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Centro de Astrofísica e Gravitação—CENTRA, Departamento de Física, Instituto Superior Técnico - IST,
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The normal modes of Proca field perturbations in d-dimensional anti–de Sitter spacetime, AdSd for
short, with reflective Dirichlet boundary conditions, are obtained exactly. Within the Ishibashi-Kodama
framework, we decompose the Proca field in scalar-type and vector-type components, according to their
tensorial behavior on the (d − 2)-sphere Sd−2. Two of the degrees of freedom of the Proca field are
described by scalar-type components, which in general are coupled due to the mass of the field, but in AdSd
we show that they can be decoupled. The other d − 3 degrees of freedom of the field are described by a
vector-type component that generically decouples completely. The normal modes and their frequencies for
both the scalar-type and vector-type components of the Proca field are then obtained analytically.
Additionally, we analyze the normal modes of the Maxwell field as the massless limit of the Proca field. We
find that for scalar-type perturbations in d ¼ 4 there is a discontinuity in the massless limit, in d ¼ 5 the
massless limit is well-defined using Dirichlet-Neumann rather than Dirichlet boundary conditions, and in
d > 5 the massless limit is completely well-defined, i.e., it is obtained smoothly from the massless limit of
the scalar-type perturbations of the Proca field. For vector-type perturbations the Maxwell field limit is
obtained smoothly for all d from the massless limit of the vector-type perturbations of the Proca field.
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I. INTRODUCTION

The anti–de Sitter (AdS) spacetime [1–3] is the max-
imally symmetric vacuum solution to the Einstein field
equations with a negative cosmological constant. This
spacetime can be obtained by performing the universal
cover of the AdS universe. As a result, the AdS spacetime is
not a globally hyperbolic spacetime and it possesses a
timelike boundary at spatial infinity.
Due to the properties at spatial infinity, there is an

intrinsic interest in asymptotically AdS spacetimes as they
can describe systems in a gravitational box. In particular,
pure AdS spacetime is of special importance in the
construction of quantum field theories [4], where two
reflective and one transparent boundary conditions to the
fields are possible at infinity. AdS spacetime is also
essential in the formulation of supergravity theories, where
it acts as a natural arena for quantum supersymmetric fields,
including the possibility that these might have negative
mass [5]. In this connection, AdS plays a fundamental role
in the AdS=CFT conjecture, that establishes a duality
between supergravity as a low-energy phenomenon of
string theory in AdS, and a conformal field theory at its
boundary [6].

Given the importance of the AdS spacetime it is relevant
to study and understand its stability. To linear perturbations
AdS is stable, as we will see below, but to nonlinear
perturbations it seems that AdS is unstable. This instability
was explored in [7], where the evolution of the Einstein-
Klein-Gordon system was considered and a large class of
arbitrary small amplitudes of the scalar field was found to
have an evolution leading to black hole formation. It was
further reinforced by analyzing a complex scalar field [8],
yet it does not occur for all classes of initial data as there are
islands of stability [9].
Linear stability of a spacetime is also important. To study

it, one must analyze linear perturbations which are
described by normal modes for the case of pure AdS
and quasinormal modes in black hole spacetimes be they
asymptotically flat, AdS, or otherwise. In spherical sym-
metry, the perturbations are classified as scalar-type, vector-
type, and tensor-type perturbations, which regards their
tensorial behavior on the 2-sphere. This decomposition
allows to write the linearized field equations as a radial
Schrödinger-like equation with an effective given potential
for each type of perturbation. Moreover, to obtain normal
modes and quasinormal modes, one must impose boundary
conditions at the center or at the black hole horizon if there
is one, and at spatial infinity. The linear stability of a
Schwarzschild black hole spacetime was solved first trough
the Regge-Wheeler formalism by carefully expanding the
perturbations [10,11]. In [12] boundary conditions and all
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types of perturbations in the Schwarzschild-AdS black hole
were imposed and worked out. In [13] it was analyzed
Proca massive vector field perturbations in a Schwarzschild
background. In [14] spherical waves of spin-1 particle in
anti–de Sitter spacetime were performed. In [15] massive
vector fields on the Schwarzschild spacetime were further
analyzed. For other boundary conditions based on the
vanishing of the energy flux see [16]. In [17] quasinormal
modes of Proca fields in a Schwarzschild-AdS spacetime
were found. In [18] the normal modes of Proca fields in
AdS spacetime were found.
Higher dimensions are important. The universe may be

higher dimensional somewhere; higher dimensions may
have existed at some time in the very early universe, or
perhaps they can be constructed or detected in a future
experiment. The study of the physics in higher dimensions
also provides a means of understanding what is intrinsic
and important to d ¼ 4. AdS spacetime can be extended to
higher dimensions which is referred to as AdSd, where d is
the number of dimensions. Normal modes and quasinormal
modes have also been studied in AdSd spacetimes. In
spherical symmetry in higher dimensions, the perturbations
are also classified as scalar-type, vector-type, and tensor-
type perturbations, which regards their behavior now on the
(d − 2)-sphere. Again, the decomposition allows us to write
the linearized field equations as a radial Schrödinger-like
equation for each type of perturbation, whose potential
now also depends on the dimension of the spacetime. The
normal modes of AdSd were first obtained in [19] for a
scalar field. The problem of linear stability in higher-
dimensional spacetimes was considered in the Ishibashi-
Kodama formalism by expanding the perturbations in
higher-dimensional scalar, vector, and tensor spherical
harmonics, which independently form a complete basis
on a (d − 2)-sphere [20]. In [21] it was found that in some
cases the Dirichlet boundary conditions are not the only
suitable boundary conditions and generalized Robin boun-
dary conditions are also permitted, a general analysis of
the equations that the scalar, electromagnetic, and gravi-
tational perturbations obey in AdSd was made, and a
general formula for the eigenfrequencies in a range
of parameters of the equation was obtained. Moreover,
scalar-type, vector-type and tensor-type gravitational per-
turbations were studied and the eigenfrequencies given
imposing Dirichlet boundary conditions [22]. The result
was extended to the scalar-type and vector-type Maxwell
electromagnetic perturbations in [23]. The problem of
linear stability in higher-dimensional spacetimes was fur-
ther addressed by expanding perturbations in higher-
dimensional scalar, vector and tensor spherical harmonics,
which independently form a complete basis on a (d − 2)-
sphere, now with applications to black hole spacetimes
[24]. In [25] the wave equation for a Proca field in
d-dimensional spherically symmetric black hole space-
times was obtained with interest in understanding the

Hawking radiation for a Proca field in d-dimensions.
In [26] massive vector field perturbations on extremal
and near-extremal static black holes were analyzed. A
study of the Proca perturbations in d-dimensional pure AdS
is thus of interest. The mass of the Proca field introduces a
coupling between two scalar-type degrees of freedom.
For black hole spacetimes in general, a decoupling of
these two degrees of freedom does not seem to be
analytically allowed. For pure AdS in four dimensions,
however, the scalar-type degrees of freedom can be
decoupled by making a transformation of the fields, and
it is thus of interest to know if this occurs in AdSd.
In this work we obtain the exact expression for normal

modes of linear Proca perturbations in AdSd background,
using the Ishibashi-Kodama formalism. We find that the
scalar-type degrees of freedom decouple in AdSd, by
making a linear transformation to the relevant fields. We
also study the electromagnetic perturbations in order to
understand the μ ¼ 0 limit of the Proca field. We consulted
results in [27–29] on (d − 2)-sphere, and use results of the
priceless manual [30].
The work is organized as follows. In Sec. II we introduce

the field equations for a Proca field minimally coupled to
curved spacetime background. In Sec. III, we obtain the
equations for the Proca field perturbations in pure AdS
spacetime by introducing the Ishibashi-Kodama formalism
and further decomposing the Proca field in scalar-type
and vector-type components, according to their tensorial
behavior on the (d − 2)-sphere. We also decouple the
scalar-type components by making a linear transformation
to the relevant fields. In Sec. IV, we obtain the normal mode
eigenfrequencies and eigenfunctions as a solution to the
Proca field equations, which can be put into Schrödinger-
like equations. In Sec. V, we rederive the normal mode
frequencies in AdSd of the Maxwell electromagnetic
perturbations and analyze it in the context of the zero
mass limit of the Proca field. In Sec. VI, we conclude. In
Appendix A, we review the properties of spherical har-
monics on the (d − 2)-sphere. In Appendix B, we study the
solutions of the hypergeometric differential equation.

II. PROCA FIELD IN CURVED SPACETIME

The action of a Proca field, i.e., a massive vector field,
minimally coupled to the metric field of a generic
d-dimensional curved spacetime with negative cosmo-
logical constant can be written as

S ¼ SEH þ SP; ð1Þ

where

SEH ¼
Z

ddx
ffiffiffiffiffiffi
−g

p R − 2Λ
16π

; ð2Þ

is the Einstein-Hilbert action,
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SP ¼ −
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

2
μ2AμAμ þ 1

4
FμνFμν

�
; ð3Þ

is the Proca action, g is the determinant of the metric gμν,
R ¼ Rμνgμν is the Ricci scalar defined as the trace of the
Ricci tensor Rab composed by the metric itself and its first
and second derivatives, Λ ¼ − ðd−1Þðd−2Þ

2l2 is the cosmologi-
cal constant with l being the characteristic AdS length, Aμ

is the Proca field with mass μ and Fμν ≡∇μAν −∇νAμ is
the Proca field strength. Spacetime indices are denoted by
Greek letters, e.g., μ, ν, run from 0 to d − 1, where 0 is the
time index, and 1 to d − 1 specify the spatial indices. The
field equations for the metric and the Proca field are
obtained by applying the variational principle to the action
given in Eq. (1). The field equations for the metric are then
the Einstein equations given by

Gμν −
ðd − 1Þðd − 2Þ

2l2
gμν ¼ 8πTμν; ð4Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor and Tμν is

the Proca stress-energy tensor, given by

Tμν ¼ gαβFμαFνβ þ μ2AμAν

− gμν

�
1

4
FαβFαβ þ μ2

2
AαAα

�
: ð5Þ

Moreover, the Einstein tensor obeys the Bianchi identities
∇μGμν ¼ 0, which in turn imply the conservation law for
Tμν, i.e.,∇μTμν ¼ 0. The Proca field equations are obtained
either by the conservation law for Tμν or by varying
the action with respect to the Proca field Aμ and can be
written as

