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The time delay of a light signal that propagates in the gravitational field of an isolated body at rest is
considered. The gravitational field is given in the post-Newtonian scheme and in terms of the full set of
mass multipoles and spin multipoles of the body. The asymptotic configuration is considered, where source
and observer are located at spatial infinity from the massive body. It is found that in this asymptotic limit the
higher multipole terms of time delay are related to the higher multipole terms of total light deflection.
Furthermore, it is shown that the gauge terms vanish in this asymptotic configuration. In case of an
axisymmetric body in uniform rotational motion, the higher multipole terms of time delay can be expressed
in terms of Chebyshev polynomials. This fact allows one to determine the upper limits of the time delay for
higher multipoles. These upper limits represent a criterion to identify those multipoles that contribute
significantly to the time delay for a given accuracy of time measurements. It is found that the first mass
multipoles with l ≤ 8 and the first spin multipoles with l ≤ 3 are sufficient for an accuracy on the
femtosecond scale of accuracy in time measurements.
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I. INTRODUCTION

In the classical Shapiro time delay [1] one considers the
propagation of an electromagnetic signal, for instance, a
radar signal or a signal of visible light, in the gravitational
field of a spherically symmetric body. Assume the space-
time is covered by harmonic four-coordinates xμ ¼
ðx0; x1; x2; x3Þ, with time component x0 and spatial com-
ponents x1, x2, x3 and the origin of the spatial coordinates
is located at the center of mass of the body. Then, the light
travel time of a signal, emitted at ðt0; x0Þ and received
at ðt1; x1Þ, is in the post-Newtonian (PN) scheme given
by [2,3]

ðt1 − t0Þ ¼
R
c
þ 2GM

c3
ln
x1 þ σ · x1
x0 þ σ · x0

þOðc−3Þ; ð1Þ

where M is the mass of the body and σ is the unit tangent
vector along the light ray at minus infinity. The difference
between the light travel time ðt1 − t0Þ and Euclidean
distance, R ¼ jx1 − x0j, divided by the speed of light, is
the Shapiro time delay and belongs to the four classical tests
of general relativity: perihelion precession of Mercury, light
deflection at the Sun, gravitational redshift of light, and light
travel time delay. The effect of time delay (1) has been
detected in 1968 [4] and 1971 [5], which yields, for the
round-trip Earth-Sun-Venus and Venus-Sun-Earth path, up
to 251 μs for radar signals grazing the Sun. The most
accurate experiments of time-delay measurements have

been performed in 2003 by using the Saturn orbiter
Cassini as reflector, which amounts, for the round-
trip Earth-Sun-Saturn and Saturn-Sun-Earth path, up to
288 μs, where a precision on the nanosecond scale of
accuracy has been achieved [6].
Technological developments in time measurements by

means of atomic clocks both on the ground as well as in
space have made giant progress during recent decades. In
particular, the accuracy of the standard deviation of up-to-
date optical atomic clocks is Δt=t ¼ 10−19 [7]. Such an
accuracy corresponds to a precision of 0.001 ps for a light
signal that travels, for instance, from a giant planet of the
Solar System toward an observer located nearby Earth. In
fact, there are several mission proposals of the European
Space Agency [8–13], aiming at time-delay measurements
at the pico- and subpicosecond level of accuracy. Further-
more, the accuracy of time measurements improves by an
order of magnitude every seven years [14], and in the near
future the frequency standards will arrive at a level of
Δt=t ¼ 10−20–10−21, which corresponds to a precision of
0.01 fs for a light signal from a giant planet of the Solar
System toward an observer located nearby Earth.
In view of such rapid developments in time measure-

ments, it becomes apparent that the mass-monopole
approximation for Solar System bodies is not sufficient
anymore, and a more realistic description of gravitational
fields of Solar System bodies is necessary. The determi-
nation of the gravitational fields of Solar System bodies is
achieved by decomposing the metric in terms of mass
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multipoles ML (which describe shape and inner structure
of the massive body) and spin multipoles SL (which
describe rotational motions and inner currents of the
massive body) of these bodies. Then, the analytical
formula for the time delay becomes a complicated function
of these multipoles [15],

ðt1− t0Þ ¼
R
c
þ
X∞
l¼0

ΔτML
1PNðt1; t0Þþ

X∞
l¼1

ΔτSL1.5PNðt1; t0Þ

þOðc−4Þ; ð2Þ

where the first term in the sum (l ¼ 0) is the mass-monopole
term given by (1). In order to decide which multipoles are
relevant for a given accuracy in time measurements, one has
to determine the upper limits of the individual terms of the
time-delay formula in (2), which means the maximal
absolute value of these terms.
In a recent investigation, it was demonstrated that the

effect of total light deflection is related to Chebyshev
polynomials [16]. This fact has allowed for determining
the upper limits of the total light deflection. As in the case of
total light deflection, it is therefore the aim of this inves-
tigation to obtain an analytical formula for the multipole
terms in (2) for the asymptotic configurations, where the
source as well as the observer are located at spatial infinity
from the massive body. It it found that in the asymptotic
limit the multipole terms in (2) are related to Chebyshev
polynomials, a fact that allows one to quantify the upper
limits of absolute values of these terms to arbitrary multipole
order. Using these criterions, one may easily decide which
terms in (2) are really relevant for a given goal accuracy in
time-delay measurements.
The manuscript is organized as follows: In Sec. II the

metric and the geodesic equation are considered. The
Shapiro time delay is considered in Sec. III. In Sec. IV it
is shown that, in the asymptotic case, where source and
observer are located infinitely far from the massive body, the
total effect of time delay is related to the total light
deflection. These results are applied in Sec. V for the case
of an axisymmetric body. A comparison with the literature
and some numerical results of the time delay in the
gravitational fields of Solar System bodies are given in
Secs. VI and VII. A summary is given in Sec. VIII. The used
notations are explained in Appendix A, while Appendices B
and C contain some further details of the calculations.

II. METRIC TENSOR AND GEODESIC EQUATION

A. Metric tensor

The curved space-time is described by a pair ðM; gμνÞ,
whereM is a four-dimensional differentiable manifold and
gμν is the metric tensor of the manifold, and each point
P ∈M represents a possible space-time event; we assume
for the metric signature ð−;þ;þ;þÞ. These ten compo-
nents of the metric tensor gμν are determined by the ten field

equations of gravity, which are valid in any coordinate
system. The Bianchi identities reduce these field equations
to only six independent equations. Therefore, four gauge
conditions are imposed to fix the coordinates, which
cover the physical manifold M. We adopt harmonic four-
coordinates, zμ ¼ ðz0; z1; z2; z3Þ, which are imposed by
four harmonic gauge conditions [17]

□gzμ ¼ 0; ð3Þ

where □g ¼ ð−gÞ−1=2∂μð−gÞ1=2gμν∂ν is the general-
covariant d’Alembert operator. If the gravitational fields
are weak, then it is useful to decompose the metric tensor of
the physical space-time [2,3,17,18],

gμνðt; xÞ ¼ ημν þ hμνðt; xÞ; ð4Þ

where ημν ¼ ð−1;þ1;þ1;þ1Þ are the components of
Minkowskian metric, while hμν are the metric perturbations
that are small corrections to the Minkowskian metric:
jhμνj ≪ 1. The decomposition (4) implies that the metric
perturbations can be thought of as symmetric tensorial
fields that propagate in the flat background space-time
[2,17,18]. The flat space-time is described by a pair
ðM0; ημνÞ, where M0 is the flat background manifold.
The curved physical manifold M and the flat background
manifold M0 are diffeomorphic to each other, which
implicates a one-to-one correspondence between the points
P ∈M and the points Q∈M0.
The flat background manifold M0 is assumed to be

covered by harmonic four-coordinates xμ ¼ ðx0; x1; x2; x3Þ
that, according to (3), are imposed by the harmonic gauge
condition,

□xμ ¼ 0; ð5Þ
where □ ¼ ημν∂μ∂ν is the Lorentz-covariant d’Alembert
operator. Then, by inserting the decomposition (4) into the
exact field equations of gravity and keeping only terms
linear in the metric perturbations, one obtains the linear-
ized field equations of gravity, which in the harmonic
gauge read

