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In the present paper, we consider a rotating black hole moving in a static homogeneous electromagnetic
field. We assume that the field is weak and neglect its backreaction on the geometry, so that the metric at far
distance from the black hole is practically flat. We present an exact solution for a stationary electromagnetic
field in the presence of the black hole for this problem and use it to calculate fluxes of the energy,
momentum and angular momentum into the black hole. Using these results we derive the equations of
motion of the rotating black hole in the electromagnetic field and discuss some of the interesting solutions
of these equations. In particular, we demonstrate how the interaction of the spin of the black hole with the
external magnetic field changes its trajectory.
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I. INTRODUCTION

Study of the interaction of the electromagnetic field with
black holes has long story. Using Newman-Penrose
approach, Teukolsky [1,2] has demonstrated that the
Maxwell equations in the Kerr metric allow complete
separation of variables. This result gave powerful tools
for study different effects connected with scattering and
absorption of the electromagnetic waves by black holes.
Well-known examples of physically interesting effects are
black hole shadow, superradiance and quasinormal modes.
First pictures of supermassive black holes in the center of
our Galaxy and in the galaxy M87 were obtained by the
Event Horizon telescope by observing the radiation emitted
by plasma moving in their vicinity [3–5]. The magnetic
field surrounding black holes play an important role. In the
Blandford-Znajek process [6] the magnetic field extracts
spin energy of a rotating black hole and transmits it to
distant relativistic particles forming jets (see e.g. [7,8] and
references therein).
In this paper we consider another aspect of the inter-

action of black holes with the electromagnetic field.
We consider a motion of a rotating black hole in a
static homogeneous electromagnetic field and discuss
how such a field affects its motion and rotation. We assume
that the field is weak and neglect its gravitational back-
reaction on the spacetime metric. This means that far from
the black hole the spacetime is practically flat, while
electric and magnetic fields are homogeneous in this
domain.
If at least one of two invariants of the electromagnetic

field does not vanish, then there exists a frame in which the

electric and magnetic fields are parallel or one of these
fields vanishes. We call it a rest frame of the field
and denote it by K̃. We also denote by B⃗0 and E⃗0 the
parallel vectors of the electric and magnetic fields in this
frame, respectively. We denote by K a reference frame
moving with velocity V⃗ with respect to K̃ in which the
black hole is at rest. Using the Lorentz transformation one
can find the magnetic B⃗ and electric E⃗ fields in the frameK.
Using a solution of the Maxwell equations in the Kerr
metric with asymptotics B⃗ and E⃗, one can find energy-
momentum and angular momentum fluxes of the electro-
magnetic field into the rotating black hole. This result
allows one to obtain a force and torque acting on the black
hole in K frame.
Let us note that if the black hole does not rotate and is at

rest in the field frame K̃ this problem is rather trivial. For
the corresponding Schwarzschild black hole one can
always choose its spherical coordinates ðr; θ;φÞ so that
the axis of rotations generated by the Killing vector ζ ¼ ∂φ

at far distance coincides with the direction of the parallel
electric and magnetic fields. For this case the solution Fμν

for the magnetic field can be obtained from the 4D vector
potential Aμ ¼ B0ζμ. Taking a dual field ⋆Fμν and changing
B0 to E0 one gets a required solution for the asymptotically
homogeneous electric field. It is easy to check that for the
superposition of such electric and magnetic fields the
fluxes of the energy, momentum and angular momentum
into the nonrotating black hole vanish. This means that
the black hole’s spin always remains zero and its mass does
not change. We shall show that this result remain valid
when the nonrotating black hole moves with respect to K̃
frame. For this case the velocity of its motion is constant
as well.*vfrolov@ualberta.ca
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As we show a situation when a black hole is rotating is
much more interesting. As a result of the motion of a
rotating black hole in the homogeneous electromagnetic
field, force arises acting on. There also exists a torque
acting on its spin.1 The goal of this paper is to calculate
these quantities.
To calculate a force and torque acting on a moving

rotating black hole we proceed as follows. First we derive
these objects in the frame K̃ where the black hole is at rest.
For a far distant observer such a black hole can be
effectively described as a small-size spinning particle.
A force and torque acting on the particle are related to
the fluxes of the momentum and angular momentum of the
electromagnetic field into the black hole, that change
its momentum and spin. To calculate these fluxes one
needs to find a solution of the Maxwell equation in the
background of a rotating black hole which is regular at the
horizon and properly reproduces corresponding homo-
geneous at the infinity electric and magnetic fields. A
stationary solution of the Maxwell equations is uniquely
defined by these boundary conditions. A corresponding
solution was obtained by Bičák [12] and discussed and
studied in [13–15] (see also [16]). In our derivation of the
force acting on a rotating black hole moving in the static
homogeneous electromagnetic field we use a slightly
modified version of this solution.
In order to describe a motion of the black hole and its