∇νFμν þ μ2Aμ ¼ 0: ð6Þ

Due to Fμν being an antisymmetric tensor, one can
calculate the divergence of Eq. (6) to obtain a Bianchi
identity for Aμ,

∇μAμ ¼ 0: ð7Þ

It must be noted that Eq. (7) is a direct consequence of the
Proca field equation, Eq. (6), when μ ≠ 0. Thus, Aμ is a
physical field and describes d − 1 degrees of freedom, as
one component of the vector field can always be obtained
from the others by integrating Eq. (7). For μ ¼ 0, Aμ

corresponds to the Maxwell field and the field equation,
Eq. (6), becomes invariant under the gauge transformation
Aμ → Aμ þ ∂

μh, where h is an arbitrary scalar field. The
Bianchi identity for Proca fields, Eq. (7), ceases to be a
consequence of the field equation and becomes the usual
Lorenz gauge condition of the Maxwell field. Even after

imposing this gauge, a residual gauge freedom remains as
Eq. (7) is invariant under Aμ → Aμ þ ∂

μh if ∇μ∇μh ¼ 0,
i.e., if h obeys the Klein-Gordon equation. Hence, the
Maxwell field describes d − 2 degrees of freedom. In
d ¼ 4, the previous discussion implies that while the
Proca field describes three degrees of freedom, correspond-
ing to two transversal polarizations and one longitudinal
polarization, the residual gauge freedom of the Maxwell
field eliminates the longitudinal polarization, so that in total
the Maxwell field describes two degrees of freedom,
corresponding to the two transversal polarizations.
To formally describe the spacetime permeated by the

Proca field, one would have to solve Eq. (4) for the metric
gμν and Eq. (6) for the Proca field Aμ simultaneously. Here
we are only interested in linear perturbations of the Proca
field Aμ around the trivial solution Aμ ¼ 0. As a result,
we only consider Eqs. (4) and (6) up to first order in
perturbations of the Proca field. Since Tμν in Eq. (5) is of
second order in Aμ, linear perturbations in the Proca field
induce a curvature perturbation on gμν only at second order
and Tμν can be neglected in Eq. (4) at first order, reducing
Eq. (4) to the vacuum Einstein equations with negative
cosmological constant. Thus, gμν corresponds to the back-
ground metric, as if the Proca field Aμ was absent.
Moreover, the linear Proca perturbations obey the Proca
equation, Eq. (6), with the connection Γμ

νσ being associated
to the background metric.
In what follows, we apply the Ishibashi-Kodama for-

malism to the Proca equation in a d-dimensional AdS
spacetime. We firstly write the Proca equation and decom-
pose the Aμ field in the AdSd background.

III. LINEAR PROCA FIELD
PERTURBATIONS IN AdSd

A. The factorization of AdSd spacetime
and the Proca equation

We consider the d-dimensional AdS spacetime which is
a solution of the vacuum Einstein equation with a cosmo-
logical constant, Eq. (4). The d-dimensional AdS spacetime
manifold, Md ≡ AdSd, d ≥ 4, can be written as a warped
product of a submanifold N 2 of dimension two with a
(d − 2)-sphere, Sd−2, i.e.,Md ¼ N 2 × Sd−2. Its associated
line element gμνdxμdxν in coordinates xμ, μ ¼ 0;…; d − 1,
is thus decomposed as

gμνdxμdxν ¼ g̃abdyadyb þ r2ĝijdθidθj; ð8Þ

where

g̃abdyadyb ¼ −fðrÞdt2 þ dr2

fðrÞ ; fðrÞ ¼ 1þ r2

l2
; ð9Þ
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is the line element of the N 2 submanifold, written in
coordinates ya ¼ ðy0; y1Þ ¼ ðt; rÞ, with t and r being the
time and radial coordinates, respectively, and

ĝijdθidθj ¼ ðdθ2Þ2 þ
Xd−1
i¼3

Yi−1
k¼2

sin2ðθkÞðdθiÞ2; ð10Þ

which is the line element of the (d − 2)-sphere, Sd−2,
sometimes represented as ðdΩd−2Þ2, where the θi are the
angular coordinates and i; j; k ¼ 2;…; d − 1. Note that in
this convention θ2 would be the usual θ and θ3 would be
the usual ϕ in d ¼ 4. As it should be clear by now, to allow
one to distinguish between tensors living on the different
manifolds Md, N 2, and Sd−2, we use Greek indices
μ; ν;… for tensors on Md, latin indices in the range
a; b;…; h for tensors on N 2 and latin indices in the range
i; j;… for tensors on Sd−2.
In order to factorize AdSd spacetime, one also must

separate the connection ∇μ associated to the manifold

ðMd; gÞ into the connection ∇̃a associated to the mani-
fold ðN 2; g̃Þ and the connection ∇̂i associated to the
manifold ðSd−2; ĝÞ. This can be accomplished by using
the following relations between the Christoffel symbols
associated to each manifold, those are

Γa
bc ¼ Γ̃a

bc; Γa
ij ¼ −rð∂arÞĝij;

Γi
aj ¼

∂ar
r

δij; Γi
jk ¼ Γ̂i

jk; ð11Þ

where Γμ
νρ are the Christoffel symbols associated with the

metric gμν, with the greek indices spanning through the
indices in N 2 and in Sd−2, e.g. μ ¼ fa; ig, and Γ̃a

bc and
Γ̂i

jk are the Christoffel symbols associated with the metrics
g̃ab and ĝij, respectively.
The projections of the Proca equation, Eq. (6), into N 2

and Sd−2 are written as

∇̃bFab þ ðd − 2Þ ∂br
r

Fab þ ∇̂jFaj þ μ2Aa ¼ 0; ð12Þ

∇̃bFib þ ðd − 2Þ ∂br
r

Fib þ ∇̂jFij þ μ2Ai ¼ 0; ð13Þ

respectively. These equations are supplemented with the
Bianchi identity, Eq. (7), which is now

∇̃aAa þ ðd − 2Þ ∂ar
r

Aa þ ∇̂iAi ¼ 0: ð14Þ

B. The decomposition of the Proca field
and spherical harmonics expansion

To simplify the field equations for Aμ, one exploits the
spherical symmetry of the background metric in Eq. (8).
The strategy is to project the field Aμ into components that

are orthogonal to Sd−2 and components that are tangent to
Sd−2. The Aμ field can be written as

Aμdxμ ¼ Ãadya þ Âidθi; ð15Þ

where Ãa denotes the projection of Aμ orthogonal to the
cotangent space of Sd−2 and Âi denotes the projection of Aμ

tangent to the cotangent space of Sd−2. The latter can be
further decomposed using the Helmoltz-Hodge decompo-
sition [20], which allows one to write uniquely a dual vector
field on Sd−2, Âi, as the sum of a scalar field on Sd−2, ÂðsÞ,
and a transverse covector field on the cotangent space of

Sd−2, ÂðvÞ
i , in the following way:

Âi ¼ ÂðvÞ
i þ ∇̂iÂ

ðsÞ; ∇̂iÂ
ðvÞi ¼ 0: ð16Þ

Since Ãa and ÂðsÞ behave as scalars on Sd−2, these
are called the scalar-type components of Aμ, while

ÂðvÞi ¼ ĝijÂðvÞ
j , a vector on the tangent space of Sd−2, is

called the vector-type component of Aμ. Moreover, the
scalar-type components of the Proca field transform as
scalars under the SOðd − 1Þ rotation group, and the vector-
type component of the Proca field transforms as a vectors
under the SOðd − 1Þ rotation group. Since the correspon-

dence between ÂðvÞi and ÂðvÞ
i is one to one, we shall make

the abuse of language that ÂðvÞ
i corresponds to the vector-

type component of Aμ as well. In the literature, scalar-type
is also referred to as polar- or even-type, whereas vector-
type is called axial- or odd-type. This has to do with the
transformation properties of these components under parity
transformations, see [10,11]. The scalar-type components
of Aμ can be expanded in scalar harmonics Yk⃗s

, where k⃗s is
a vector containing the angular momentum number l and
the d − 3 azimuthal numbers, which form a complete basis
on Sd−2, satisfying

ðb□þ k2sÞYk⃗s
¼ 0;

Z
dΩd−2Yk⃗s

Yk⃗0s
¼ δk⃗sk⃗0s ; ð17Þ

where b□ ¼ ĝij∇̂i∇̂j,

k2s ¼ lðlþ d − 3Þ; l ¼ 0; 1; 2;…; ð18Þ

and dΩd−2 is here the volume element over the sphere given
by dΩd−2 ¼ ffiffiffî

g
p

dθ2…dθd−1, ĝ being the determinant of the
metric ĝij. Similarly, the vector-type component of Aμ can
be expanded in vector harmonics Yk⃗vi

which also form a

complete basis on Sd−2, where k⃗v is a vector containing the
angular momentum number l and d − 3 azimuthal num-
bers, that in principle are different from the azimuthal
numbers of the scalar harmonics. The vector harmonics Yk⃗vi

then satisfy
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ð□̂þ k2vÞYk⃗vi
¼ 0; ∇̂iYi

