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The Gotay-Nester-Hinds method is used in this paper to study the Hamiltonian formulation of the
Euclidean self-dual action. This action can be used to arrive at the complex Ashtekar formulation of general
relativity or a real connection formulation for Euclidean general relativity. The main result of the paper is a
derivation of the Ashtekar formulation for Euclidean gravity without using any gauge fixing. It is
interesting to compare this derivation with the one corresponding to the Holst action. In particular it is
worth noting that no “tertiary” constraints appear in the case considered in the present paper.
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I. INTRODUCTION

The Gotay-Nester-Hinds (GNH) method is used in this
paper to study the Hamiltonian formulation of the Euclidean
self-dual action. The self-dual action [1,2] played a very
important role in the establishment of the Ashtekar formu-
lation for general relativity (GR) as a new starting point for
the quantization of gravity. The self-dual formulation has
also drawn interest in the context of the quantization
proposal for GR put forward by Smolin in [3] and discussed
recently in [4–8]. At variance with the Hamiltonian treat-
ment of the Hilbert-Palatini action—which leads to a
version of standard geometrodynamics endowed with an
SOð3Þ internal symmetry—the self-dual version of the
Hilbert-Palatini action leads to the Ashtekar formulation
for either complex or real-Euclidean GR. Although at the
present moment the standard way to arrive at the real
Ashtekar formulation makes use of the Holst action [9], the
self-dual action is still widely considered as a means to
address a number of problems, in particular whenever the
complex formulation is useful (see, for instance, [10,11]).
For this reason it is interesting to revisit the Hamiltonian
formulation derived from it and consider several issues
that have not been completely cleared out in the past, in
particular regarding the stability of the secondary con-
straints when the Dirac method is used [12]. A very
powerful way to address these issues is to rely on the
geometric perspective provided by the GNH approach to
Hamiltonian dynamics [13,14]. In this setting the main
consistency condition is translated into a tangency require-
ment whose verification does not need the computation of
Poisson brackets and, thus, is significantly easier than its

counterpart in the Dirac “algorithm”. This is specially
relevant whenever functional analytic issues are important,
for instance, when the primary constraint submanifold is
dense in phase space and, hence, there are no constraint
functions representing it. This happens even for such simple
systems as the Klein-Gordon field (see Ref. [14]). The
possibility of avoiding the computation of Poisson brackets
is also useful to study field theories defined on manifolds
with boundaries. Finally, for the case that we study here, the
computations are actually shorter and more transparent than
those necessary to reproduce the analogous steps in the
Dirac approach as in [12].
It is interesting to compare the GNH analysis of the Holst

action (discussed, for instance, in [15–17] from the standard
Dirac point of view and also in [18] from the perspective of
the GNH method). As we show here, on one hand, the
analysis of the self-dual action is shorter because no new
secondary constraints appear after the first batch of them
show up in the analysis, whereas, in the Holst case,
secondary constraints appear at two different stages. On
the other hand, the explicit verification of the tangency of
the Hamiltonian vector fields to the phase space submani-
fold determined by the secondary constraints in the case of
the self-dual action is rather intricate and requires careful
consideration.
One interesting consequence of the analysis that we

present in the paper is the possibility of deriving the
Ashtekar formulation for Euclidean GR without any gauge
fixing. The key insight to arrive at this result comes from the
form of the pullback of the canonical symplectic form to the
primary constraint submanifold. In fact it is possible to
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write this pullback in a way that leads to the introduction of
a function in the phase space that takes the sympletic
form to a simple “canonical” form (i.e. the analogous of
Σidqi ∧ dpi). It is very interesting at this point to rewrite
the remaining elements of the Hamiltonian formulation
(constraints and Hamiltonian vector fields) with the help of
this new object. It is also worth to compare the result with
the one derived by the usual time-gauge fixing. As we will
show the results are compatible in an appealing way and the
role of one of the soð3Þ factors of the soð4Þ symmetry is
noteworthy. Those readers who want to arrive at this part of
the paper without going through the intricate details of the
tangency analysis, can skip Secs. Vand VI in a first reading
of this work.
The structure of the paper is the following. After this

introduction we will quickly discuss some basic facts about
the self-dual (actually the antiself-dual) action for Euclidean
GR in Sec. II. After that we will discuss in Sec. III the
Hamiltonian formulation for this action and perform the first
steps of the GNH analysis. Before completing the crucial
tangency tests to verify the consistency of the dynamics
obtained by using the GNH method we will discuss some
features of the secondary constraints (Sec. IV) and solve the
equations that determine the components of the Hamiltonian
vector fields on the primary constraint submanifold
(Sec. V). With all this information we will give a detailed
account in Sec. VI of the tangency analysis, although we
will leave some details for Appendix A. Although the main
ideas involved are simple, the computation itself is quite
intricate. In Sec. VII we show how the Ashtekar formulation
appears quite naturally by following our approach, in fact,
this is probably the cleanest way to arrive at it from an action
principle. Furthermore, as wewill explain there is no need in
principle to use any gauge fixing (at variance with the
situation in the case of the Holst action, see, for instance
[18,19]). We end the paper with some conclusions in
Sec. VIII. Appendix B gives some computations related
to the Gauss law in the Ashtekar formulation.
Some comments about our notation. As a general rule we

will employ boldface characters to denote four-dimensional
geometric objects and nonboldface letters for the three-
dimensional ones. The totally antisymmetric Levi-Civita
symbol in three dimensions will be denoted as ϵijk. The
“internal” indices i; j; k;… will be raised and lowered with
the Euclidean metric Diagðþ þ þÞ (so, in practice, their
position upstairs or downstairs is irrelevant). We will also
employ boldface characters to denote canonical momenta.
The exterior differentials inM, Σ and the phase space T�Q
will be respectively denoted as d, d and d. The interior
product of a vector field X and a differential form β will be
denoted either as {Xβ or X⨼β. Throughout the paper £X
denotes the Lie derivative along a vector field X. Finally,
the scalar field ϕ satisfying σ ¼ ϕvol for a top-form σ and a
volume form vol will be often written as ð σ

volÞ.

II. ACTION AND EQUATIONS OF MOTION

Let Σ be a closed (i.e. compact without boundary),
orientable, three-dimensional manifold (this implies that Σ
is parallelizable) andM ¼ R × Σ. The basic fields that we
will use to write the action are

ei ∈Ω1ðMÞ; i ¼ 1; 2; 3

ωi ∈Ω1ðMÞ; i ¼ 1; 2; 3

α∈Ω1ðMÞ:

The fields α and ei are chosen in such a way that α ⊗
αþ ei ⊗ ei is a Euclidean metric of signature ðþ þ þþÞ.
As a consequence ðα; eiÞ defines a nondegenerate tetrad.
Important geometric objects defined with the help of the

fields introduced above are the covariant exterior differ-
ential D, which acts on the ei according to

Dei ≔ dei þ εijkωj ∧ ek;

and the curvature 2-form

Fi ≔ dωi þ 1

2
ωj ∧ ωk:

The Euclidean self-dual action for GR can be written in the
form [12],

Sðe;ω;αÞ≔
Z
M

�
1

2
εijkei ∧ ej ∧Fk−α∧ ei ∧Fi

�
: ð2:1Þ

Notice that the first term is the Husain-Kuchař action [20].
The indices i, j, k ¼ 1, 2, 3 can be considered as “SOð3Þ
indices” because (2.1) is invariant under the infinitesimal
gauge transformations

δ1ωi ¼ DΛi;

δ1α ¼ 0;

δ1ei ¼ εijke
jΛk; ð2:2Þ

with Λk ∈C∞ðMÞ. The action is also invariant under the
infinitesimal transformations

δ2ωi ¼ 0;

δ2α ¼ ϒiei;

δ2ei ¼ −ϒiαþ εijke
jϒk; ð2:3Þ

where ϒk ∈C∞ðMÞ. It is important to point out that δ1 and
δ2 are independent. Also, it is worth noting that these
transformation do not commute, in fact they satisfy

½δ1ðΛÞ; δ2ðϒÞ� ¼ δ2ðΛ × ϒÞ:
The internal symmetries of the action can be written in
other forms, for instance
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8>><
>>:

δ−ðΛÞωi ¼ DΛi

δ−ðΛÞα ¼ − 1
2
Λiei

δ−ðΛÞei ¼ 1
2
Λiαþ 1

2
εijkejΛk

;

8>><
>>:

δþðϒÞωi ¼ 0

δþðϒÞα ¼ 1
2
ϒiei

δþðϒÞei ¼ − 1
2
ϒiαþ 1

2
εijkejϒk

: ð2:4Þ

At variance with δ1 and δ2 these transformations do
commute, i.e.

