
Galactic wormholes: Geometry, stability, and echoes

Shauvik Biswas ,1,* Chiranjeeb Singha ,2,† and Sumanta Chakraborty1,‡
1School of Physical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India

2Theory Division, Saha Institute of Nuclear Physics, Kolkata 700064, India

(Received 28 July 2023; accepted 22 February 2024; published 14 March 2024)

In this work, we present the environmental effects on wormholes residing in a galaxy. By this, we
propose that these wormholes are mimickers of supermassive black holes residing at the galactic centers.
In particular, we consider two wormhole spacetimes classes: the Damour-Solodukhin wormhole and the
braneworld wormhole. While there is no classical matter model for the Damour-Solodukhin wormhole, the
braneworld wormhole, on the other hand, is supported by a scalar-tensor theory on the four-dimensional
brane. Intriguingly, it turns out that the presence of a dark matter halo surrounding these wormholes can
tame the violations of energy conditions present in generic wormhole spacetimes. Our results also
demonstrate that the galactic Damour-Solodukhin wormhole is more stable than its isolated counterpart
under linear scalar perturbation, whereas we obtain the opposite behavior for the braneworld wormhole.
The perturbation of these wormholes leads to echoes in the ringdown waveform, which are sensitive to the
properties of the dark matter halo. To be precise, the time delay between two echoes is affected by the
galactic matter environment, and it appears to be a generic effect present for any exotic compact object
living in a galaxy. This allows us to identify the galactic parameters, independently from the gravitational
wave measurements, if echoes are observed in future generations of gravitational wave detectors. For
completeness, we have also analyzed the impact of the galactic environment on the photon sphere, the
innermost stable circular orbits, and the shadow radius. It turns out that the dark matter halo indeed affects
these locations, with implications for shadow and accretion physics.

DOI: 10.1103/PhysRevD.109.064043

I. INTRODUCTION

Understanding gravity at its extreme is the key to solving
one of the most important problems of modern physics,
i.e., constructing a self-consistent quantum theory of
gravity [1–4]. The urge for quantizing gravity arises from
the fact that, although it is well known how to quantize
three of the four fundamental forces, namely, the strong,
weak, and electromagnetic, and provide a unified descrip-
tion, so far gravity has remained elusive.1 In the weak field
regime, the gravitational interaction seems to be described
extremely well by Einstein’s theory of general relativity
[9–11], however, the dynamics of gravity in the strong field
regime is currently being unwrapped [9]. Recent gravita-
tional wave detections from the merger of binary black
holes by the LIGO-VIRGO Collaboration [12–17] have

opened the window to probe the nature of gravity in the
strong field regime, in particular, the physics near the
horizon. Such an analysis is of utmost importance, given
the fact that it is being hotly debated whether we really have
a black hole or some ultracompact object, possibly involv-
ing quantum gravitational effects modifying the near
horizon structure [18–22]. This leads to the exciting
possibility of having horizonless but extremely compact
objects mimicking the gravitational wave signals seen by
the LIGO-VIRGO Collaboration [23–28].
Such ultracompact objects often have radii smaller than the

Buchdahl radius [29–32], the limiting stellar configuration
achieved using “normal” matter fields, and hence to model
such compact objectswe need exoticmatter fields. Following
this, such ultracompact objects are often referred to as exotic
compact objects (ECOs). To model these ECOs one usually
puts a partially reflecting surface slightly away from the
location of the would-be horizon, such that the reflective
surface is within the photon sphere, so they can mimic the
ringdownwaveformof a black hole [23–25,33,34].However,
due to the presence of a partially reflecting surface, the
boundary condition near the would-be horizon changes—
from being purely ingoing for the case of black holes to
harboring both ingoing and outgoing modes, owing to the
reflective nature of the surface [26,35]. These outgoing
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1Here, by quantum gravity, we mean quantizing gravity with

all of its nonlinear aspects included. In the linear regime,
however, quantum gravity exists, which can be obtained from
the fact that in the linear regime general relativity reduces to a
massless spin-2 classical field theory on the flat background [5–7]
and hence can be quantized using known prescriptions [8].
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modes will lead to late-time echoes of the primary signal
in the ringdown profile of gravitational waves. Despite
having such an interesting structure, which can arise in
various different contexts [27,36,37], there has been one
major problem with these models—one puts forward such a
reflective surface close to the horizon in an ad hocmanner—
neither the reflectivity nor the location of the surface arises
from some fundamental point of view. Subsequently, several
attempts have been made to model the reflective surface
appropriately, either by invoking quantum effects [21,22,38]
or by considering wormhole geometries [33,39–42]. In both
of these scenarios, the existence of such a partially reflective
surface is a consequence and not an artifact. Wormholes, in
particular, are spacetimes that connect two distinct universes
via a throat [43,44], where these two universes can have their
own photon sphere. So that, from the perspective of one
universe, the angular momentum barrier associated with the
photon sphere of the other universe acts as a partially
reflecting surface [33,41]. Generic wormhole models have
two major drawbacks: first of all, the formation channel of
wormhole geometries is not known, and second, they violate
the energy conditions. The second issue, namely, the viola-
tion of energy conditions, can be circumvented ifwe consider
the braneworld scenario, where the matter field on the brane
satisfies the energy conditions, but violations of energy
conditions happen in bulk [41,45]. The final question
regarding these wormhole geometries, and ECOs in general,
is their stability. There have been severalworksdiscussing the
stability of various ECOs [25,37,46–48], including worm-
hole geometries [41,49–53], albeit in the isolated scenario.
Also, several works have been done to develop astrophysical
techniques [54–58] to detect wormholes in the extended
theories of gravity.
However, there are no isolated objects in our Universe.

As is well known from various experiments—from the
flatness of the rotation curves of galaxies [59–62], the
dynamics of hot gas in clusters [63], and gravitational
lensing experiments [64], among others—95% mass of the
Galaxy comes from that of nonbaryonic matter, namely, the
dark matter [65,66]. Therefore, any compact object, be it a
black hole or an ECO, must reside in an environment
involving dark matter, and hence the spacetime geometry
must be affected by the same. Recently, a fully relativistic
analysis was presented in [67], where the spherically
symmetric metric of a black hole spacetime was derived
in the presence of a galactic matter distribution following
the Hernquist-type density profile [68],2

ρðrÞ ¼ Ma
2πrðrþ aÞ3 ; ð1Þ

where M is the mass of the dark matter halo and a is a
typical length scale associated with the dark matter

distribution in the galaxy. Motivated by the above density
profile, the mass profile of a galactic black hole becomes

mðrÞ ¼ MBH þ Mr2

ðrþ aÞ2
�
1 −

2MBH

r

�
2

; ð2Þ

where MBH is the mass of the central black hole. The
geometry resulting from the above mass profile is remi-
niscent of the Einstein cluster [70]. Note that the above
mass profile keeps the existence of the black hole horizon
intact, even in the presence of a galaxy. It is worthwhile to
mention that galactic matter also provides an effective
shielding mechanism when the central black hole is electri-
cally charged [71]. Motivated by the fully relativistic
analysis involving galactic black holes, in this paper, we
consider the case of a wormhole in the Galaxy. Just as
galactic black holes keep their horizons intact, we will
depict appropriate mass profiles that keep the location of
the throat of the galactic wormhole unchanged. We start by
considering the environmental effects on the Damour-
Solodukhin wormhole and then proceed toward discussing
the braneworld wormhole in a galaxy.
In the case of braneworld wormholes, one can have two

possible of situations—(i) wormholes in the Randull
Sundrum (RS)1 scenario, involving compact extra dimen-
sion and (ii) wormholes in the RS2 scenario, with non-
compact extra dimension. The former case is described by
two branes, such that all the standard model particles are
localized on the visible brane, while for gravity the effective
Einstein equation takes the form of a scalar-tensor theory of
gravity, where the scalar field originates from the interbrane
separation [72]. Therefore, in this case, the scalar field
captures any nonlocal bulk effect. On the other hand, in the
latter case, the effective Einstein equation on a vacuum
brane inherits an extra contribution from the electric part of
the projected bulk Weyl tensor, capturing the nonlocal bulk
effects on the brane. In both the cases discussed above, the
field equations are not closed in the sense that the solutions
of the effective Einstein equation itself either need knowl-
edge of the bulk Weyl tensor or the evolution of the scalar
field. In addition to the wormhole geometry in the RS1
model considered here, there are several other wormhole
solutions to the gravitational field equations in the context
of the RS2 scenario as well, with similar as well as distinct
solutions [52,73–75]. It will be worth pursuing the stability
of these solutions in the RS2 scenario and subsequently
embedding them in a dark matter halo.
Here, wewish to address the question of how the presence

of a dark matter halo can cure the violation of energy
conditions, which were present for the isolated wormhole
geometry. Moreover, we will also study the scalar perturba-
tion of galactic wormhole geometries and shall describe the
distinguishing features in the ringdown signal of a galactic
wormhole in contrast to that of an isolated wormhole
spacetime. We also analyze how environmental effects

2For galactic black hole solutions with other mass profiles,
see [69].
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can influence the location of the photon sphere, the inner-
most stable circular orbit (ISCO), and finally the shadow
radius.
This paper is organized as follows: In Sec. II we will

discuss the basic strategy to model wormholes involving
environmental effects due to the surrounding dark matter
halo. Following this, in Sec. II A we will model a galactic
Damour-Solodukhin wormhole, while Sec. II B will be
dedicated to the analysis of the braneworld wormhole.
Subsequently, having laid down the geometry of the
braneworld wormhole spacetime, in Sec. III we will study
the massless scalar perturbation and shall determine the
effective potential experienced by it. Finally, using the
transfer matrix method [49], we will find the scalar
quasinormal modes and shall also solve the master equation
in the time domain in order to obtain the ringdown
waveform. We conclude in Sec. IV with a discussion of
our results and provide some future prospects.
In our calculations we will set c ¼ 1 ¼ G. The lowercase

Greek indices μ; ν;… will denote the four-dimensional
spacetime coordinates. We will follow the mostly positive
signature convention for our metric, such that the
Minkowski metric in four spacetime dimensions takes
the form ημν ¼ diag:ð−1;þ1;þ1;þ1Þ.

II. GEOMETRY OF WORMHOLES AT THE
CENTER OF GALAXIES

In this section, we present the static and spherically
symmetric wormhole geometries with a spherical galactic
halo surrounding them. By and large, the analysis parallels
the case of a galactic black hole, but differs in the details
and also in the interpretation. Moreover, in the present
context, we solve the following Einstein equations:

Gμν ¼ TðgÞ
μν þ TðwÞ

μν ; ð3Þ

where, TðgÞ
μν is the energy-momentum tensor for the galactic

matter and TðwÞ
μν is the energy-momentum tensor supporting

the wormhole geometry, often violating the energy con-
ditions. The galactic matter is considered to be distributed
spherically around the central wormhole, such that the
(wormholeþ darkmatter halo) can be considered as a
static and spherically symmetric configuration together.
Moreover, the configuration is supposed to be static, i.e., no
radial outflow should be present. Thus, as in the black hole
case, here also we let

TμðgÞ
ν ¼ diag

�
−ρðgÞ; 0; pðgÞ

⊥ ; pðgÞ
⊥
�
; ð4Þ

where ρðgÞ is the density of the dark matter halo surround-

ing the central wormhole and pðgÞ
⊥ is the transverse pressure,

perpendicular to the radial direction, acting on the dark
matter particles.