k⃗v
¼ 0;Z

dΩd−2ĝijYk⃗vi
Yk⃗0vj

¼ δk⃗vk⃗0v ; ð19Þ

with

k2v ¼ lðlþ d − 3Þ − 1; l ¼ 1; 2; 3;…; ð20Þ

see Appendix A for more details.
Thus, the scalar-type components fÃa; Â

ðsÞg can be
expanded in terms of the Yk⃗s

ðθÞ, and vector-type compo-

nent fÂðvÞ
i g can be expanded in terms of the Yk⃗vi

ðθÞ, where
θ≡ ðθ2…; θi;…θd−1Þ. Indeed, fÃa; Â

ðsÞg can be expanded
as Ãaðy; θÞ ¼

P
k⃗s
Ãk⃗sa

ðyÞYk⃗s
ðθÞ, where y≡ ðt; rÞ, and

ÂðsÞðy; θÞ ¼Pk⃗s
ÂðsÞ
k⃗s
ðyÞYk⃗s

ðθÞ, respectively, and fÂðvÞ
i g as

ÂðvÞ
i ðy; θÞ ¼Pk⃗v

ÂðvÞ
k⃗v
ðyÞYk⃗vi

ðθÞ. Note that ∇̂iÂ
ðsÞðy; θÞ ¼P

k⃗s
ÂðsÞ
k⃗s
ðyÞ∇̂iYk⃗s

ðθÞ. Since Ãk⃗sa
, ÂðsÞ

k⃗s
, and ÂðvÞ

k⃗v
are cum-

bersome symbols to carry along, we define ψ k⃗sa
≡ Ãk⃗sa

,

ϕk⃗s
≡ ÂðsÞ

k⃗s
, and χ k⃗v ≡ ÂðvÞ

k⃗v
. so that for the scalar-type

components fÃa; Â
ðsÞg, one writes

Ãaðy; θÞ ¼
X
k⃗s

ψ k⃗sa
ðyÞYk⃗s

ðθÞ; ð21Þ

ÂðsÞðy; θÞ ¼
X
k⃗s

ϕk⃗s
ðyÞYk⃗s

ðθÞ; ð22Þ

while for the vector-type component fÂig one writes

ÂðvÞ
i ðy; θÞ ¼

X
k⃗v

χk⃗vðyÞYk⃗vi
ðθÞ: ð23Þ

Here, ψ k⃗sa
ðyÞ is a vector field onN 2, and ϕk⃗s

ðyÞ and χk⃗vðyÞ
are scalar fields on N 2. The scalar-type components cover
two degrees of freedom, whereas the vector-type compo-
nent covers d − 3 degrees of freedom as can be noted from
the transverse condition of Yk⃗vi

in Eq. (19). As Eq. (7)
needs to be satisfied, these variables cover in total d − 1
degrees of freedom, as expected for a Proca field. In
summary, the complete expression of the Proca field
decomposed in spherical harmonics is

Aμdxμ ¼
X
k⃗s

�
ψ k⃗sa

Yk⃗s
dya þϕk⃗s

∇̂iYk⃗s
dθi
�þX

k⃗v

χ k⃗vYk⃗vi
dθi:

ð24Þ

In terms of the expansion in Eqs. (21)–(23), i.e., Eq. (24),
the components of the Proca field strength tensor are
written as

Fab ¼
X
k⃗s

�∇̃aψb
k⃗s
− ∇̃bψa

k⃗s

�
Yk⃗s

; ð25Þ

Fai ¼
X
k⃗s

�
1

r2
ð∇aϕk⃗s

− ψa
k⃗s
Þ
�
∇̂iYk⃗s

þ
X
k⃗v

�
1

r2
∇aχk⃗v

�
Yi
k⃗v
;

ð26Þ

Fij ¼
X
k⃗v

�χ k⃗v
r4

�	∇̂iYj

k⃗v
− ∇̂jYi

k⃗v



; ð27Þ

where the covariant derivative ∇a can be swapped to a
partial derivative ∂a when acting on scalars.
With these decompositions, it is possible to decouple

only partially the equations in general. We will see that the
scalar-type perturbations are completely decoupled from
the vector-type perturbations. Moreover, the separation of
the Proca equations are achieved due to the separation
of the fields into functions that purely depend on the
coordinates ðt; rÞ and the spherical harmonics that depend
only on the spherical angles.

C. Separation of the Proca equations

1. Proca equations after spherical harmonics expansion

The expansion on spherical harmonics of the Proca field
in Eqs. (21)–(23), i.e., Eq. (24), and the corresponding
expansion of the strength field tensor in Eqs. (25)–(27) can
be inserted into Eqs. (12)–(14), which allows the separation
of the Proca equations in AdSd. In this way, the Proca
equations are separated into three sums, one in terms of the
spherical harmonics Yk⃗s

over each k⃗s, i.e.,
P

k⃗s
W̃a

k⃗s
Yk⃗s

,

another in terms of the gradients of the spherical harmonics

∇̂iYk⃗s
over each k⃗s, i.e.,

P
k⃗s
ŴðsÞ

k⃗s
∇̂iYk⃗s

, and the remaining

sum in terms of the vector spherical harmonics Yk⃗vi
over

each k⃗v, i.e.,
P

k⃗v
ŴðvÞ

k⃗v
Yi
k⃗v
, where the coefficients of all the

three sums only depend on the coordinates t and r, i.e.,

W̃a
k⃗s
¼ W̃a

k⃗s
ðt; rÞ, ŴðsÞ

k⃗s
¼ ŴðsÞ

k⃗s
ðt; rÞ, and ŴðvÞ

k⃗v
¼ ŴðvÞ

k⃗v
ðt; rÞ.

We must note that Yk⃗s
, ∇̂iYk⃗s

, and Yk⃗vi
are orthogonal

between each other. An argument can be made that these
span different representations of the rotation group
SOðd − 1Þ, for d > 4, while for d ¼ 4, the scalar and
vector spherical harmonics span different representations of
the rotation group Oð3Þ, see [21] and also Appendix A.
Therefore, the Proca equations separate into the equations

W̃a
k⃗s
¼ 0, WðsÞ

k⃗s
¼ 0, and WðvÞ

k⃗v
¼ 0, described only by the

coordinates t and r. Since the Proca equation is a linear
differential equation in Aμ, there is no mixing between the

different k⃗v and k⃗s modes. Therefore, without loss of
generality and for convenience, we drop the sum on all
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the k⃗s and k⃗v. In the rest of the section, we treat the scalar
spherical harmonics as Y and the vector spherical harmon-
ics as Yi.
We now show the equations obtained from the separation

of the Proca equations. The projection of the Proca
equation into N 2, Eq. (12), can be written in terms of a
sum of spherical harmonics Y, in which the associated
coefficients must satisfy W̃a

k⃗s
¼ 0, or explicitly,

2∇̃b∇̃½aψb� þ 2ðd − 2Þ ∇̃br
r

∇̃½aψb�

þ
�
lðlþ d − 3Þ

r2
þ μ2

�
ψa −

lðlþ d − 3Þ
r2

∂
aϕ ¼ 0;

ð28Þ

for each k⃗s, where it was used that k2s ¼ lðlþ d − 3Þ,
∇̃½aψb� ¼ 1

2
ð∇̃aψb − ∇̃bψaÞ, and that ∇̂iYi ¼ 0, which

avoids the appearance of χ in Eq. (28). The projection
of the Proca equation into Sd−2, Eq. (13), can be written in
terms of two sums. One sum is in terms of the gradient of
the spherical harmonics ∇̂iY, whose coefficients satisfy

ŴðsÞ
k⃗s

¼ 0 or explicitly

□̃ϕþðd−4Þ∂br
r
∂
bϕ−μ2ϕ−∇̃bψ

b−ðd−4Þ∂br
r
ψb¼0;

ð29Þ

for each k⃗s, where □̃ ¼ g̃ab∇̃a∇̃b. The other sum is in terms
of the vector spherical harmonics Yi, whose coefficients

must satisfy ŴðvÞ
k⃗v

¼ 0, or explicitly

□̃χþd−4

r
ð∂brÞð∂bχÞ−

�
lðlþd−3Þþd−4

r2
þμ2

�
χ¼0;

ð30Þ

for each k⃗v, where k2v ¼ lðlþ d − 3Þ − 1 was used.
Furthermore, to obtainEq. (30), the commutator2∇̂½j∇̂i�Yj ¼
R̂miYm was used, where R̂mi ¼ ðd − 3Þĝmi is the Ricci tensor
ofSd−2. Finally, theBianchi identityEq. (14) canbewritten as
a sum of spherical harmonics Y, whose coefficients satisfy

∇̃bψ
b þ ðd − 2Þ ∂br

r
ψb −

lðlþ d − 3Þ
r2

ϕ ¼ 0; ð31Þ

for each k⃗s, where again k2s ¼ lðlþ d − 3Þ and ∇̂iYi ¼ 0
were used. We see that Eqs. (28)–(30) form a set of four
equations, two component equations in Eq. (28) and two
equations in Eqs. (29) and (30). There is a fifth equation, the
Bianchi identity for Proca fields given in Eq. (31). So in total
we can play with five equations.

2. Proca equations decoupled:
The important equations for quasinormal modes

The equations for the scalar-type components of the
Proca field, i.e., Eqs. (28) and (29) are coupled in ψ t, ψ r, ϕ,
and Eq. (30) for the vector-type component represented
by χ is decoupled. The Bianchi identity Eq. (31) is also
coupled. By defining new variables q0, q1, q2, and q3 as
functions of ψ t, ψ r, ϕ, and χ it is possible to decouple the
equations. We give first the result and then show the steps to
obtain it. So, Eqs. (28)–(30) in the new variables are

D̂lq0 þ
2r
l2
ð∂tq1 þ ∂tq2 − ∂r�q0Þ ¼ 0; ð32Þ

D̂jkqk ¼ 0; ð33Þ

and the Bianchi identity Eq. (31) is now

∂tq0 − ∂r� ðq1 þ q2Þ ¼
f
r

�
d − 2

2
− ðlþ d − 3Þ

�
q2

þ f
r

�
lþ d − 2

2

�
q1; ð34Þ

where here k∈ f1; 2; 3g, jk ¼ ðj1; j2; j3Þ, j1 ¼ lþ 1 with
l∈N0, j2 ¼ l − 1with l∈N, and j3 ¼ lwith l∈N, r� is
defined as r� ¼ l arctanðrlÞ, the operator D̂l is defined as

D̂l¼−∂2t þ∂
2
r�

−f

�
lðlþd−3Þ

r2
þμ2þðd−2Þðd−4Þ

4l2

�
1þ l2

r2

��
;