½δ−ðΛÞ; δþðϒÞ� ¼ 0:

Taking also into account that

½δ−ðΛÞ; δ−ðMÞ� ¼ δ−ðΛ ×MÞ;
½δþðΛÞ; δþðMÞ� ¼ δþðΛ ×MÞ;

we see that (2.4) provides an explicit realization of soð4Þ ≅
soð3Þ × soð3Þ as the symmetry group of the self-dual
action (2.1) [12]. Notice that

δ1ðΛÞ ¼ δ−ðΛÞ þ δþðΛÞ; δ2ðϒÞ ¼ δþð2ϒÞ:

The field equations coming from the action (2.1) are

Dðα ∧ ekÞ þ ϵijkei ∧ Dej ¼ 0; ð2:5Þ

ϵijkej ∧ Fk þ α ∧ Fi ¼ 0; ð2:6Þ

ei ∧ Fi ¼ 0: ð2:7Þ

They are equivalent to the Euclidean Einstein equations in
vacuum.

III. THE HAMILTONIAN FORMULATION
IN THE GNH APPROACH

In order to get the Lagrangian and Hamiltonian for-
mulations given by the self-dual action (2.1) we take
advantage of the foliation naturally associated with

M ¼ R × Σ. The spatial sheets of this foliation are Σt ≔
ftg × Σ (t∈R). The foliation also defines a canonical
evolution vector field ∂t given by the tangent vectors to the
curves cp∶R → R × Σ∶τ ↦ ðτ; pÞ with p∈Σ. For each
t∈Rwe define the embedding |t∶Σ → M∶p ↦ ðt; pÞ and
denote its pullback as |�t . Notice that Σt ¼ |tðΣÞ.
By remembering that,

Z
R×Σ

L¼
Z
R×Σ

dt ∧ {∂tL¼
Z
R
dt
Z
Σt

{∂tL¼
Z
R
dt
Z
Σ
|�t {∂tL;

we can compute the Lagrangian L ≔
R
Σ |

�
t {∂tL defined on Σ

from the 4-form L appearing in the action. The Lagrangian
thus obtained is defined on the configuration space

Q ¼ C∞ðΣÞ3 × Ω1ðΣÞ3 × C∞ðΣÞ3 ×Ω1ðΣÞ3 × C∞ðΣÞ
× Ω1ðΣÞ;

with elements of the form ðeit ; ei;ωi
t;ωi; αt; αÞ, by inter-

preting the objects

eitðtÞ ≔ |�t {∂te
i; eiðtÞ ≔ |�t ei;

ωi
tðtÞ ≔ |�t {∂tω

i; ωiðtÞ ≔ |�tωi;

αtðtÞ ≔ |�t {∂tα; αðtÞ ≔ |�tα:

as defining curves in the configuration space Q and
considering also their velocities

vietðtÞ ≔ |�t £∂tð{∂teiÞ ¼
deit
dτ

ðtÞ; vieðtÞ ≔ |�t £∂te
i ¼ d

dτ
ð|�τeiÞ

����
τ¼t

¼ dei

dτ
ðtÞ;

viωt
ðtÞ ≔ |�t £∂tð{∂tωiÞ ¼ dωi

t

dτ
ðtÞ; viωðtÞ ≔ |�t £∂tω

i ¼ d
dτ

ð|�τωiÞ
����
τ¼t

¼ dωi

dτ
ðtÞ;

vαtðtÞ ≔ |�t £∂tð{∂tαÞ ¼
dαt
dτ

ðtÞ; vαðtÞ ≔ |�t £∂tα ¼ d
dτ

ð|�ταÞ
����
τ¼t

¼ dα
dτ

ðtÞ;

defined in terms of the Lie derivative £∂t along the vector field ∂t. Here we are leaving aside functional issues—necessary for
the complete definition of the configuration space—that play an important role in the rigorous Hamiltonian formulation of
this model. In any case, the results that we will obtain here are on par (and equivalent to) with those derived by using Dirac’s
method. The Lagrangian is
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LðvÞ ¼
Z
Σ

��
1

2
ϵijkei ∧ ej þ ek ∧ α

�

∧ vkω þ ωi
tD

�
1

2
ϵijkej ∧ ek þ ei ∧ α

�

− αtei ∧ Fi þ eitðϵijkej ∧ Fk þ α ∧ FiÞ
�
;

where we denote the velocity in the fiber of TQ corre-
sponding to ðeit; ei;ωi

t ;ω
i; αt; αÞ as v ≔ ðviet ; vie; viωt

;
viω; vαt ; vαÞ (as a consequence L∶ TQ → R depends both
on the components of the velocity and the fields defining the
configuration manifold Q). We also define Fi ≔ dωi þ
1
2
ϵijkωj ∧ ωk and Dei ≔ dei þ ϵijkωj ∧ ek (with the usual

generalization to forms of other degrees). An important
consequence of the nondegeneracy of the tetrad ðα; eiÞ is the
nondegeneracy of the triad ei on any Σt.
The fiber derivative that defines the canonical momenta

is given by

FLðvÞðwÞ ¼
Z
Σ

�
1

2
ϵijkei ∧ ej þ ek ∧ α

�
∧ wk

ω; ð3:1Þ

hence, the primary constraint submanifold M0 in the phase
space is defined by the conditions

pet ¼ 0;

pe ¼ 0;

pωt
¼ 0;

pωðwÞ ¼
Z
Σ

�
1

2
ϵijkei ∧ ej þ ek ∧ α

�
∧ wk

ω;

pαt ¼ 0;

pα ¼ 0:

The Hamiltonian is defined on the primary constraint
submanifold by H ¼ E∘FL−1 where E ≔ hFLðvÞ; vi − L
is the energy (a real function in TQ). As in this case the
energy E only depends on the configuration variables the
functional form of the Hamiltonian coincides with that of
E, hence

HðpÞ ¼
Z
Σ

�
αtei ∧ Fi − ωi

tD

�
1

2
ϵijkej ∧ ek þ ei ∧ α

�

− eitðϵijkej ∧ Fk þ α ∧ FiÞ
�
: ð3:2Þ

Here we denote the momenta in the fiber of T�Q over the
point ðeit ; ei;ωi

t;ω
i; αt; αÞ∈Q as p ≔ ðpet ;pe;pωt

;pω;
pαt ;pαÞ. The Hamiltonian depends on p only through its
base point.

A vector field in phase space Y ∈XðT�QÞ has the
following component structure

Y ¼ðYi
et ;Y

i
e;Yi

ωt
;Yi

ω;Yαt ;Yα;Ypet
;Ype

;Ypωt
;Ypω

;Ypαt
;Ypα

Þ;

where we use boldface characters for those components of
Y that are dual objects. Notice that Yi

e; Yi
ω; Yα ∈Ω1ðΣÞ

and Yi
et ; Y

i
ωt
; Yαt ∈ C∞ðΣÞ.

We can then write the action of the exterior differential in
phase space d on a vector field Y as

dHðY Þ ¼
Z
Σ

�
−Yi

etðϵijkej ∧ Fk þ α ∧ FiÞ þ Yi
e

∧ ðαtFi þ ϵijkðDωj
t Þ ∧ ek −Dωi

t ∧ αþ ϵijke
j
tF

kÞ

þ Yi
ωt
D
�
α ∧ ei −

1

2
ϵijkej ∧ ek

�
þ Yi

ω ∧ ðDðαtei

þ ϵijkejekt − αeitÞ−ωj
tej ∧ ei − ϵijkω

j
tα ∧ ekÞ

þ Yαtei ∧ Fi þ Yα ∧ ðDωi
t ∧ ei − eitFiÞ

�
: ð3:3Þ

The action of the canonical symplectic form Ω on
Y ;Z∈XðT�QÞ can be written in terms of the components
of these vector fields as

ΩðZ;Y Þ ¼ Ypet
ðZetÞ − Zpet

ðYetÞ þ Ype
ðZeÞ − Zpe

ðYeÞ
þ Ypωt

ðZωt
Þ − Zpωt

ðYωt
Þ þ Ypω

ðZωÞ
− Zpω

ðYωÞ þ Ypαt
ðZαtÞ − Zpαt

ðYαtÞ
þ Ypα

ðZαÞ − Zpα
ðYαÞ:

The vector fields Y ∈XðT�QÞ tangent to the primary
constraint submanifold M0 have the form

Y ¼ ðYet ; Ye; Yωt
; Yω; Yαt ; Yα; 0; 0; 0;Y; 0; 0Þ

with

Yð·Þ ¼
Z
Σ
ðϵijkYi

e ∧ ej − α ∧ Yk
e − Yα ∧ ekÞ ∧ ·

One of the central ideas in the GNH approach is to work
directly on the primary constraint submanifold M0. In the
present case this is especially easy as M0 is precisely
the configuration space Q. This means that vector fields on
this manifold have the form