The energy-momentum tensor TðwÞ
μν supporting the

wormhole depends on the details of the wormhole geom-
etry and differs from one wormhole solution to another. In

what follows, we will discuss the structure of TðwÞ
μν for two

cases: (a) the Damour-Solodukhin wormhole and (b) the
braneworld wormhole. In the case of the Damour-

Solodukhin wormhole, TðwÞ
μν does not arise from some

well-defined matter model and is of phenomenological

origin, while for braneworld wormhole, TðwÞ
μν depends on

the length of the higher dimension and hence has a well-
motivated matter model. We will provide explicit expres-
sions for these quantities shortly, which will be useful in
constructing the solution of galactic wormholes with an
appropriate dark matter profile.
Since the total configuration involving a wormhole and

the galactic matter is spherically symmetric and stationary,
for this system, we may consider the following static and
spherically symmetric metric ansatz:

ds2 ¼ −fðrÞdt2 þ
�
1 −

2mðrÞ
r

�
−1
dr2 þ r2dΩ2

2; ð5Þ

for describing the geometry of a galactic wormhole. The
system has four unknown functions, the mass profile mðrÞ,
the gtt component fðrÞ, the energy density ρðgÞ, and the

transverse pressure pðgÞ
⊥ . Whereas there are three indepen-

dent equations relating them—these are the Gt
t and Gr

r
components of Einstein’s equations and the conservation

equation ∇μT
μðgÞ
ν ¼ 0. Note that, by construction, the

energy-momentum tensor supporting the wormhole is

conserved, i.e.,∇μT
μðwÞ
ν ¼ 0. Thus, the system of equations

does not close, and hence some additional input is
necessary. In the case of black holes, fixing the mass
function provides the necessary condition to close the
system of equations, which we also follow in the present
context involving wormholes.
The choice of the mass function is constrained from

several directions. First of all, we need to choose the mass
profile mðrÞ such that, at a large distance from the worm-
hole throat, it should reproduce the Hernquist-type density
profile. While at a small distance, comparable to the
wormhole throat, the mass function should resemble that
of the wormhole. Having specified the mass profile, one
can solve the Gr

r component of Einstein’s equation, as in
Eq. (3), to determine the other metric component gtt.
Finally, the conservation law for the galactic energy-
momentum tensor provides the transverse pressure, and
the Gt

t component of Einstein’s equations provides the
energy density of the dark matter halo. Note that a
traversable wormhole requires violation of the null and
the weak energy conditions near the throat [43], since the
wormhole throat acts as a geodesic-defocusing lens. This is

achieved by the energy-momentum tensor TμðwÞ
ν in Eq. (3),
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which violates these energy conditions. The above sum-
marizes the basic strategy to solve for the geometry of the
galactic wormhole, which we will adopt in the subsequent
sections in determining the environmental effect of a galaxy
on Damour-Solodukhin and braneworld wormholes.

A. Damour-Solodukhin wormhole in a galaxy

In this section, we provide the environmental effects of
galactic dark matter on the Damour-Solodukhin wormhole.
For this purpose, we briefly review the isolated Damour-
Solodukhin wormhole spacetime, which is described by the
following line element [76]:

ds2 ¼ −
�
1 −

2M1

r

�
dt2 þ

�
1 −

2M2

r

�
−1
dr2 þ r2dΩ2

2;

M2 ¼ M1ð1þ λ2Þ: ð6Þ

As evident from the above line element, it follows that
r ¼ 2M2 is a null hypersurface, but it is not a horizon
because the norm of the timelike Killing vector field ð∂=∂tÞ
is given by gtt, which does not vanish at r ¼ 2M2.
Therefore, timelike observers can remain at rest on that
hypersurface, and hence r ¼ 2M2 is not a Killing horizon,
but rather the throat of the wormhole. Moreover, calcu-
lation of the Kretschmann scalar K ≡ RμναβRμναβ shows
that K ∝ r−6ðr − 2M1Þ−4, which is finite at r ¼ 2M2, but
diverges at r ¼ 2M1. Therefore, if one wants to continue
the spacetime through the null hypersurface at r ¼ 2M2, it
will have a naked singularity at r ¼ 2M1, which will
violate the weak version of the cosmic censorship con-
jecture. In order to avoid this pathology, one truncates the
spacetime at r ¼ 2M2 and considers two copies of the
spacetime glued at this radius. The resulting spacetime
corresponds to the Damour Solodukhin wormhole with a
null throat at r ¼ 2M2.
The above metric is a solution of Einstein’s equations,

provided the right-hand side of Einstein’s equations
involves an energy-momentum tensor with an anisotropic
fluid, which has the following components:

TμðwÞ
ν ¼ diag

�
0;pðdsÞ

r ;pðdsÞ
⊥ ;pðdsÞ

⊥
�
;

pðdsÞ
r ¼−

λ2M1

4πr2ðr−2M1Þ
; pðdsÞ

⊥ ¼ ðr−M1Þλ2M1

8πr2ðr−2M1Þ2
: ð7Þ

As evident from the above energy-momentum tensor, the
energy density ρðdsÞ supporting the wormhole identically

vanishes, while the radial pressure pðdsÞ
r is nonzero but

negative. Thus, it follows that the wormhole spacetime
violates both the null and weak energy conditions, as

ρðdsÞ þ pðdsÞ
r < 0, while ρðdsÞ þ pðdsÞ

⊥ > 0. Thus, we have
described the geometry and the source of the isolated
Damour-Solodukhin wormhole, which will be used

to construct a galactic wormhole with the Damour-
Solodukhin wormhole at the center.

1. Geometry of the galactic
Damour-Solodukhin wormhole

As already emphasized above, the first step in determin-
ing the environmental effect on the Damour-Solodukhin
wormhole is to provide a suitable mass function with
desired properties. Motivated by the corresponding mass
profile for galactic black holes, here we consider the
following mass profile (for an alternative mass profile,
see Appendix A):

mðrÞ ¼ M2 þ
Mr2

ðrþ aÞ2
�
1 −

2M1

r

��
1 −

2M2

r

�
: ð8Þ

Here,M is the mass, and a is the characteristic radius of the
dark matter halo. Moreover, there are three cases to
consider—(a) for r ≪ a, the mass function simply becomes
mðrÞ ≈M2, i.e., at radii much smaller compared to the
galactic scale a, the geometry is that of an isolated Damour-
Solodukhin wormhole with mass M2; (b) for r ≫ M2, the
above mass profile reduces to M2 þ fMr2=ðrþ aÞ2g, i.e.,
the metric is governed by the mass profile of the galactic
halo; and finally (c) for r ≫ a, we obtain for the mass
profile ðM2 þMÞ, which corresponds to the Arnowitt-
Deser-Misner (ADM) mass of the galactic wormhole
spacetime. For the above mass function, the grr component
of the metric describing the galactic wormhole becomes

grr ¼
�
1 −

2M2

r

��
1 −

Mr
ðrþ aÞ2

�
1 −

2M1

r

��
: ð9Þ

Therefore, r ¼ 2M2 is still a null hypersurface, and aswewill
demonstrate later, it also corresponds to the throat of the
wormhole. Given the mass profile and the grr component of
the metric, the Gt

t component of Einstein’s equations yields

m0ðrÞ ¼ 4πr2ðρðgÞðdsÞ þ ρðdsÞÞ. Since the energy density of

matter ρðdsÞ, supporting the Damour-Solodukhin wormhole,
identically vanishes, for themass profile in Eq. (8), we obtain
the following density profile for the galactic dark matter
distribution:

ρðgÞðdsÞ ¼
2Mð1 − 2M1

r Þðaþ 2M1Þ
4πrðaþ rÞ3

þ λ2
M½M1ðr − 4M1Þ − aM1�

2πr2ðaþ rÞ3 : ð10Þ

Note that the above energy density is non-negative for
r ≥ 2M2. Additionally, for M → 0, the energy density
identically vanishes, since it is created by the galactic matter

alone. Similarly, for r ∼ 2M2 ≪ a, it follows that ρðgÞðdsÞ ∼
ð1=a2Þ and vanishes as a becomes large. This is also
consistent with the result that the above density is created
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by the galactic dark matter distribution alone and has no
contribution from the energy-momentum tensor for the
wormhole. Finally, for r ≫ 2M2 and for λ ≪ 1, the above
density profile reduces to the Hernquist profile, described by
Eq. (1), as expected. Similarly, one can compute the
tangential pressure by solving the Gθ

θ component of
Einstein’s equation or imposing the conservation of energy.

The exact expression of the tangential pressure (pðgÞ
⊥ ðdsÞ) is

given in Appendix B.
The determination of the gtt component of the metric is

achieved by solving the Gr
r component of Einstein’s

equation, which reads

1

r

�
1 −

2mðrÞ
r

�
d ln f
dr

−
1

r2
þ 1

r2

�
1 −

2mðrÞ
r

�

¼ 8π
�
pðgÞ
r þ pðdsÞ

r

�
: ð11Þ

For the galactic matter distribution, there are no radial out-/

inflows present, and hence we must have pðgÞ
r ¼ 0.