ð35Þ

and q0ðt; rÞ, q1ðt; rÞ, q2ðt; rÞ, and q3ðt; rÞ are defined by

q0ðt; rÞ ¼ ψ tðt; rÞrd2−1; ð36Þ

q1ðt;rÞ¼
ðl−d−3Þψ rðt;rÞfðrÞ−lðlþd−3Þϕðt;rÞr

2lþd−3
r
d
2
−1;

ð37Þ

q2ðt; rÞ ¼
lψ rðt; rÞfðrÞ þ lðlþ d − 3Þ ϕðt;rÞr

2lþ d − 3
r
d
2
−1; ð38Þ

q3ðt; rÞ ¼
χðt; rÞ

r
r
d
2
−1: ð39Þ

We see that Eqs. (32)–(33) provide four equations, the
number we had originally, and there is still the Bianchi
identity for Proca fields given in Eq. (34), yielding five
equations in total.
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3. Proof of the decoupling of Proca equations

Now we show how to obtain Eqs. (32)–(34) together
with the definitions Eqs. (35)–(39). The equations for the
scalar-type components of the Proca field, i.e., Eqs. (28)
and (29) are coupled in ψ t, ψ r, and ϕ. The Bianchi identity
for Proca fields given in Eq. (31) is also coupled in ψ t, ψ r,
and ϕ. We now show that in the case of AdSd spacetime,
it is indeed possible to manipulate these equations and
decouple these components through further transforma-
tions. We start by differentiating Eq. (31) to obtain

lðlþ d − 3Þ∂aϕ ¼ ∇̃aðr2∇̃bψ
bÞ þ ðd − 2Þ∇̃aðrψb

∂brÞ:
ð40Þ

Using Eq. (40) in Eq. (28) we obtain a coupled equation for
the ψa components given by

□̃ψa − R̃a
bψ

b þ ðd − 2Þ ∂
br
r

∇̃bψ
a

−
�
lðlþ d − 3Þ

r2
þ μ2

�
ψa þ ðd − 2Þ∇̃a

�
∂br
r

�
ψb

þ 2∂ar
r

�
∇̃bψ

b þ ðd − 2Þ ∂br
r

ψb

�
¼ 0; ð41Þ

where R̃a
b ¼ − f00

2
δab is the Ricci tensor of N 2 and the

commutator 2∇̃½a∇̃b�ψa ¼ R̃abψ
a was used. Now, Eqs. (29)

(31), and (41) can be further simplified into

D̂lu0 þ
2r
l2
ð∂tu1 − ∂r�u0Þ ¼ 0; ð42Þ

D̂lu1 −
2f
r2

�
d − 2

2
u1 − u2

�
¼ 0; ð43Þ

D̂lu2 þ
2f
r2

��
d
2
− 2

�
u2 þ lðlþ d − 3Þu1

�
¼ 0; ð44Þ

∂tu0 − ∂r�u1 ¼
f
r

�
d − 2

2
u1 − u2

�
; ð45Þ

where again r� is defined such as dr�
dr ¼ 1

fðrÞ with

fðrÞ ¼ 1þ r2

l2 , i.e., r� ¼ l arctanðrlÞ, D̂l is the operator

already given in Eq. (35), i.e., D̂l ¼ −∂2t þ ∂
2
r�−

f½lðlþd−3Þ
r2 þ μ2 þ ðd−2Þðd−4Þ

4l2 ð1þ l2

r2Þ�, u0ðt; rÞ, u1ðt; rÞ, and
u2ðt; rÞ are defined by

u0ðt; rÞ ¼ ψ tðt; rÞrd2−1; ð46Þ

u1ðt; rÞ ¼ ψ rðt; rÞfðrÞrd2−1; ð47Þ

u2ðt; rÞ ¼
ϕðt; rÞ

r
lðlþ d − 3Þrd2−1; ð48Þ

and we also have used Eq. (45) in the last two terms of
Eq. (43). Finally, one can notice that the coupling terms in
Eqs. (43) and (44) are constants multiplied by 2f

r2. Therefore,
it is possible to further decouple Eqs. (43) and (44) by
making the transformations

u0 ¼ q0; ð49Þ

u1 ¼ q1 þ q2; ð50Þ

u2 ¼ ðlþ d − 3Þq2 − lq1: ð51Þ

Inserting Eqs. (49)–(51) into Eqs. (42)–(44) yield
Eqs. (32)–(33) with k ¼ 1, 2, and inserting Eqs. (49)–(51)
into Eq. (45) yields Eq. (34). The vector-type component of
the Proca field is described by Eq. (30) and it is completely
decoupled from the scalar-type components of the Proca
field. Equation (30) can be further simplified into

D̂lu3 ¼ 0; ð52Þ

where

u3 ¼
χ

r
r
d
2
−1: ð53Þ

Defining trivially

u3 ¼ q3: ð54Þ

yields Eq. (33) with k ¼ 3. Thus, Eqs. (32)–(34) together
with the definitions Eqs. (35)–(39) have been obtained.
We confirm the results obtained in [25,26], for the

particular case of pure AdS, where the vector-type com-
ponent of the Proca field yields d − 3 degrees of freedom,
whereas the scalar-type component describes two degrees
of freedom, which are coupled by the mass of the field.
We find that, similarly to what was found in [18] for AdS4,
the scalar-type degrees of freedom decouple in AdSd, by
making a particular linear transformation to the relevant
fields.

IV. NORMAL MODES OF PROCA
PERTURBATIONS IN THE AdSd BACKGROUND

A. Initial considerations and boundary conditions

The normal modes in AdSd are dynamical solutions of
the Proca equations described by q0, q1, q2, and q3 in
Eqs. (32)–(34). Moreover, the Bianchi identity in Eq. (34)
can be used to describe q0 in terms of q1, q2, and q3, which
in turn obey Eq. (33). With the relation given by Eq. (34),
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the equation for q0, Eq. (32), is satisfied and so the picture
is consistent. The normal modes can then be obtained
solely by solving Eq. (33) for the q1, q2, and q3, with the
appropriate boundary conditions at the origin and at spatial
infinity. By making an extension to the complex numbers,
one can assume for the qkðt; rÞ an ansatz of the form
qkðt; rÞ ¼ qkðrÞe−iωkt, where ωk is the normal mode
frequency of the mode qk, which is analogous to perform-
ing a Fourier transformation from the time domain to the
frequency domain. Of course, when one wants to treat the
real field, one must project the complex field into the real
axis. The equations given in Eq. (33) can then be written for
the qkðrÞ as

∂
2
r�qk þ ðω2

k − VjkÞqk ¼ 0; ð55Þ

Vjk ¼ f

�
4jkðjk þ d − 3Þ þ ðd − 2Þðd − 4Þ

4r2
þ μ2

þ ðd − 2Þðd − 4Þ
4l2

�
; ð56Þ

for k∈ f1; 2; 3g. Equation (55) is a Schrödinger-like
equation for the normal modes, qk, with associated normal
mode frequencies, ωk. A general class of Schrödinger-like
equations governing the dynamics of fields in AdS with all
their possible boundary conditions at spatial infinity, were
analyzed in [21]. Here, we provide the analysis for the
Proca field equation given in Eq. (55) and its solutions.
We start by studying the behavior of the solutions near the
origin and near spatial infinity. We first deal with the
behavior at r ¼ 0. One can pinpoint the boundary con-
ditions by checking when the qk are square-integrable in
the sense of

R
q̄kqkdr�, where q̄k means complex conjugate

of qk. This implies that the regularity conditions are such
that qk ∝ rs as r → 0, for some s with s > − 1

2
. The

functions qk near r ¼ 0 have the behavior

qk ¼ αr¼0
k rjkþd−2

2 þ βr¼0
k r−jk−

d−4
4 ; ð57Þ

where αr¼0
k and βr¼0

k are constants, and where the equality
is valid in first order near r ¼ 0. In all the cases except the
case d ¼ 4, k ¼ 2, and j2 ¼ 0, the functions qk are not
square integrable if βr¼0

k is finite. Therefore, the regularity
condition is βr¼0

k ¼ 0. In the case of d ¼ 4, k ¼ 2, and
j2 ¼ 0, the function q2 is square integrable if βr¼0

2 is finite,
since q2 ¼ αr¼0

2 rþ βr¼0
2 . Still, this solution means that the

Proca field goes as Aμ ∼ 1
r and it is rather a solution to the

Proca equations but with a delta dirac distribution as a
source term, see Appendix B. For this reason, this particular
solution cannot be considered and the regularity condition
βr¼0
k ¼ 0 is maintained. Such argument for the regularity

condition is also present for the scalar field in AdS4 with
l ¼ 0, see [21]. Note also that in the case of the scalar-type
Proca field with d ¼ 4 and j2 ¼ 0, the asymptotic

expansion at r ¼ 0 of the integrand of the energy E defined
as E ¼ Rt Tμνξ

μtν rd−2ffiffi
f

p drdΩ, for a constant t slice, where tμ

is its normal vector, ξμ is the timelike Killing vector, and
dΩ is the line element of the unit 2-sphere, seems to have
divergent terms r−1, r−2, and r−4, which only vanish if
βr¼0
2 ¼ 0.
Now, we analyze the boundary conditions at spatial

infinity, r → ∞. To do that, one looks at the behavior of the
Proca field near r → þ∞. For the functions qk to be square
integrable they must behave as qk ∼ rs, for some s with
s < 1

2
. From the Proca field equations, we get a behavior of

the qk near r → þ∞ as

qk ¼ αr¼∞
k r−

1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−3Þ2þ4μ2l2

p
Þ þ βr¼∞

k r−
1
2
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−3Þ2þ4μ2l2

p
Þ;

ð58Þ

where αr¼∞
k and βr¼∞

k are constants, and where the equality
is valid in first order near r ¼ ∞. For the case d > 4, the
functions qk are only square integrable if βr¼∞

k ¼ 0, which
is the Dirichlet boundary condition. For d ¼ 4 and
ðμlÞ2 ≥ 3

4
, the same rationale applies. However, for d ¼ 4

and 0 < ðμlÞ2 < 3
4
, the functions qk are square integrable

for finite βr¼∞
k . This is an interesting case because the

potential does diverge for positive μ2. According to [21],
it is then possible to impose a one parameter family of
boundary conditions. Still, by the calculation of the usual
energy of the Proca field, the condition βr¼∞

k ¼ 0 is the
only condition that ensures that the energy is finite and does
not diverge on t constant slices. Although the usual
definition of the energy has been chosen, we note that
there are different valid definitions of the energy function
for the fields where the energy is finite and conserved,
see [21]. Nevertheless, we admit Dirichlet boundary con-
ditions for the qk, which means that qkðr → þ∞Þ ¼ 0 for
every possible case.