Y 0 ¼ ðYi
et ; Y

i
e; Yi

ωt
; Yi

ω; Yαt ; YαÞ:

The pullback of Ω to M0—another of the basic elements of
the GNH approach—can be written as
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ωðZ0;Y 0Þ ¼
Z
Σ
ðYi

e ∧ ðϵijkej ∧ Zk
ω þ α ∧ ZωiÞ

þ Yi
ω ∧ ðZα ∧ ei − ϵijkZ

j
e ∧ ek − Zi

e ∧ αÞ
þ Yα ∧ Zi

ω ∧ eiÞ: ð3:4Þ

The basic equation of the GNH approach {X0
ω ¼ dH can

now be easily solved by equating the terms proportional to
the different components of the vector field Y in (3.3) and
(3.4). By doing this one finds the secondary constraints,

ϵijkej ∧ Fk þ α ∧ Fi ¼ 0; ð3:5Þ

D

�
1

2
ϵijkej ∧ ek þ ei ∧ α

�
¼ 0; ð3:6Þ

ei ∧ Fi ¼ 0; ð3:7Þ

and the following equations for the components of the
Hamiltonian vector field Z0

ðϵijkejþ δikαÞ∧ ðZk
ω −Dωk

t Þ ¼ ðδikαtþ ϵijke
j
t ÞFk; ð3:8Þ

ðϵijkej − δikαÞ ∧ ðZk
e −Dekt − ϵklme

lωm
t Þ þ ei ∧ ðZα − dαtÞ

¼ eitdαþ ðϵijkejt − αtδikÞDek ð3:9Þ

ei ∧ ðZi
ω −Dωi

tÞ ¼ eitFi: ð3:10Þ

There are no conditions on Zi
et , Z

i
ωt

and Zαt so they are
arbitrary and, hence, the dynamics of eit , ω

i
t and αt is also

arbitrary.
The next step in the GNHmethod is to check if the vector

fields whose components satisfy (3.8)–(3.10) are tangent to
the submanifold ofM0 defined by the secondary constraints
(3.5)–(3.7). Before performing this analysis—which turns
out to be rather intricate—it is necessary to analyze in detail
the secondary constraints and also to solve for Zi

e, Zi
ω and

Zα in (3.8)–(3.10). We devote the next two sections to
this issue.

IV. SOME DETAILS ON THE SECONDARY
CONSTRAINTS

In order to study the tangency of the Hamiltonian vector
fields given by (3.8)–(3.10) it is necessary to disentangle
part of the content of the constraints (3.5) and (3.7). We do
it here. First we point out that the curvature Fi can be
written as

Fi ¼
1

2
F ijϵ

jklek ∧ el

with

F ij ≔
�
Fi ∧ ej
vole

�
:

Here vole ≔ 1
3!
ϵijkei ∧ ej ∧ ek is a volume form on Σ

because the ei are linearly independent everywhere.
As the ei are linearly independent we can write α ¼ αiei

and put the secondary constraint (3.5) in the form

ϵijkej ∧ Fk þ α ∧ Fi ¼ ðF ijα
j − ϵijkF jkÞvole ¼ 0;

which is equivalent to

F ijα
j − ϵijkF jk ¼ 0: ð4:1Þ

It is also straightforward to rewrite (3.7) in terms of
F ij, indeed

ei ∧Fi ¼
1

2
ei ∧ F i

jϵ
jklek ∧ el ¼

1

2
ϵiklϵ

jklF i
jvole ¼ F i

ivole;

and, hence, the secondary constraint (3.7) is equivalent to

F i
i ¼ 0: ð4:2Þ

If we expand now F ij in terms of a symmetric-traceless part
Sij, a trace S and an antisymmetric part ϵijkAk

F ij ¼ Sij þ
1

3
δijSþ ϵijkAk;

the constraint (4.2) implies S ¼ 0 and (4.1) becomes

ð2δij þ ϵijkα
kÞAj ¼ Sijαj;

which can be solved for Ai in terms of the symmetric-
traceless object Sij

Ai ¼
1

2ð4þ α2Þ ð4δij þ αiαj − 2ϵijkα
kÞSjlαl;

where α2 ≔ αiα
i. We then conclude that, when the con-

straints hold

F ij ¼ Sij þ
1

2ð4þ α2Þ ϵijkð4δ
k
l þ αkαl − 2ϵklmα

mÞSlpαp;

ð4:3Þ

with Sij symmetric and traceless. Notice that this is not the
full solution to the constraints (3.5)–(3.7) but, rather, a
restriction on the form of the curvature Fi. In order to fully
solve the constraints one should find the connection Ai
from (4.3).
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V. THE HAMILTONIAN VECTOR FIELDS

In this section we will solve Eqs. (3.8)–(3.10) for Zi
e, Zi

ω

and Zα. For this purpose it helps to define

Xk
e ≔ Zk

e −Dekt − ϵklme
lωm

t ;

Xk
ω ≔ Zk

ω −Dωk
t ;

Xα ≔ Zα − dαt:

so that (3.8)–(3.10) become

ðϵijkej þ δikαÞ ∧ Xk
ω ¼ ðδikαt þ ϵijke

j
t ÞFk; ð5:1Þ

ðϵijkej − δikαÞ∧Xk
eþ ei ∧Xα ¼ etidαþðϵijkejt −αtδikÞDek

ð5:2Þ

ei ∧ Xi
ω ¼ eitFi: ð5:3Þ

We solve now these equations taking into account that the
secondary constraints (3.8)–(3.10) hold.

A. Solving equation (5.1)

By expanding the 1-forms Xk
ω ¼ Wk

qeq and α ¼ αiei we
can write (5.1) as the following linear, inhomogeneous
equation for Wij,

Wij − δijWk
k− ϵi

pqαpWjqþαtF jiþ ϵj
pqetpFqi ¼ 0: ð5:4Þ

We expand now Wij in irreducible components as

Wij ¼ wij þ
1

3
δijwþ ϵijkwk; ð5:5Þ

with wij symmetric and traceless. From (5.5) we see that

wi ¼ 1

2
ϵijkWjk; w ¼ Wi

i: ð5:6Þ

Multiplying (5.4) by ϵkij and αi respectively we get

ϵijkWjk − αjWji þ αiWj
j − αtϵ

ijkF jk − F i
je

j
t ¼ 0;

αjWji − αiWj
j þ αtF ijα

j þ ϵijke
j
t F klαl ¼ 0:

Adding both expressions, taking into account (5.6) and
using the constraints in the form (4.1) and (4.2) we find

wi ¼ 1

2
etjF ji:

In order to find w we take the trace of (5.4), which gives

−2Wi
i þ ϵijkαiWjk þ ϵijketiF jk ¼ 0;

after making use of the constraint F i
i ¼ 0. From the

previous expression, the value of wi computed above
and the constraint (4.1) we get

w ¼ ϵijkeitF
jk:

A crucial simplification of Eq. (5.4) can be achieved by
using Wi

i ¼ w, noting that Wjq ¼ Wqj − 2ϵqjkwk and
introducing this expression in the third term of (5.4). By
doing this we find that (5.4) can be rewritten as

ðδiqþϵiqpα
pÞWq

jþαtF ji−αjetkF k
iþϵjpqe

p
t F

q
i¼0; ð5:7Þ

which can be easily solved by inverting the 2 × 2 matrix
δiq þ ϵiqpα

p as the index j in Wq
j is a mere spectator. The

result is

Wij ¼
1

1þ α2
ðδik þ αiα

k − ϵi
klαlÞMkj; ð5:8Þ

with

Mkj ≔ αjetqFq
k − ϵjpqe

p
t F

q
k − αtF jk: ð5:9Þ

B. Solving equation (5.2)

By following exactly the same steps as in the previous
subsection it is possible to solve Eq. (5.2). In this case we
expand Xk

e ¼ Ek
qeq and Xα ¼ Xiei. We also take into

account that the constraint (3.6) is equivalent to

dα ∧ ei ¼ α ∧ Dei − ϵijkej ∧ Dek:

This means that on the constraint submanifold defined by
the secondary constraints we have

dα¼ 1

2
ϵijk

�
dα∧ ei
vole

�
ej ∧ ek ¼

�
1

2
Bi

lα
lϵijkþBjk

�
ej ∧ ek;

ð5:10Þ

where Bij ≔
�Dei∧ej

vole

�
.