However, unlike the case of black holes, matter distribution
supporting wormholes has nonzero radial pressure, which
for the Damour-Solodukhin wormhole is given by Eq. (7).
For the above radial pressure and the mass profile given by
Eq. (8), we find

fðrÞ ¼
�
1 −

2M1

r

�
eγ;

γ ≡ −π
ffiffiffiffiffi
M
ξ

r
þ 2

ffiffiffiffiffi
M
ξ

r
tan−1

�
rþ a −Mffiffiffiffiffiffiffi

Mξ
p

�
; ð12Þ

where ξ≡ 2a −M þ 4M1. It is clear that, like the grr

component, fðr → ∞Þ → 1 and hence the geometry is
asymptotically flat. Interestingly, for the above mass
profile, the gtt component is independent ofM2 and appears

in the same form as the galaxy with a central black hole
[67], provided we make the replacement M1 → MBH. Note
that the surface r ¼ 2M1 is where the norm of the timelike
Killing vector field ð∂=∂tÞ vanishes, but is not null. Thus,
the above spacetime, described by the metric elements
presented in Eqs. (9) and (12) depicts a wormhole geometry
with its throat located at r ¼ 2M2, but incorporates the
effect of the dark matter halo surrounding the same. Wewill
refer to this geometry as the galactic Damour-Solodukhin
wormhole.
Let us now explore the status of the energy conditions for

the galactic Damour-Solodukhin wormhole, in particular, it
follows that total matter-energy density supporting this
wormhole is simply given by ρðgÞðdsÞ, which is positive for
r > 2M2, and hence the weak energy condition is satisfied
everywhere outside the wormhole. To see what happens for
the null energy condition, we have plotted the sum of total
energy density and radial pressure against the radial
coordinate r in Fig. 1. As evident, the energy density
comes from the galactic dark matter, while the radial
pressure arises from the matter supporting the wormhole,

such that ρþ pr ≡ ρðgÞðdsÞ þ pðdsÞ
r , among which the contri-

bution by the energy density is positive, while the radial
pressure contributes negatively. As a consequence, and as
clear from Fig. 1, the violation of the null energy condition
for the galactic Damour-Solodukhin wormhole happens for
a much smaller spatial region (2M2 ≤ r < r0), compared to
the Damour-Solodukhin wormhole, where the violation is
present throughout the space (2M2 ≤ r < ∞). The radius
r0, below which the violation of the null energy condition
happens, can be obtained by solving the algebraic equation
ρþ pr ¼ 0, which yields

r0 ≃ 2M2 þ a

ffiffiffiffiffiffiffi
M2

2M

r
λ; ð13Þ

FIG. 1. The quantity ðρþ prÞ has been depicted on the left as a function of the radial coordinate r for two cases—(a) without the dark
matter halo and (b) with a dark matter halo, with the following choices of the parameters: ða=M1Þ ¼ 108, ðM=M1Þ ¼ 104, and λ ¼ 10−5.
This plot clearly demonstrates that the null energy condition is violated everywhere in the absence of a dark matter halo. However, in the
presence of a galaxy, i.e., when the wormhole is surrounded by a dark matter halo, the null energy condition is violated in a small radial
interval, close to the throat. On the other hand, the right plane plot presents the variation of ρþ pr þ 2p⊥ with the radial coordinate. As
evident, this quantity is indeed positive with or without the galaxy.
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definitely greater than the throat location of the wormhole.
Thus, it is appropriate to argue that, in the presence of a
galactic halo, the violation of the null energy condition can
be tamed, such that for all space outside the radial
coordinate r0 the null energy condition is satisfied.3

2. Properties of the galactic Damour-Solodukhin
wormhole

At this stage, it will be instructive to specify the
hierarchy between various mass scales and λ. To mimic
galactic observations, we assume that a > M ≫ M1 [77]
and restrict the parameter λ, such that λ ≪ 1. The first
assumption simply states that the size of the galactic dark
matter distribution is much larger than the size of the
wormhole. This is typical of any astrophysical scenario,
where the size of the central compact object is several
orders of magnitude smaller than the size of the galaxy. The
second assumption makes the underlying wormhole space-
time, described by Eq. (6), close to that of a Schwarzschild
black hole mimicker. Using these assumptions, we can
expand the relevant expressions in the powers of λ and the
dimensionless ratio ðM1=aÞ. Such expansion enables us to
determine the closed-form expressions for various quan-
tities associated with the galactic Damour-Solodukhin
wormhole, e.g., the radius of the photon sphere and
the ISCO.
In what follows, we will provide a brief derivation of the

equation governing the location of the photon sphere. Since
photons move along null geodesics, we can take lμ to be the
tangent along the null geodesics, satisfying lμlμ ¼ 0.
Because of the Killing symmetries of the spacetime, we
have conserved energy E ¼ −lμð∂=∂tÞμ and conserved
angular momentum L¼ lμð∂=∂ϕÞμ. The condition lμlμ¼0

yields the following equation for the radial component of
the null geodesic:

grrðlrÞ2 −
L2

r2
¼ −gtt

L2

b2
; ð14Þ

where the impact parameter is defined as b ¼ ðL=EÞ. It is
evident from Eq. (14) that the potential experienced by any
null geodesics, including photon, is Vph ¼ −ðL2=r2Þgtt.
Using the conditions of having a circular photon orbit—(a)
Vph ¼ 0 and (b) V 0

ph ¼ 0, leads to the condition rg0ttðrÞ ¼
2gtt at r ¼ rph. Solving this algebraic equation in the
present context yields the following equation for the photon
sphere, to leading order in ðM1=aÞ:

rph ¼ 3M1

�
1þMM1

a2

�
: ð15Þ

It is to be emphasized that the photon sphere as obtained
above is a special case of the photon region [78–83], which
is defined as a compact region of the spacetime where
photons can travel endlessly without going to infinity or to
the event horizon.
Note that, in the limit ofM → 0, fromEq. (15)weget back

the result for the photon sphere of the isolated Damour-
Solodukhin wormhole, as we should. Also, the presence of a
dark matter halo increases the radial location of the photon
sphere, compared to the case of an isolated wormhole. The
computation of the ISCO radius follows from the effective
potential experienced by a massive particle moving in this
spacetime; in particular, one simultaneously imposes three
conditions:Veff ¼ 0,V 0

eff ¼ 0, andV 00
eff ¼ 0, which provides

an algebraic equation for the radial coordinate with the
following solution:

rISCO ¼ 6M1

�
1 −

32MM1

a2

�
: ð16Þ

Here also, in the limit ofM → 0, weget back the ISCO radius
associated with an isolated Damour-Solodukhin wormhole;
however, in contrast to the photon sphere, the radial location
of the ISCO for the galactic Damour-Solodukhin wormhole
decreases compared to the isolated Damour-Solodukhin
wormhole. Along similar lines, one can compute the shadow
radius associated with the galactic Damour-Solodukhin
wormhole, which is given by

rsh ¼ 3
ffiffiffi
3

p
M1

�
1þM

a
þMð5M − 18M1Þ

6a2

�
: ð17Þ

As for the case of the photon sphere, the shadow radius also
reduces to the desired expression 3

ffiffiffi
3

p
M1 in the absence of

galactic matter, i.e., in the limitM → 0, and increases in the
presence of galactic matter (asM ≫ M1). This suggests that
the shadow radius of any compact object in a galactic
environment will be larger compared to the isolated object.
It is worth pointing out that all the quantities derived above,
namely, the photon sphere rph, the ISCO radius rISCO, and the
shadow radius rsh depend on the gtt component and its
derivatives alone, and hence these are all independent of the
wormhole parameter λ. Both the photon sphere and the
shadow radii are plotted in Fig. 2, against the dimensionless
galactic scale (M=a). The figure explicitly demonstrates how
the photon sphere and the shadow radius are affected by the
presence of a galaxy; in particular, it follows that the presence
of dark matter halo increases the radii compared to the
isolated wormhole counterpart.

3One can also show that ρþ p⊥ is positive, as well as
ρþ pr þ 2p⊥ > 0, for r ≥ 2M2. Thus, the strong energy con-
dition is also satisfied everywhere in the galactic Damour-
Solodukhin wormhole for r ≥ r0.
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B. Galactic wormhole in the braneworld scenario

We start by briefly summarizing the isolated braneworld
wormhole scenario. In this case, one assumes that we live in
a four-dimensional hypersurface, known as the brane,
embedded in a five-dimensional spacetime, referred to as
the bulk. The bulk spacetime is generically taken to be
endowed with a negative cosmological constant, while the
extra spacelike extra dimension (denoted as y) is taken to be
compact. We consider a two-brane system, where the
Planck brane is located at y ¼ 0 (typical energy scale in
this brane is Planckian order) and the visible brane is
located at y ¼ l (energy scale in this brane is a few tens of
TeV). The metric in the bulk spacetime can be expressed
as [72]

ds2 ¼ e2ϕðxÞdy2 þ g̃μνðy; xÞdxμdxν; ð18Þ

where ϕðxÞ is called the radion field and is related to the
separation between the two branes, such that the proper
distance between the two branes is given by dðxÞ ¼ eϕðxÞl.
It is expected that the curvature length scale of the bulk
spacetime, which is given by l, will be much smaller
compared to the corresponding length scale on the brane.
This is because the curvature of the bulk spacetime is much
larger than the curvature on the brane, and hence an inverse
relationship exists between the respective length scales.
Thus, we can expand the gravitational field equations as a
power series in (l=brane curvature scale). This leads to
the following effective Einstein equation on the visible
brane [72]:

Gμν ¼
κ2

lΦ
TðvisÞ
μν þ κ2ð1þΦÞ

lΦ
TðPlÞ
μν þ 1

Φ
TΦ
μν;

Φ ¼ exp½2eϕðxÞ� − 1; ð19Þ

where

TΦ
μν ¼

�
∇μ∇νΦ − gμν∇α∇αΦ

�

−
3

2ð1þΦÞ
�
∇μΦ∇νΦ −

1

2
gμν∇αΦ∇αΦ

�
: ð20Þ

In the above expression for the effective gravitational field
equations on the visible brane, presented in Eq. (19), except
for the energy-momentum tensor TΦ

μν, arising from the

radion field, we have two additional contributions—TðvisÞ
μν

and TðPlÞ
μν , which are the energy-momentum tensors of the

matter fields trapped on the visible brane and the Planck
brane, respectively. Moreover, the ratio ðκ2=lÞ acts as an
effective gravitational constant on the brane, where κ2 is the
bulk gravitational constant. Note that the metric gμν on the
visible brane is related to the metric g̃μν, appearing in
Eq. (18), by a conformal factor expð−d=lÞ. In addition to
the gravitational field equations on the brane, we also
obtain a field equation for the radion field Φ, which
reads [72]

∇α∇αΦ ¼ κ2

l
TðPlÞ þ TðvisÞ

2ωþ 3
−

1

2ωþ 3

dω
dΦ

ð∇αΦÞð∇αΦÞ

with ω ¼ −
3Φ

2ð1þΦÞ ; ð21Þ

where TðvisÞ and TðPlÞ are, respectively, the traces of the
matter energy-momentum tensor of the visible and the
Planck brane. In what follows, we will consider the case of

a vacuum Planck brane, i.e., we will assume TðPlÞ
μν ¼ 0. Note

that the Bianchi identity when applied to Eq. (19) must
imply the field equation for the radion field for consistency,
which we have reproduced in Appendix C. Given the

FIG. 2. The radial location of the photon sphere rph as a function of the compactness of the galaxy (M=a) has been presented on the
left. The plot shows that, in the presence of a galaxy, the radial location of the photon sphere increases compared to that of the isolated
Damour-Solodukhin wormhole. On the other hand, the right panel demonstrates the variation of the shadow radius rsh of the galactic
Damour-Solodukhin wormhole as a function of the galactic compactness (M=a) and depicts a similar behavior. All the radii are scaled
by the ADM mass of the wormhole M1.
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gravitational field equations on the brane and the radion
field equations presented above, in the context of static and
spherically symmetry, the following solution can be
obtained (for details, see [45]):

ds2 ¼ −
1

ðχ þ 1Þ2
�
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �2

dt2

þ
�
1 −

2M1

r

�
−1
dr2 þ r2dΩ2

2; ð22Þ

with the radial dependence of the radion incarnation Φ on
the visible brane being