B. Solutions of the Proca equations
and normal mode frequencies

The Proca equations in Eq. (55) can be put in the form,

∂
2
r�qk þ

�
ω2
k −

Gk

sin2ðr�l Þ
−

Hk

cos2ðr�l Þ
�
qk ¼ 0; ð59Þ

where k∈ f1; 2; 3g, r� ¼ l arctanðrlÞ, Gk ¼
4jkðjkþd−3Þþðd−2Þðd−4Þ

4l2 and Hk ¼ ðd−2Þðd−4Þþ4μ2l2

4l2 . This is a
second-order partial differential equation which is linear
and it has three regular singularity points at r�l ¼ − π

2
, r�l ¼ 0,

and r�
l ¼ þ π

2
. Therefore, this Fuchsian differential equation

can be transformed into an hypergeometric equation, see
details in Appendix B. The solutions of Eq. (59) that satisfy
the regularity conditions at r ¼ 0 and the Dirichlet boun-
dary conditions at r → þ∞ are
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qk ¼ ak

�
r
l

�
jkþd−2

2

�
1þ r2

l2

�
n−ωkl

2

× 2F1

"
−nþ ωkl;−n; jk þ

d − 1

2
;

r2

l2

1þ r2

l2

#
; ð60Þ

where k∈ f1; 2; 3g, ak is a constant, and with the normal
mode frequencies ωk being

ωkl ¼ 2nþ jk þ
d − 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3Þ2 þ 4μ2l2

q
; ð61Þ

where n∈N0, j1 ¼ lþ 1 with l∈N0, j2 ¼ l − 1 with
l∈N, and j3 ¼ l with l∈N. Notice that the monopole
case of the Proca field is described by q1 with j1 ¼ 1 or
l ¼ 0. Setting d ¼ 4, the expression of the normal mode
frequencies given in Eq. (61) agrees with the expression
given in [18].
Although we have not analyzed the case of negative μ2l2,

the asymptotic behavior in Eq. (58) and the mode frequen-
cies in Eq. (61) indicate that the eigenvalue problem is
well-defined even for negative field masses, as along as
they obey the inequality,

ðμlÞ2 ≥ −
ðd − 3Þ2

4
: ð62Þ

The bound given in Eq. (62) is the Proca field analog
of the Breitenlohner-Freedman bound. In d ¼ 4 the
Breitenlohner-Freedman bound for Proca fields in AdS4
is ðμlÞ2 ≥ − 1

4
. The Breitenlohner-Freedman bound was

found originally for a massive scalar field in pure AdS
and is given by ðμlÞ2 ≥ − 9

4
in d ¼ 4 [5], and is given by

ðμlÞ2 ≥ − ðd−1Þ2
4

for generic d [21].

V. NORMAL MODES OF THE MAXWELL FIELD
IN AdSd AS THE μ= 0 LIMIT OF PROCA NORMAL

MODES

A. Maxwell equations and boundary conditions

1. Maxwell equations

Maxwellian electromagnetic perturbations, also called
Maxwell perturbations, can be viewed as the limit of Proca
perturbations when μ ¼ 0. However, in Maxwell theory,
the field equations are gauge invariant and the field loses
one physical degree of freedom, which becomes a pure
gauge one. Thus, one cannot simply set μ ¼ 0 for Aμ in the
results above, as one of the degrees of freedom becomes
spurious. Indeed, the identity on the field Aμ, Eq. (7), no
longer follows directly from the field equations, becoming
simply a gauge choice. One finds that the gauge freedom in
Aμ is only scalar, with the vector-type sector of the Maxwell
field being gauge invariant. We display first the final

equations that are of interest here and then we show
how to obtain them from the Proca equations.
The Maxwell field is described by d − 1 components.

The time component q0ðt; rÞ ¼ q0ðrÞe−iω12t, the scalar-type
component q12ðt; rÞ ¼ q12ðrÞe−iω12t and the d − 3 vector-
type components q3ðt; rÞ ¼ q3ðrÞe−iω3t, where ω12 is a
normal mode frequency of q12 and ω3 is a normal mode
frequency of q3. The component q0 is given by

q0ðrÞ ¼
i

ω12r
d
2
−2

∂r� ðq12r
d
2
−2Þ; ð63Þ

and is completely determined by the scalar-type component
q12, which in turn obeys

∂
2
r�q12 þ ðω2

12 − V12ðrÞÞq12 ¼ 0; ð64Þ

V12ðrÞ ¼ f
�
4lðlþ d − 3Þ þ ðd − 4Þðd − 2Þ

4r2

þ ðd − 4Þðd − 6Þ
4l2

�
: ð65Þ

This scalar-type component of the Maxwell field has been
denominated as q12 since it is the corresponding mode to
the Proca q1 and q2 modes when the mass of the field is
zero μ ¼ 0. The vector-type components covers the same
d − 3 degrees of freedom as in the massive case and so they
are governed by Eq. (59), for k ¼ 3 and μ ¼ 0, i.e.,

∂
2
r�q3 þ ðω2

3 − V3Þq3 ¼ 0; ð66Þ

V3 ¼ f

�
4lðlþ d − 3Þ þ ðd − 2Þðd − 4Þ

4r2

þ ðd − 2Þðd − 4Þ
4l2

�
; ð67Þ

where these vector-type components of the Maxwell field
have been denominated as q3 since they are the corre-
sponding modes to the Proca q3 modes when the mass of
the field is zero μ ¼ 0. Surely, there is no possibility of
confusion, now we are dealing with Maxwell modes.
Let us derive the above equations. In Maxwell theory, the

field equations are gauge invariant which means that the
Proca field loses one physical degree of freedom when
μ ¼ 0. Thus, in the perturbed quantities there is one mode
that becomes nonphysical. In order to distinguish between
the physical degrees of freedom and the pure gauge ones,
it is useful to work with gauge-invariant variables rather
than with Aμ. Under the gauge transformation, using the
notation of Eqs. (15) and (16), the fields transform as

Ãa → Ãa þ ∂ah;

Âi ¼ ÂðvÞ
i þ ∇̂iÂ

ðsÞ → ÂðvÞ
i þ ∇̂iðÂðsÞ þ hÞ; ð68Þ
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for some gauge function h. One sees that the gauge freedom
in Aμ is only scalar, with the vector-type sector of the
Maxwell field being gauge invariant. We start to play with
the scalar-type components. For the scalar-type compo-
nents, one has to go back to Eqs. (28) and (29). Setting
μ ¼ 0 in them one has

∇̃b∇̃½aψb� þ ðd−2Þ∂br
r
∇̃½aψb� þ k2s

2r2
ðψa−∂

aϕÞ¼ 0; ð69Þ

∇̃bðψb − ∂
bϕÞ þ ðd − 4Þ ∂br

r
ðψb − ∂

bϕÞ ¼ 0: ð70Þ

This motivates the definition of the field ζa given by

ζa ¼ ψa − ∂
aϕ; ð71Þ

which is gauge invariant. Indeed, one can expand the gauge
function h as hðy; θÞ ¼ hðyÞYðθÞ, so that, under a gauge
transformation, one has ψa → ψa þ ∂ah and ϕ → ϕþ h,
where the k⃗s indices were omitted for convenience. In terms
of ζa the equations of motion, Eqs. (69) and (70) become

2∇̃b∇̃½aζb� þ 2ðd − 2Þ ∂br
r

∇̃½aζb� þ k2s
r2

ζa ¼ 0; ð72Þ

∇̃bðrd−4ζbÞ ¼ 0: ð73Þ

Note that this transformation completely removes a
pure gauge degree of freedom from the system, as
fψa;ϕg → fζag. This only happens in the massless case,
where ζa factorizes. In the background of AdSd spacetime,
substituting Eq. (73) in the r component of Eq. (72), and
further making the transformation

q12ðrÞ ¼
ζrðt; rÞ

r
fr

d
2
−1eiω12t; ð74Þ

yields the equations, ∂2r�q12 þ ðω2
12 − V12ðrÞÞq12 ¼ 0, with

V12ðrÞ ¼ f½4lðlþd−3Þþðd−4Þðd−2Þ
4r2 þ ðd−4Þðd−6Þ

4l2 �, which corre-
spond to Eqs. (64) and (65). Making the transformation

q0ðrÞ ¼
ζtðt; rÞ

r
r
d
2
−1eiω12t; ð75Þ

yields q0ðrÞ ¼ i

ω12r
d
2
−2
∂r� ðq12r

d
2
−2Þ, which corresponds to

Eq. (63) and is completely determined from the scalar-
type component q12. Finally, since the gauge freedom in
Aμ is only scalar, with the vector-type sector of the
Maxwell field being gauge invariant, see Eq. (68), this
means that, in the μ ¼ 0 limit, the vector-type component
of Aμ covers the same d − 3 degrees of freedom as in the
massive case and so they are governed by Eq. (59), for
k ¼ 3 and μ ¼ 0, i.e., ∂

2
r�q3 þ ðω2

3 − V3Þq3 ¼ 0 with

V3¼f½4lðlþd−3Þþðd−2Þðd−4Þ
4r2 þðd−2Þðd−4Þ

4l2 �, which corresponds
to Eqs. (66) and (67).
All this agrees with the Maxwell field having d − 2

degrees of freedom. Indeed, while the vector-type compo-
nent covers d − 3 degrees of freedom, the scalar-type
component only covers one degree of freedom, which in
this case was chosen to be ζrðt; rÞ or q12ðrÞ. Note also that
we are treating only dynamical solutions of the Maxwell’s
equations, and so the frequencies ω must be nonzero.

