we have taken the self-
dual Lagrangian as our starting point. This admittedly
conservative approach has the advantage of guaranteeing
from the start that the dynamics is that of GR. Of course, in
order to get the Hamiltonian formulation from the
Lagrangian, one has to adhere to well-proven methods to
disentangle the complicated dynamics of a singular system
such as the one discussed here. Our choice of the GNH
method over the Dirac one is due to the geometric nature of
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the former, which avoids some of the interpretative issues
that one finds is the literature when the Dirac method is
used, specially in situations where functional analytic issues
are relevant. Notice, anyway, that Dirac’s approach can be
reinterpreted in geometric terms close in spirit to the GNH
procedure [14,24].

In our opinion, the main use of the insights gained here
may be to look for an action for Lorentzian GR which
shares some of the nice features of the Euclidean self-dual
action analyzed here. We hope that the clarification of the
inner workings of the internal SO(4) symmetry of the
Euclidean model may help to better understand the much
more relevant Lorentzian case.
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APPENDIX A: TANGENCY ANALYSIS:
SOME DETAILS

1. Additional details on the tangency condition (6.6)

The terms proportional to e/ and linear in o in this
tangency condition are

—de;pel (B ap)AF = 3(e, - A)e;a B* + 3¢, a’ Al (e, B*) + 5e; 0l (B e, ) AF
- Z[Beijkaie{Ak + 2€ijkaiej([EkaA,g) + (e~ @)e p ATBF + 2(A - a)e;elBF — 2¢ (B ) el AF.

By using €j;;ras = 0 to transform the last term in the previous expression we get

- 2€ijke{(lBj'faf)Ak + 3(€t . a)e,-jkAiBjk - 3(€t . A)eijkai[Bjk + 3€ijkaiAj(ethfk)
- 2[B€ijkaie{Ak + 2€ijkaie{([kaA,;) + Seal (B e A¥).

Using now €;jrey) = 0 to transform the last term in the previous expression we find

—2(e,- @)e  ATB* — 26,0 AT (e, BY) + 2(ey - A)e;pa' B — 2€; e (B a,) AF

+ 2¢; el (B Ay) — 2Be; palel A*.

By writing now the last term as —2Be; ;a'e/A* and using [Bffe,»jk] =0 we get

—2(€t . a)e,-jkAilBjk + 2(€t . A)e,»jkai[Bjk + 2€ijkAi([ijelf)ak - 2€ijkaiAj(€tf|Bfk),

which is zero as a consequence of €j;jey = 0.
The terms proportional to e} and cubic in o are

+2(aBa)ejreiAlak + 20%€; 3 Ale] (B ay) — 2(e, - a)eyjn (B ays)Aldk —2(A - a)ejale] (B ay).

By writing now the first term in the previous expression as 2B a,,e!Ala*a ¢;;, and using a;.€; ;1 = 0 we immediately see
m&t ¢Cijk [¢Cijk]

that it cancels.

2. Additional details on the tangency condition (6.5)

The terms proportional to @, (equivalently to #;) in this tangency condition are

- 2€ijk(lil’]j(kaA"ﬂ) + 2€ijk77,»Aj(afB,gk) +2(n- A)eijkaiBjk + 4€ijkl/li<|ijaf)Ak
+ ZBeijkmAjak - 2(A . (Z)EijkﬂiBjk - 4€ijk(Bifl’]f)Ajak + 2€ijk(7]f[Bfi>Ajak,

Using el*B,7! = 0 we can transform the first term in the previous expression to get
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Zeijk’/liAj<afok) + 2(’7 : A)eijkai[EBjk + 2€ijk'7i([Eijaf)Ak - 2(A : a)eijkniBjk
- 2€ijk([Bif7’]f)Ajak + 2€ijk(i’[f|Bfi)Ajak.
By using el*;?) = 0 to transform the last term, the previous expression becomes
26k n,A (af Byy) + 2675, (B; ap ) Ay — 2(A - a)e By + 2(n - a)eFA;By,

which vanishes as a consequence of el/%a?l = 0.
The terms proportional to e¢{ and independent of a; in the tangency condition are

3(e - A)e; C'B* — 26,;,Clel (B A,) — 3(e, - C)e;j ATBH

+ 2Be; el A CF + 3¢, ATC (e,,BF) + 26, el (B C,)A* — 5, (B e, ) AT CF.

Using e;jxe,) = 0 we can transform the last term in the previous expression to get
— 26,1 ATC (e,B*) — 2(e, - A)e;  C'BF + 2(e, - C)e;yA'B/X + 2Be; el A/ CF

+ 2¢, el (B Cp)AF = 2¢,,Cle] (BF ,A7).