ΦðrÞ ¼ Φ2
1

4

�
ln

�
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r ��2

þΦ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0 þ 1

p
ln

�
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �
þΦ0; ð23Þ

where Φ1 and Φ0 are some constants and chosen in such a
way that the two branes never collide [41]. Note that the
field equation for Φ admits two solutions: the above
solution is valid for χ ≠ 0, while for χ ¼ 0, we have
Φ ¼ constant. Therefore, nonzero values of the parameter
χ yield a nontrivial scalar field configuration and also a
distinct static and spherically symmetric geometry. For
χ ¼ 0, we get back the Schwarzschild solution with a
constant radion fieldΦ, as expected. The above solution for
the field Φ can also be expressed in terms of isotropic
coordinate r0, related to the radial coordinate r by the
following relation: r ¼ r0f1þ ðM1=2r0Þg2, such that
Eq. (23) reduces to the corresponding expression presented
in [45]. For our purpose, the solution for Φ in terms of the
radial coordinate r will be sufficient.
The above solution for the metric gμν and the field Φ

arises based on the assumption that the Ricci scalar of the
visible brane vanishes and the brane matter is an anisotropic
fluid, described by the following energy-momentum tensor:

TμðvisÞ
ν ¼ diagð−ρðvisÞ; pðvisÞ

r ; pðvisÞ
⊥ ; pðvisÞ

⊥ Þ such that its trace
vanishes [75,84,85]. However, what enters into the gravita-
tional field equations is a combination of the brane energy-

momentum tensor TðvisÞ
μν and the radion field energy-momen-

tum tensor TΦ
μν. Thus, in our subsequent calculations, wewill

only need the expressions for the components of the total
energy-momentum tensor, which reads

TμðbÞ
ν ≡ 1

Φ
TμðvisÞ
ν þ l

κ2Φ
TμΦ
ν ¼ diag ð0; pðbÞ

r ; pðbÞ
⊥ ; pðbÞ

⊥ Þ;

pðbÞ
r ¼ −

χM1

8πr3
�
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M1

r

q � ;

pðbÞ
⊥ ¼ 2χM1

8πr3
�
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M1

r

q � : ð24Þ

Note that, for χ ¼ 0, the line element in Eq. (22) reduces to
that of Schwarzschild spacetime and Φ becomes constant
and, therefore, nondynamical. For χ > 0, Eq. (22) represents
awormhole solutionwith a null throat at r ¼ 2M1 because at
this radius the metric component grr vanishes, but the
timelike Killing vector field ð∂=∂tÞμ remains timelike.
Thus, the surface r ¼ 2M1 is not a Killing horizon; hence,
the above spacetime does not describe a black hole geometry.
On the other hand, the spacetime becomes complex beyond
r ¼ 2M1, thanks to the presence of the square root term, and
hence is not extendable beyond this radius. Thus, one joins
two copies of the spacetime at r ¼ 2M1, akin to wormhole
geometries, and this radius is referred to as the throat of the
wormhole. Therefore, Eq. (22) describes a wormhole geom-
etry, mimicking the Schwarzschild spacetime for small
wormhole parameter χ and large r, with χ ≳ 0. Moreover,

the total energy-momentum tensor TðbÞ
μν violates the weak

as well as the null energy conditions everywhere, as

ρðbÞ þ pðbÞ
r < 0, which is another characteristic feature of

wormhole geometries.

1. Geometry of the galactic braneworld wormhole

Having outlined the geometry and the associated gravi-
tational field equations of an isolated wormhole spacetime
on the brane, we now incorporate environmental effects due
to the surrounding dark matter halo. The geometry is taken
to be static and spherically symmetric, such that the line
element of the galactic braneworld wormhole is still given
by Eq. (5). However, the method adopted in the context of
the Damour-Solodukhin wormhole does not apply here due
to the nonpolynomial nature of the background metric
describing the braneworld wormhole, in particular, the
square root term in the gtt component of the metric.
Also, Einstein’s equations in the presence of galactic matter
on the brane become

Gμν ¼
κ2

l

�
1

Φ
TðgÞ
μν þ TðbÞ

μν

�
; ð25Þ

where TðbÞ
μν contains the contribution from the scalar and the

matter on the visible brane, which for the isolated worm-
hole case has already been presented in Eq. (24) and the
energy-momentum tensor of the galactic matter is taken to

be TμðgÞ
ν ¼ diag:ð−ρðgÞ; 0; pðgÞ

⊥ ; pðgÞ
⊥ Þ. Since we have mod-

eled the galaxy using an anisotropic fluid with vanishing
radial pressure, in the presence of the galaxy we have five

unknowns: (i) ρðgÞ, (ii) pðgÞ
⊥ , (iii) gtt, (iv) grr, and (v) Φ. On

the other hand, we have three equations at our disposal,
namely, (a) two Einstein equations corresponding to Gr

r
and Gt

t components and (b) the field equation for the
radion incarnation Φ. Note that the conservation of the
energy-momentum tensor follows from the above three
equations. Therefore, to close the system of differential
equations and in order to determine the radial dependence
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of the fieldΦ, we fix the metric component gtt and the mass
profile mðrÞ such that

fðrÞ ¼ 1

ðχ þ 1Þ2
�
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �2

eγ;

γ ¼ −π
ffiffiffiffiffi
M
ξ

r
þ 2

ffiffiffiffiffi
M
ξ

r
tan−1

�
rþ a −Mffiffiffiffiffiffiffi

Mξ
p

�
; ð26Þ

mðrÞ ¼ M1 þ
Mr2

ðrþ aÞ2
�
1 −

2M1

r

�
2

; ð27Þ

with ξ ¼ 2a −M þ 4M1. Here M is the mass of the dark
matter halo, and a is a typical galactic length scale. The
above choice is motivated by several results: (a) In the limit
χ → 0, the above expression for gtt reduces to the solution
for a galactic black hole, presented in [67], as it should; (b) in
the limit M → 0, the function fðrÞ reduces to the corre-
sponding metric component of the isolated braneworld
wormhole; and (c) the Killing vector ð∂=∂tÞ remained
timelike at r ¼ 2M1, typical of a wormhole spacetime.
Along identical lines, it also follows that themass profile has
all the desired properties as described above, and in addition,
we have (a) the surface r ¼ 2M1 is a null hypersurface, since
grr vanishes there, and (b) for r ≫ 2M1, the above mass
profile reduces to theHernquist profile. Therefore, the above
is also a viable mass profile for the braneworld wormhole
embedded in a dark matter halo.
Using these metric components, we can calculate the

Ricci scalar associated with the galactic braneworld worm-
hole, while keeping terms up to Oð1=a2Þ, which reads

R ¼ 2Mð12M2
1 − 10M1rþ 2r2Þ

a2r2ðr − 2M1Þ
: ð28Þ

As expected, the Ricci scalar R vanishes forM → 0, i.e., for
the isolated wormhole. In particular, taking the trace of
Eq. (25) and using the result that TμðvisÞ

μ ¼ 0, as well as the
equation of motion of the radion incarnation field Φ,

∇α∇αΦ −
1

2ð1þΦÞ∇
αΦ∇αΦ ¼ κ2

l
ð1þΦÞTðgÞ

3
; ð29Þ

it follows that

R ¼ −
κ2

l
TðgÞ: ð30Þ

This result shows that the Ricci scalar for the galactic
braneworld wormhole only depends on the trace of the
galactic matter. Further, using Eq. (28) we can write the
above expression as

ρðgÞ − 2pðgÞ
⊥ ¼ l

κ2
2Mð12M2

1 − 10M1rþ 2r2Þ
a2r2ðr − 2M1Þ

: ð31Þ

To determine the explicit form of pðgÞ
⊥ and ρðgÞ, one needs to

know the solution for the fieldΦ, which can be obtained by
solving Eq. (29). However, the nonpolynomial nature of the
metric components poses a serious problem for obtaining
the most general analytic solution of Φ. Thus, we assume
that Φ depends on only the radial coordinate and hence
express the field equation, namely, Eq. (29), in the
following form:

d2ϵ
dr2

þ d
dr

"
lnr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
1−

2mðrÞ
r

�s #
dϵ
dr

¼−
ϵ

6
R

�
1−

2mðrÞ
r

�
;

ΦðrÞ≡ϵ2ðrÞ−1: ð32Þ

The right-hand side of the above equation, using Eq. (28),
can be shown to be ∼fMðr − 2M1Þ=a2g, which vanishes
near the wormhole throat located at r ¼ 2M1. Thus, it
follows that near the throat the right-hand side of Eq. (32) is
ignorable, while the radion incarnation Φ is only dominant
near the throat. Then we can ignore the right-hand side term
in Eq. (32) and get the following approximate solution
for ΦðrÞ:

ΦðrÞ ≈Φ2
1

4

�
1 −

4MM1

a2

�
ln

 
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r !
2

þΦ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0 þ 1

p �
1 −

2MM1

a2

�
ln

 
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r !

þΦ0: ð33Þ

As evident, structurally, the field Φ in the context of the
galactic braneworld wormhole is identical to the isolated
wormhole scenario, but a comparison with Eq. (23) reveals
that, in the presence of galactic matter, the fieldΦ is simply
getting rescaled.

2. Properties of the galactic braneworld wormhole

The above discussion provides a closure to the discus-
sion involving the geometry of the galactic braneworld
wormhole. The detailed expressions for the energy density

ρðgÞ and transverse pressure pðgÞ
⊥ can also be obtained from

Einstein’s equations, which we will not present here due to
the complicated nature of the corresponding expressions.
Before concluding this section, we present below the
shadow radius and the radius of the ISCO for the galactic
braneworld wormhole and compare it with the isolated
case. As stated earlier, to mimic galactic observation, we
will restrict ourselves in the parameter space such that a >
M ≫ M1 and χ ≳ 0, so that we keep terms up to Oð1=a2Þ
and linear order in χ, in what follows. Using this approxi-
mation, the radii of the photon sphere and the ISCO are
given by
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rph ¼ 3M1

�
1þMM1

a2

�
−

ffiffiffi
3

p
χM1; ð34Þ

rISCO ¼ 6M1

�
1 −

32MM1

a2

�
− 3

ffiffiffi
3

2

r
χM1: ð35Þ

The presence of galactic matter places the photon sphere
rph at a larger radius, while the exotic material at the throat
decreases the position of the photon sphere. Therefore, a
competition between galactic matter and wormhole matter
exists, and the photon sphere of a galactic braneworld
wormhole is at a larger radius than the isolated wormhole
counterpart. From the above expression of rISCO, it is clear
that, in the presence of a galaxy, the ISCO location
decreases compared to the isolated wormhole counterpart.
Similarly, one can compute the location of the shadow
radius for the galactic braneworld wormhole, given by

rsh ¼ 3
ffiffiffi
3

p
M1

��
1þM

a

�
ð1þ ð1 −

ffiffiffi
3

p
ÞχÞ

þMð5M − 18M1Þ
6a2

�
: ð36Þ

Both the photon sphere and the shadow radii are plotted in
Fig. 3, against the dimensionless galactic scale (M=a). The
figure explicitly demonstrates how the photon sphere and
the shadow radius are affected by the presence of a galaxy;
in particular, it follows that the presence of a dark matter
halo increases the radii compared to the isolated wormhole
counterpart.