2. Boundary conditions

In summary, the Maxwell field is comprised of a scalar-
type component q12 that satisfies the Maxwell equation
Eq. (64). and of vector-type components q3 that satisfy the
Maxwell equation Eq. (66).
With respect to the regularity conditions, both q12 and q3

have the same behavior as the Proca qk in Eq. (57) near
r ¼ 0. Thus,

qi ¼ αr¼0
i rlþd−2

2 þ βr¼0
i r−l−

d−4
2 ; ð76Þ

where now i∈ f12; 3g, and αr¼0
i and βr¼0

i are constants. For
all cases of the electromagnetic field, the qi are square
integrable if βr¼0

i ¼ 0, and so we admit this condition as the
regularity condition.
In relation to the boundary conditions at spatial

infinity, some care must be taken. In the massive case,
both scalar-type and vector-type perturbations have the
same effective mass. This contrasts with the massless case,
where the effective mass for the scalar-type component,

μ2eff ¼ ðd−4Þðd−6Þ
4l2 , and the effective mass for the vector-type

component, μ2eff ¼ ðd−2Þðd−4Þ
4l2 , are functionally different,

being only the same in d ¼ 4. This means that the
asymptotic behavior at spatial infinity is different for the
scalar-type component and for the vector-type components.
Near spatial infinity, the electromagnetic fields behave as

q12 ¼

8>>><>>>:
αr¼∞
12

r þ βr¼∞
12 for d ¼ 4;

αr¼∞
12ffiffi
r

p þ βr¼∞
12

ln rffiffi
r

p for d ¼ 5;

αr¼∞
12

r
d
2
−2
þ βr¼∞

12 r
d
2
−3 for d ≥ 6;

ð77Þ

q3 ¼
αr¼∞
3

r
d
2
−1

þ βr¼∞
3 r

d
2
−2 for d ≥ 4; ð78Þ

where αr¼∞
i and βr¼∞

i are constants, with i∈ f12; 3g.
For the scalar-type perturbation, q12, in d ¼ 4 the field is

square integrable for nonzero and finite βi when r → ∞.
The requirement that the usual definition of the energy is
finite and independent of the t constant slice allows for the
two reflective boundary conditions, the Dirichlet and
the Neumann, with the Dirichlet imposing βr¼∞

i ¼ 0 and
the Neumann imposing αr¼∞

i ¼ 0. Also, other boundary
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conditions for these cases are also possible, see [16,21].
Nevertheless, we impose βr¼∞

i ¼ 0, which corresponds
to the Dirichlet boundary condition. For the scalar-type
perturbation, q12, in d ¼ 5, the field is square integrable
for every αr¼∞

12 , βr¼∞
12 . Moreover, the Dirichlet boundary

condition, which imposes the field to vanish at r → þ∞,
does not restrict the asymptotic coefficients and leaves the
eigenvalue problem ill-defined. In order to have well-
defined dynamics for the field in the sense of [21], one
needs to choose αr¼∞

12 and βr¼∞
12 carefully. The boundary

condition that keeps the usual definition of the energy to
be finite and time independent is that βr¼∞

12 ¼ 0, which
removes the dominant logarithmic term in Eq. (77), and in
this case, since it involves the field and first derivatives
of the field, is a Dirichlet-Neumann boundary condition.
For the scalar-type perturbation, q12, in d ¼ 6, the field is
square integrable for nonzero and finite βr¼∞

i , as in the case
d ¼ 4. Here, it seems that the requirement that the usual
definition of the energy is finite and independent of the t
constant slice only allows the Dirichlet boundary condition.
Also notice that other boundary conditions for this cases
are also possible, see [16,21]. Nevertheless, we impose
βr¼∞
i ¼ 0, which corresponds to the Dirichlet boundary

condition. For the scalar-type perturbations, q12, in d ≥ 7,
the field is square integrable only if βr¼∞

i ¼ 0. Therefore,
Dirichlet boundary conditions must be imposed.
For the vector-type perturbation, q3, in d ¼ 4, the field

is square integrable for nonzero and finite βr¼∞
i . The

requirement that the usual definition of the energy is
finite and independent of the t constant slice allows also
for the two reflective boundary conditions, the Dirichlet
and the Neumann, with the Dirichlet imposing βr¼∞

i ¼ 0

and the Neumann imposing αr¼∞
i ¼ 0. As well, other

boundary conditions for these cases are possible, see
[16,21]. Nevertheless, we impose βr¼∞

i ¼ 0, which corre-
sponds to the Dirichlet boundary condition. For the vector-
type perturbations, q3, in d ≥ 5, the fields are only square
integrable if βr¼∞

i ¼ 0. Therefore, Dirichlet boundary
conditions must be imposed.
With these considerations and for consistency in order to

compare with the Proca field normal modes, we still apply
to the Maxwell field the Dirichlet boundary conditions for
both vector-type and scalar-type perturbations, for every
case, i.e., qiðr → ∞Þ ¼ 0.

B. Solutions of the Maxwell equations
and normal mode frequencies

To obtain the normal modes, one can put the equations
obeyed by q12 and q3 in the form

∂
2
r�qi þ

 
ω2
i −

Gi

sin2ðr�l Þ
−

Hi

cos2ðr�l Þ

!
qi ¼ 0; ð79Þ

where i∈ f12; 3g, and the constants are Gi ¼
4lðlþd−3Þþðd−2Þðd−4Þ

4l2 , H12 ¼ ðd−4Þðd−6Þ
4l2 , and H3 ¼ ðd−2Þðd−4Þ

4l2 .
Imposing the regularity and the Dirichlet boundary

conditions for d ¼ 4 and d ≥ 6, and Dirichlet-Neumann
boundary conditions for d ¼ 5, one obtains that the
solutions are described by the hypergeometric functions,
see Appendix B, and they yield,

qi ¼ ai

�
r
l

�
lþd−2

2

�
1þ r2

l2

�
n−ωil

2

× 2F1

�
−nþ ωil;−n;lþ d − 1

2
;

r2

l2

1þ r2

l2

�
; ð80Þ

for i∈ f12; 3g, with the normal mode frequencies

ω12 ¼
8<:

2nþ lþ 2 for d ¼ 4;

2nþ lþ 2 for d ¼ 5;

2nþ lþ d − 3 for d ≥ 6;

ð81Þ

ω3 ¼ 2nþ lþ d − 2 for d ≥ 4; ð82Þ

with n∈N0 and l∈N, where Rþ are the positive real
numbers.
It is interesting to reflect on the normal modes of the

Maxwell electromagnetic field as the massless limit of the
Proca field. The scalar-type perturbations need to be treated
with some care as we have seen. For d ¼ 4, the scalar-type
perturbation has the same frequency as the vector-type.
Since the massless limit of the Proca field yields different
frequencies for the scalar and vector perturbations, this
discrepancy indicates some discontinuity in the massless
limit, which indeed happens in the frequencies of the scalar
perturbations. For d ¼ 5, the normal mode frequencies of
the scalar-type perturbation of the electromagnetic field
follow from the massless limit of the Proca field. It must be
noted however that the frequencies for the scalar-type
perturbation of the electromagnetic field were obtained
using Dirichlet-Neumann conditions, rather than Dirichlet
boundary conditions that were imposed to the original
Proca field. Indeed, the Dirichlet boundary conditions leave
the eigenvalue problem ill-defined. For d ≥ 6, the electro-
magnetic scalar-type normal modes follow from the mass-
less limit of the modes in Eq. (61) for k ¼ 2 and
j2 ¼ l − 1, indicating that q2 describes the electromagnetic
mode, but now extended to the massive case, and that q1
describes the scalar field degree of freedom of the Proca
fields, which in the massless case can be removed by the
gauge freedom. On the other hand, the vector-type pertur-
bation of the electromagnetic follows directly from the
massless limit of the vector-type perturbation of the Proca
field and so one sets directly μ ¼ 0 in Eq. (61) for k ¼ 3
and j3 ¼ l, and obtains the normal frequencies in Eq. (82).
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We have obtained the normal modes for the Maxwell
electromagnetic perturbations by working in all detail the
massless limit of the Proca perturbations. Our results agree
with those found in [21], where a direct analysis of the
Maxwell field from a master equation in AdSd was
performed. The results also conform to the Maxwell
electromagnetic perturbations for AdSd found in [22,23],
and they recover the μ ¼ 0 limit of the Proca field for
AdS4 [18], see also [12].

VI. CONCLUSIONS

In this work, the normal modes of linear Proca
perturbations in AdSd background were obtained analyti-
cally, using the Ishibashi-Kodama formalism. The Proca
field was decomposed into different components accord-
ing to its tensorial behavior on the sphere, yielding scalar-
type components, covering two degrees of freedom of the
field, and vector-type components, covering the remaining
d − 3 degrees of freedom. In general, while in the scalar-
type sector the two degrees of freedom are coupled, due to
the mass of the field, in the vector-type sector the modes
are completely decoupled. In AdSd, the scalar-type
perturbations can be indeed decoupled in the equations
and they are covered independently by two fields, q1
and q2. The vector-type perturbations can be covered by
one field only, q3.
The usual regularity boundary conditions at the center

and Dirichlet boundary conditions at infinity were imposed
to the Proca equations. We used a Dirichlet condition
because it is the condition that ensures that the usual
definition of the energy through the conservation of ξμTμν,
where ξμ is the timelike Killing vector and Tμν is the stress-
energy tensor, is finite and is independent of the t constant
hypersurface. It would be interesting to investigate the
eigenfrequency problem for other possible boundary con-
ditions. Using the regularity and the Dirichlet conditions,
the solutions for the Proca field were obtained and found to
be described by hypergeometric functions. The normal
mode frequencies were obtained for any value of the Proca
mass μ and for d ≥ 4. For the d ¼ 4 case, the expression of
the frequencies agrees with previous works. We have also
found an explicit expression for Breitenlohner-Freedman
bound of the Proca field in AdSd.
The normal modes of Maxwell electromagnetic pertur-

bations in AdSd were also obtained analytically through the
μ ¼ 0 limit of Proca perturbations. In this case, by working
with gauge-invariant variables, it was possible to separate
the physical modes from the nonphysical ones. For con-
sistency, the regularity and Dirichlet boundary conditions
were used, except for the case of d ¼ 5where the Dirichlet-
Neumann boundary condition was used, in order to analyze
the massless limit of the Proca field. We have thus
recovered the normal mode frequencies of the Maxwell
field found in previous works, with the d ¼ 4 case

regarding the scalar perturbations having to be treated with
much care, in particular, the massless limit of the Proca
scalar perturbations in d ¼ 4 does not lead directly to the
Maxwell field scalar perturbation modes.
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APPENDIX A: SPHERICAL HARMONICS ON
THE (d − 2)-SPHERE