□h̄μν ¼ −
16πG
c4

Tμν; ð6Þ

where Tμν is the stress-energy tensor of the source of
matter. The following relations allow one to deduce the
metric perturbations hμν from the metric density perturba-
tions h̄μν as soon as the solution of the linearized field
equations (6) is found:

h̄μν ¼ hμν −
1

2
hημν; ð7Þ

hμν ¼ h̄μν −
1

2
h̄ημν; ð8Þ
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with h ¼ hαβηαβ and h̄ ¼ h̄αβηαβ. These relations are
valid at linear order in h. Furthermore, in linearized gravity,
the indices of tensors are lowered and raised by the
Minkowskian metric.
By imposing the Fock-Sommerfeld boundary condition

[19,20], which implies the no-incoming radiation condition
as well as the asymptotic flatness of space-time (isolated
source of matter), the solution of the differential equa-
tion (6) is uniquely given by

h̄μν ¼ 4πG
c4

Z
V
d3x0

Tμνðt0; x0Þ
jx − x0j ; ð9Þ

where the integral runs over the volume of the compact
source of matter (body) and t0 ¼ t − c−1jx − x0j.
Without limiting generality, one may assume the har-

monic four-coordinates xμ ¼ ðx0; x1; x2; x3Þ, which cover
the flat background manifold M0, to be Cartesian.
However, from the harmonic gauge condition (5), one
concludes that the harmonic gauge does not fix these
harmonic four-coordinates xμ uniquely, but allows for
smooth deformations [2,17]

xαcan ¼ xα þ wαðxβÞ; ð10Þ

if these gauge vector fields ξα satisfy□wα ¼ 0. The label of
these new coordinates fxcang abbreviates the term “canoni-
cal.” It is emphasized that the gauge transformations in (10)
are tending to 0 at spatial infinity and they are small,
jwαj ≪ jxαj, in the sense that the derivatives of the gauge
functions wα with respect to space and time are of the same
order as the metric perturbations, wα

;μ ¼ OðhαμÞ, hence
jwα

;μj ≪ 1. The residual gauge transformation (10) implies
a residual gauge transformation of the metric tensor,

gαβðt; xÞ ¼
∂xμcan
∂xα

∂xνcan
∂xβ

gcanμν ðtcan; xcanÞ: ð11Þ

By inserting (10) into (11) and performing a series expan-
sion of the metric tensor on the right-hand side around the
old (Cartesian) coordinates fxg, one obtains (∂αf≡
f;α ≡ ∂f=∂xα)

gαβðt; xÞ ¼ gcanαβ ðt; xÞ þ ∂αwβðt; xÞ þ ∂βwαðt; xÞ: ð12Þ

The unique solution in (9) can be expressed in terms of six
Cartesian symmetric and trace-free (STF) multipoles F̂L
[Eq. (8.4) in [21] or Eqs. (5.3a)–(5.3c) in [22] ],

h̄μνðt; xÞ ¼ 4G
c4

X∞
l¼0

ð−1Þl
l!

∂̂L

�
F̂μν
L ðuÞ
r

�
; ð13Þ

where u ¼ t − c−1r is the retarded time, r ¼ jxj, the STF
multipoles F̂L are given by Eqs. (5.4a)–(5.4c) in [22], and

∂̂L ¼ STFi1…il

∂

∂xi1
…

∂

∂xil
; ð14Þ

where the “hat” in F̂L and in ∂̂L indicates STF operation
with respect to the spatial components of the multi-index
L ¼ i1…il. A detailed proof of this theorem in (13) has
been presented in [23].
The solution in (13) is unique and represents the most

general solution of the linearized gravity for an isolated
compact source of matter. By extensive use of STF
Cartesian tensor techniques, it has been demonstrated in
[21,22,24] that the general solution in (13) can be written
in terms of six STF multipoles fM̂L; ŜL; ŴL; X̂L; ŶL; ẐLg
[21,22,24]. Accordingly, the metric tensor can be written
in the following form:

hαβðt; xÞ ¼ hcanαβ ½M̂L; ŜL� þ ∂αwβ½ŴL; X̂L; ŶL; ẐL�
þ ∂βwα½ŴL; X̂L; ŶL; ẐL�: ð15Þ

The canonical part of the metric perturbations in (15)
depends on two multipoles only, namely, mass multipoles
and spin multipoles fM̂L; ŜLg, while the gauge terms of the
metric perturbation in (15) depend on four multipoles
fŴL; X̂L; ŶL; ẐLg. The form of the metric perturbations
in (15) depends on the chosen coordinate system. For
instance, in canonical coordinates there are no gauge terms
at all and only the canonical term hcanαβ would remain. Here,
we will use this most general form in (15) in order to
demonstrate that these gauge terms vanish at spatial infinity.
We will consider the metric of bodies with time-

independent multipoles and where the center of mass of
the body is assumed to be at rest with respect to the
harmonic coordinate system. Then, the canonical metric
perturbations in (15) are separated into two pieces,

hcanαβ ¼ hð2Þcanαβ þ hð3Þcanαβ ,

hð2Þcan00 ¼ −
2G
c2

X∞
l¼0

ð−1Þl
l!

∂̂L
M̂L

r
; ð16Þ

hð3Þcan0i ¼ þ 4G
c3

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiab∂̂aL−1

ŜbL−1
r

; ð17Þ

while hð2Þcanij ¼ hð2Þcan00 δij. The derivatives ∂̂L are not acting
on the multipoles because they are independent of space
and time here. These mass multipoles and spin multipoles
in (16) and (17) in the stationary case, which means in the
case of a time-independent source of matter, are given by

M̂L ¼
Z

d3xx̂LΣ; ð18Þ
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ŜL ¼
Z

d3xϵjkhil x̂L−1ix
jΣk; ð19Þ

where Σ ¼ ðT00 þ TkkÞ=c2 and Σk ¼ T0k=c with the
stress-energy tensor Tμν of the source of matter
[cf. Eq. (6)], and the integration runs over the volume
of the body. The time independence of the multipoles
implies time independence of the metric.
The gauge functions in (15) have been determined by

[21,22,24,25] and read

w0 ¼ þ 4G
c3

X∞
l¼0

ð−1Þl
l!

∂̂L
ŴL

r
; ð20Þ

wi ¼ −
4G
c2

X∞
l¼0

ð−1Þl
l!

∂̂iL
X̂L

r
−
4G
c2

X∞
l¼1

ð−1Þl
l!

∂̂L−1
ŶiL−1

r

−
4G
c2

X∞
l¼1

ð−1Þl
l!

l
lþ 1

εiab∂̂aL−1
ẐbL−1

r
: ð21Þ

As mentioned above, these gauge vectors in (20) and (21)
represent the most general form of the gauge terms in the
metric tensor. The multipoles ŴL; X̂L; ŶL; ẐL of the gauge
functions (20) and (21) have been determined in [22,25]
and read in the stationary case as follows:

ŴL ¼ þ 2lþ 1

ðlþ 1Þð2lþ 3Þ
Z

d3xx̂LjΣj; ð22Þ

X̂L ¼ þ 2lþ 1

ð2lþ 2Þðlþ 2Þð2lþ 5Þ
Z

d3xx̂jkLΣjk; ð23Þ

ŶL ¼ −
Z

d3xx̂LΣkk; ð24Þ

ẐL ¼ −
2lþ 1

ðlþ 2Þð2lþ 3Þ
Z

d3xϵjkhil x̂L−1ikmΣ
jm; ð25Þ

where Σjk ¼ Tjk=c2, with Tjk being the spatial components
of the stress-energy tensor of the body, and the integration
runs over the volume of the body.
We will show that the gauge terms in (15) have no impact

on the Shapiro time delay in the case of infinite distance of
source and observer from the massive body (see
Appendix B). This specific case reflects the general fact
that gαβ and gcanαβ in (12) are physically equivalent, which
means they lead to the same observables. This statement is
valid in the case where the gauge transformations (10) are
small and are tending to 0 at spatial infinity, as emphasized
in the text below Eq. (10).