III. STABILITY OF GALACTIC WORMHOLES
UNDER SCALAR PERTURBATION

In this section, we will study the stability of the galactic
wormhole spacetimes derived in the previous sections,
under external scalar perturbation. In particular, we wish to
study how a massless scalar field Ψ evolves in the back-
ground geometry, presented in Secs. II A and II B, with
appropriate mass profiles for the dark matter environment
in the context of the Damour-Solodukhin wormhole, as
well as in the braneworld scenario, respectively. We will
assume that the energy density of the scalar fieldΨ is small,
such that it can be ignored compared to the energy densities
of various matter species appearing in the galactic worm-
hole spacetimes. Thus, the scalar field Ψ can be considered
as a test scalar field, living in the background geometry of
the galactic wormholes and satisfying the massless Klein-
Gordon equation, gμν∇μ∇νΨ ¼ 0. For the metric gμν, we
can exploit the result that it describes a static and spheri-
cally symmetric geometry, such that the scalar field admits
the following decomposition:

Ψðt; r; θ;ϕÞ ¼ 1

r

X∞
l¼0

Xl
m¼−l

e−iωtYlmðθ;ϕÞψ lmðrÞ; ð37Þ

where Ylmðθ;ϕÞ corresponds to the spherical harmonics
and ψ lmðrÞ is the radial function that needs to be deter-
mined. Until this point, we have not used any explicit form
for the metric, describing the background spacetime.
Substituting the above decomposition for the scalar field
Ψ in the massless Klein-Gordon equation, along with the
metric ansatz from Eq. (5), we obtain the following
equation satisfied by the radial part ψ lm of the scalar field:

FIG. 3. The radial location of the photon sphere rph has been presented as a function of the compactness of the galaxy described by the
ratio (M=a) on the left. The plot shows that, in the presence of a galaxy, the radial location of the photon sphere increases compared to
that of the isolated wormhole. On the other hand, the right panel demonstrates the variation of the shadow radius rsh of galactic
braneworld wormhole as a function of the galactic compactness (M=a). This plot also depicts a similar behavior, i.e., in the presence of a
galaxy the shadow radius increases compared to its isolated counterpart. In both cases, all the radii are scaled by the ADM mass of the
wormhole M1.
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d2ψ lm

dr2�
þ
h
ω2 − VlðrÞ

i
ψ lm ¼ 0: ð38Þ

Here we have defined the tortoise coordinate r� as the
solution of the following differential equation:

dr�
dr

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
fðrÞ½r − 2mðrÞ�

r
; ð39Þ

and the potential VlðrÞ is given by

VlðrÞ ¼ fðrÞ lðlþ 1Þ
r2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ½1 − 2mðrÞ=r�p

r

× ∂r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ½1 − 2mðrÞ=r�

p �
: ð40Þ

To proceed further and to obtain the characteristic quasi-
normal mode frequencies of the galactic wormhole space-
times, we need to provide explicit expressions for the mass
function and the function fðrÞ, which depends on the
specifics of the solution considered and will differ from the
galactic Damour-Solodukhin wormhole to the galactic
braneworld wormhole. Thus, in what follows, we present
the stability analysis of these two galactic wormhole
spacetimes separately.

A. Stability of the galactic
Damour-Solodukhin wormhole

We start by discussing the stability of the galactic
Damour-Solodukhin wormhole spacetime. In this case,
the mass profile mðrÞ is given by Eq. (8) and the gtt
component is given by Eq. (12). Substituting both of these
expressions in Eq. (40), the following explicit form of the
potential for the galactic Damour-Solodukhin wormhole
can be obtained (the variation of the potential with the
radial coordinate has been presented in Fig. 4):

VðdsÞ
l ðrÞ ¼ eγ

r2ðaþ rÞ3 ½V0ðrÞ þ λ2VλðrÞ�; ð41Þ

where γ has been defined in Eq. (12), and the expressions
for the functions V0ðrÞ and VλðrÞ, respectively, are given by

V0 ¼ 2

�
1−

2M1

r

��
Mðr− 2M1Þðr− 4M1Þ

þ
�
M1

r
þ lðlþ 1Þ

2

�
ðrþ aÞ3 − 2aMM1

�
1−

2M1

r

��
;

ð42Þ

Vλ ¼
M1

r

��
1 −

4M1

r

�
fðaþ rÞ3 − 2Maðr − 2M1Þg

þ 2Mð3r − 8M1Þðr − 2M1Þ
�
: ð43Þ

It is possible to provide a simple interpretation for both of
these terms V0 and Vλ—if we had considered a galaxy with
a central black hole, then only the term V0 would appear;
on the other hand, the function Vλ appears because the
central compact object is a wormhole in the present
scenario.
To proceed further, in addition to the potential, we need

to provide an explicit expression for the tortoise coordinate
r� as well. Since the determination of the tortoise coor-
dinate involves an integration, there is a constant of
integration present in the analysis. We choose the integra-
tion constant, keeping in mind that the wormhole geometry
connects two universes by a throatlike structure at
r ¼ 2M2, such that r�ðr ¼ 2M2Þ ¼ 0. In this case, we will
use r� ∈ ð−∞;∞Þ to cover both the universes, such that
r → �∞ represents the asymptotic region of both the
universes. Using the condition that a > M ≫ M2 > 0
and assuming small values of λ, we obtain

r�≃ exp

�
−β
2

��
1−

2MM1

a2

��
rþ 2M1 ln

�
r

2M1

− 1

��
þL
2
:

ð44Þ

In the above expression, we have introduced β as a
shorthand for the quantity

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M
2a −M

r �
2tan−1

�
a −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mð2a −MÞp �
− π

�
; ð45Þ

and L is referred to as the throat length [49] and physically
represents the distance between the two maxima of the

FIG. 4. We have plotted the potential VðdsÞ
l associated with

scalar perturbation of the galactic Damour-Solodukhin wormhole
with the tortoise coordinate r� for different choices of the galactic
parameters, with l ¼ 1. As evident, the total potential VðdsÞ

l
neatly separates into two individual potentials associated with
each of the universes at both sides of the throat. The plot of the
potential also depicts that, as the ratio (M=a) decreases, both
the maxima of the potential increase, while the throat length
decreases.
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perturbing potential, presented in Eq. (41). Therefore, it is a
characteristic length scale associated with the scalar per-
turbation of the galactic Damour-Solodukhin wormhole.
An explicit expression for the throat length takes the
following form:

L¼ exp

�
−β
2

��
1−

2MM1

a2

��
−4M1þ4M1 ln

�
4

λ2

��
; ð46Þ

where the last part, which is independent ofM, corresponds
to the throat length of the isolated Damour-Solodukhin
wormhole. Since β is always a negative quantity, it follows
that the throat length for a galactic Damour-Solodukhin
wormhole is larger than the throat length of an isolated
Damour-Solodukhin wormhole (see Fig. 5).

1. Ringdown spectrum of galactic
Damour-Solodukhin wormhole

Having laid down all the details regarding the perturba-
tion equation associated with the ringdown spectrum, in
this section we will discuss the method for obtaining the
quasinormal mode (QNM) frequencies and hence the time
domain ringdown signal, which will be compared with the
case of an isolated Damour-Solodukhin wormhole. For
determining the QNM frequencies, we can replace the
double bump potential barrier (as shown in Fig. 4) by two
single bump potentials at both sides of the wormhole throat.
Each of these single bump potentials can be thought of as
the angular momentum barrier associated with the photon
sphere of some black hole spacetime. Mathematically this
is achieved by expressing the potential due to scalar
perturbation as

VðdsÞ
l ðr�Þ ¼ θðr�ÞVlðsingleÞ

�
r� −

L
2

�

þ θð−r�ÞVlðsingleÞ

�
−r� −

L
2

�
; ð47Þ

where VlðsingleÞðr�Þ is the single bump potential, entering
the following differential equation:

d2ψ̃ lm

dr2�
þ
h
ω2 − VlðsingleÞðr�Þ

i
ψ̃ lm ¼ 0: ð48Þ

Here ψ̃ lmðr�;ωÞ is the master variable if we consider only
one universe on either side of the wormhole throat located
at r� ¼ 0. From the above structure of the potential Vl, it
follows that VlðsingleÞðr�Þ vanishes at both the asymptotic
and in the near throat region, yielding the following nature
for the perturbation ψ̃ lmðr�;ωÞ:

ψ̃ lmðr�;ωÞ ¼
	
Ae−iωr� þ Beiωr� for r� → ∞;

Ce−iωr� þDeiωr� for r� → 0:
ð49Þ

Note that here r� → 0 does not correspond to the horizon,
but rather the near throat region, so that both the ingoing
and the outgoing modes will exist. Further, it follows that
VlðsingleÞðr�Þ becomes Oðλ2Þ at the location of the throat,
i.e., at r ¼ 2M2, which is several orders of magnitude
smaller than the frequency ω and hence we can approxi-

mate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − VlðsingleÞð0Þ

q
≈ ω. At this point, we introduce

the ð2 × 2Þ transfer matrix T such that it relates the near
throat and asymptotic amplitudes of the incoming and
outgoing waves in the region r� > 0, yielding

�
B

A

�
¼ T

�
D

C

�
: ð50Þ

The above coefficients appearing with the ingoing and the
outgoing wave modes can be further constrained by
imposing appropriate boundary conditions consistent with
the QNMs, which correspond to the fact that there are no
incoming waves from the asymptotic regions of both
universes. For the universe with r� > 0, this condition is
manifested by setting A ¼ 0 in Eq. (50), which leads to the
condition

C
D
≡ RðsingleÞðωÞ ¼ −

T21

T22

: ð51Þ

Here RðsingleÞðωÞ is the reflectivity of the single bump
potential when probed from the throat toward the asymp-
totic region. Similarly, one can study the scattering problem
associated with the universe having r� < 0. In this context
as well, there exists a single bump potential on the negative
r� axis (see Fig. 4), for which the notion of the ingoing and

FIG. 5. This plot shows how the presence of a galaxy influences
the throat length. Here we have plotted the ratio of throat length
between that of the galactic Damour-Solodukhin wormhole and
that of the isolated counterpart as a function of M

a , for various
values of M1

M . From this figure we can see that, in the presence of a
galaxy, the throat length of a galactic wormhole always increases
from that of an isolated counterpart.