spin evolution we use an adiabatic approximation. Namely,
we assume that a change of the black hole parameters due
to the interaction with the electromagnetic field is slow and
its metric can be effectively described by the Kerr metric
with slowly changing parameters. After calculating the
force and torque in the reference frame in which the black
hole is instantly at rest, we apply the Lorentz transforma-
tion and obtain these quantities in the rest frame of the
field K̃.
In this paper we use the units in which G ¼ c ¼ 1. In

these units the stress-energy tensor of the electromagnetic
field, which is a quadratic expression in terms of the field
strength F, has the dimension F2 ∼ 1=length2. The required
fluxes of the energy-momentum are obtained by integrating
the stress-energy tensor over a 2D surface surrounding the
black hole. These fluxes are dimensionless and vanish
when either the mass of the black hole M or its rotation
parameter a ¼ J=M vanishes. This means that one can
expect that such a flux will be of the form ∼F2Ma.

Similarly, the expected angular momentum flux should
be a linear combination of two terms ∼F2Ma2 and F2M2a.
The results presented in this paper confirm these
expectations.2

Let us emphasize that in our calculations we use the
exact solution for the Maxwell field in the Kerr metric and
do not assume that the gravitational field of the black hole is
weak or its rotation is slow. In this sense the problem we
discussed in the paper is solved exactly and for this reason
theoretically it is quite interesting. Let us note, that for a
stellar mass black hole moving near a magnetized super-
massive black hole the effects discussed in this paper are
rather small. However, they might be important for the case
of small-mass primordial black holes moving in strong
magnetic fields which can exist in the early Universe (see
e.g. [17]).
The paper is organized as follows. In Sec. II we collect

formulas for the Kerr metric and expressions for the useful
tetrad frames in it. In Sec. III we present a solution for the
Maxwell equations in the Kerr metric which describes a
static electromagnetic field which is regular at the black
hole horizon and homogeneous at the infinity. We use this
solution to calculate the energy-momentum and angular
momentum fluxes of the electromagnetic field into the
black hole. In Sec. IV we derive the equations for black
hole motion and its spin evolution and discuss some special
solutions of these equations. Section V contains discussion
of the results obtained in the paper. A brief appendix
contains expressions for Killing vectors in the flat space-
time in the oblate spheroidal coordinates, which are used in
the paper.

II. KERR METRIC AND ZAMO’s FRAME

A. The Kerr metric

The Kerr metric, describing a vacuum stationary rotating
black hole, written in the Boyer-Lindquist coordinates, is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mar sin2 θ
Σ

dtdφ

þ A sin2 θ
Σ

dφ2 þ Σ
Δ
dr2 þ Σdθ2;

Σ ¼ r2 þ a2 cos2 θ; Δ ¼ r2 − 2Mrþ a2;

A ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ

¼ Σðr2 þ a2Þ þ 2Ma2r sin2 θ: ð2:1Þ

Here M is the black hole mass, and a is its rotation
parameter related to the black hole’s spin J ¼ Ma.

1One can expect an existence of the force and torque acting on
a rotating black hole in the electromagnetic field in the framework
of the membrane paradigm [7] in which the stretched horizon of
the black hole effectively behaves as a conducting surface. A
rotation of a conducting sphere in the magnetic field induces eddy
currents and their interaction with the magnetic field produces the
torque. The interaction of these currents with the electric field
generates a force acting of the sphere (see e.g. [9–11] and
references therein).

2Presented expressions correctly reproduce the required di-
mension of the fluxes. Let us mention that in a general case
formulas for the fluxes might contain functions of a dimension-
less quantity a=M. The results of this paper show that in fact these
functions reduce to numbers.
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The metric has two commuting Killing vectors ξ ¼ ∂t and
ζ ¼ ∂ϕ. Let us denote

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð2:2Þ

Equation r ¼ rþ, where Δ ¼ 0, describes the event hori-
zon. The surface area of the horizon is