B. Geodesic equation

In flat Minkowskian space-time, assumed to be covered
by Cartesian four-coordinates, a light signal, emitted by a
source at ðt0; x0Þ in some direction specified by a unit
vector σ, propagates along a straight line, given by

xN ¼ x0 þ cðt − t0Þσ; ð26Þ

where index N stands for Newtonian. The absolute value
reads

rN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 þ 2σ · x0cðt − t0Þ þ c2ðt − t0Þ2

q
: ð27Þ

In what follows, we also need the so-called impact vector of
the unperturbed light ray,

dσ ¼ σ × ðxN × σÞ; ð28Þ

with its absolute value

dσ ¼ jσ × xNj: ð29Þ

The impact vector (28) points from the center of mass of the
body toward the unperturbed light ray at its closest
encounter; for a graphical elucidation, see Fig. 1.
In curved space-time ðM; gμνÞ, the trajectory of a light

signal is determined by the geodesic equation, which in
terms of coordinate time reads as follows [2,17,26]:

FIG. 1. A geometrical representation of the propagation of a
light signal through the gravitational field of a massive Solar
System body at rest. The axes of inertia are denoted by e1; e2; e3.
In the general case, the body is of arbitrary shape and can be in
arbitrary rotational motion with the vector of angular velocity Ω.
In the stationary case the vector of angular velocity is time-
independent. The light signal is emitted by the light source at x0
and propagates along the exact light trajectory xðtÞ. The unit
tangent vectors along the light trajectory at minus and plus
infinity are σ and ν. The unperturbed light ray xNðtÞ is given by
Eq. (26) and propagates in the direction of σ along a straight line
through the position of the light source at x0. The impact vector
dσ of the unperturbed light ray is given by Eq. (28).
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ẍiðtÞ
c2

þ Γi
μν
ẋμðtÞ
c

ẋνðtÞ
c

− Γ0
μν
ẋμðtÞ
c

ẋνðtÞ
c

ẋiðtÞ
c

¼ 0; ð30Þ

where a dot denotes total derivative with respect to
coordinate time, and Γα

μν are the Christoffel symbols, given
by [2,17,26]

Γα
μν ¼

1

2
gαβ

�
∂gβμ
∂xν

þ ∂gβν
∂xμ

−
∂gμν
∂xβ

�
: ð31Þ

The geodesic equation is a differential equation of second
order of one variable t, thus a unique solution of (30)
necessitates two initial-boundary conditions: the spatial
position of light source x0 and the unit direction σ of the
light signal at minus infinity [15,20,26–29],

σ ¼ ẋðtÞ
c

����
t¼−∞

with σ · σ ¼ 1; ð32Þ

x0 ¼ xðtÞ
����
t¼t0

: ð33Þ

By using the initial-boundary conditions (32) and by
inserting the decomposition (4) into (30), which implies
weak gravitational fields, the solution of the second
integration of geodesic equation (30) is given by

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δxðt; t0Þ; ð34Þ

where Δx are small corrections to the trajectory of the
unperturbed light ray (26). Equation (34) represents the
trajectory of a light signal propagating in the flat back-
ground space-time ðM0; ημνÞ; for a graphical elucidation,
see Fig. 1. The solution of the initial value problem (34)
implies the following limit:

lim
t→t0

Δxðt; t0Þ ¼ 0; ð35Þ

in order to be consistent with the condition (33).
The geodesic equation in 1.5PN approximation can be

deduced from the exact geodesic equation (30) and is given
by [26]

ẍiðtÞ
c2

¼ 1

2
h00;i − h00;jσiσj − hij;kσjσk þ

1

2
hjk;iσjσk

− h0i;jσj þ h0j;iσj − h0j;kσiσjσk þOðc−4Þ; ð36Þ

where we have omitted all those terms that contain a
derivative of the metric perturbations with respect to time
because we consider the stationary case, which is the case
of the time-independent metric. Note, that in the stationary
case, the geodesic equation in 1.5PN approximation of the
PN scheme and the geodesic equation in 1PM approxi-
mation of the post-Minkowskian (PM) scheme agree with

each other [30]. By inserting the metric perturbation (15)
into the geodesic equation (36), one may separate the
geodesic equation into a canonical term ẍcan plus a gauge
term ẍgauge as follows:

ẍðtÞ
c2

¼ ẍcanðtÞ
c2

þ ẍgaugeðtÞ
c2

þOðc−4Þ; ð37Þ

where the spatial components of these terms are

ẍicanðtÞ
c2

¼ hð2Þcan00;i − 2hð2Þcan00;j σiσj − hð3Þcan0i;j σj

þ hð3Þcan0j;i σj − hð3Þcan0j;k σiσjσk; ð38Þ
ẍigaugeðtÞ

c2
¼ ∂jw0

;kσ
iσjσk − ∂jwi

;kσ
jσk: ð39Þ

The metric perturbations in (38) are given by (16) and (17),
while the gauge functions in (39) are given by (20) and (21).
The metric tensor with the metric perturbations (15) is valid
in the entire space-time, while in the geodesic equation (37)
with (38) and (39), the arguments of the metric perturbations
are taken along the light trajectory, which means they have
to be replaced by x ¼ xN þOðc−2Þ and r ¼ jxNj þOðc−2Þ.
The integration of (37) yields the light trajectory in

1.5PN approximation, formally given by

xðtÞ ¼ x0þ cðt− t0ÞσþΔxcanðt; t0ÞþΔxgaugeðt; t0Þ: ð40Þ

In particular, one has to insert the multipole decomposition
of the metric perturbations (15) into the geodesic equa-
tion (36) and then one has to apply advanced integration
methods developed in [15], which yields

xðtÞ ¼ x0 þ cðt − t0Þσ

þ
X∞
l¼0

ΔxML
1PNðt; t0Þ þ

X∞
l¼1

ΔxSL1.5PNðt; t0Þ

þ Δxgaugeðt; t0Þ: ð41Þ

The first line describes the straight trajectory of the unper-
turbed light ray, the second line represents the perturbations
to the unperturbed light ray caused by the canonical terms of
the metric tensor, and the third line is the perturbations to the
unperturbed light ray caused by the gauge terms of the
metric tensor. The canonical terms ΔxML

1PN and ΔxSL1.5PN have
been obtained for the very first time by advanced integration
methods developed in [15], while the gauge termΔxgauge has
been calculated in Appendix B by the same approach
developed in [15].

III. TIME DELAY IN FIELD
OF AN ARBITRARY BODY

In [15] advanced integration methods have been intro-
duced that one allow to integrate (36) exactly. The basic
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ideas of the conception was originally introduced in [15]
for bodies with time-independent multipoles and where the
center of mass of the body is assumed to be at rest with
respect to the harmonic coordinate system. This approach
has further been developed for the case of light propagation
in the gravitational field of a time-dependent source of
matter, where the center of mass of the body was also
assumed to be at rest with respect to the harmonic coordinate
system [27,31,32]. Later, these mathematical tools devel-
oped in [15,27,31,32] have been applied to the case of light
propagation in the gravitational fields of N slowly moving
bodies with time-dependent multipoles [28,29].
In the approach in [15] two new parameters were

introduced,

cτ ¼ σ · xN; ð42Þ

ξi ¼ Pi
jx

j
N; ð43Þ

where Pij ¼ δij − σiσj is a projection operator onto the
plane perpendicular to vector σ. The unperturbed light
ray (26) expressed in terms of these new variables takes
the form

xN ¼ ξ þ cτσ; ð44Þ

with its absolute value

rN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ c2τ2

p
: ð45Þ

In favor of a simpler notation, we will not introduce new
notations for the unperturbed light ray (26) given in terms
of the standard variables ðct; xÞ and for the unperturbed
light ray (44) given in terms of the auxiliary variables
ðcτ; ξÞ. Similarly, the same notation will be used for their
absolute values in (27) and (45).
The three-vector ξ in (43) actually coincides with the

impact vector defined by (28). The use of two different
notations for the same vector is appropriate for the following
reason: the three-vector ξ is laying in the two-dimensional
plane perpendicular to σ, hence only two components are
independent, which implies ∂ξi=∂ξj ¼ Pi

j. However, in
practical calculations it is convenient to treat the spatial
components of this vector as formally independent, which
implies ∂ξi=∂ξj ¼ δij. Therefore, a subsequent projection
onto this two-dimensional plane by means of Pij is
necessary [27,33]. That is why two different notations for