BISWAS, SINGHA, and CHAKRABORTY PHYS. REV. D 109, 064043 (2024)

064043-12



the outing modes reverses with respect to that of r� > 0.
Keeping this in mind, one can find the transfer matrix T̃ for
the universe with r� < 0 by using the transfer matrix T
associated with the universe having r� > 0, which is
given by

T̃ ¼ σxT−1σx: ð52Þ

We now have both the transfer matrices associated with the
two universes separately; as a final step we need to match
the near throat amplitudes of both universes to obtain the
full transfer matrix (T ) for the scattering problem associated

with the potential VðdsÞ
l ðr�Þ. This yields

T ¼ T

�
eiωL 0

0 e−iωL

�
T̃; ð53Þ

where the matrix in the middle is a simple translation
matrix, relating the amplitudes of outgoing and ingoing
modes beyond the single bump potential in one universe to
that in another. As already emphasized above, the role of
this transfer matrix is to relate the asymptotic amplitudes of
the universe with r� > 0 to that of asymptotic amplitudes of
the universe with r� < 0.
Since we have already imposed the condition that there

are no incoming waves from r� ¼ þ∞, it is time to impose
the other condition that there are no incoming waves from
r� ¼ −∞ as well, which demands T 22 ¼ 0. We obtain the
following condition from Eq. (53):

e−iωnL ¼ −e−inπRðsingleÞðωÞ; n ¼ 1; 2;…; ð54Þ

where L is the throat length and RðsingleÞðωÞ is the
reflectivity of a single bump potential. The solution of
the above equation yields the associated QNM frequencies.
For determining the QNM frequencies, we first find out the
reflectivity of the single bump potential numerically and
then use Eq. (54). The result of this analysis has been

presented in Fig. 6 as well as in Tables I and II. In
particular, Fig. 6 depicts explicitly the real and imaginary
parts of the QNM frequencies for the galactic Damour-
Solodukhin wormhole spacetime, which we have compared
with that of an isolated Damour-Solodukhin wormhole. We
observe that the order of magnitudes of the real and the
imaginary parts of the QNM frequencies of the galactic
Damour-Solodukhin wormhole are in consonance with that
of the isolated Damour-Solodukhin wormhole. However,
the imaginary parts of the QNM frequencies for galactic
Damour-Solodukhin wormholes are larger than their iso-
lated counterpart, implying that, in the presence of a galaxy,
the wormhole is more stable than its isolated counterpart.

FIG. 6. The real and the imaginary parts of the QNM frequencies of the galactic Damour-Solodukhin wormhole has been depicted on
the left for l ¼ 0, with the metric parameters chosen to be a ¼ 108M1, M ¼ 104M1, and λ ¼ 10−5. Whereas the plot to the right
describes the real and the imaginary parts of the QNM frequencies for l ¼ 1 with identical choices of the metric parameters.

TABLE I. A comparison of the dimensionless QNM frequen-
cies between the isolated and the galactic Damour-Solodukhin
wormhole has been presented for l ¼ 0 and λ ¼ 10−5. The
galactic parameters are chosen as a ¼ 108M1 and M¼104M1.
As evident from the table, within the same precision, the real part
of the QNM frequencies of both wormholes are in agreement, but
the magnitude of the imaginary part of the QNM frequencies for
the galactic Damour-Solodukhin wormhole is slightly larger than
that of the isolated one, suggesting that the galactic Damour-
Solodukhin wormhole is more stable than the isolated one.

Comparison of QNM frequencies

Mode n For isolated wormhole For galactic wormhole

1 0.0321 − 1.083 × 10−4i 0.0326 − 1.2174 × 10−4i
2 0.0638 − 5.720 × 10−4i 0.0649 − 7.6526 × 10−4i
3 0.0950 − 1.679 × 10−3i 0.0967 − 1.9841 × 10−3i
4 0.1258 − 3.709 × 10−3i 0.1280 − 4.0441 × 10−3i
5 0.1566 − 6.739 × 10−3i 0.1592 − 7.0129 × 10−3i
6 0.1877 − 1.0106 × 10−2i 0.1906 − 1.0746 × 10−2i
7 0.2192 − 1.490 × 10−2i 0.2222 − 1.4990 × 10−2i
8 0.2510 − 1.948 × 10−2i 0.2541 − 1.9518 × 10−2i
9 0.2832 − 2.418 × 10−2i 0.2862 − 2.4185 × 10−2i
10 0.3158 − 2.90 × 10−2i 0.3185 − 2.8916 × 10−2i
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This is also evident from both Tables I and II for different
choices of the angular number l.
To obtain the time domain signal for the ringdown profile

of the galactic Damour-Solodukhin wormhole, we need to
analyze the evolution of the scalar perturbation in the time
domain. For this purpose, we need to define the Fourier
counterpart of ψ lmðr�;ωÞ in the usual manner. Using the
perturbation in the time domain and the fact that, for a static
and spherically symmetric spacetime, the effective poten-
tial appearing in Eq. (38) is frequency independent, we can
rewrite the radial perturbation equation, presented in
Eq. (38), in the time domain as follows:

−
∂
2ψ lmðr�;tÞ

∂t2
þ∂

2ψ lmðr�;tÞ
∂r2�

−VðdsÞ
l ðr�Þψ lmðr�;tÞ¼0: ð55Þ

This is a second-order partial differential equation in r�
and t, and hence to solve this equation, one must specify
two initial conditions in time and two boundary conditions
in the tortoise coordinate. The outgoing boundary con-
ditions at two asymptotic infinities can be implemented as
∂r�ψ lmðr�; tÞ ¼ ∓∂tψ lmðr�; tÞ, as r� → �∞. Whereas we
choose the following initial conditions:

ψ lmðr�; 0Þ ¼ 0 and ∂tψ lmðr�; 0Þ ¼ e−
ðr�−r0�Þ2

σ2 ; ð56Þ

where r0� and σ2 will be chosen in such a way that the
primary signal appears outside of the unstable photon
sphere, i.e., the maxima of the single bump potential.
Using these boundary and initial conditions, we solve
Eq. (55) numerically. The result of this analysis can be
found from both Figs. 7 and 8, where we have shown the
ringdown waveform in the time domain, which consists of

echoes of the primary signal due to repetitive reflection of
the primary signal between the two maxima of the potential

VðdsÞ
l ðr�Þ. The time delay between two successive echoes is

given byΔt ¼ 2L. As in the presence of galactic matter, the
throat length increases and, as a consequence, the time

FIG. 7. The time domain ringdown waveform for scalar pertur-
bation has been presented for galactic and isolated Damour-
Solodukhin wormholes at r ¼ 25M1 for l ¼ 1 with λ ¼ 10−5.
We have chosen various values of Ma for the galactic wormhole. In
this case,M ¼ 0 corresponds to the isolated wormhole. From the
plot, one can see that, except for M

a ¼ 10−1, the primary signal of
the waveform matches very well with the isolated wormhole.
Moreover, the late-time echoes give us the scope to determine the
galactic parameters via the echo time delay. The parameters
appearing in the initial Gaussian profile [see Eq. (56)] are chosen
such that r0� is larger than the location of the photon sphere and
σ ¼ 10M1. Using this choice, we have numerically solved the time
domain wave equation and presented it here.

TABLE II. A comparison between the real and the imaginary
parts of the QNM frequencies of the isolated and the galactic
Damour-Solodukhin wormhole has been presented for l ¼ 1 and
λ ¼ 10−5. The galactic parameters are chosen as a ¼ 108M1 and
M ¼ 104M1. In this case also the values are more or less in
agreement, with the galactic wormhole being more stable than the
isolated one.

Comparison of QNM frequencies

Mode n For isolated wormhole For galactic wormhole

1 0.0372 − 7.9961 × 10−7i 0.0372 − 8.0010 × 10−7i
2 0.0741 − 4.2698 × 10−6i 0.0741 − 4.2730 × 10−6i
3 0.1102 − 1.4880 × 10−5i 0.1102 − 1.4893 × 10−5i
4 0.1455 − 4.5449 × 10−5i 0.1455 − 4.5498 × 10−5i
5 0.1798 − 1.2987 × 10−4i 0.1798 − 1.3002 × 10−4i
6 0.2132 − 3.5057 × 10−4i 0.2132 − 3.5103 × 10−4i
7 0.2455 − 8.8235 × 10−4i 0.2455 − 8.8357 × 10−4i
8 0.2767 − 2.0175 × 10−3i 0.2768 − 2.0202 × 10−3i
9 0.3072 − 4.0814 × 10−3i 0.3073 − 4.0865 × 10−3i
10 0.3375 − 7.2239 × 10−3i 0.3375 − 7.2318 × 10−3i

FIG. 8. To distinguish the prompt ringdown signal in the
waveform of the galactic Damour-Solodukhin wormhole from
that of an isolated wormhole, we have plotted the logarithm of the
absolute value of the ringdown signal for l ¼ 1 with λ ¼ 10−5 at
r ¼ 25M1. The parameters of the plot are chosen such that σ ¼
M1 and r0� is larger than the photon sphere. From the plot, one can
see that, except for large (M=a) ratio for the galactic matter, e.g.,
M
a ¼ 10−1, the primary signal of the waveform matches very well
with that of the isolated wormhole.
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delay also increases. This can be seen explicitly from
Eq. (46). Therefore, if echoes are observed in the time
domain waveform, they can provide crucial hints not only
for the central wormhole, but also about the dark matter
halo surrounding it.