Taking all this into account, on the constraint hypersur-
face Eq. (5.2) can be written as

Eij − δijEk
k þ ϵi

pqαpEjq − ϵijkXk − αtBji þ ϵjklektBl
i

þ Bikα
ketj þ ϵi

pqBpqetj ¼ 0; ð5:11Þ

where the Xi can be taken to be completely arbitrary.
The resolution of this equation follows the same steps as

that of (5.4) so we just quote the result here:

Eij ¼
1

1þ α2
ðδik þ αiα

k þ ϵi
klαlÞNkj; ð5:12Þ
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with

Nij ≔ δij

�
ϵklmektB

lm þ ϵklmα
kelt B

mnαn þ
1

2
ðet · αÞðαBαÞ þ

1

2
ðet · αÞϵklmαkBlm

−
1

2
ðet · αÞBþ ðαBetÞ þ α · X −

1

2
αtðαBαÞ −

1

2
αtϵklmα

kBlm −
1

2
αtB

�

þ αjðBeti − 2ϵipqe
p
t B

q
rα

r − etiðαBαÞ − etiϵklmαkBlm − 2Bikekt þ etkBk
i − 2Xi

− ϵilmα
lXm þ αtBilα

l þ αtϵilmBlmÞ − ϵjpqe
p
t B

q
i − Bilα

letj − ϵipqBpqetj þ ϵijkXk þ αtBji; ð5:13Þ

where the following shorthand notation has been used:

et · α ≔ etiαi; αBα ≔ αiBijαj; B ≔ Bi
i;

αBet ≔ αiBijetj; α · X ≔ αiXi:

C. Solving equation (5.3)

Equation (3.10) can be easily written in the form
ϵijkWjk ¼ etjF ji. It is obvious from the discussion pre-
sented in Sec. VA (and straightforward to check) that Wij,
as given in (5.8), satisfies (3.10).

VI. TANGENCY ANALYSIS

The consistency of the Hamiltonian dynamics requires
that the Hamiltonian vector fields obtained by solving
(5.1)–(5.3) must be tangent to the submanifold of M0

defined by the secondary constraints (3.5)–(3.7). These
tangency conditions can be easily obtained by computing
the derivatives of the functions defining the constraints
along the field (i.e. {Xd). By doing this one gets

ðϵijkZj
eþ δikZαÞ∧Fkþðϵijkejþ δikαÞ∧DZk

ω ¼ 0; ð6:1Þ

Dðϵijkej ∧ Zk
e − Zα ∧ ei − α ∧ ZeiÞ þ Zk

ω

∧ ðei ∧ ek − ϵikmα ∧ emÞ ¼ 0; ð6:2Þ

Zi
e ∧ Fi þ ei ∧ DZi

ω ¼ 0: ð6:3Þ

Before checking if the Hamiltonian vector fields given by
(5.8) and (5.12) satisfy the conditions (6.1)–(6.3) it is
convenient to simplify them, in particular by removing the
covariant differential D of the components of the vector
field Z. As we show next (6.1)–(6.3) can be written in the
more convenient form,

ϵijkX
j
e ∧FkþXα ∧FiþDðϵijkejþ δikαÞ∧Xk

ω ¼ 0; ð6:4Þ

ðδijek − ϵijkαÞ ∧ ej ∧ Xk
ω þ ðαtδik þ ϵijketjÞα ∧ Fk

þ ejt ei ∧ Fj ¼ 0; ð6:5Þ

Xi
e ∧ Fi þ Xi

ω ∧ Dei ¼ 0: ð6:6Þ

In the case of (6.1) one first takes the covariant exterior
differential D of (3.8) to get

ðϵijkej þ δikαÞ ∧ DZk
ω ¼ ðϵijkDej þ δikdαÞ ∧ ðZk

ω −Dωk
t Þ

þDωtmϵ
mklðϵijkej þ δikαÞ

∧ Fl − ðδikdαt þ ϵijkDejt Þ ∧ Fk;

then introduces this expression into (6.1) and simplifies the
result by using the constraints (3.5) and (3.7) to get (6.4).
In order to rewrite the tangency condition (6.2) in a

simpler way one first writes (3.9) in the form,

ϵijkej ∧ Zk
e−Zα ∧ ei−α∧ Zei

¼Dðϵijkejt ekþαeit −αteiÞþωk
t ek ∧ ei − ϵijkαlω

k
t e

l ∧ ej;

and then takes the covariant differential of this expression
which, by using the constraints (3.6) and (3.7), gives

Dðϵijkej ∧ Zk
e − Zα ∧ ei − α ∧ ZeiÞ

¼ αtϵijkej ∧ Fk − ejt ðϵijkαþ δjkeiÞ
∧ Fk þ ðekδij − ϵijkαÞ ∧ ej ∧ Dωk

t :

Introducing this now into (6.2) gives (6.5).
Finally, in order to arrive at (6.6) one first takes the

exterior covariant differential of (3.10) to get

ei ∧ DZi
ω ¼ Dei ∧ Zi

ω −Dei ∧ Dωi
t þ ϵijkei

∧ Fjωk
t −Deit ∧ Fi;

and then introduces this expression into (6.3).
In the remaining of this section we will check that the

tangency conditions (6.4)–(6.6) hold on the submanifold of
M0 defined by the secondary constraints (3.5)–(3.7). We
will start from the easiest to the hardest ones. As we will
see, the computations are quite involved. Although, by
necessity, we will have to skip many details we will provide
enough information to enable the motivated readers to
complete them.
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One source of difficulties is the possibility of having
many different ways to write a particular expression by
making use of the constraints (3.5)–(3.7). One possible way
to avoid this problem is to use (4.3) and write everything in
terms of Sij. Although this is possible in principle, in
practice the computations are very long. A better strategy—
that ultimately works—is to use the fact that the constraints
imply F ij ¼ Sij þ ϵijkAk, with Sij symmetric and traceless,
and use Sijαj ¼ ð2δij þ ϵijkα

kÞAj [equivalent to (4.1)],
whenever possible, to write everything in terms of Ak.

A. Checking condition (6.5)

The only tangency condition which is easy to check is
(6.5). In order to see that it holds it suffices to left-wedge-
multiply (5.1)—the equation that must be solved to obtain
Xi
ω—by α to get

α ∧ ðϵijkej þ δikαÞ ∧ Xk
ω ¼ ðδikαt þ ϵijke

j
t Þα ∧ Fk:

Plugging this into (6.5) leads to

ek ∧ ei ∧ Xk
ω þ ejt ei ∧ Fj ¼ 0;

which can be immediately seen to hold as a consequence
of (5.3).

B. Checking condition (6.6)

In order to check the tangency requirement expressed by
(6.6) we will first rewrite it as an equivalent condition in
terms of the Mij and Nij introduced above [see Eqs. (5.9)
and (5.13)],

BijMij þ ðαiBijÞðαkMkjÞ þ ϵijkαiMjlBk
l þ F ijNij

þ ðαiF ijÞðαkNkjÞ − ϵijkαiNjlF k
l ¼ 0:

In principle one just has to substitute (5.9) and (5.13) in the
previous expression and show that the result is zero. A
possible way to do this is to use tensor manipulating
packages such as xAct [21]. However, in our opinion it is
instructive to do the computation by hand as some
important simplifications are quite nontrivial. To this end
it is helpful to separately consider the terms depending on
Xi, αt and eit . In the first two instances (Xi and αt) the
computations are quite direct and the cancelations of the
different terms obvious. The only hints worth mentioning
here are

(i) Use F ij ¼ Sij þ ϵijkAk, taking into account, when-
ever necessary, that Sii ¼ 0;

(ii) Use the constraints in the form (4.1) to write
F ijαj ¼ 2Ai. Also use Sijαj ¼ 2Ai þ ϵijkAjαk when-
ever the combination Sijαj appears;

(iii) Replace Bij − Bji by ϵijkϵklmBlm whenever possible.
By doing this all the terms involving Xi, and those
proportional to αt cancel.
The computation of the terms proportional to eit is

significantly harder, so we will give more details about
it. In this case the terms coming from the direct sub-
stitution of (5.9) and (5.13) into the tangency condition do
not cancel automatically in an obvious way. In fact, the
result is

−ϵijkeitSjlBlk − ϵijkeitBjlSlk − ϵijkBijSklelt

− 4ϵijkeitðBjlαlÞAk − 3ðet · AÞϵijkαiBjk

þ 3ϵijkα
iAjðetlBlkÞ þ 5ϵijkα

iðBjletlÞAk

− 2Bϵijkαie
j
tAk þ 2ϵijkα

iejt ðBklAlÞ
þ ðet · αÞϵijkAiBjk þ 2ðA · αÞϵijkeitBjk

− 2ϵijkðαlBliÞejtAk

þ 2ðαBαÞϵijkeitAjαk þ 2α2ϵijkAiejt ðBklαlÞ
− 2ðet · αÞϵijkðBilαlÞAjαk

− 2ðA · αÞϵijkαiejt ðBklαlÞ:

Several features of the previous expression stand out, in
particular, all the terms involve ϵijk, some of them depend
on Sij, and the remaining ones are either linear or cubic
in αi.
In order to show that the S-dependent terms cancel out it

suffices to realize that 0 ¼ ϵ½ijkSjl� implies ϵijkSjl−
ϵjklSji − ϵlijSjk ¼ 0, where we have used Sii ¼ 0.
The strategy to show that the other terms cancel is similar

to this but more involved so we leave some of the details for
Appendix A.