ξ and dσ are in use. Then, for a spatial derivative expressed
in terms of these new variables, one obtains

∂

∂xi
¼ Pj

i
∂

∂ξj
þ σi

∂

∂cτ
: ð46Þ

Using (46) and the binomial theorem, one finds the differ-
ential operator in (14) expressed in terms of these new
variables,

∂̂L ¼ STFi1…il

Xl

p¼0

l!
ðl − pÞ!p! σi1…σipP

jpþ1

ipþ1
…Pjl

il

×
∂

∂ξjpþ1
…

∂

∂ξjl

�
∂

∂cτ

�
p
; ð47Þ

where the “wide hat” symbol indicates STF operation with
respect to the spatial indices i1…il. Here we prefer to use
the operator as given by Eq. (47) where ∂ξi=∂ξj ¼ δij, while
if one applies the operator as given by Eq. (24) in [15] then
∂ξi=∂ξj ¼ Pi

j. The final results of either these operations are
identical. Then, using the basic integral (25) in [15], one
finds for the second integration the formula given by
Eq. (27) in [15], which leads to the solution for the second
integration of geodesic equation (36).
From the solution for the light trajectory in (41), one

obtains the time of flight in the gravitational field of a body
at rest with full mass- and spin-multipole structure, given
by the following formula [15]:

ðt1 − t0Þ ¼
R
c
þ
X∞
l¼0

ΔτML
1PNðt1; t0Þ þ

X∞
l¼1

ΔτSL1.5PNðt1; t0Þ

þ Δτgaugeðt1; t0Þ ð48Þ

up to terms of the order Oðc−4Þ, where

ΔτML
1PNðt1; t0Þ ¼ −

1

c
σ · ΔxML

1PNðt1; t0Þ; ð49Þ

ΔτSL1.5PNðt1; t0Þ ¼ −
1

c
σ · ΔxSL1.5PNðt1; t0Þ; ð50Þ

Δτgaugeðt1; t0Þ ¼ −
1

c
σ · Δxgaugeðt1; t0Þ: ð51Þ

The explicit expressions for the mass-multipole (gravito-
electric) term (49) reads [15]

ΔτML
1PNðt1; t0Þ ¼ þ 2G

c3
ð−1Þl
l!

M̂L

�
∂̂L ln ðrN þ cτÞ

����
τ¼τ1

− ∂̂L ln ðrN þ cτÞ
����
τ¼τ0

�
; ð52Þ

and the spin-multipole (gravitomagnetic) term (50) reads [15] (see also footnote 3 in [34])
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ΔτSL1.5PNðt1; t0Þ ¼ þ 4G
c4

ð−1Þll
ðlþ 1Þ! ϵabcσ

cŜbL−1

�
∂̂aL−1 ln ðrN þ cτÞ

����
τ¼τ1

− ∂̂aL−1 ln ðrN þ cτÞ
����
τ¼τ0

�
: ð53Þ

The gauge term (51) is determined in Appendix B, where it
is shown that this term vanishes at minus and plus infinity,

lim
τ¼τ0→−∞
τ¼τ1→þ∞

Δτgaugeðt1; t0Þ ¼ 0: ð54Þ

That means the gauge terms have no impact on the Shapiro
time delay when source and observer are located at spatial
infinity, where the space-time is the flat Minkowski space.
Thus, relation (54) is just a specific example of the general
fact that observables are independent of the chosen gauge.
A similar conclusion is valid for the total light deflection,
that is, the bending of light in the case wherte the source
and observer are located at spatial infinity. In [35] it has
been shown that the gauge terms have no impact on the
total light deflection, which is also an observable.
Thus, Eqs. (52) and (53) represent the effect of time delay

and were also given in the textbook [33]. In (52) and (53),
the differentiations have to be performed. Afterward, one
has to substitute the unperturbed light ray (44) and its
absolute value (45) by the standard expressions as given
by (26) and (27). At the very end of these differentiations,
the sublabels in (52) and (53) are replaced by

cτ0 ¼ σ · xNðt0Þ; ð55Þ

cτ1 ¼ σ · xNðt1Þ; ð56Þ

and Pijξj by the spatial components of the impact vector
diσ. Further details about this approach can be found in
[15,33,36].
The time delay in 1.5PN approximation, given by

Eq. (48), is valid for finite distances of source and observer
from the gravitating body. According to (40), the spatial
coordinates of source x0 and observer x1 are related to the
spatial coordinates of the unperturbed light signal at time of
emission t0 and time of observation t1 as follows:

x0 ¼ xNðt0Þ; ð57Þ

x1 ¼ xNðt1Þ þOðc−2Þ: ð58Þ

Therefore, after performing the differentiations, one may
replace these awkward terms xNðt0Þ and xNðt1Þ in the
arguments of (52) and (53) just by the exact positions of
source and observer.
As in the case of total light deflection [15,16], we will

determine the total effect of time delay (52) and (53). That
means, we will consider astrometric configurations, where
both the source and the observer are located at spatial

infinity from the gravitating body. In particular, we will
determine the time delay for asymptotic configurations of
source and observer, where the limits are

σ · x0 → −∞; ð59Þ

σ · x1 → þ∞: ð60Þ

Roughly speaking, these conditions represent configura-
tions where the massive body is located somewhere
between source and observer, as shown in Fig. 2. In view
of (55)–(60), these asymptotic limits (59) and (60) in terms
of the arguments of the time delay in (52) and (53) read

cτ0 → −∞; ð61Þ

cτ1 → þ∞: ð62Þ

The time delay (52) and (53) depends on the impact vector
of the unperturbed light ray, which is constant for a given
light ray. Therefore, these limits in (61) and (62) have to be
taken along the unperturbed light trajectory with constant
impact vector, as elucidated by Fig. 2. In particular, one
finds the following limits:

lim
τ0→−∞

σ · xNðt0Þ
rNðt0Þ

¼ −1; ð63Þ

lim
τ1→þ∞

σ · xNðt1Þ
rNðt1Þ

¼ þ1; ð64Þ

FIG. 2. This diagram elucidates the limits in (61) and (62). The
angles are α0 ¼ δðσ; x0Þ and α1 ¼ δðσ; xNðt1ÞÞ. The dashed
arrows to the right and left show the directions to which the
spatial positions of source, x0 ¼ xNðt0Þ, and the spatial position
of the unperturbed light signal xNðt1Þ at time of observation are
shifted up to infinity. The limits in (61) and (62) implicitly
assume that the impact vector of the unperturbed light ray
remains constant: dσ ¼ const.
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where rNðt0Þ ¼ jxNðt0Þj and rNðt1Þ ¼ jxNðt1Þj. Thus, the
angles are δðσ; x0Þ → π and δðσ; xNðt1ÞÞ → 0 in these
limits, a result that is shown by the graphical representation
in Fig. 2.
The mass-monopole term [l ¼ 0 in (52)] has already

been given by Eq. (1), which is logarithmically divergent.
Therefore, we consider the asymptotic limit only for mass-
multipole terms with l ≥ 1 and for spin-multipole terms
with l ≥ 1. We use the following notation for these
asymptotic limits:

ΔτML
1PN ¼ lim

τ0→−∞
τ1→þ∞

ΔτML
1PNðt1; t0Þ; ð65Þ

ΔτSL1.5PN ¼ lim
τ0→−∞
τ1→þ∞

ΔτSL1.5PNðt1; t0Þ; ð66Þ

where ΔcτML
1PNðt1; t0Þ and ΔcτSL1.5PNðt1; t0Þ were given by

Eqs. (52) and (53). In Appendix C the following results for
these limits are shown:

∂̂L ln ðrN þ cτÞ
����
τ¼τ0→−∞

¼ 2∂̂L ln jξj; ð67Þ

∂̂L ln ðrN þ cτÞ
����
τ¼τ1→þ∞

¼ 0; ð68Þ

which are valid for l ≥ 1. These limits in (67) and (68) can
also nicely be verified for the first few orders in l just by
explicit computation. Let us notice that on the left-hand
side of these relations one has to, first of all, perform the
differentiations by using the differential operator in (47)
and afterward one has to calculate the limits. Then, on the
right-hand side of these relations, only the term with p ¼ 0
in the differential operator (47) contributes, which is given
by (C3) in Appendix C; see also the comment in the text
below Eq. (C12).
By inserting (67) and (68) into (52) and (53), one obtains

for the time delay in the asymptotic limit, where source
and observer are located at spatial infinity, the following
expressions:

ΔτML
1PN ¼ −

4G
c3

ð−1Þl
l!