1. Initial considerations

The decomposition of fields in spherical harmonics is
important to study the structure of their perturbations and
to isolate the physical degrees of freedom of the fields
themselves. Here, we discuss in some detail the properties
of these special functions.
The approach we adopt here to construct spherical

harmonics on the (d − 2)-sphere, Sd−2, follows [27], where
spherical harmonics are constructed by embedding Sd−2 in
a (d − 1)-Euclidean space,Rd−1. Firstly, we introduce some
useful concepts: (a) a polynomial hl∶ Rd−1 → C is homo-
geneous of degree l inRd−1 if hlðλxμÞ ¼ λlhlðxμÞ, for any
λ∈R; xμ ∈Rd−1; (b) a polynomial hl∶ Rd−1 → C is har-
monic in Rd−1 if □Ehl ¼ 0, where □E is the Laplacian on
Rd−1; (c) a spherical harmonic of degree l on Sd−2 is a
function Yl∶ Sd−2 → C such that, for some homogeneous
and harmonic polynomial in Rd−1, hl, YlðθÞ ¼ hlðθÞ for
all θ ¼ ðθ2;…θd−1Þ∈Sd−2. Spherical harmonics on the
(d − 2)-sphere can also be constructed recursively by
dimensional reduction, see, e.g., [28], but the approach
becomes cumbersome when constructing vector spherical
harmonics. For more details on the matter we refer
to [27–30], see also [24].

2. Scalar spherical harmonics

In spherical coordinates, the Rd−1 line element, ds2, is
related to the Sd−2 line element, ðdΩd−2Þ2 ¼ ĝijdθidθj, by
ds2 ¼ dr2 þ r2ðdΩd−2Þ2. Using Eq. (11), the nonvanishing
Christoffel symbols associated to gμν in these coordinates are

Γr
ij ¼ −rĝij; Γi

rj ¼
1

r
δij; Γi

jk ¼ Γ̂i
jk; ðA1Þ

and the condition for a homogeneous polynomial of degree
l, hl, to be harmonic in Rd−1, becomes

□Ehl ¼ 1

rd−2
∂rðrd−2∂rhlÞ þ

1

r2
□̂hl ¼ 0; ðA2Þ
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where □̂ ¼ ĝij∇̂i∇̂j. Since hl is homogeneous, it follows
that hlðxÞjS ¼ rlhlðx̂ÞjS ¼ rlYlðθÞ, where xμ ¼ rx̂μ, so
that, substituting in Eq. (A2), one has

□̂Yl ¼ −lðlþ d − 3ÞYl; l ¼ 0; 1; 2;…: ðA3Þ
Yl are called scalar spherical harmonics. Besides being
eigenfunctions of □̂, it can also be shown that they form a
complete and orthogonal set on Sd−2.

3. Vector spherical harmonics

Vector spherical harmonics can be constructed in the
same way as scalar spherical harmonics, only this time
one starts with vector functions Vl

ν∶ Rd−1 → Cd−1. Using
the Helmholtz-Hodge theorem, Vl

ν can be written as, in
analogy to Eq. (15),

Vl
νdxν¼Vl

r drþðWl
i þ∇̂iσ

lÞdθi; ∇̂iWl
i ¼0; ðA4Þ

where Wi
l is a vector on the (d − 2)-sphere and Vl

r and σl

are scalars. Expanding □EVl
ν in spherical coordinates, and

assuming that Vl
ν is harmonic, one has

□EWl
i ¼ ∂

2
rWl

i þ
d − 4

r
∂rWl

i −
d − 3

r2
Wl

i þ
1

r2
□̂Wl

i ¼ 0;

ðA5Þ

as well as two coupled equations for the scalars Vl
r

and σl [27]. Here, we are only interested in the equations
for Wl

i . Since V
l
ν is homogeneous, Vl

μðxÞ ¼ rlVl
μðθÞ. This

means that Vl
ν ðxÞdxν ¼ ∂xμ

∂r r
lVl

μðθÞdrþ ∂xμ

∂θi
rlVl

μðθÞdθi
and so Wl

i þ ∇̂iσ
l ¼ rlþ1 ∂x̂μ

∂θi
Vl
μðθÞ, where xμ ¼ rx̂μ.

Hence, we define YliðθÞ as the angular dependence of
Wl

i ðxÞ, i.e., Wl
i ðxÞjS ¼ rlþ1YliðθÞ, which put in Eq. (A5),

it follows that,

□̂Yli ¼ −½lðlþ d − 3Þ − 1�Yli; l ¼ 1; 2;…: ðA6Þ

The vectors Yli are called transverse vector spherical
harmonics, as they verify ∇̂iYli ¼ 0. One can also con-
struct longitudinal vector spherical harmonics, YL

li, by
taking the gradient of scalar fields on Sd−2. These are
defined as [29]

YL
li ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ d − 3Þp ∇̂iYl; ðA7Þ

and have eigenmodes

□̂∇̂iYl¼−½lðlþd−3Þ−ðd−3Þ�∇̂iYl; l¼1;2;…:

ðA8Þ

4. Properties under rotation and parity transformations

Now, let φ and ui be, respectively, a scalar field and a
vector field on Sd−2. The action of the SOðd − 1Þ Casimir
operator, Ĵ2, on these two entities is Ĵ2φ ¼ −□Sφ and
Ĵ2ui ¼ −ð□S − ðd − 3ÞÞui, see [21]. Using Eqs. (A3),
(A6), and (A8), one gets the following:

Ĵ2Yl ¼ lðlþ d − 3ÞYl; ðA9Þ

Ĵ2∇̂iYl ¼ lðlþ d − 3Þ∇̂iYl; ðA10Þ

Ĵ2Yli ¼ ½lðlþ d − 3Þ þ d − 4�Yli: ðA11Þ

One sees that, for l ≥ 1 and d > 4, the Casimir eigenvalues
of the scalar spherical harmonics and of the longitudinal
vector spherical harmonics are the same. One then expects
these modes to mix. On the contrary, the Casimir eigen-
values of the transverse vector spherical harmonics are
never equal for d > 4 to the eigenvalues of the longitudinal
vector spherical harmonics, so that these completely
decouple. For d ¼ 4, the last are equal and one might
expect to have mixed modes. However, in this case, the
modes are decoupled due to their different parity eigen-
values. Indeed, under parity transformations θi¼2 →
π − θi¼2 and θi¼3 → π þ θi¼3, one has P̂Yl ¼ ð−1ÞlYl,
P̂∇̂iYl ¼ ð−1Þl∇̂iYl and P̂Yli ¼ ð−1Þlþ1Yli. Note that a
vector, Aθi , on the (d − 2)-sphere transforms under parity as
Aθi¼1

→ Aθi¼1
and Aθi≠1 → −Aθi≠1 .

APPENDIX B: HYPERGEOMETRIC
DIFFERENTIAL EQUATION

1. General equation

We study now the solutions of the hypergeometric
differential equation, based on [30], see also [21].
The Proca and electromagnetic field equations can be

separated and decoupled to assume the reduced form

∂
2
r�qþ

 
ω2 −

G

sin2
	r�
l


 − H

cos2
	r�
l


!q ¼ 0; ðB1Þ

as it appears in Eqs. (59) and (79), where r� ¼ l arctanðrlÞ,
G ¼ 4jðjþd−3Þþðd−2Þðd−4Þ

4l2 for j∈N0, and H for now is some
constant that depends on d, l, μ, and j with units of 1

l2. By
making the change

qðzÞ ¼ zαð1 − zÞβΘðzÞ; ðB2Þ

with
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z ¼ sin2
�
r�
l

�
; ðB3Þ

and recalling r� ¼ l arctan r
l, one can transform Eq. (B1)

into the hypergeometric differential equation

zð1 − zÞ d
2Θ
dz2

þ ½c − ðaþ bþ 1Þz� dΘ
dz

− abΘ ¼ 0; ðB4Þ

with a ¼ αþ β þ ωl
2
, b ¼ αþ β − ωl

2
, c ¼ 2αþ 1

2
, and

α ¼ 2jþd−2
4

, β ¼ 1
4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Hl2

p
Þ. For d even, the sol-

utions of (B4) are given in terms of the hypergeometric
function, 2F1, as [30]

qðzÞ¼Azαð1−zÞβ2F1½a;b;c;z�
þBz1=2−αð1−zÞβ2F1½a−cþ1;b−cþ1;2−c;z�

for d even; ðB5Þ

where A and B are constants of integration. For d odd, the
indicial roots of Eq. (B4) are separated by an integer,
making the solutions presented linearly dependent. In this
case, since c ≥ 2 and it is an integer, qðzÞ can be written
as [30]

qðzÞ ¼ Azαð1 − zÞβ2F1½a; b; c; z� þ Bzαð1 − zÞβ

×

�
2F1½a; b; c; z� ln zþ

X∞
i¼1

vizi −
Xc−1
i¼1

wiz−i
�

for d odd; ðB6Þ

where

vi ¼
ðaÞiðbÞi
ðcÞiði!Þ

½Ψðaþ iÞ −ΨðaÞ þΨðbþ iÞ −ΨðbÞ

−Ψðcþ iÞ þ ΨðcÞ −Ψð1þ iÞ þ Ψð1Þ�; ðB7Þ

wi ¼
ði − 1Þ!ð1 − cÞi
ð1 − aÞið1 − bÞi

; ðB8Þ

ðaÞi ¼ ΓðaþiÞ
ΓðaÞ if a > 0, ðaÞi ¼ ð−1Þið−a − iþ 1Þi if a < 0,

and the same for ðbÞi and ðcÞi, and ΨðaÞ ¼ Γ0ðaÞ
ΓðaÞ is the

digamma function, see [30].