A ¼ 4πðr2þ þ a2Þ ¼ 8πMrþ: ð2:3Þ

The Boyer-Lindquist coordinates ðt; r; θ;φÞ are singular
at the horizon. To describe both the exterior and interior of a
rotating black hole one can use so called Kerr incoming
coordinates ðv; r; θ; φ̃Þ which are regular at the future event
horizon [18]

dv ¼ dtþ dr�; dr� ¼ ðr2 þ a2Þ dr
Δ

;

dφ̃ ¼ dφþ a
dr
Δ

: ð2:4Þ

Similarly, one can introduce Kerr outgoing coordinates
ðu; r; θ; φ̃Þ,

dv ¼ dt − dr�; dφ̃ ¼ dφ − a
dr
Δ

; ð2:5Þ

which are regular at the past horizon and cover the white
hole domain.
For M ¼ 0 the curvature vanishes and the metric (2.1)

takes the form,

ds2 ¼ −dt2 þ Σ
r2 þ a2

dr2 þ Σdθ2 þ ðr2 þ a2Þ sin2 θdφ2:

ð2:6Þ

This is nothing but a flat metric in the oblate spheroidal
coordinates ðr; θ;φÞ related to the flat coordinates ðX; Y; ZÞ
as follows:

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cosφ;

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinφ;

Z ¼ r cos θ: ð2:7Þ

We denote by ξðTÞ, ξðXÞ, ξðYÞ, and ξðZÞ the Killing vectors
generating translations along t, X, Y and Z, and by ζðXÞ, ζðYÞ
and ζðYÞ the Killing vectors generating rotations around X,
Y and Z axes. These vectors in the oblate spheroidal
coordinates are given in the Appendix.

B. ZAMO’s frame

For the Kerr metric in the standard form (2.1) there exists
a preferable and useful choice of observers and tetrads; a so
called frame of a zero angular momentum observer
(ZAMO) [7,19]. The basis vectors of this tetrad are

eðtÞ ¼
�

A
ΣΔ

�
1=2 ∂

∂t
þ 2Mar

ðAΣΔÞ1=2
∂

∂φ
;

eðrÞ ¼
�
Δ
Σ

�
1=2 ∂

∂r
;

eðθÞ ¼
1

Σ1=2

∂

∂θ
;

eðφÞ ¼
�
Σ
A

�
1=2 ∂

∂φ
: ð2:8Þ

At each point one can make the following spatial rigid
rotation of the basis vectors ðeðrÞ; eðθÞ; eðφÞÞ and define 3
new unit and mutually orthogonal vectors

nðXÞ ¼ sin θ cosφeðrÞ þ cos θ cosφeðθÞ − sinφeðφÞ;

nðYÞ ¼ sin θ sinφeðrÞ þ cos θ sinφeðθÞ þ cosφeðφÞ;

nðZÞ ¼ cos θeðθÞ − sin θeðφÞ: ð2:9Þ

At large distance from the black hole these vectors has the
following asymptotic form:

nðXÞ ¼
∂

∂X
; nðYÞ ¼

∂

∂Y
; nðZÞ ¼

∂

∂Z
; ð2:10Þ

where ðX; Y; ZÞ are flat (Cartesian) coordinates.

III. A BLACK HOLE IN A HOMOGENEOUS
ELECTROMAGNETIC FIELD

A. Electromagnetic field

Let us consider a rotating black hole which is immersed
in a homogeneous at the infinity magnetic field. Such a
solution of the source-free Maxwell equations in the Kerr
spacetime

Fμν
;ν ¼ 0; F½μν;α� ¼ 0; ð3:1Þ

was obtained in [12] and discussed and studied in [13–15].
We use the following expression for the 4D vector potential
A ¼ ðAt; Ar; Aθ; AφÞ of the electromagnetic field which
is a slightly modified version of the expression presented
in [13]
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At ¼ BZaðMrð1þ cos2θÞ=Σ − 1Þ þ aM sin θ cos θ
Σ

�
BXðr cosψ − a sinψÞ þ BYðr sinψ þ a cosψÞ�;

Ar ¼ −ðr −MÞ cos θ sin θðBX sinψ − BY cosψÞ;
Aθ ¼ −ðarsin2θ þ aMcos2θÞðBX cosψ þ BY sinψÞ þ

�
r2cos2θ − ðMr − a2Þ cosð2θÞ�ðBX sinψ − BY cosψÞ;

Aφ ¼ BZ sin θ2ððr2 þ a2Þ=2 − a2Mrð1þ cos2θÞ=ΣÞ

− sin θ cos θ

�
ΔðBX cosψ þ BY sinψÞ þ

Mðr2 þ a2Þ
Σ

ðBXðr cosψ − a sinψÞ þ BYðr sinψ þ a cosψÞÞ
�
; ð3:2Þ

where

ψ ¼ ϕþ qðrÞ; qðrÞ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ln

�
r − rþ
r − r−

�
: ð3:3Þ

This potential depends on three parameters BX, BY and
BZ. We denote by Bμν the strength of the field correspond-
ing to this potential