M̂L∂̂L ln jξj; ð69Þ

ΔτSL1.5PN ¼ −
8G
c4

ð−1Þll
ðlþ 1Þ! ϵabcσ

cŜbL−1∂̂aL−1 ln jξj; ð70Þ

which are valid for l ≥ 1. In order to determine the time
delay by means of the expressions (69) and (70), one has to
calculate the term

∂̂L ln jξj ¼ STFi1…ilP
j1
i1
…Pjl

il

∂

∂ξj1
…

∂

∂ξjl
ln jξj: ð71Þ

In our investigation [16], it has been shown that this term is
given by the following expression:

∂̂L ln jξj ¼
ð−1Þlþ1

jξjl STFi1…il

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

×
ξi2nþ1

…ξil
jξjl−2n ; ð72Þ

which is valid for any natural number l ≥ 1, and the
coefficients are given by [16]

Gl
n ¼ ð−1Þn2l−2n−1 l!

n!
ðl − n − 1Þ!
ðl − 2nÞ! : ð73Þ

Inserting (72) into (69) and (70) completes the calculation
of the time delay in the gravitational field of a massive body
with full (time-independent) mass- and spin-multipole
structure, if the source and the observer are at infinite
distance from the massive body.

IV. RELATION BETWEEN TIME DELAY
AND TOTAL LIGHT DEFLECTION

The tangent vector of the light trajectory at minus infinity
σ has been defined by Eq. (32), and the tangent vector of
the light trajectory at plus infinity ν is defined by

ν ¼ ẋðtÞ
c

����
t¼þ∞

with ν · ν ¼ 1: ð74Þ

A graphical representation of the three-vector in (74) is
given in Fig. 1. The angle of total light deflection is defined
as angle δðσ; νÞ between these tangent vectors,

δðσ; νÞ ¼ arcsin jσ × νj: ð75Þ
The tangent vector ν can be expanded in terms of mass
multipoles M̂L and spin multipoles ŜL [16],

ν ¼ σ þ
X∞
l¼0

νML
1PN þ

X∞
l¼1

νSL1.5PN þOðc−4Þ; ð76Þ

where the individual terms are given by Eqs. (48) and (49)
in [16]. By inserting (76) into (75) one finds that the angle
of total light deflection is also expanded in terms of mass
multipoles and spin multipoles,

δðσ; νÞ ¼
X∞
l¼0

δ
�
σ; νML

1PN

	
þ
X∞
l¼1

δ
�
σ; νSL1.5PN

	
; ð77Þ

up to terms of the order Oðc−4Þ. The individual terms are
given by [15,16]

δ
�
σ; νML

1PN

	
¼ −

4G
c2

1

jξj
ð−1Þl
ðl − 1Þ! M̂L∂̂L ln jξj; ð78Þ
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δ
�
σ; νSL1.5PN

	
¼ −

8G
c3

1

jξj
ð−1Þll2
ðlþ 1Þ! ϵabcσ

cŜbL−1∂̂aL−1 ln jξj;

ð79Þ

which are valid for l ≥ 1. By comparing (78) and (79) with
Eqs. (69) and (70), one recovers the following remarkable
relations between the multipole terms of the total effect of
time delay and the multipole terms of the angle of total light
deflection:

ΔτML
1PN ¼ 1

l
jξj
c
δ
�
σ; νML

1PN

	
; ð80Þ

ΔτSL1.5PN ¼ 1

l
jξj
c
δ
�
σ; νSL1.5PN

	
; ð81Þ

which are valid for multipoles of order l ≥ 1 and jξj ¼ dσ is
identical with the impact parameter (29) here, because the
differentiations are performed. These relations (80) and
(81) are strictly valid for light signals that propagate in the
gravitational fields of a body at rest, having the full set of
mass multipoles and spin multipoles. That means the body
can be of arbitrary shape, inner structure and can be in
arbitrary but uniform rotational motions and stationary
inner currents.

V. TIME DELAY IN FIELD
OF AN AXISYMMETRIC BODY

The largest effect of the Shapiro effect is expected from
the Sun and the giant planets of the Solar System. In order to
determine the Shapiro time delay, one needs the explicit
form for mass multipoles (18) and for spin multipoles (19).
For an estimation of the individual terms in (69) and (70),
one may approximate the Sun and the giant planets by a
rigid axisymmetric body with radial-dependent mass dis-
tribution and in uniform rotational motion with angular
velocity Ω around the symmetry axis of the body, which is
aligned with the x3 axis of the coordinate system. A
graphical representation of this configuration is given by
Fig. 3. Then, the higher mass multipoles and spin multipoles
for such a body are given by [16,36]

M̂L ¼ −MðPÞlJlδ3hi1…δ3ili; ð82Þ

Ŝa ¼ þκ2MP2Ωδ3a; ð83Þ

ŜL ¼ −MðPÞlþ1ΩJl−1
lþ 1

lþ 4
δ3hi1…δ3ili; ð84Þ

where (82) is valid for any natural number of l ≥ 2, while
(84) is valid for any natural number of l ≥ 3. The mass-
dipole term, that is, l ¼ 1 in (82), vanishes in the case where
the origin of the coordinate system is located at the center of
mass of the body (i.e., J1 ¼ 0) and will therefore not be
considered in what follows. Here,M is the Newtonian mass
of the body, P is its equatorial radius, Jl are the actual zonal

harmonic coefficients of index l, κ2 is the dimensionless
moment of inertia, Ω is the angular velocity of the rotating
body, and δ3hi1…δ3ili ¼ STFi1…ilδ3i1…δ3il denotes products

of Kronecker symbols that are symmetric and traceless with
respect to indices i1…il. It is noticed that the definition of
the angular velocityΩ has an unambiguous meaning only at
linear order around flat space-time.
For reason of completeness, we notice the upper limit of

the Shapiro time delay caused by the mass-monopole (1),
which reads [3]

����ΔτM0

1PN

���� ≤ 2GM
c3

ln
4x0x1
ðdσÞ2

: ð85Þ

Now we consider the upper limits of the higher mass
multipoles and spin multipoles, which means the upper
limits of the absolute values in the asymptotic limits (65)
and (66). In order to get the time delay in the gravitational
field of an axisymmetric body in uniform rotational motion,
one has to insert the multipoles (82)–(84) into Eqs. (69) and
(70) and taking account of relation (72). However, in view
of the relations (80) and (81), which are valid for bodies of
arbitrary shape, inner structure and uniform rotational
motions, it is easier to use the results for the total light
deflection angle, which has been determined for axisym-
metric bodies in [16]. In particular, in our investigation [16]
it has been found that the angle of total light deflection is
related to Chebyshev polynomials. This relation has been
established for mass multipoles by Eq. (114) in [16] and for
spin multipoles by Eq. (121) in [16]. Hence, one obtains for
the time delay of light signals in the field of an

FIG. 3. A geometrical representation of the propagation of a
light signal through the gravitational field of an axisymmetric
Solar System body at rest. The axes of inertia are denoted by
e1; e2; e3. The body is in uniform rotational motion with angular
velocity Ω around the axis of symmetry e3. The light signal is
emitted by the light source at x0 and propagates along the exact
light trajectory xðtÞ. The unit tangent vectors along the light
trajectory at minus and plus infinity are σ and ν. The unperturbed
light ray xNðtÞ is given by Eq. (26) and propagates in the
direction of σ along a straight line through the position of the
light source at x0. The impact vector dσ of the unperturbed light
ray is given by Eq. (28).
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axisymmetric body the following expressions in the
asymptotic limit:

ΔτML
1PN ¼ −

4GM
c3

Jl
l

�
P
dσ

�
l
�
1 − ðσ · e3Þ2

�½l=2�
TlðxÞ ð86Þ

for the mass-multipole terms, which is valid for l ≥ 2. For
the effect of time delay caused by the spin-dipole, one
obtains, by means of Eq. (120) in [16], the following
expression in the asymptotic limit:

ΔτS11.5PN ¼ −
4GM
c4

PΩκ2J0
�
P
dσ

� ðσ × dσÞ · e3
dσ

; ð87Þ

with J0 ¼ −1, and for the effect of time delay caused by
higher spin multipoles,

ΔτSL1.5PN ¼ −
8GM
c4

PΩJl−1
�
P
dσ

�
l ðσ × dσÞ · e3

dσ

1

lþ 4

×

�
1 − ðσ · e3Þ2

�½l=2�
Ul−1ðxÞ; ð88Þ

which is valid for l ≥ 3. The variable in (86) and (88)
reads [16]

x ¼
�
1 − ðσ · e3Þ2

	
−1=2

�
dσ · e3
dσ

�
; ð89Þ

which is a real number. It has already been shown in [16]
that the interval of the argument is, in fact, given by
−1 ≤ x ≤ þ1. The power representation of Chebyshev
polynomials of the first kind reads [37]

TlðxÞ ¼
l
2

X½l=2�
n¼0

ð−1Þn
n!