By using now e[,-jk[EBk,f] = 0 to transform the last term we arrive at
26, ACH(BY — B %)ey, —2(e - A)e; 3 C'B* + 2(e, - C)e;A'BK,
which can be seen to cancel because
26, A'CH(BY — B ) e, = 2€, 365 e, , BPIAICT = 2(e, - A)e; 3 C'BF —2(e - C)e;p ATBI-.
Finally, the terms proportional to e/ and quadratic in ; in the tangency condition are

+2(e, - A)eyjpal C/ (B ay ) + 2(aBa)e;jpel C/AF = 3(C - a)eijkAie{([kaaf)
+2(C-e)eip(Bap)Alar — (A - C)(e, - a)e;a B — (CBa)e;jpelAla
+ €;jxelAIa (aBC) + 2(A - a)e; 5 Clel (B ay) + (A - a)(e, - C)e;ja B*
+ (C - a)e;pel(a,BY)A* + a’e;1el(B Cp)AF — oPe;jpel(C,BY)A* + 2(eBa)e, o' AT CF.
By using eys€;; = 0 we can transform the last term in the previous expression written in the form,
2(eBa)e;ja AICH = 2(B ™ a,,)e €, a0 AT CF,
to get
2(aBa)ejeiCIAF = 3(C - a)e;Ale] (B ay) — (A - C) (e, - a)e; o’ B
+ 2(e¢ - a)e;pATCH (B ay) + €, 5eiAVa* (aBC) + 2(A - a)eijkCie{([kaaf)
+ (A-a)(e - C)e;paB* + (C - a)eyjpel(a,B7)A* + oPe;jpel (B Cp)A* — a’e;jel(C,BY)AF — (CBa)e;jeiAlak.
The first term in this expression can be transformed by writing it in the form 2(B""a,, )as€; ;i C’A* and using aj €;;y = 0.
By doing this we get
(C- a>€ijke£(afoj)Ak + eijkefAjak(“BC) -(C- 0‘)€ijkAi€{(kaaf)
—(A-C)(e;- a)e;pa B + (A - a)(e, - C)e;pa’ B + aPe;jpel (B Cp)A*
— a?e;jel(C,BYT)A* — (CBa)e; el Alat.
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Now, we transform the first term by writing it as a’ e (a,B")A*Ce; i and using Cie€;5) = 0 to get

(e C>€ijk(af[EBﬁ)Ajak -(C- a)eijkAie{(kaaf) -
+ (A : C) €ijkx et( Bnk) + (A : a)(et

(A-C)(e; - a)e;pa' B
- C)e;jpa B* — (CBa)e;jpeiAlar

+ a’e; el (B Cp)AF — aPe;jpel (C,BY)A*.

In the next step we use €[;;ras = 0 to transform the first term and also rewrite the last two terms as

a2€ijk€f(ij -

this way we obtain
—(C-a)eyyAle] (B ay) —
+ (A C)eyaie](a,B™) —

(A-C)(e

BY)C,AF = a*(C - A)e, pelB* — a* (e, - C)e;j ATB*,

a)eia B + (e - CeypAlal (B ay)
(CBa)et]kelAja +(12(C A) ”ketB/k

We can now transform the last term by writing it as (C - A)e/B*a’ a €;;, and using a;.€;;,1 = 0. This way the previous
y g t ¢Cijk g A[€ijk] Y p

expression becomes

—(C-a)e;yAle el (B ay) + (e, - C)e;pAlal (B ay) +

(A : C) ljka € (Bkﬁ )

— (CBa)e;jpeiAiak = 4e"Alad (B ay)e;;jxCp = 0.

APPENDIX B: THE GAUSS LAW IN THE
ASHTEKAR FORMULATION: SOME
COMPUTATIONAL DETAILS

By multiplying the constraint (7.10) by det & (which is
nonzero at every point of X) we get the following equivalent
expression:

[7i

det A1) - divy [ ———
(det 1) lvh<deth

) + € i’ = 0. (B1)

We now prove that

[ri

(det h) -divh< H (B2)

—— ) =divoH',
det h) 0

for any field independent volume form vol, [remember
that, for a given volume form vol, the divergence of a vector

field X is defined as (£XV°')]. Notice that this implies that the

vol

right-hand side of (B2) is actually independent on the
choice of vol,.

In order to prove (B2) we need the identity

(voly) - £ det h = d(det h) A 15:v0l, (B3)
which can be obtained by taking the interior product 75 of
both sides of the trivial identity 0 = d(det #) A vOl,.

For X€X(X), ¢€Q’ZX) and any volume
vol € Q3(X) we have

form

div(pX) = £x¢ + @divX.

Using this expression one gets

([ H 1
(det h)div,, (m> = (det h)£p <d h) + div, H'

1

deth (B4)

Finally, making use of (B3) we find

div,H' =
i < vol,

£,~1ivolh) _ (d[(det h) - (zﬁivolo)]) _ (d(det h) A zgivol())

vol,

vol,

vol,
£iivoly

vol, vol,

——£pidet b+ <

 det h vol,

which introduced in (B4) gives (B2).

) ot h£H, det h + divoH',
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