Bμν ¼ Aν;μ − Aμ;ν: ð3:4Þ

Let us denote

Eμν ¼ ⋆BμνjBX→EX;BY→EY;BY→EY
; ð3:5Þ

where

⋆Bμν ¼
1

2
eμναβBαβ ð3:6Þ

is the tensor dual to the tensor B. A notation used in (3.5)
means that after the calculation of the tensor dual to B, one
needs to substitute new parameters ðEX; EY; EZÞ instead of
ðBX; BY; BZÞ. We denote by F a superposition of the fields
B and E

Fμν ¼ Bμν þ Eμν: ð3:7Þ

One can check that a so-defined tensor F has the following
properties:

(i) F satisfies source-free Maxwell equations (3.1);
(ii) It is regular at the black hole horizon;
(iii) Both electric (Q) and magnetic monopole (P)

charges for this field vanish

Q ¼ 1

4π

Z
S

⋆Fμνdσμν ¼ 0;

P ¼ 1

4π

Z
S
Fμνdσμν ¼ 0; ð3:8Þ

vanish.
In these relations S is a spacelike 2D surface surrounding
the black hole.

Let us denote

Eμ ¼ eνðtÞFνμ; Bμ ¼ eνðtÞ
⋆Fνμ; ð3:9Þ

These 4D vectors E and B has interpretation as the electric
and magnetic fields as measured by ZAMO. The leading
asymptotics of these vectors at large r are of the form

E ≈ EXnðXÞ þ EYnðYÞ þ EZnðZÞ;

B ≈ BXnðXÞ þ BYnðYÞ þ BZnðYÞ: ð3:10Þ

This means that the field F depends on six parameters
ðEX; EY; EZÞ and ðBX; BY; BZÞ, that are nothing, but the
Cartesian components of constant and homogeneous at the
infinity electric and magnetic fields.

B. Energy and angular momentum fluxes

The stress-energy tensor of the electromagnetic field F is

Tμν ¼
1

4π

�
FμαFν

α −
1

4
gμνFαβFαβ

�
: ð3:11Þ

Using two Killing vectors ξ and ζ one can define two
conserved currents

Iμ
ðξÞ ¼ −Tμ

νξ
ν; Iμ

ðζÞ ¼ Tμ
νζ

ν;

Iμ
ðξÞ;μ ¼ Iμ

ðζÞ;μ ¼ 0: ð3:12Þ

Let us denote by S0 a 2D surface defined by equations
t ¼ t0 ¼ const, r ¼ r0 ¼ const and denote by Σ a 3D
timelike surface describing the “evolution” of S0 for the
time interval t0 ∈ ðt−; tþÞ. The volume element of the
surface Σ is

dσμ ¼ −δμrΔ sin θdtdθdφ: ð3:13Þ

We denote the fluxes of the energy and angular momen-
tum through 3D surface Σ per a unit time t by Ė and J̇,
respectively. Then one has
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Ė ¼ −
1

tþ − t−

Z
Σ
ξμTμνdσμ ¼ Δ

Z
S
Ttrdω;

J̇ ¼ 1

tþ − t−

Z
Σ
ζμTμνdσμ ¼ −Δ

Z
S
Tφrdω;

dω ¼ sin θdθdφ; ð3:14Þ

The signs in these expressions are chosen so that these
quantities describe the flux into the surface S0 from its
exterior. Using properties (3.12) and the Stockes’ theorem
it is possible to show that the quantities Ė and J̇ do not
depend on the radius r0 of the surface S0 (see Appendix B
of [20]).
Since gtr and grφ components of the Kerr metric in the

Boyer-Lindquist coordinates vanish one has

Ttr ¼
1

4π
FtαFr

α; Tφr ¼
1

4π
FφαFr

α: ð3:15Þ

Calculating integrals in (3.14) one obtains

Ė ¼ 0; J̇ ¼ −
2

3
M2aðE2

X þ E2
Y þ B2

X þ B2
YÞ: ð3:16Þ

The first of this relation shows that the mass of the black
hole does not change, while the second relation implies that
the spin of the black hole cannot increase.