ðl − n − 1Þ!
ðl − 2nÞ! ð2xÞl−2n; ð90Þ

where l ≥ 1. The power representation of Chebyshev
polynomials of the second kind reads [37]

UlðxÞ ¼
X½l=2�
n¼0

ð−1Þn
n!

ðl − nÞ!
ðl − 2nÞ! ð2xÞ

l−2n; ð91Þ

where l ≥ 0. The remarkable feature that the total effect of
time delay is given in terms of Chebyshev polynomials
allows for a straightforward determination of the upper
limit of the total effect of time delay, because the upper
limits of Chebyshev polynomials are given by

jTlj ≤ 1 and jUl−1j ≤ l: ð92Þ

Inserting (92) into (86) and (88) yields for the absolute
values of the Shapiro time delay induced by the mass
multipoles and spin multipoles the following inequalities:
for the mass-multipole terms (l ≥ 2) one obtains

����ΔτML
1PN

���� ≤ 4GM
c3

jJlj
l

�
1 − ðσ · e3Þ2

	½l=2�
�
P
dσ

�
l
; ð93Þ

for the spin-dipole term (l ¼ 1) one finds

����ΔτS11.5PN
���� ≤ 4GM

c4
PΩκ2

�
1 − ðσ · e3Þ2

	½l=2�
�
P
dσ

�
; ð94Þ

and for the spin-multipole terms (l ≥ 3) one obtains

����ΔτSL1.5PN
����≤8GM

c4
PΩ

jJl−1jl
lþ4

�
1−ðσ ·e3Þ2

	½l=2�
�
P
dσ

�
l
: ð95Þ

These upper limits (93) and (95) represent a criterion to
identify those multipoles that contribute significantly to the
time delay for a given accuracy of time measurements. By
taking into account that j1 − ðσ · e3Þ2j ≤ 1 one may derive
simpler expressions for these upper limits, namely, for the
mass multipoles (l ≥ 2),

����ΔτML
1PN

���� ≤ 4GM
c3

jJlj
l

�
P
dσ

�
l
; ð96Þ

for the spin dipole (l ¼ 1),

����ΔτS11.5PN
���� ≤ 4GM

c4
PΩκ2

�
P
dσ

�
; ð97Þ

and for the spin multipoles (l ≥ 3),

����ΔτSL1.5PN
���� ≤ 8GM

c4
PΩ

l
lþ 4

jJl−1j
�
P
dσ

�
l
: ð98Þ

These upper limits have also been presented by Eqs. (39)
and (41) in [36]. However, the coefficients in front of
Eqs. (39) and (41) in [36] were only given for the very few
first multipoles for ellipsoidal bodies, while here these
upper limits in (96) and (98) are valid for any multipole
order and for the more general case of axisymmetric bodies.
Finally, we notice the upper limits for grazing rays, for

the mass-multipole terms (l ≥ 2) given by

����ΔτML
1PN

���� ≤ 4GM
c3

jJlj
l
; ð99Þ

for the spin dipole (l ¼ 1) given by

����ΔτS11.5PN
���� ≤ 4GM

c4
PΩκ2; ð100Þ

and for the spin-multipole terms (l ≥ 3) one obtains

����ΔτSL1.5PN
���� ≤ 8GM

c4
PΩ

l
lþ 4

jJl−1j: ð101Þ
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Numerical values of these limits (99)–(101) are given by
Table II for Solar System bodies.

VI. COMPARISON WITH THE LITERATURE

The upper limits of Shapiro time delay for mass monop-
ole (85) and spin dipole (100) are well known and agree, for
instance, with Eq. (40.13) in [2] and Eq. (75) in [38],
respectively.
Upper limits for the effect of time delay caused by higher

mass multipoles and spin multipoles of the massive body are
rare and have, thus far, only been presented in our previous
investigation in [36]. In order to compare the upper limits in
(96) and (98) with those upper limits presented by Eqs. (39)
and (41) in [36], we rewrite (96) and (98) in the following
form:

���ΔτML
1PN

��� ≤ Al
GM
c3

jJlj
�
P
dσ

�
l

with Al ¼
4

l
; ð102Þ

which is valid for l ≥ 2, and for the spin-multipole terms
one obtains

���ΔτSL1.5PN
��� ≤ Bl

GM
c4

PΩjJl−1j
�
P
dσ

�
l

with Bl ¼
8l

lþ 4
;

ð103Þ

which is valid for l ≥ 3. These coefficients, for the first few
mass multipoles and spin multipoles, read

A2 ¼ 2; A4 ¼ 1; A6 ¼
2

3
; A8 ¼

1

2
;

A10 ¼
2

5
; B3 ¼

24

7
: ð104Þ

In Eqs. (42) and (43) in [36], the following coefficients were
presented:

A2 ¼
11

5
; A4 ¼

7

6
; A6 ¼

3

5
; A8 ¼

3

10
;

A10 ¼
3

20
; B3 ¼

7

6
: ð105Þ

The coefficients in (105) have been obtained for the case of
finite spatial distances of source and observer from the
massive body, while the coefficients in (104) are valid for
infinite spatial distances of source and observer from the
massive body. Since the general case of finite distances
contains also the specific case of infinite distances, one
would expect that the coefficients in (105) are slightly larger
than the coefficients in (104). In fact, this is the case for the
multipole orders l ¼ 2 and l ¼ 4, while the coefficients
for l ¼ 6 in (105) and (104) are almost equal. These facts
are also reflected by the numerical values presented here in
Table II and in Table II in our previous investigation in [36].

On the other side, the upper limits of mass-multipole terms
of order l ¼ 8, 10 and the upper limit of the spin-multipole
term of order l ¼ 3, presented in our previous investigation
in [36], are too small. These deviations have been analyzed
and were caused by an inaccuracy in the analytical
calculations in [36], which were assisted by computer
algebra systems because of the involved algebraic structure
of the expressions for the Shapiro time delay, especially in
the case of higher multipoles.

VII. NUMERICAL VALUES OF TIME DELAY
IN THE SOLAR SYSTEM

For the numerical values of time delay we take the
parameter of Solar System bodies as given by Table I.
The parameter κ2 in (83) is defined by [39] [see also

Eqs. (B60)–(B62) in [36] ]

κ2 ¼ I
MP2

; ð106Þ

where I is the moment of inertia of the real Solar System
body under consideration, which is related to the body’s
angular momentum via jSj ¼ IΩ. For a spherically sym-
metric body with uniform density, κ2 ¼ 2=5 [39], while for
real Solar System bodies, κ2 < 2=5 because the mass
densities are increasing toward the center of the massive
bodies. The values of κ2 are given in Table I for the Sun and
giant planets of the Solar System bodies.
Numerical values of the upper limits in (99)–(101) are

presented in Table II for the first mass multipoles and spin
multipoles in the case of grazing rays at the Sun and the
giant planets of the Solar System.