C. Checking condition (6.4)

As in the previous subsection we will write the tangency
condition (6.4) as an equivalent expression in terms of the
Mij and Nij. To avoid having “dangling indices” we will
multiply it by an arbitrary object Ci (which can be removed
at the end). By doing this we get
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ϵijkCiBj
lMkl þ ϵijkαiCjBk

lðαmMmlÞ − ðαiBijÞðCkMkjÞ þ ðC · αÞBijMij

− ϵijkCiF j
lNkl − ϵijkαiCjF k

lðαmNmlÞ − ðαiF ijÞðCkNkjÞ þ ðC · αÞF ijNij

þ ðCiMijÞðBjkαkÞ þ ðC · αÞðαiMijÞðBjkαkÞ − ϵijkαiCjMklðBlmαmÞ
þ ðCiMijÞϵjklBkl þ ðC · αÞðαiMijÞϵjklBkl − ϵijkαiCjMklϵ

lmnBmn þ CiF ijXj ¼ 0; ð6:7Þ

where we have used the shorthand C · α ¼ Ciα
i. As above,

it is helpful to separately consider the terms depending on
Xi, αt and eit .
The computation showing that the terms proportional to

Xi in (6.7) cancel is straightforward. The only hint worth
mentioning here is to make use of the identity

αlαlϵijkCiAjXk ¼ ðα · CÞϵijkAiXjαk − ðα · AÞϵijkXiαjCk

þ ðα · XÞϵijkCiAjαk;

which can be derived from α½lϵijk� ¼ 0.
The terms proportional to αt in (6.7) can be written as

−ϵijkηiBjlSlk þ ϵijkηiBljSlk − ϵijkðSilηlÞBjk

− 2ϵijkαiηjðBklAlÞ þ 2ϵijkηiAjðαlBlkÞ þ 2ðη ·AÞϵijkαiBjk

þ 4ϵijkηiðBj
lαlÞAk þ 2BϵijkηiAjαk − 2ðA · αÞϵijkηiBjk

− 4ϵijkðBilη
lÞAjαk þ 2ϵijkðηlBliÞAjαk;

where we have introduced the shorthand ηi ≔ αtCi.
In order to see that the S-dependent terms cancel out we

make use of ϵ½ijkSil� ¼ 0. Checking that the terms linear in

αi in the previous expression cancel out is a little bit more
involved, so we leave some of the details for Appendix A.
Finally, we discuss the computation of the terms propor-

tional to eit in (6.7). This is, by far, the longest computation
necessary to complete the Hamiltonian analysis of the
Euclidean self-dual action. The first step is to introduce the
eit -proportional terms ofMij and Nij into (6.7) and simplify
the result by using, in particular, Sijαj ¼ 2Ai þ ϵijkAjαk.
After doing this some terms involving Sij still remain. This
is somewhat disturbing because this could force us to write
everything in terms of Sij (rather than Ai) which would
make the computations much longer. Fortunately, by
replacing Bij − Bji by ϵijkϵ

klmBlm, whenever possible, it
is possible to show that all the S-dependent terms can be
grouped in the expression

ðCSαÞϵijkeitBjk þ ðetSαÞϵijkCiBjk − ðet · CÞSilαlϵijkBjk;

ð6:8Þ

where we have used the shorthand notationCSα ≔ CiSijαj,
etSα ≔ eitSijα

j and et · C ≔ eitCi. As we see, the combi-
nation Sijαj appears in all the terms of (6.8) so we can write
it in terms of Ai as explained above. The result is

2ðC · AÞϵijkeitBjk þ ðC · etÞðABαÞ þ ðα · etÞðCBAÞ þ ðet · AÞðαBCÞ − ðet · AÞðCBαÞ
− ðC · etÞðαBAÞ − ðα · etÞðABCÞ þ 2ðet · AÞϵijkCiBjk þ ðα · CÞðetBAÞ þ ðA · CÞðαBetÞ
− ðC · AÞðetBαÞ − ðα · CÞðABetÞ − 2ðet · CÞϵijkAiBjk;

where, as in previous instances, we have used some self-explanatory notation. By adding this to the rest of the terms (the
ones that can be directly written in terms of Ai) the final result for the terms proportional to eit in (6.7) is

3ðet · AÞϵijkCiBjk − 2ϵijkCiejt ðBklAlÞ − 3ðet · CÞϵijkAiBjk

þ 2BϵijkeitA
jCk þ 3ϵijkAiCjðetlBlkÞ þ 2ϵijkeitðBjlClÞAk − 5ϵijkðBiletlÞAjCk

þ 2ðet · AÞϵijkαiCjðBklαlÞ þ 2ðαBαÞϵijkeitCjAk − 3ðC · αÞϵijkAiejt ðBklαlÞ
þ 2ðC · etÞϵijkðBilαlÞAjαk − ðA · CÞðet · αÞϵijkαiBjk − ðCBαÞϵijkeitAjαk

þ ϵijkeitA
jαkðαBCÞ þ 2ðA · αÞϵijkCiejt ðBklαlÞ þ ðA · αÞðet · CÞϵijkαiBjk

þ ðC · αÞϵijkeitðαlBljÞAk þ α2ϵijkeitðBjlClÞAk − α2ϵijkeitðClBljÞAk þ 2ðetBαÞϵijkαiAjCk;

where it is worth pointing out that all the linear, cubic and quartic terms in αi are zero as a consequence of direct
cancellations. This last expression can be shown to vanish. As in previous instances we leave some details about how this
happens for Appendix A.
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VII. HAMILTONIAN FORMULATION: ASHTEKAR
VARIABLES AND THE TIME GAUGE

The Hamiltonian formulation obtained after comple-
ting the GNH procedure is formulated in a manifold M0

spanned by the fields ðet; ei;ωt;ωi; αt; αÞ. The vector
fields in this manifold have components Y 0 ¼ ðYi

et ; Y
i
e; Yi

ωt
;

Yi
ω; Yαt ; YαÞ.
By using the standard notation for 2-forms in field spaces

the presymplectic 2-form on M0 can be written as

ω ¼
Z
Σ
dωi⩕d

�
1

2
ϵijkej ∧ ek þ ei ∧ α

�
; ð7:1Þ

which acting on vector fields Y , Z in M0 gives (3.4). The
secondary constraints can be written as

ϵijkej ∧ Fk þ α ∧ Fi ¼ 0;

D

�
1

2
ϵijkej ∧ ek þ ei ∧ α

�
¼ 0;

ei ∧ Fi ¼ 0;

and the Hamiltonian vector fields are

Zi
e ¼ Deit − ϵijkωtjek þ Ei

jej;

Zi
ω ¼ Dωi

t þWi
jej;

Zα arbitrary;

Zi
et arbitrary;

Zi
ωt

arbitrary;

Zαt arbitrary;

with Wij given by (5.8), (5.9) and Eij by (5.12), (5.13).
The forms of the pullback of the symplectic form (7.1)

and the fiber derivative (3.1) strongly suggest the intro-
duction of the object

Hi ≔
1

2
ϵijkej ∧ ek þ ei ∧ α;

which would be canonically conjugate to ωi in the sense
that

ω ¼
Z
Σ
dωi⩕dHi:

An important observation at this point is the following.
Notice that the number of independent components in Hi
and ei are the same, hence it makes sense to write ei in terms
of Hi (or a suitably dualized object as we discuss below) to
get a cleaner Hamiltonian description of Euclidean gravity.
In fact, by proceeding in this way one arrives at the Ashtekar
formulation for Euclidean gravity without having to use any

gauge fixing. This is in marked contrast with the situation in
the case of the Holst action [19] and is significantly simpler.
To begin with it is convenient to define the following

object

H⃗i ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

�
· ∧ Hi

vole

�
; ð7:2Þ

that should be understood as an element of the double dual
of the tangent space at each point of Σ. As the double dual of
a finite-dimensional vector space V is canonically isomor-
phic to V, (7.2) determines a unique vector field on Σ that
we also call H⃗i. Given a 1-form β∈Ω1ðΣÞ we have

{H⃗i
β ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

�
β ∧ Hi

vole

�
:

Taking this into account it is immediate to see that

{H⃗i
ej ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ðδji − ϵjki αkÞ:

In the following it will be useful to introduce the 1-forms hi
defined by

hi ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ðei þ αiαþ ϵijkαjekÞ:

These satisfy the following important properties

Hi ¼
1

2
ϵijkhj ∧ hk;

{H⃗i
hj ¼ δij;

volh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
vole;

where volh ≔ 1
3!
ϵijkhi ∧ hj ∧ hk is a volume form on Σ.