C. Momentum and angular momentum fluxes

Let η be a vector satisfying the relations Lξη ¼ Lζη ¼ 0.
We use it define the following expression:

P½η� ¼ 1

tþ − t−

Z
Σ
ημTμνdσν: ð3:17Þ

For the Killing vectors ξ and ζ this object coincides with
expressions (3.14) for the fluxes of the energy and angular
momentum. These quantities do not depend on the choice
of the 2D surface S0 surrounding the black hole.
To define the momentum and angular momentum fluxes

of the electromagnetic field into the black hole we use
expression (3.17) in which we identify η with vectors ξðaÞ
and ζðaÞ given in (A1) and (A2). In the absence of a black
hole, that is whenM ¼ 0, the vectors ξðaÞ and ζðaÞ are exact
Killing vectors. However, whenM ≠ 0 they are close to the
Killing vectors only far from the black hole in the
asymptotic domain. For this reason, we assume that r0
is large and take the limit r0 → ∞. Using this prescription
we write

PðaÞ ¼ − lim
r0→∞

�
Δ
Z
S
Tμνξ

μ
ðaÞδ

ν
rdω

�
;

J ðaÞ ¼ − lim
r0→∞

�
Δ
Z
S
Tμνζ

μ
ðaÞδ

ν
rdω

�
: ð3:18Þ

We interpret these quantities as the fluxes of the momentum
and angular momentum of the electromagnetic field into
the black hole.3

To calculate the quantities PðaÞ and J ðaÞ we use the
GRTensor program. Let us note, that for these calculations it
is possible to use 1=r expansion of the stress-energy tensor.
For PðaÞ it is sufficient to keep terms up to the order 1=r2 of
this expansion, while for J ðaÞ one should keep terms up to
1=r3 order. This means that in the calculations it is also
sufficient to keep terms of the electromagnetic field up to
the third order in 1=r expansion. Let us mention that the
components of the electromagnetic field depend on the
angle variable ψ ¼ ϕþ qðrÞ, (3.3). After the components
of the field Fμν are calculated one should substitute this
expression for ψ in terms of the angle φ and the function
qðrÞ given by (3.3). In fact, it is sufficient to use only the
first few terms of the expansion of the cosðqðrÞÞ and
sinðqðrÞÞ at large r.
Following this simplification rules and performing rather

long calculations one obtains the following results. The
momentum fluxes are

PðXÞ ¼ −
2

3
MaðBXEZ − BZEXÞ;

PðYÞ ¼ −
2

3
MaðBYEZ − BZEYÞ;

PðZÞ ¼ 0: ð3:19Þ

The fluxes of the angular momentum are

J ðXÞ ¼−
2

3
M2aðBXBZþEXEZÞ−

22

15
Ma2ðBYBZþEYEZÞ;

J ðYÞ ¼−
2

3
M2aðBYBZþEYEZÞþ

22

15
Ma2ðBXBZþEXEZÞ;

J ðZÞ ¼−
2

3
M2aðE2

XþE2
YþB2

XþB2
YÞ: ð3:20Þ

The last expression correctly reproduces (3.16), as it should
be. The reason is that the asymptotic Killing vector ζμZ
generating a rotation around the Z-axis in the flat metric
(2.6) written in the oblate coordinates coincides with the
exact Killing vector ζ of the Kerr metric in the Boyer-
Lindquist coordinates.
Let us emphasize, that since the vectors ξðaÞ and ζðaÞ in

the limit M → 0 coincide with the Killing vectors, the

3The spacetime of the Kerr black hole is asymptotically flat
and hence besides the exact symmetries, generated by its Killing
vectors, it also possesses so called asymptotic symmetries [21].
One can use them to define asymptotically conserved currents
(see e.g. in [22,23] and references therein). However, in the
application of this approach to the electromagnetic field it is
usually assumed that this field decreases rapidly enough at the
infinity (see Ref. [23]). This condition is violated for the
homogeneous at the infinity field which we consider in this paper.
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quantities PðaÞ and JðaÞ vanishes as well in this limit. Both
fluxes vanish also for a ¼ 0. This means that a nonrotating
(Schwarzschild) black hole absorbs neither energy momen-
tum nor angular momentum, and its mass, velocity and
spin are constant. Let us emphasize, that for the rotating
black hole the momentum flux is proportional to the
factor J ¼ Ma, while the fluxes of the angular momentum
are linear combinations of two quantities proportional
to M2a and Ma2. For slowly rotating black holes
when a ≪ M the second contribution is smaller than the
first one.