TABLE I. Numerical parameters for Schwarzschild radius
GM=c2, equatorial radius P, and actual zonal harmonic coef-
ficients Jl of the Sun, Jupiter, and Saturn. The values for GM=c2

and P are taken from [39]. The values for Jl for the Sun are from
[40] and references therein. The values Jl with n ¼ 2, 4, 6 for
Jupiter and Saturn are taken from [41], while Jl with n ¼ 8 for
Jupiter and Saturn come from [42,43], respectively. The angular
velocities Ω ¼ 2π=T (with rotational period T) are presented by
NASA planetary fact sheets. The dimensionless moment of
inertia κ2 is defined by Eq. (106) and their values have been
determined in [39].

Parameter Sun Jupiter Saturn

GM=c2 ðmÞ 1476.8 1.41 0.42
P ðmÞ 696 × 106 71.5 × 106 60.3 × 106

J2 1.7 × 10−7 14.696 × 10−3 16.291 × 10−3

J4 9.8 × 10−7 −0.587 × 10−3 −0.936 × 10−3

J6 4 × 10−8 0.034 × 10−3 0.086 × 10−3

J8 −4 × 10−9 −2.5 × 10−6 −10.0 × 10−6

Ω ðsec−1Þ 2.865 × 10−6 1.758 × 10−4 1.638 × 10−4

κ2 0.059 0.254 0.210
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VIII. SUMMARY

In this investigation, the time delay in the gravitational
field of a body at rest with full multipole structure has been
considered. In particular, the impact of higher mass-multi-
poles and spin-multipoles on time delay has been deter-
mined. Two main results were found:
(1) If the source and the observer are located at spatial

infinity from the massive body, then the individual
multipole terms of time delay are related to the
individual multipole terms of total light deflection.
These relations are given by (80) and (81), which are
valid for multipoles of order l ≥ 1.

(2) In the case of an axisymmetric massive body, these
individual multipole terms of time delay can be
expressed in terms of Chebyshev polynomials:
mass-multipole terms of time delay are related to
Chebyshev polynomials of the first kind (86) and
spin-multipole terms of time delay are related to
Chebyshev polynomials of the second kind (88).

These remarkable facts allow one to determine strict
upper limits for the absolute value of the multipole terms
in this asymptotic configuration, where the source and the
observer are located at spatial infinity from the massive
body. These strict upper limits are given by Eqs. (99)
and (101), which represent a criterion to identify those
multipoles that contribute significantly to the time delay
for a given accuracy of time measurements. The coinci-
dence between the total effect of time delay and total light
deflection for higher multipoles, as demonstrated by
relations (80) and (81), must have a deep reason, which
represents a problem for subsequent investigations.
Numerical values of the Shapiro time delay, based on

these upper limits, have been calculated and presented in
Table II. These numerical results show that the impact of
the first mass multipoles with l ≤ 8 and the first spin
multipoles with l ≤ 3 on the effect of time delay are
relevant for an accuracy on the femtosecond scale of

accuracy in time measurements and might, in principle,
be detected with present-day atomic clocks or, at least, with
the next generation of atomic clocks.
The more realistic astrometric configurations, where

source and observer are located at finite spatial distances
from the massive body, will be considered in a subsequent
investigation. It is, however, expected that the upper limits
of higher multipoles on the effect of time delay for such
scenarios will not much be different from the asymptotic
limit that has been considered in this investigation.
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APPENDIX A: NOTATION

The following notation is in use:
(i) Newtonian constant of gravitation: G.
(ii) Vacuum speed of light in flat space-time: c.
(iii) Newtonian mass of the body: M.
(iv) Equatorial radius of the body: P.
(v) Angular velocity of the body: Ω.
(vi) Zonal harmonic coefficients of the body: Jl.
(vii) ηαβ ¼ ηαβ is the metric tensor of flat space-time.
(viii) gαβ and gαβ are the contravariant and covariant

components of the metric.
(ix) g ¼ detðgμνÞ is the determinant of the metric.
(x) n! ¼ nðn − 1Þðn − 2Þ · · · 2 · 1 is the factorial; by def-

inition: 0! ¼ 1.
(xi) Lowercase Greek indices take values 0–3.
(xii) The contravariant components of four-vectors: aμ ¼

ða0; a1; a2; a3Þ.
(xiii) Lowercase Latin indices take values 1–3.
(xiv) The three-dimensional coordinate quantities (three-

vectors) referring to the spatial axes of the reference
system are in boldface: a.

(xv) The contravariant components of three-vectors: ai ¼
ða1; a2; a3Þ.

(xvi) The absolute value of a three-vector: a ¼ jaj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a1 þ a2a2 þ a3a3

p
.

(xvii) The scalar product of two three-vectors: a · b ¼
δijaibj ¼ aibi with Kronecker delta δij.

(xviii) The angle between two three-vectors a and b is
designated as δða; bÞ.

TABLE II. The effect of (one-way) Shapiro time delay caused
by the mass-multipole ΔτMl

1PN and spin-multipole terms ΔτSl1.5PN in
the gravitational field of the Sun and giant planets of the Solar
System according to the upper limits (99)–(101). The time delay
is given in units of picoseconds: 1 ps ¼ 10−12 sec. A blank entry
means less than 0.001 ps. The values are given for grazing rays
(impact parameter dσ equals body’s equatorial radius P). The
numerical values should be compared with the assumed goal
accuracy of 0.001 ps in time-delay measurements.

Object ΔτM2

1PN ΔτM4

1PN ΔτM6

1PN ΔτM8

1PN ΔτS11.5PN ΔτS31.5PN
Sun 1.68 4.83 0.13 0.01 7.73
Jupiter 138.24 2.76 0.11 0.01 0.20 0.010
Saturn 45.65 1.31 0.08 0.01 0.04 0.003
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APPENDIX B: PROOF OF EQ. (54)

In this appendix, we will demonstrate the limit (54). The
gauge terms in the geodesic equation (37) are given by
Eq. (39), which consists of two pieces,

ẍgauge ¼ ẍg1 þ ẍg2: ðB1Þ

Their spatial components are given by

ẍig1ðtÞ
c2

¼ þ∂jw0
;kσ

iσjσk; ðB2Þ

ẍig2ðtÞ
c2

¼ −∂jwi
;kσ

jσk; ðB3Þ

where the gauge vectors are given by Eqs. (20) and (21).
Let us consider the first term (B2). Using ðr−1Þ;jk ¼
3xjxk=r5 − δjk=r3, one obtains

ẍg1ðtÞ
c2

¼ þ 8G
c3

X∞
l¼0

ð−1Þl
l!

∂̂L
ŴL

ðrNÞ3
σ

−
12G
c3

X∞
l¼0

ð−1Þl
l!

∂̂L
ŴL

ðrNÞ5
ðdσÞ2σ: ðB4Þ

In (B4) the replacements x → xN and r → rN ¼ jxNj have
been performed [cf. text below Eq. (39)], where the
unperturbed light ray xN is given by Eq. (26) and its
absolute value by Eq. (27). In addition, the relation
ðσ · xNÞ2 ¼ ðrNÞ2 − ðdσÞ2 has been used.
The expression (B4) has to be integrated over the time

variable. To apply the advanced integration methods
developed by [15], we have to transform (B4) from
ðct; xÞ into terms of two new variables, cτ ¼ σ · xN and
ξi ¼ PijxjN, which are independent of each other, and
obtain [note that, as always after differentiations are
performed, ξ ¼ dσ, hence ðdσÞ2 ¼ ξ · ξ ¼ ξ2]

ẍg1ðtÞ
c2

¼ þ 4G
c3

X∞
l¼0

ð−1Þl
l!

ŴL∂̂L

�
2

ðrNÞ3
−
3ðξÞ2
ðrNÞ5

�
σ; ðB5Þ

where the double overdot in (B5) means twice the total
derivative with respect to variable τ, and rN is the absolute
value of the unperturbed light ray in terms of these new
variables (45). Let us note that the left-hand side in (B5)
depends on the variable of coordinate time, because in (B5)
the differentiations have to be performed, and afterward
one has to replace cτ by σ · xNðtÞ and Pijξj by diσ; see text
below Eq. (61). The differential operator (B5) has been
given by Eq. (47). To get the coordinate velocity of the light
signal, one has to integrate (B5) over variable cτ and obtain
for the spatial components

Δẋig1ðtÞ
c

¼ −
4G
c3

X∞
l¼0

ð−1Þl
l!