Notice that the last property implies that

H⃗i ≔
�
· ∧ Hi

volh

�
: ð7:3Þ

We will now write the constraints in terms of ωi and H⃗i.
First we compute

{H⃗i
Fi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ðF ijαj − ϵijkF jk − F j

jα
iÞei; ð7:4Þ

and

ϵijk{H⃗i
{H⃗j

Fk ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ðαiðϵijkF jk − F ijαjÞ − Fk

kÞ: ð7:5Þ

Obviously, the constraints (3.5), (3.7) in the form (4.1),
(4.2) imply
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{H⃗i
Fi ¼ 0; ð7:6Þ

ϵijk{H⃗i
{H⃗j

Fk ¼ 0; ð7:7Þ

which look very much like the vector and scalar constraints
in the Ashtekar formulation for Euclidean gravity.
Conversely, the conditions (7.6) and (7.7) are

equivalent to

F ijαj − ϵijkF jk − F j
jα

i ¼ 0; ð7:8Þ

αiðϵijkF jk − F ijαjÞ − F j
j ¼ 0: ð7:9Þ

Multiplying the first of these two equations by αi and
adding it to the second leads to ð1þ α2ÞF j

j ¼ 0 i.e. (4.2),
and introducing this into (7.8) we find (4.1).
Finally, in order to get the remaining constraint—

equivalent to the usual Gauss law as will be shown later—
we first compute [remember that for a vector field X∈XðΣÞ
its divergence with respect to a given volume form vol is
defined by ðdivXÞvol ¼ £Xvol where £X denotes the Lie
derivative along X]

ðdivhH⃗iÞvolh ≔ £H⃗ivolh ¼ d{H⃗ivolh

¼ d

�
1

2
ϵijkhj ∧ hk

�
¼ dHi;

whereas ϵijkω
j ∧ Hk can easily be seen to be equal to

ϵijkð{H⃗kωjÞvolh. Hence, we conclude that the constraint
(3.6) written in the form DHi ¼ 0 is equivalent to

divhH⃗i þ ϵijk{H⃗kωj ¼ 0: ð7:10Þ

In order to make contact with the standard Ashtekar
variables we introduce a fiducial volume form vol0 (which,
if one wishes, may even be defined locally in terms of
coordinates xi, i ¼ 1, 2, 3) and write

ω ¼
Z
Σ
dωi⩕dHi ¼

Z
Σ
ðdωi⩕dH̃iÞvol0:

This should be understood as

ωðX;Y Þ ¼
Z
Σ
ðYH̃i

⨼Xi
ω − XH̃i

⨼Yi
ωÞvol0;

with

YH̃i
≔

�
· ∧ ϵijkhj ∧ Yk

h

vol0

�

and

YH̃i
⨼α ¼

�
α ∧ ϵijkhj ∧ Yk

h

vol0

�
;

for any 1-form α∈Ω1ðΣÞ.
The relation between H⃗i and H̃i is H̃i ¼ ðdet hÞH⃗i with

det h ≔
�
volh
vol0

�
:

In terms of H̃i the constraints (7.6) and (7.7) can be
immediately seen to be equivalent to

{H̃i
Fi ¼ 0; ð7:11Þ

ϵijk{H̃i
{H̃j

Fk ¼ 0; ð7:12Þ

which are the vector and scalar constraints written in terms
of the Ashtekar variables for Euclidean gravity.
As explained in Appendix B, the constraint (7.10) in

terms of H̃i and ωi becomes

div0H̃i þ ϵijk{H̃kωj ¼ 0; ð7:13Þ

which, again, is exactly the usual Gauss law in the Ashtekar
formulation. Notice that the divergence in (7.13) is actually
independent of the choice of the volume form vol0 as the
argument presented in Appendix B shows.
Another useful way to understand the constraints can be

gained by introducing the objects

hF ij ≔
�
Fi ∧ hj
volh

�
; hBij ≔

�
Dhi ∧ hj

volh

�
:

In terms of them the constraints become

hF ½ij� ¼ 0;
hB½ij� ¼ 0;
hF i

i ¼ 0:

Let us look now at the Hamiltonian vector fields in terms
of the new variables. A direct computation using the
definition of hi and hF ij gives the following expression
for Zk

ω on the final constraint submanifold (which means
that we can make use of the constraints to simplify it)

Zk
ω ¼ Dωk

t − α̂t
hF k

lel − ϵlmnêmt hFnkhl; ð7:14Þ

with

α̂t ≔
αt − ðet · αÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ; êit ≔

eit þ αtα
i − ϵijketjαkffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p : ð7:15Þ

Although it is possible to get Zk
h by a direct, brute force

approach, there is a much better—albeit slightly
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indirect—way to do it. The starting point is the identity

ϵijkhj ∧ Zk
h ¼ ϵijkej ∧ Zk

e þ Zei ∧ αþ ei ∧ Zα;

which comes directly from the definition of Hi. On the
other hand, from (3.9) we find

ϵijkej ∧ Zk
e þ Zei ∧ αþ ei ∧ Zα

¼ ϵijkej ∧ Dekt þ ωj
t ðej ∧ eiÞ − α ∧ Deti − ϵijkðα ∧ ejÞωk

t

þ ei ∧ dαt þ eitdαþ ϵijke
j
tDek − αtDei:

By writing the terms on the right-hand side of the previous
expression in terms of hi and using (7.15) we obtain the
following equation for Zk

h:

ϵijkhj ∧ Zk
h ¼ Dðϵijkêjthk − α̂thiÞ þ ωj

thj ∧ hi:

This equation involving differential forms can be solved by
using the method explained in Appendix C of [18]. The
solution on the final constraint submanifold is

Zk
h ¼ Dêkt þ ϵklmhlωm

t −
1

2
α̂t

hBhk − ϵlmnêmt hBnkhl

þ ϵklmX̂
mhl þ α̂t

hBklhl; ð7:16Þ

with

X̂i ≔ −
1

2
ϵijk

�
dα̂t ∧ hj ∧ hk

volh

�
:

At this point it is very interesting to compare the formu-
lation that we have obtained in terms of the hi with the
original one in the time gauge α ¼ 0. The latter can be
immediately obtained by substituting α ¼ 0 in the pre-
symplectic form (7.1), the constraints (3.5)–(3.7) and the
Hamiltonian vector fields Zk

ω, Zk
e.

The role of a gauge fixing is to reduce (or eliminate) the
arbitrariness due to the presence of arbitrary components in
the Hamiltonian vector fields by fixing some or all of them.
This can be done directly, or by demanding that the
dynamics must be confined to a submanifold ofM0 obtained
by adding a gauge fixing condition to the secondary
constraints. In the latter case we have to see what happens
with the Hamiltonian vector fields. For the time gauge that
we are considering here we must have Zα ¼ 0, or, equiv-
alently, Xα ¼ −dαt.
The formulation in the time gauge can be summarized as

follows: The presymplectic form is

ω ¼
Z
Σ
dωi⩕d

�
1

2
ϵijkej ∧ ek

�
; ð7:17Þ

The secondary constraints become

ϵijkej ∧ Fk ¼ 0;

D

�
1

2
ϵijkej ∧ ek

�
¼ 0;

ei ∧ Fi ¼ 0;

or, equivalently,

F ½ij� ¼ 0;

B½ij� ¼ 0;

F i
i ¼ 0:

Finally, the Hamiltonian vector fields are

Zk
ω ¼ Dωk

t − αtF k
lel − ϵlmnemt Fnkel;

Zk
e ¼ Detk þ ϵklmelωm

t −
1

2
αtBek − ϵlmnetmBnkel

þ ϵklmXmel þ αtBklel;

with

Xi ≔ −
1

2
ϵijk

�
dαt ∧ ej ∧ ek

vole

�
:

As we can see a remarkable thing happens: the form of
the presymplectic form, the constraints and the Hamiltonian
vector fields obtained either by working with the hi
variables or going to the time gauge in the original
formulation is exactly the same once we replace the arbitrary
objects αt and eit by the, also arbitrary, α̂t and êit . An
interesting observation regarding this replacement of param-
eters is the fact that this comes from one of the soð3Þ factors
of the soð4Þ symmetry of the action. Indeed, the infinitesi-
mal transformations (2.3) imply