B. Ringdown profile and stability of galactic
braneworld wormhole

In this section, we will present the QNM frequencies and
the ringdown profiles in the time domain using the method
introduced in Sec. III A 1, but for the galactic braneworld
wormhole. In this case, also the evolution of the perturbing
scalar field Ψ is described by the massless Klein-Gordon
equation, but we have to make an additional assumption
that the energy density of the field Ψ is much smaller than
the energy density of the background radion incarnation Φ,
loosely speaking jΨj ≪ jΦj (see [41] for further details). As
in the previous case, here also the potential experienced by
the scalar perturbation Ψ can be expressed in terms of
galactic as well as wormhole parameters. However, the
potential has a very complicated structure, and hence we
have delegated its analytic expression to Appendix D.
However, the structure of the potential has been plotted in
Fig. 9 for different choices of the galactic parameters, and
as evident from the plots, as the dimensionless ratio (M=a)
decreases the distance between the maxima decreases while
the maxima themselves increase. The tortoise coordinate
used in the master equation will be chosen in such a way
that r�ðr ¼ 2M1Þ ¼ 0, and we will have r� ∈ ð−∞;þ∞Þ to
cover both the asymptotically flat spacetimes on each side
of the throat. As in the previous scenario, for the case of the

braneworld wormhole as well we can not provide an
explicit analytic expression for the tortoise coordinate in
terms of the radial coordinate r; however, assuming
a > M ≫ M1 > 0 and χ ≳ 0, we obtain

r�≃ exp

�
−β
2

��
1−

2MM1

a2

��
rþ2M1 ln

�
r

2M1

−1

��
þ L̃
2
:

ð57Þ
The quantity β has already been defined in Eq. (45) and the
throat length L̃ is given by

L̃ ¼ −4M1 exp

�
−β
2

��
1 −

2MM1

a2

�
ð1þ 2 ln χÞ: ð58Þ

Since the wormhole parameter χ is taken to be smaller than
unity, the throat length is actually positive. Also, similar to
the case of a galactic Damour-Solodukhin wormhole, in the
case of a galactic braneworld wormhole the throat length
increases in the presence of a galactic halo, see Fig. 10.
Having outlined the basic setup for the scalar perturba-

tion, one can express the effective potential VðbÞ
l for the

galactic braneworld wormhole in terms of two single bump
potentials appearing on both sides of the wormhole throat.
Thus, one can employ the same techniques as in the
previous section and shall finally obtain the QNM frequen-
cies by solving Eq. (54) with the reflectivity due to the
appropriate potential for the galactic braneworld wormhole.
Here also we numerically solve for the reflectivity and
hence obtain the QNM frequencies, which have been
presented in Fig. 11 and Table III. In Fig. 11, besides
presenting the real and imaginary parts of the QNM

FIG. 9. We have plotted the potential VðbÞ
l associated with scalar

perturbation of the galactic braneworld wormhole with the
tortoise coordinate r� for different choices of the galactic

parameters, with l ¼ 1. As evident, the total potential VðbÞ
l

neatly separates into two individual potentials associated with
each of the universes at both sides of the throat. The plot of the
potential also depicts that, as the ratio (M=a) decreases, both the
maxima of the potential increase and the distance between the
two maxima decreases.

FIG. 10. This plot shows how the presence of a galaxy
influences the throat length of the braneworld wormhole. Here
we have plotted the ratio of throat length between that of the
braneworld galactic wormhole and that of the isolated counterpart
as a function of M

a , for various values of
M1

M . From this figure, we
can see that, in the presence of a galaxy, the throat length of a
galactic wormhole always increases from that of an isolated
counterpart, as in the case of the Damour-Solodukhin wormhole.
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frequencies associated with the scalar perturbation of the
galactic braneworld wormhole, we have also presented
the real and imaginary parts of the QNM frequencies of the
isolated braneworld wormhole. As evident, the QNM
frequencies associated with scalar perturbation of both of
these spacetimes have the same order, but their imaginary
parts differ in magnitude. In particular, the imaginary part
of the QNM frequency of a braneworld wormhole in a
galaxy will be smaller than the isolated one, and hence it
follows that the isolated braneworld wormhole is more
stable compared to the galactic wormhole. This is in
contrast to the Damour-Solodukhin wormhole. Finally,
the determination of the ringdown waveform in the time
domain can be obtained by using the method outlined
in Sec. III A 1 with appropriate boundary and initial

conditions. The result of such an analysis has been
presented in Figs. 12 and 13. As evident for these plots,
the echoes are sensitive to even small values of the ratio
(M=a), however, the prompt ringdown only gets affected
for ðM=aÞ ∼ 10−1.

IV. DISCUSSION

Wormholes are exotic objects, which can be as compact
as that of black holes, but without any event horizon. Since
wormhole geometries involve the photon sphere, the

FIG. 12. The time domain ringdown waveform for scalar
perturbation has been presented for galactic and isolated brane-
world wormhole at r ¼ 25M1 for l ¼ 1 with χ ¼ 10−5. For the
galactic wormhole, we have chosen various values of M

a . In this
case,M ¼ 0 corresponds to the isolated wormhole. From the plot,
one can see that, except for M

a ¼ 10−1, the primary signal of the
waveform matches very well with the isolated wormhole. More-
over, the late-time echoes give us the scope to determine the
galactic parameters via the echo time delay. The parameters
appearing in the initial Gaussian profile [see Eq. (56)] are chosen
such that r0� is larger than the location of the photon sphere, and
σ ¼ 10M1. Using this choice, we have numerically solved the
time domain wave equation and presented it here.

FIG. 11. On the left we have plotted the QNM frequencies for the l ¼ 0 mode of the scalar perturbation on the galactic and isolated
braneworld wormhole with metric parameters chosen to be a ¼ 104M1,M ¼ 102M1, and χ ¼ 10−5. Whereas the right-hand side plot of
the QNM frequencies is for the same systems, but with l ¼ 1 with metric parameters chosen to be a ¼ 104M1, M ¼ 102M1,
and χ ¼ 10−5.

TABLE III. We have presented a comparison of the QNM
frequencies between the isolated and the galactic braneworld
wormhole for l ¼ 1 and χ ¼ 10−5. The galactic parameters are
chosen as a ¼ 104M1 andM ¼ 102M1. From the above table it is
clear that, within the same precision, the magnitude of the
imaginary part of the QNM frequencies of the isolated wormhole
is slightly larger than that of the galactic one. Therefore, the
isolated wormhole is more stable than the galactic one.

Comparison of the QNM frequencies

Mode n For isolated wormhole For galactic wormhole

1 0.0398 − 9.9449 × 10−7i 0.0394 − 9.8454 × 10−7i
2 0.0792 − 5.5084 × 10−6i 0.0784 − 5.4532 × 10−6i
3 0.1176 − 2.0163 × 10−5i 0.1164 − 1.9961 × 10−5i
4 0.155 − 6.4867 × 10−5i 0.1534 − 6.4218 × 10−5i
5 0.1912 − 1.9426 × 10−4i 0.1893 − 1.9232 × 10−4i
6 0.2262 − 5.4270 × 10−4i 0.2239 − 5.3728 × 10−4i
7 0.2599 − 1.3837 × 10−3i 0.25733 − 1.3699 × 10−3i
8 0.2926 − 3.1189 × 10−3i 0.2896 − 3.0878 × 10−3i
9 0.3246 − 6.0766 × 10−3i 0.3213 − 6.0157 × 10−3i
10 0.3565 − 1.0247 × 10−2i 0.3529 − 1.0145 × 10−2i
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prompt ringdown of the GW waveform can be mimicked
by them, but modifications will come in at later times,
with the introduction of echoes in the time domain signal.
There has been extensive discussion involving such ECOs
regarding their origin, stability, and response under various
external perturbations of scalar, electromagnetic, and
gravitational origin. However, all such discussions were
in the context of isolated systems. In this work we have
made the first attempt to incorporate environmental effects,
mainly that of the surrounding dark matter halo, on the
geometry of certain wormhole spacetimes. We hope our
strategy will be useful for embedding other ECOs in the
surrounding dark matter halo, as well.
We have used two distinct wormhole solutions for our

purpose: (a) the Damour-Solodukhin wormhole and (b) the
braneworld wormhole. In both cases, we could provide a
suitable mass profile, which predicts wormhole matter
distribution at small radii and a Hernquist-type galactic
mass profile at a larger radius. Astonishingly, the galactic
wormholes, be it Damour-Solodukhin or braneworld, have
their throat at exactly the same location as that of their
isolated counterpart. Moreover, the presence of galactic
matter tames the violation of the energy conditions signifi-
cantly. For example, in the context of an isolated Damour-
Solodukhin wormhole the null and the strong energy
conditions are violated everywhere, whereas for the galactic
Damour-Solodukhin wormhole, the violations of the energy
conditions happen in a very small region close to the throat
of the wormhole. This result can also be understood in an
intuitive manner—near the throat, the properties of the
wormhole dominate and hence the energy conditions are
violated, while away from the throat, the properties of the
galactic matter take over, restoring the energy conditions.

The impact of galactic matter can also be felt on the
physical properties of thewormholes, e.g., the location of the
photon sphere, ISCO, and shadow radius. In particular, it
generically follows that the shadow radius and the photon
sphere radius for galactic wormholes are larger than their
isolated counterpart. This means galactic wormholes cast a
larger shadow. In this respect, it is worth pointing out that the
shadow radius of the M87� within the M87 galaxy is larger
than what is expected from the dynamics of stars and gases
surrounding it. A possible reason for the larger shadow could
be due to the presence of a dark matter halo surrounding the
same, given our findings regarding the shadow radius in this
work.4 Similarly, the enhancement of the ISCO radius will
also have implications for accretion physics. Since the
luminosity arising from the accretion disk is obtained by
integrating over the disk, which extends from the ISCO to
infinity, an enhancement of the ISCO radius should lower the
luminosity. This can lead to different parameter values for
the accreting object and may also involve estimations for the
galactic parameters as well. Wewish to come back to both of
these issues in the future.
As the dark matter halo modifies the geometry, it also has

a significant impact on the stability of these galactic
wormholes. It turns out that the galactic matter modifies
the potential experienced by the perturbing scalar field
significantly by enhancing the throat length but lowering
the maxima of the potential. As a consequence, the prompt
ringdown will be affected, as the height of the potential
decreases, and the echoes in the time domain signal will
also be shifted, since the time delay increases. Both of these
effects can be seen from Figs. 7 and 8 for the galactic
Damour-Solodukhin wormhole, while Figs. 12 and 13
depict such effects for the galactic braneworld wormhole.
Interestingly, the imaginary parts of the QNM frequencies
for the galactic Damour-Solodukhin wormhole are higher
compared to the QNM frequencies of the isolated Damour-
Solodukhin wormhole, indicating that the presence of
galactic matter makes the Damour-Solodukhin wormhole
more stable. On the other hand, for the galactic braneworld
wormhole, we have observed the exact opposite scenario. It
is expected that, if echoes are observed in the future
generations of GW detectors, then a correlation between
the parameters derived from the prompt ringdown and from
the time delay can provide indirect evidence for the
existence of a dark matter halo. This is because, unlike
other models of ECOs, for wormholes, the time delay is
related to various parameters of the wormhole geometry
and hence is not free. Thus, future generations of GW
detectors can possibly be used as an independent probe for
identifying the galactic parameters.

FIG. 13. To distinguish the primary signal in the ringdown
waveform of a galactic braneworld wormhole from that of an
isolated wormhole, we have plotted the logarithm of the abso-
lute value of the ringdown signal for l ¼ 1 with χ ¼ 10−5 at
r ¼ 25M1. The parameters of the plot are chosen such that
σ ¼ 1M1, and r0� is larger than the photon sphere. From the plot,
one can see that, except for M

a ¼ 10−1, the primary signal of the
waveform matches very well with the isolated wormhole.