IV. EQUATIONS OF MOTION OF A ROTATING
BLACK HOLE

A. Vector form of the equations of motion

Consider an observer located at far distance L ≫ M from
the black hole. For such an observer the black hole is a
“small size” particle and to describe its motion one can use
a “pointlike” approximation. Energy, momentum and
angular momentum of the black hole change as a result
of the fluxes. One can use relations (3.19) and (3.20) to

define the 4D force F ¼ ðF t; F⃗ Þ and 3D torque T⃗ acting
on the black hole. These expressions are written in the rest
frame of the black hole where the asymptotic Cartesian
coordinates are chosen so that Z-axis coincides with the
direction of the black hole’s spin. It is convenient to write
them in the coordinate independent form using vector
notations,

F t ¼ 0; T⃗ ¼ T⃗ 1 þ T⃗ 2;

F⃗ ¼ −
2

3
J⃗ × ðB⃗ × E⃗Þ

¼ −
2

3
ððJ⃗ · E⃗ÞB⃗ − ðJ⃗ · B⃗ÞE⃗Þ;

T⃗ 1 ¼ −
2M
3

	
B⃗ × ðJ⃗ × B⃗Þ þ E⃗ × ðJ⃗ × E⃗Þ
;

T⃗ 2 ¼
22

15M

	ðJ⃗ · B⃗ÞðJ⃗ × B⃗Þ þ ðJ⃗ · E⃗ÞðJ⃗ × E⃗Þ
: ð4:1Þ

B. Rotating black hole motion in a constant
electromagnetic field

Expressions in (4.1) are written in the frame K in which
the black hole is at rest. However, if the force acting on it
does not vanish, the black hole begins to move. To describe
this motion one can use the rest frame of the field K̃. If the
black hole at a given moment of time moves with the
velocity V⃗ with respect to K̃ then one can use a Lorentz
transformation relating the two inertial frames; the frame K
instantly comoving with the black hole and K̃. For the

components of the 4D force f ¼ ðf0; f⃗Þ in K̃ frame one
gets

f0 ¼ γðV⃗ · F⃗ Þ;

f⃗ ¼ F⃗ þ ðγ − 1Þ V⃗ · F⃗
V2

V⃗; ð4:2Þ

where γ ¼ ð1 − V2Þ−1=2.
In K̃ frame

B⃗0 ¼ B0n⃗; E⃗0 ¼ E0n⃗; ð4:3Þ

where B0 and E0 are asymptotic values of the magnetic and
electric fields, and n⃗ is their common direction. In the
instantly comoving frame K the vectors E⃗ and B⃗ are

E⃗ ¼ γðE⃗0 þ V⃗ × B⃗0Þ − ðγ − 1Þ E⃗0 · V⃗
V2

V⃗;

B⃗ ¼ γðB⃗0 þ V⃗ × E⃗0Þ − ðγ − 1Þ B⃗0 · V⃗
V2

V⃗: ð4:4Þ

During the motion the massM of the black hole remains
constant. The equations of motion of the black hole in K̃
frame are of the form

M
dγ
dτ

¼ f0; M
dðγV⃗Þ
dτ

¼ f⃗: ð4:5Þ

Here τ is the proper time parameter along the black-hole’s
worldline. Since in the instantly comoving frame τ coin-
cides with the coordinate time t, one can write the equation
for the spin evolution in the form

dJ⃗
dτ

¼ T⃗ : ð4:6Þ

The set of equations (4.5) and (4.6) describes the black
hole moving in the constant homogeneous at the infinity
electromagnetic field.

C. Evolution of the black hole parameters

As we mentioned relation F t ¼ 0 in (4.1) implies that
the mass of the black hole does not change. Let us show
that value of its spin either increases or remains constant.
For this purpose we use the following relation

dJ2

dτ
¼ 2J⃗ ·

dJ⃗
dτ

: ð4:7Þ

Using expression (4.1) for the torque component T⃗ 2 one can

conclude that J⃗ · T⃗ 2 ¼ 0. Using expression for T⃗ 1 one gets
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J⃗ · T⃗ 1 ¼ J2B2 − ðJ⃗ · B⃗Þ2 þ J2E2 − ðJ⃗ · E⃗Þ2: ð4:8Þ

Let n⃗, b⃗ and e⃗ be unit vectors in the direction of J⃗, B⃗ and E⃗,
respectively,