δ2αt ¼ ϒieit;

δ2eit ¼ −ϒiαt þ ϵijke
j
tϒk;

which is given by the matrix

τðϒiÞ ¼

2
6664

0 ϒ1 ϒ2 ϒ3

−ϒ1 0 ϒ3 −ϒ2

−ϒ2 −ϒ3 0 ϒ1

−ϒ3 ϒ2 −ϒ1 0

3
7775:

The exponential of this matrix gives the matrix correspond-
ing to a finite transformation

TðϒÞ ¼ cosϒ · Id4þ
sinϒ
ϒ

· τðϒÞ; ϒ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒ2

1þϒ2
2þϒ2

3

q
:
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If we write ϒi ¼ − αi
α arctan α with α ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22 þ α23

p
,

which is equivalent to αi ¼ − ϒi
ϒ tanϒ, with αi ∈ ð−1; 1Þ; the

form of the previous finite transformation becomes

TðαiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

2
6664

1 −α1 −α2 −α3
α1 1 −α3 α2

α2 α3 1 −α1
α3 −α2 α1 1

3
7775;

which gives (7.15).
Several comments are in order now:
(1) Both the 1-form ωi and the 2-form Hi are invariant

under the transformations coming from (2.3). This
immediately allows us to perform a symmetry
reduction and eliminate one of the two original
soð3Þ symmetries form the final Hamiltonian for-
mulation.

(2) The primary constraint hypersurface M0 is spanned
by ðet; hi;ωt;ωi; αt;αÞ or equivalently by the set of
fields obtained by replacing hi by Hi, H⃗i or H̃i. In
the latter case we arrive at the usual Ashtekar
formulation, but the other h-variables also provide
interesting and equivalent phase space approaches to
the dynamics of Euclidean GR.

(3) The field dynamics given by the vector fields
obtained above, in particular that of ωi and hi can
be disentangled by introducing the uniquely defined
vector field ξ∈XðΣÞ obtained by solving {ξhi ¼ êit
(uniqueness is a consequence of the nondegeneracy
of the triads). A straightforward computation then
gives

Zk
ω ¼ Dðωk

t − {ξωkÞ þ £ξωk − α̂t
hF klhl:

As expected, a part of the dynamics corresponds
to the infinitesimal diffeomorphisms defined by ξ
and soð3Þ gauge transformations parametrized by
ωk
t − {ξωk. The nontrivial dynamics of Euclidean

GR comes from the −α̂thF klhl term.
(4) Proceding in a similar way one can rewrite Zk

h in a
similar fashion and interpret part of the dynamics,
again, as infinitesimal diffeomorphisms and local
soð3Þ transformation given by the parameters ξ and
ωk
t − {ξωk. The cleanest way to see this is by

introducing Zk
H as giving the dynamics of the

2-form Hi. In this case it is possible to show that

Zi
H ¼ ϵijkHjðωk

t − {ξωkÞ þ £ξHi −Dðα̂thiÞ;

where hi should be written in terms of Hi. Notice
that the GR dynamics is given here by the very
simple term −Dðα̂thiÞ.

(5) Finally, the dynamics of H̃i can also be written in the
same way. The result is exactly the one correspond-
ing to the usual Ashtekar variables.

(6) The rest of the fields ðet;ωt;ωi; αt; αÞ are arbitrary as
there are no restrictions on the components of the
Hamiltonian vector field giving their dynamics. This
implies that we can choose them as any function of
the dynamical fields and treat them as arbitrary
external objects subject to the sole restriction of
providing nontrivial dynamics for the system (for
instance, α̂t should be different from zero every-
where on Σ).

VIII. CONCLUSIONS AND COMMENTS

The main result of this paper is to show how the Ashtekar
formulation for Euclidean gravity can be obtained from the
self-dual action without introducing any gauge fixing. It is
illuminating to compare the results presented here with the
usual procedure using the time gauge for the Holst action
(compare with Ref. [19]). It is also interesting to look at the
arguments presented in [16,17] and inspired by [22,23] in
the same setting. At variance with the results of these works,
in the present paper we have shown that one can explicitly
reduce the symmetry generated by one of the soð3Þ factors
in soð4Þ ¼ soð3Þ × soð3Þ and remove the arbitrariness in
the components of the Hamiltonian vector fields that show
up when using the GNH method. It should be clear at this
point that, a completely analogous argument leading to the
Ashtekar formulation without gauge fixing should apply in
the case of using Dirac’s approach.
A secondary purpose of the paper is to complete the

discussion of the consistency of the Hamiltonian formu-
lation for Euclidean GR, which one of the authors has to
admit, was not finalized in previous work on the subject
starting from the action used here [12]. There, once the
constraints generating the two soð3Þ factors in soð4Þ were
identified, the Dirac algorithm was stopped without check-
ing their stability. In this sense it is instructive to compare
the computations needed to complete the Hamiltonian
analysis of the Holst action in the GNH framework [18]
with the ones presented here. Quite surprisingly for us, the
complexity of the self-dual case is far greater than that of the
case of using the Holst action. This is so even considering
that the Hamiltonian analysis of the Holst action produces
secondary constraints in two stages and not in one as it
happens in the case analyzed in this paper.
It is important to point out that we have taken the self-

dual Lagrangian as our starting point. This admittedly
conservative approach has the advantage of guaranteeing
from the start that the dynamics is that of GR. Of course, in
order to get the Hamiltonian formulation from the
Lagrangian, one has to adhere to well-proven methods to
disentangle the complicated dynamics of a singular system
such as the one discussed here. Our choice of the GNH
method over the Dirac one is due to the geometric nature of
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the former, which avoids some of the interpretative issues
that one finds is the literature when the Dirac method is
used, specially in situations where functional analytic issues
are relevant. Notice, anyway, that Dirac’s approach can be
reinterpreted in geometric terms close in spirit to the GNH
procedure [14,24].
In our opinion, the main use of the insights gained here

may be to look for an action for Lorentzian GR which
shares some of the nice features of the Euclidean self-dual
action analyzed here. We hope that the clarification of the
inner workings of the internal SOð4Þ symmetry of the
Euclidean model may help to better understand the much
more relevant Lorentzian case.
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APPENDIX A: TANGENCY ANALYSIS:
SOME DETAILS

1. Additional details on the tangency condition (6.6)

The terms proportional to eit and linear in αi in this
tangency condition are

− 4ϵijkeitðBjlαlÞAk − 3ðet · AÞϵijkαiBjk þ 3ϵijkα
iAjðetlBlkÞ þ 5ϵijkα

iðBjletlÞAk

− 2Bϵijkαie
j
tA

k þ 2ϵijkα
iejt ðBklAlÞ þ ðet · αÞϵijkAiBjk þ 2ðA · αÞϵijkeitBjk − 2ϵijkðαlBliÞejtAk:

By using ϵ½ijkαl� ¼ 0 to transform the last term in the previous expression we get

− 2ϵijkeitðBjlαlÞAk þ 3ðet · αÞϵijkAiBjk − 3ðet · AÞϵijkαiBjk þ 3ϵijkα
iAjðetlBlkÞ

− 2Bϵijkαie
j
tA

k þ 2ϵijkα
iejt ðBklAlÞ þ 5ϵijkα

iðBjletlAkÞ:

Using now ϵ½ijketl� ¼ 0 to transform the last term in the previous expression we find

− 2ðet · αÞϵijkAiBjk − 2ϵijkα
iAjðetlBlkÞ þ 2ðet · AÞϵijkαiBjk − 2ϵijkeitðBjlαlÞAk

þ 2ϵijkα
iejt ðBklAlÞ − 2Bϵijkαie

j
tA

k:

By writing now the last term as −2Bl
lϵijkα

iejtA
k and using Bl

½lϵijk� ¼ 0 we get

−2ðet · αÞϵijkAiBjk þ 2ðet · AÞϵijkαiBjk þ 2ϵijkAiðBjletlÞαk − 2ϵijkα
iAjðetlBlkÞ;

which is zero as a consequence of ϵ½ijketl� ¼ 0.
The terms proportional to eit and cubic in αi are

þ2ðαBαÞϵijkeitAjαk þ 2α2ϵijkAiejt ðBklαlÞ − 2ðet · αÞϵijkðBilαlÞAjαk − 2ðA · αÞϵijkαiejt ðBklαlÞ:

By writing now the first term in the previous expression as 2BlmαmeitAjαkαlϵijk and using α½lϵijk� ¼ 0 we immediately see
that it cancels.