4Such an enhancement in the shadow radius can also be due to
other effects, e.g., the presence of extra dimensions can also
enhance the shadow radius through a negative tidal charge
parameter [86,87].
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In that analysis it turned out that the spacetime is linearly
unstable due to existence of exponentially growing mode
with time. Now coming back to our context. It turns out that
the galactic matter modifies the potential experienced by
the perturbing scalar field significantly by enhancing the
throat length but lowering the maxima of the potential. As a
consequence, the prompt ringdown will be affected, as the
height of the potential decreases, and the echoes in the time
domain signal will also be shifted, since the time delay
increases. Both of these effects can be seen from Figs. 7
and 8 for the galactic Damour-Solodukhin wormhole, while
Figs. 12 and 13 depict such effects for the galactic brane-
world wormhole. Interestingly, the imaginary parts of the
QNM frequencies for the galactic Damour-Solodukhin
wormhole are higher compared to the QNM frequencies
of the isolated Damour-Solodukhin wormhole, indicating
that the presence of galactic matter makes the Damour-
Solodukhin wormhole more stable. On the other hand, for
the galactic braneworld wormhole, we have observed the
exact opposite scenario. It is expected that, if echoes are
observed in the future generations of GW detectors, then a
correlation between the parameters derived from the
prompt ringdown and from the time delay can provide
indirect evidence for the existence of a dark matter halo.
This is because, unlike other models of ECOs, for worm-
holes, the time delay is related to various parameters of the
wormhole geometry and hence is not free. Thus, future
generations of GW detectors can possibly be used as an
independent probe for identifying the galactic parameters.
It will be worth to mention here that the stability analysis

reported above is due to a test scalar field, which does not
affect the background geometry. It is important to perturb
the source of the wormhole itself and check for stability.
There have been few works in this direction with mixed
results—(a) wormhole geometries arising out of phantom
matter were shown to be unstable under perturbation of the
matter sector [88,89], while (b) there are somewormholes in
general relativity that have also been shown to be stable under
matter perturbation [90]. It will be interesting to perform a
similar study on the wormhole geometries considered here,
which we wish to come back to in a future work.
There are several other future directions of exploration

possible. In this work, we have employed the Hernquist-
type mass profile for describing the galactic wormhole
spacetimes, however, a more complete mass profile, e.g.,
the Navarro-Frenk-White (NFW) profile [77], can also be
used. Although, with the use of the NFW mass profile, it
would not be possible to obtain any closed-form analytic
solutions, they may provide a more realistic description of
the impact of dark matter halo on wormhole geometries.
Furthermore, we have not discussed the response of these
galactic wormhole spacetimes due to external tidal effects.
Since it is well known that ECOs, including wormholes,
have nonzero tidal Love numbers, it would be interesting to
see how much these Love numbers are shifted upon the

inclusion of a dark matter halo surrounding the isolated
wormholes. In addition, understanding the influence of
environmental factors on the physical properties of other
classes of ECOs, including quantum-corrected black holes,
will be another interesting avenue to explore. Finally, the
effect of accretion on the stability of wormhole geometries
remains to be understood. In particular, how accretion shifts
the quasinormal mode frequencies and whether it can make
the wormhole throat unstable is an interesting direction to
explore. We hope to return to these issues elsewhere.
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APPENDIX A: AN ALTERNATIVE MASS
PROFILE FOR DAMOUR-SOLODUKHIN

WORMHOLE

In the main text, we advocated one particular choice of
the mass profile for the galactic Damour-Solodukhin
wormhole. However, it turns out that there can be other
possible choices for the mass profile. In particular, we
present below one such alternative mass profile, which
reads

mðrÞ ¼ M2 þ
Mr2

ðrþ aÞ2
�
1 −

2M2

r

�
2

: ðA1Þ

Using the above mass profile, one can indeed solve the
radial Einstein equations, as presented by Eq. (11), which
yields the following solution for the gtt component of the
metric:

fðrÞ¼ expGðrÞ
r

ðr−2M1Þ
ðaþ2M1Þ2

q

× ða2þ2arþ4MM2−2Mrþ r2Þ2MðM2−M1Þ
q ; ðA2Þ

where the function GðrÞ has the following expression:

G ¼ 2

q
fa2 þ 2aðM1 þM2Þ þ 2MðM2 −M1Þ

þ 4M1M2g
ffiffiffiffiffi
M
ξ

r
FðrÞ;

F ¼ tan−1
�
a −M þ rffiffiffiffiffiffiffi

Mξ
p

�
−
π

2
; ðA3Þ
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and the constants ξ and q read as ξ ¼ 2a −M þ 4M1 and
q ¼ ðaþ 2M1Þ2 þ 4MðM2 −M1Þ. Note that this function
also vanishes at r ¼ 2M1, but remains nonzero at r ¼ 2M2,
signaling the existence of a wormhole throat at r ¼ 2M2.
Hence, the basic nature of the galactic Damour-Solodukhin
wormhole spacetime remains the same, even with this
alternative mass profile. However, due to its complicated
functional dependence on the radial coordinate, we have
not used it for further analysis.

APPENDIX B: THE TANGENTIAL PRESSURE
FOR GALACTIC DAMOUR-SOLODUKHIN

WORMHOLE

We have described the energy density of the galactic
matter supporting the galactic Damour-Solodukhin worm-
hole. However, we have not explicitly mentioned the radial
dependence of the tangential pressure associated with the
wormhole spacetime. Here, for completeness, we present
the tangential pressure of the dark matter halo, which reads

pðgÞ
⊥ ðdsÞ ¼

1

16πr2

�
2λ2rM1

ðr − 2M1Þ2
þ
�

2Mr
ðrþ aÞ2 − 2Mðr − 2M1Þ

þ 2M1

r − 2M1

�

×

	
2Mðλ2M1ðr − a − 4M1Þ þ ðaþ 2M1Þðr − 2M1ÞÞ

ðaþ rÞ3 þ λ2M1

2M1 − r


�
: ðB1Þ

Note that, in the limit λ → 0, the above expression
coincides with [67]. Moreover, the tangential pressure is
positive for any radii r > 2M2.

APPENDIX C: CONSISTENCY OF THE
GRAVITATIONAL FIELD EQUATIONS

ON THE BRANE

In this section, we will sketch how one can arrive at the
field equation for the radion incarnation Φ, starting from
the Bianchi identity. In what follows we will assume that
the Planck brane is vacuum, such that the effective Einstein
equations on the visible brane can be written as

ΦGμν ¼
κ2

l
Tvis
μν þ TΦ

μν: ðC1Þ

Now operating ∇μ on both sides, we get

Gμν∇μΦ ¼ ∇μTΦ
μν: ðC2Þ

To arrive at the previous result we have used the contracted
Bianchi identity ∇μGμν ¼ 0 and have assumed that
∇μTvis

μν ¼ 0. Now using the identity

½∇α;∇ν�∇μΦ ¼ −Rβ
μαν∇βΦ; ðC3Þ

one can show that

∇μTΦ
μν ¼ Rμν∇μΦ −

3∇νΦ
2ð1þΦÞ γ: ðC4Þ

Here we have defined the quantity γ as

γ ≡∇α∇αΦ −
1

2ð1þΦÞ∇
αΦ∇αΦ: ðC5Þ

Using Eq. (C4) in Eq. (C2) we obtain the following
relation:

∇νΦ
�

3γ

2ð1þΦÞ −
R
2

�
¼ 0: ðC6Þ

On the other hand, taking the trace of Eq. (C1) we obtain

−RΦ ¼ κ2

l
Tvis þ TΦ: ðC7Þ

Using the explicit form for the energy-momentum tensor
TΦ
μν of the radion field Φ, one can show that

TΦ ¼ −3γ: ðC8Þ

Therefore, using Eqs. (C7) and (C8) in Eq. (C6) we can
finally arrive at the following differential equation for Φ:

∇νΦ
�
−
2ωþ3

2
γþ κ2

2l
Tvis

�
¼ 0; ω≡−

3Φ
2ð1þΦÞ : ðC9Þ

The above equation can be satisfied in two possible
manners: (a) if Φ is a constant field or (b) if Φ satisfies
the following differential equation:

γ ¼ κ2

l
Tvis

2ωþ 3
: ðC10Þ

Using the definition of γ from Eq. (C5), as well as the
coupling function ω, we get back the field equation of the
radion incarnation Φ used in the main text.
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APPENDIX D: EFFECTIVE POTENTIAL FOR GALACTIC BRANEWORLD WORMHOLE

The complete expression for the effective potential experienced by a test scalar field living in the galactic braneworld
wormhole geometry is given by

VðbÞ
l ðrÞ ¼ eγ

ð1þ χÞ2r4ðaþ rÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M1

r

q �
ðaþ rÞðr − 2M1Þ

�
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �

×
�
a2M1 þ 2aM1rþM

�
4M2

1 þ χr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r
− 4M1rþ r2

�
þM1r2

�

þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �2

ða3M1 þ 3a2M1rþ að4MM2
1 −Mr2 þ 3M1r2Þ

þMrð12M2
1 − 8M1rþ r2Þ þM1r3Þ þ lðlþ 1Þr2ðaþ rÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �
χ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r �2�
: ðD1Þ

As in the case of galactic Damour-Solodukhin wormhole spacetime, in this case as well the effective potential VðbÞ
l ðrÞ can be

approximated as follows:

VðbÞ
l ðrÞ ≃ eγ

r4ðaþ rÞ3 ½V0 þ χVχ �; ðD2Þ

where V0 is the leading-order term independent of the wormhole parameter χ and Vχ is the coefficient of the linear-order
term in χ, which are defined as follows:

V0 ¼ ðaþ rÞðr − 2M1Þ
�
a2M1 þ 2aM1rþ 2MM1ð2M1 − rÞ þMrðr − 2M1Þ þM1r2

�
þ r

�
1 −

2M1

r

��
a3M1 þ 3a2M1rþ að4MM2

1 −Mr2 þ 3M1r2Þ þMrð12M2
1 − 8M1rþ r2Þ þM1r3

�

þ lðlþ 1Þr2ðaþ rÞ3
�
1 −

2M1

r

�
; ðD3Þ

and

Vχ ¼ ðaþ rÞðr − 2M1Þ
�
a2M1 þ 2aM1rþ 2MM1ð2M1 − rÞ þ 2Mrðr − 2M1Þ þM1r2

�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M1

r

r
ðr − 2M1Þ

�
a3M1 þ ðaþ rÞða2M1 þ 2aM1rþ 2MM1ð2M1 − rÞ þMrðr − 2M1Þ þM1r2Þ

þ 3a2M1rþ lðlþ 1Þrðaþ rÞ3 þ að4MM2
1 −Mr2 þ 3M1r2Þ þMrð12M2

1 − 8M1rþ r2Þ þM1r3
�

þ 2ðr − 2M1Þ
�
a3M1 þ 3a2M1rþ að4MM2

1 −Mr2 þ 3M1r2Þ þMrð12M2
1 − 8M1rþ r2Þ þM1r3

�
þ 2lðlþ 1Þrðaþ rÞ3ðr − 2M1Þ: ðD4Þ

These expressions involving the effective potential experienced by a scalar field have been used in Fig. 9 in the main text.
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