J⃗ ¼ Jn⃗; B⃗ ¼ Bb⃗; E⃗ ¼ Ee⃗: ð4:9Þ

Then using (4.7) and (4.8) one gets

dJ2

dτ
¼ 2J2

�
B2ð1 − ðn⃗ · b⃗Þ2Þ þ E2ð1 − ðn⃗ · e⃗Þ2Þ�: ð4:10Þ

The right-hand side of this relation is non-negative. If
EB ≠ 0, then it vanishes if the vectors n⃗, b⃗ and e⃗ are
parallel. Thus the spin of the black hole moving in the
homogeneous electromagnetic field cannot increase. Since
the mass M is constant, the latter property implies that the
radius rþ of the black hole horizon

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2=M2

q
ð4:11Þ

never decreases as well. This means that the black hole area

A ¼ 8πMrþ; ð4:12Þ

and hence the black hole entropy, do not decrease, as it
should be.
In the next subsection we obtain solutions of equations

of motion of the black hole in the electromagnetic field for
some interesting cases.

D. Special cases

1. Rotating black hole at rest in K̃ frame

Let us consider first a simplest case when the black hole
is at rest with respect to K̃ frame, so that B⃗ ¼ B0n⃗ and
E⃗ ¼ E0n⃗. We denote by J⃗k and J⃗⊥ parts of the spin vector
which are parallel and orthogonal to n⃗, respectively

J⃗k ¼ Jnn⃗; Jn ¼ ðn⃗ · J⃗Þ; J⃗⊥ ¼ J⃗ − Jnn⃗: ð4:13Þ

Using (4.6) it is easy to check that

dJn
dτ

¼ 0;
dJ⃗⊥
dτ

¼ −
2M
3

ðB2
0 þ E2

0ÞJ⃗⊥: ð4:14Þ

The first of these relations shows that the spin projection on
the direction of the fields is constant, while the transverse
component J⃗⊥ exponentially decreases with time

J⃗⊥ ¼ J⃗0⊥ exp

�
−
2M
3

ðB2
0 þ E2

0Þτ
�
: ð4:15Þ

2. Motion of a rotating black hole transverse
to the magnetic field

As another example let us consider a motion of a rotating
black hole in a homogeneous magnetic field. For this
case the electric field in K̃ frame vanishes, E⃗0 ¼ 0, and
B⃗0 ¼ B0n⃗. We also assume that

V⃗ · n⃗ ¼ 0; J⃗ ¼ Jn⃗: ð4:16Þ

Under these assumptions the following relations are valid

B⃗ ¼ γB0n⃗; E⃗ ¼ γB0V⃗ × n⃗; V⃗ × F⃗ ¼ 0;

E⃗ · n⃗ ¼ J⃗ × B⃗ ¼ 0; J⃗ · B⃗ ¼ γB0J;

J⃗ × E⃗ ¼ γB0JV⃗: ð4:17Þ
Using these relations one obtains the following expressions

for F⃗ and T⃗

F⃗ ¼ 2

3
γ2B2

0JV⃗ × n⃗;

T⃗ ¼ T⃗ 1 ¼ −
2M
3

γ2B2
0JV

2n⃗; ð4:18Þ

and (4.2) gives

f0 ¼ 0; f⃗ ¼ F⃗ ¼ 2

3
γ2B2

0JðV⃗ × n⃗Þ: ð4:19Þ

These equations imply that if the conditions (4.16) are
valid at some initial moment of time, they are valid for any
later time as well. Such a black holes moves in the plane
orthogonal to the direction of the magnetic field and its spin
is directed along the magnetic field.
Since f0 ¼ 0 the first of Eqs. (4.5) implies that the value

V of the velocity of the black hole is constant. Using this
property on can easily integrate the equation for the spin
(4.6) with the following result:

J⃗ ¼ JðτÞn⃗; JðτÞ ¼ J0 expð−ΓτÞ;

Γ ¼ 2

3
γ2V2B2

0M: ð4:20Þ

This result means that for a moving rotating black hole the
spin along the magnetic field decreases. The characteristic
time of this process is ∼Γ−1.
The equation (4.5) for the transverse to the field velocity

takes the form

MOTION OF A ROTATING BLACK HOLE IN A HOMOGENEOUS … PHYS. REV. D 109, 064045 (2024)

064045-7



dV⃗
dτ

¼ ωðV⃗ × n⃗Þ; ω ¼ 2γB2
0J

3M
: ð4:21Þ

To solve this equation we denote

Vx þ iVy ¼ Ve−iαðτÞ; ð4:22Þ

then Eq. (4.21) implies

dα
dτ

¼ ω: ð4:23Þ

Integration of this equation gives

α ¼ J0
γM2V2

½1 − expð−ΓτÞ�: ð4:24Þ

For a slow change of the spin, that is when Γ ≪ 1=M,
one has

α ≈ ωτ; ð4:25Þ
where ω is given (4.21). In this approximation the black
hole revolves in the plane orthogonal to the magnetic field
along a circle of a slowly increasing radius