ŴL∂̂L
cτ

ðrNÞ3
σi

¼ þ 4G
c3

∂

∂cτ

X∞
l¼0

ð−1Þl
l!

∂̂L
ŴL

rN
σi: ðB6Þ

A similar calculation can be performed for the second
gauge term (B3), which yields

Δẋig2ðtÞ
c

¼−
4G
c2

∂

∂cτ

X∞
l¼0

ð−1Þl
l!

∂̂iL
X̂L

rN

−
4G
c2

∂

∂cτ

X∞
l¼1

ð−1Þl
l!

∂̂L−1
ŶiL−1

rN

−
4G
c2

∂

∂cτ

X∞
l¼1

ð−1Þl
l!

l
lþ 1

ϵiab∂̂aL−1
ẐbL−1

rN
: ðB7Þ

The second integration over variable cτ, from lower
integration limit cτ0 to upper integration limit cτ1, can
be performed immediately and yields

Δxig1ðt1; t0Þ ¼ Δxig1ðt1Þ − Δxig1ðt0Þ; ðB8Þ

Δxig2ðt1; t0Þ ¼ Δxig2ðt1Þ − Δxig2ðt0Þ; ðB9Þ

with

Δxig1ðtÞ ¼ þ 4G
c3

X∞
l¼0

ð−1Þl
l!

∂̂L
ŴL

rN
σi; ðB10Þ

Δxig2ðtÞ ¼ −
4G
c2

X∞
l¼0

ð−1Þl
l!

∂̂iL
X̂L

rN

−
4G
c2

X∞
l¼1

ð−1Þl
l!

∂̂L−1
ŶiL−1

rN

−
4G
c2

ϵiab
X∞
l¼1

ð−1Þl
l!

ð−1Þl
l!

∂̂aL−1
ẐbL−1

rN
: ðB11Þ

The time dependence of the gauge terms (B8) and (B9) are
just via the spatial positions of the unperturbed light ray at
the time of emission and reception, xNðt0Þ and xNðt1Þ.
Furthermore, in line with (B1), the terms (B8) and (B9) are
added together, so we arrive at

Δxgaugeðt1; t0Þ ¼ Δxg1ðt1; t0Þ þ Δxg2ðt1; t0Þ: ðB12Þ

By inserting the differential operator (47) into these
solutions (B10) and (B11) one finds that these terms in
(B10) and (B11) vanish separately in the asymptotic limit,

lim
τ¼�∞

Δxg1ðxNðtÞÞ ¼ 0; ðB13Þ
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lim
τ¼�∞

Δxg2ðxNðtÞÞ ¼ 0; ðB14Þ

with cτ ¼ σ · xNðtÞ. Equations (B13) and (B14) imply for
(B12) the limits

lim
τ¼τ0→−∞
τ¼τ1→þ∞

Δxgaugeðt1; t0Þ ¼ 0; ðB15Þ

which is more general that the asserted relation in (54).

APPENDIX C: PROOF OF EQS. (67) AND (68)

In this appendix, we will show relations (67) and (68).
That means, we consider the limits

lim
τ¼τ0→−∞
τ¼τ1→þ∞

∂̂L ln ðrN þ cτÞ; ðC1Þ

where rN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ c2τ2

p
with ξ2 ¼ ξ · ξ, while the differ-

ential operator is given by Eq. (47), and cτ0 and cτ1 are
defined by Eqs. (55) and (56), respectively.
First of all, we consider the first derivative of (C1) with

respect to variable cτ,

lim
τ¼τ0→−∞
τ¼τ1→þ∞

∂

∂cτ
ln ðrN þ cτÞ ¼ lim

τ¼τ0→−∞
τ¼τ1→þ∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ c2τ2

p ¼ 0: ðC2Þ

Clearly, any further derivative of this term, with respect to
either variable ξ or cτ, increases the inverse power of cτ at
least by one order. Therefore, all those terms in the
differential operator (47) that contain at least one derivative
with respect to variable cτ will vanish in these limits.
Hence, one has only to consider the term with p ¼ 0 of the
differential operator in Eq. (47), given by

∂̂
p¼0
L ¼ STFi1…ilP

j1
i1
…Pjl

il

∂

∂ξj1
…

∂

∂ξjl
; ðC3Þ

in line with the comment below Eq. (68).
The logarithm in (C1) can be written in the form

ln ðrN þ cτÞ ¼ ln jcτj þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2=c2τ2

q
� 1

�
; ðC4Þ

where the plus sign in the argument of the logarithm is for
cτ > 0, while the minus sign in the argument of the
logarithm is for cτ < 0. The first logarithm on the right-
hand side of (C4) can be omitted because

∂

∂ξjpþ1
…

∂

∂ξjl
ln jcτj ¼ 0: ðC5Þ

Thus, one only needs to consider the second logarithmic
term on the right-hand side of (C4). In order to evaluate
these limits in (C1), it is appropriate to introduce the
dimensionless three-vector,

ζa ¼ ξa

cτ
→

∂

∂ξa
¼ 1

cτ
∂

∂ζa
; ðC6Þ

where the absolute value of this three-vector, ζ ¼ ffiffiffiffiffiffiffiffi
ζ · ζ

p
, is

a small quantity in the limits cτ → �∞, that means ξ → 0,
because the impact vector ξ remains constant; see also
Fig. 2. The differential operator in (C3) in terms of the
three-vector ζa transforms into

∂̂
p¼0
L ¼ 1

ðcτÞl STFi1…ilP
j1
i1
…Pjl

il

∂

∂ζj1
…

∂

∂ζjl
: ðC7Þ

Let us consider the term with the plus sign in (C1), which in
terms of the three-vector (C6) reads

lim
τ¼τ1→þ∞

∂̂L lnðrNþ cτÞ ¼ lim
τ¼τ1→þ∞

1

ðcτÞl

× STFi1…ilP
j1
i1
…Pjl

il

∂

∂ζj1
…

∂

∂ζjl
lnð

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p
þ 1Þ: ðC8Þ

The term in the second line of (C8) is finite, even for any
values of ζ2. Thus, in view of the prefactor ðcτÞ−l, the term
(C8) vanishes in the limit cτ → þ∞ and one obtains

lim
τ¼τ1→þ∞

∂̂L ln ðrN þ cτÞ ¼ 0: ðC9Þ

Let us consider the term with the minus sign in (C1), which
in terms of the three-vector (C6) reads

lim
τ¼τ0→−∞

∂̂L ln ðrN þ cτÞ ¼ lim
τ¼τ0→−∞

1

ðcτÞl STFi1…il

× Pj1
i1
…Pjl

il

∂

∂ζj1
…

∂

∂ζjl
ln ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p
− 1Þ: ðC10Þ

The term in the second line of (C10) diverges in the limit
ζ → 0. To determine this limit, a series expansion of the
logarithm in (C10) is performed for ζ ≪ 1, which reads

lnð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p
− 1Þ ¼− lnð2Þþ lnðζ2Þ− ζ2

4
þOðζ4Þ: ðC11Þ

The constant ln(2) does not contribute, because a derivative
of a constant with respect to variable ζ in (C10) vanishes.
Similarly, the third term of power ζ2 and also terms of
higher powersOðζ4Þ on the right-hand side in (C11) vanish
in the limit ζ → 0 and, in addition, also in view of the
prefactor ðcτÞ−l in (C10). Thus, only the logarithmic term
remains, keeping in mind that the differential operator (C7)
is acting on this logarithm. By transforming (C11) from
three-vector ζ back into three-vector ξ and by accounting
for the statements below Eq. (C11), one arrives at
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lim
τ¼τ0→−∞

∂̂L ln ðrN þ cτÞ ¼ 2∂̂
p¼0
L ln jξj: ðC12Þ

By relations (C9) and (C12) the validity of Eqs. (67) and
(68) has been shown. Let us notice again that the differential
operator ∂̂L on the left-hand side in (C9) and (C12) is given

by Eq. (47), while on the right-hand side the differential
operator ∂̂p¼0

L is given by (C3). However, one may keep the
differential operator ∂̂L on the right-hand side in (C9) and
(C12), because derivatives with respect to variable cτ in the
differential operator (47) would not contribute anyway.
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