2. Additional details on the tangency condition (6.5)

The terms proportional to αt (equivalently to ηi) in this tangency condition are

− 2ϵijkαiηjðBklAlÞ þ 2ϵijkηiAjðαlBlkÞ þ 2ðη · AÞϵijkαiBjk þ 4ϵijkηiðBj
lαlÞAk

þ 2BϵijkηiAjαk − 2ðA · αÞϵijkηiBjk − 4ϵijkðBilη
lÞAjαk þ 2ϵijkðηlBliÞAjαk;

Using ϵ½ijkBk
l� ¼ 0 we can transform the first term in the previous expression to get
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2ϵijkηiAjðαlBlkÞ þ 2ðη · AÞϵijkαiBjk þ 2ϵijkηiðBj
lαlÞAk − 2ðA · αÞϵijkηiBjk

− 2ϵijkðBilη
lÞAjαk þ 2ϵijkðηlBliÞAjαk:

By using ϵ½ijkηl� ¼ 0 to transform the last term, the previous expression becomes

2ϵijkηiAjðαlBlkÞ þ 2ϵijkηiðBj
lαlÞAk − 2ðA · αÞϵijkηiBjk þ 2ðη · αÞϵijkAiBjk;

which vanishes as a consequence of ϵ½ijkαl� ¼ 0.
The terms proportional to eit and independent of αi in the tangency condition are

3ðet · AÞϵijkCiBjk − 2ϵijkCiejt ðBklAlÞ − 3ðet · CÞϵijkAiBjk

þ 2BϵijkeitA
jCk þ 3ϵijkAiCjðetlBlkÞ þ 2ϵijkeitðBjlClÞAk − 5ϵijkðBiletlÞAjCk:

Using ϵ½ijketl� ¼ 0 we can transform the last term in the previous expression to get

− 2ϵijkAiCjðetlBlkÞ − 2ðet · AÞϵijkCiBjk þ 2ðet · CÞϵijkAiBjk þ 2BϵijkeitA
jCk

þ 2ϵijkeitðBjlClÞAk − 2ϵijkCiejt ðBk
lAlÞ:

By using now ϵ½ijkBk
l� ¼ 0 to transform the last term we arrive at

2ϵijkAiCjðBkl − BlkÞetl − 2ðet · AÞϵijkCiBjk þ 2ðet · CÞϵijkAiBjk;

which can be seen to cancel because

2ϵijkAiCjðBkl − BlkÞetl ¼ 2ϵijkϵ
klmϵmpqBpqAiCj ¼ 2ðet · AÞϵijkCiBjk − 2ðet · CÞϵijkAiBjk:

Finally, the terms proportional to eit and quadratic in αi in the tangency condition are

þ 2ðet · AÞϵijkαiCjðBklαlÞ þ 2ðαBαÞϵijkeitCjAk − 3ðC · αÞϵijkAiejt ðBklαlÞ
þ 2ðC · etÞϵijkðBilαlÞAjαk − ðA · CÞðet · αÞϵijkαiBjk − ðCBαÞϵijkeitAjαk

þ ϵijkeitAjαkðαBCÞ þ 2ðA · αÞϵijkCiejt ðBklαlÞ þ ðA · αÞðet · CÞϵijkαiBjk

þ ðC · αÞϵijkeitðαlBljÞAk þ α2ϵijkeitðBjlClÞAk − α2ϵijkeitðClBljÞAk þ 2ðetBαÞϵijkαiAjCk:

By using et½lϵijk� ¼ 0 we can transform the last term in the previous expression written in the form,

2ðetBαÞϵijkαiAjCk ¼ 2ðBlmαmÞetlϵijkαiAjCk;

to get

2ðαBαÞϵijkeitCjAk − 3ðC · αÞϵijkAiejt ðBklαlÞ − ðA · CÞðet · αÞϵijkαiBjk

þ 2ðet · αÞϵijkAiCjðBklαlÞ þ ϵijkeitA
jαkðαBCÞ þ 2ðA · αÞϵijkCiejt ðBklαlÞ

þ ðA · αÞðet · CÞϵijkαiBjk þ ðC · αÞϵijkeitðαlBljÞAk þ α2ϵijkeitðBjlClÞAk − α2ϵijkeitðClBljÞAk − ðCBαÞϵijkeitAjαk:

The first term in this expression can be transformed by writing it in the form 2ðBlnαnÞαlϵijkeitCjAk and using α½lϵijk� ¼ 0.
By doing this we get

ðC · αÞϵijkeitðαlBljÞAk þ ϵijkeitA
jαkðαBCÞ − ðC · αÞϵijkAiejt ðBklαlÞ

− ðA · CÞðet · αÞϵijkαiBjk þ ðA · αÞðet · CÞϵijkαiBjk þ α2ϵijkeitðBjlClÞAk

− α2ϵijkeitðClBljÞAk − ðCBαÞϵijkeitAjαk:
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Now, we transform the first term by writing it as αleitðαnBnjÞAkClϵijk and using C½lϵijk� ¼ 0 to get

ðet · CÞϵijkðαlBliÞAjαk − ðC · αÞϵijkAiejt ðBklαlÞ − ðA · CÞðet · αÞϵijkαiBjk

þ ðA · CÞϵijkαiejt ðαnBnkÞ þ ðA · αÞðet · CÞϵijkαiBjk − ðCBαÞϵijkeitAjαk

þ α2ϵijkeitðBjlClÞAk − α2ϵijkeitðClBljÞAk:

In the next step we use ϵ½ijkαl� ¼ 0 to transform the first term and also rewrite the last two terms as

α2ϵijkeitðBjl − BljÞClAk ¼ α2ðC · AÞϵijkeitBjk − α2ðet · CÞϵijkAiBjk;

this way we obtain

− ðC · αÞϵijkAiejt ðBklαlÞ − ðA · CÞðet · αÞϵijkαiBjk þ ðet · CÞϵijkAiαjðBklαlÞ
þ ðA · CÞϵijkαiejt ðαnBnkÞ − ðCBαÞϵijkeitAjαk þ α2ðC · AÞϵijkeitBjk:

We can now transform the last term by writing it as ðC · AÞeitBjkαlαlϵijk and using α½lϵijk� ¼ 0. This way the previous
expression becomes

− ðC · αÞϵijkAiejt ðBklαlÞ þ ðet · CÞϵijkAiαjðBklαlÞ þ ðA · CÞϵijkαiejt ðBklαlÞ
− ðCBαÞϵijkeitAjαk ¼ 4emt AiαjðBklαlÞϵ½ijkCl� ¼ 0:

APPENDIX B: THE GAUSS LAW IN THE
ASHTEKAR FORMULATION: SOME

COMPUTATIONAL DETAILS

By multiplying the constraint (7.10) by det h (which is
nonzero at every point of Σ) we get the following equivalent
expression:

ðdet hÞ · divh
�

H̃i

det h

�
þ ϵijk{H̃kωj ¼ 0: ðB1Þ

We now prove that

ðdet hÞ · divh
�

H̃i

det h

�
¼ div0H̃i; ðB2Þ

for any field independent volume form vol0 [remember
that, for a given volume form vol, the divergence of a vector
field X is defined as

�£Xvol
vol

�
]. Notice that this implies that the

right-hand side of (B2) is actually independent on the
choice of vol0.

In order to prove (B2) we need the identity

ðvol0Þ · £H̃i det h ¼ dðdet hÞ ∧ {H̃ivol0; ðB3Þ

which can be obtained by taking the interior product {H̃i of
both sides of the trivial identity 0 ¼ dðdet hÞ ∧ vol0.
For X∈XðΣÞ, φ∈Ω0ðΣÞ and any volume form

vol∈Ω3ðΣÞ we have

divðφXÞ ¼ £Xφþ φdivX:

Using this expression one gets

ðdet hÞdivh
�

H̃i

det h

�
¼ ðdet hÞ£H̃i

�
1

det h

�
þ divhH̃i

¼ −
1

det h
£H̃i det hþ divhH̃i: ðB4Þ

Finally, making use of (B3) we find

divhH̃i ¼
�
£H̃ivolh
volh

�
¼

�
d½ðdet hÞ · ð{H̃ivol0Þ�

volh

�
¼

�
dðdet hÞ ∧ {H̃ivol0

volh

�

þ
�ðdet hÞ£H̃ivol0

volh

�
¼

�ðvol0Þ · £H̃i det h
volh

�
þ
�ðdet hÞ£H̃ivol0

volh

�

¼ 1

det h
£H̃i det hþ

�
£H̃ivol0
vol0

�
¼ 1

det h
£H̃i det hþ div0H̃i;

which introduced in (B4) gives (B2).
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