R ≈
V
ω
¼ 3MV

2γB2
0J

: ð4:26Þ

V. DISCUSSION

In this paper we discuss interaction of a rotating black
hole with a static electromagnetic field. We assume that this
field is homogeneous at far distance from the black hole. In
this domain one can always find a reference frame in which
either the electric and magnetic fields are parallel or one of
these fields vanishes. We denote such a frame by K̃ and
discuss effects which arise when a black hole moves with
respect to this frame. We showed that for a nonrotating
black hole its parameters do not change and its velocity
remains constant.
The case of a rotating black hole is more interesting. The

mass of moving rotating black hole still remains constant,
however its interaction with the electromagnetic field leads
to the appearance of a force acting on the black hole and a
torque which changes the value and orientation of its spin.
Using the exact solution of the Maxwell equations in the
Kerr spacetime, we calculated both, the force and torque,
and derived the equation of motion which determines
dynamics of the rotating black hole in the homogeneous
electromagnetic field.
We present solutions of these equations for two cases.

In the first case we assume that the black hole is at rest in
the electromagnetic field in K̃ frame, while its spin is tilted
with respect to the common direction n⃗ of the electric and
magnetic fields. We showed that the projection of the spin

vector on n⃗ is constant, while the transverse to this
direction component of the spin exponentially decreases.
This effect is known and described in the literature (see
e.g. [7]).
In the second case we analysed a motion of the black

hole in the magnetic field. Under the assumption that the
velocity of the black hole is orthogonal to the field and its
spin is parallel to the field, we have integrated the
equations of motion. We demonstrated that the value of
the velocity V of the black hole is constant, while its spin
exponentially decreases with time. We calculated the
corresponding characteristic time for the spin decay. By
solving the equations of motion we demonstrated that
such a black hole moves in the plane orthogonal to the
magnetic field along circles with slowly decreasing
angular frequency. The radius of the black hole orbit
slowly increases.
It is interesting to compare the obtained results with the

results of the recent paper [20] in which the motion of the
rotating black hole in the homogeneous scalar field
was considered. In the latter paper a special solution of
the massless scalar field equation was used which has a
constant nonvanishing timelike gradient. The stress-
energy tensor for such a fields in the flat background is
constant. When the black hole moves with respect to this
frame the force and torque also arise. However, there
exists a big difference between the cases of the scalar and
electromagnetic field. As we showed, the mass of the
black hole in the electromagnetic field does not change,
while for the scalar field it grows and, at least formally, it
becomes infinite in the finite interval of time. It is
interesting to understand such a big difference between
these two cases. Naively, one can expect that this
difference is connected with the fact that the vector of
the scalar field’s strength for the field discussed in [20] is a
timelike vector, while for the electromagnetic field
both vectors characterizing the field’s strength, E⃗ and
B⃗, are spacelike. In the recent paper [24] it is shown that
when the gradient of the homogeneous scalar field is
spacelike, the mass of a moving rotating black hole
remains finite.
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APPENDIX: KILLING VECTORS IN THE
OBLATE SPHEROIDAL COORDINATES

The Killing vectors generating time translations and
translations along X, Y and Z axes written in the oblate
spheroidal coordinates ðr; θ;ϕÞ are
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ξμðtÞ∂μ ¼ ∂t;

ξμðXÞ∂μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
cosφðr sin θ∂r þ cos θ∂θÞ −

sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

∂ϕ;

ξμðYÞ∂μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
sinφðr sin θ∂r þ cos θ∂θÞ þ

cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

∂ϕ;

ξμðZÞ∂μ ¼
ðr2 þ a2Þ cos θ

Σ
∂r −

r sin θ
Σ

∂θ: ðA1Þ

The Killing vectors generating rotations around X, Y and Z axes written in the oblate spheroidal coordinates ðr; θ;ϕÞ are

ζμðXÞ∂μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
sinφ

�
a2 sin θ cos θ∂r − r∂θ

�
−

r cos θ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

∂φ;

ζμðYÞ∂μ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
cosφ

�
a2 sin θ cos θ∂r − r∂θ

�
−

r cos θ sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

∂φ;

ζμðZÞ∂μ ¼ ∂ϕ: ðA2Þ
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