2. Imposing regularity conditions near r= 0, i.e., z= 0

To obtain the normal modes, one needs to impose
boundary conditions that characterize the system. At
r ¼ 0 or z ¼ 0, one imposes regularity conditions so that
the solution does not diverge there.
For even spacetimes, it is seen from Eq. (B5) that

for α > 1
2

one needs to set B ¼ 0, considering that
limz→0 2F1½a; b; c; z� ¼ 1. For α ¼ 1

2
, which corresponds

to the case q2 with l ¼ 1 and d ¼ 4, the exponent in z
vanishes and the solution seems to be finite near z ¼ 0.
However, this is just an artifact of having removed the
origin when separating the field in spherical harmonics,
see [21]. Indeed, if one writes the components of the
four-dimensional Proca field Ar, Aθ2 and Aθ3 in terms of q2
with l ¼ 1 and the other fields put to zero, one arrives at
Ar¼ 1

rf

P
1
m¼−1q2ð0;mÞYð1;mÞ, Aθ2 ¼

P
1
m¼−1 q2ð0;mÞ∂θ2Yð1;mÞ,

and Aθ3 ¼ −
P

1
m¼−1

q2ð0;mÞ
d−3 ∂θ3Yð1;mÞ, where q2ð0;mÞ is q2

with j2 ¼ 0, l ¼ 1 and azimuthal number m. Since near
the origin, the spacetime is flat, i.e., fðrÞ ≃ 1, and
q2ð0;mÞ ¼ Bð1;mÞ where Bð1;1Þ, Bð1;0Þ and Bð1;−1Þ are con-
stants, the behavior of the Proca field near the origin
becomes Ar≃ 1

rðBð1;1ÞYð1;1Þ þBð1;0ÞYð1;0Þ þBð1;−1ÞYð1;−1ÞÞ,
Aθ2 ≃ Bð1;1Þ∂θ2Yð1;1Þ þ Bð1;0Þ∂θ2Yð1;0Þ þ Bð1;−1Þ∂θ2Yð1;−1Þ,
Aθ3 ≃ Bð1;1Þ∂θ3Yð1;1Þ þ Bð1;0Þ∂θ3Yð1;0Þ þ Bð1;−1Þ∂θ3Yð1;−1Þ.
The components of a vector field transform as Aμ0 ¼
∂xμ

∂xμ
0 Aμ to give Ax; Ay; Az ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þz2
p , in Cartesian coor-

dinates. Since the Proca field equations Eq. (6) can be
written near the origin in Cartesian coordinates as
∂
ν
∂νAρ − μ2Aρ ¼ 0, where α ¼ ft; x; y; zg, one has

ð∂2x þ ∂
2
y þ ∂

2
zÞAx;y;z ∼ δðxÞδðyÞδðzÞ. Due to this additional

delta term, q2ð0;mÞ ¼ Bð1;mÞ, with Bð1;mÞ ≠ 0, cannot be a
solution near the origin and one needs to set B ¼ 0 in
Eq. (B5), even in this special case. Moreover, if one takes
the asymptotic expansion of the integrand of the usual
energy, Ttt

rd−2
f , near r ¼ 0, then one gets divergent terms

r−1, r−2 and r−4 which only vanish if B ¼ 0. Thus, in this
particular case of α ¼ 1

2
, which corresponds to the case q2

with l ¼ 1 and d ¼ 4, one has also B ¼ 0.
For odd spacetimes, all the terms of Eq. (B6) except the

last one vanish in the limit z → 0. For the last term, as c ≥ 2

and it is an integer, it can be seen that
P

c−1
i¼1 wizα−i contains

a power rs with s ≤ − 1
2
always and so the field q would not

be square integrable. Thus, one also needs to set B ¼ 0 in
this case.

3. Imposing Dirichlet boundary conditions
at spatial infinity, r → ∞, i.e., z → 1

a. Expansion at spatial infinity for general case

To impose the remaining boundary condition, one uses
the transformation law z → 1 − z of 2F1, so that, if
c − a − b ¼ 1

2
− 2β ≠ −m0 with m0 ∈N0 one has [30]

qðzÞ ¼ Azαð1 − zÞβ
�
ΓðcÞΓð1 − eÞ
ΓðāÞΓðb̄Þ 2F1½a; b; e; 1 − z�

þ ð1 − zÞ12−2β ΓðcÞΓðe − 1Þ
ΓðaÞΓðbÞ 2F1½ā; b̄; 2 − e; 1 − z�

�
;

ðB9Þ
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where e ¼ 1 − cþ aþ b, ā ¼ c − a and b̄ ¼ c − b. If
c − a − b ¼ 1

2
− 2β ¼ 0, one has

qðzÞ ¼ Azαð1 − zÞβ Γðaþ bÞ
ΓðaÞΓðbÞ

X∞
i¼0

ðaÞiðbÞi
ði!Þ2 ð1 − zÞi

× ½2Ψðiþ 1Þ − Ψðaþ iÞ − Ψðbþ iÞ − logð1 − zÞ�:
ðB10Þ

If c − a − b ¼ 1
2
− 2β ¼ −m0 with m0 ∈N, one has

qðzÞ¼Azαð1− zÞβ
�
Γðm0ÞΓðcÞ
ΓðaÞΓðbÞ

Xm0−1

i¼0

v0ið1− zÞi−m0

− ð−1Þm0X∞
i¼0

ΓðcÞð1− zÞi
Γða−m0ÞΓðb−m0Þ ½w

0
i lnð1− zÞþ ti�

�
;

ðB11Þ

with the coefficients defined by

v0i ¼
ða −m0Þiðb −m0Þi

i!ð1 −m0Þi
; ðB12Þ

w0
i ¼

ðaÞiðbÞi
i!ðiþm0Þ! ; ðB13Þ

ti¼w0
i

�
Ψðaþ iÞþΨðbþ iÞ−Ψðiþ1Þ−Ψðiþm0 þ1Þ�:

ðB14Þ

b. Proca field case

In the Proca field case, we have three fields q1, q2
and q3, where the value of j that appears in Eq. (B1)
for each field is j1 ¼ lþ 1, j2 ¼ l − 1 and j3 ¼ l.

The constant H in this case is H ¼ ðd−2Þðd−4Þþ4μ2l2

4l2 , which
leads to the expression of β in Eq. (B1) to become
β ¼ 1

4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3Þ2 þ 4μ2l2

p
Þ. Moreover, we have c −

a − b ≠ −m0 withm0 ∈N0. Therefore the correct expansion
at spatial infinity of the Proca field is described by Eq. (B9).
Since β > 1

2
, the first term of Eq. (B9) vanishes as the

gamma function in the numerator is finite. The remaining
term must be zero to satisfy the Dirichlet boundary
condition, which only occurs if either a or b are nonpositive
integers. By requiring that ω > 0, the Dirichlet boundary
condition leads to b ¼ −n, with n∈N0, and so the normal
mode eigenfrequencies ωkl for each field qk are

ωkL ¼ 2nþ jk þ
d − 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3Þ2 þ 4μ2L2

q
; ðB15Þ

where the normal mode eigenfunctions are given by

qkðrÞ ¼ Ak

�
r
l

�2jkþd−2
2

�
1þ r2

l2

�
n−ωkl

2

× 2F1

�
−nþ ωkl;−n; jk þ

d − 1

2
;

r2=l2

1þ r2=l2

�
:

ðB16Þ

c. Maxwell electromagnetic field case

Scalar-type perturbation:
The scalar-type perturbations for the Maxwell field are

described by the function q12, where the value of j that
appears in Eq. (B1) is j ¼ l. The constant H in this case is

H ¼ ðd−4Þðd−6Þ
4l2 , which leads to the expression of β in

Eq. (B1) to become β ¼ 1
4
ð1þ jd − 5jÞ.

For even dimensions, the expansion at spatial infinity of
q12 is described by Eq. (B9), since c − a − b ≠ −m0, with
m0 ∈N0. We distinguish two cases here, d ¼ 4 and d ≥ 6.
At spatial infinity for d ¼ 4, since β ¼ 1

2
, the first term in

Eq. (B9) vanishes while the second term is finite. We still
impose the Dirichlet boundary conditions and the first term
vanishes if b ¼ −n, with n∈N0 and ωl > 0. Therefore, the
normal mode frequencies are

ω12 ¼ 2nþ lþ 2; for d ¼ 4: ðB17Þ

For d ≥ 6 and even, at spatial infinity, since β ≥ 1
2
, the first

term in Eq. (B9) vanishes while the second term seems to
diverge for d > 6 and seems to assume a finite value for
d ¼ 6. Despite the d ¼ 6 case, we impose the Dirichlet
boundary conditions and the second term vanishes if
b ¼ −n, with n∈N0 and ωl > 0. Therefore, the normal
mode frequencies are

ω12 ¼ 2nþ lþ d − 3; for d ≥ 6: ðB18Þ

For odd dimensions, we split the analysis for d ¼ 5 and
d ≥ 7. For d ¼ 5, the expansion at spatial infinity of q12 is
described by Eq. (B10), since c − a − b ¼ 0. Therefore, at
spatial infinity, all the terms vanish in Eq. (B10). The
Dirichlet boundary conditions, which impose the field to
vanish at r → þ∞, makes the eigenvalue problem ill-
defined. One can instead impose a one parameter family
boundary condition. For example, one can choose a
boundary condition such that the logarithmic term vanishes
called Dirichlet-Neumann, which is satisfied if b ¼ −n,
with n∈N0, and so the frequency is given by

ω12 ¼ 2nþ lþ 2; for d ¼ 5: ðB19Þ

For d ≥ 7, the expansion at spatial infinity of q12 is
described by Eq. (B11), with β > 1

2
and c − a − b ¼ −m0
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with m0 ∈N. In this case, the second term vanishes while
the first term seems to diverge. We impose the Dirichlet
boundary conditions and so the first term vanishes if
b ¼ −n with n∈N0. The normal mode eigenfrequencies
are then also described by Eq. (B18).
The eigenfunctions for all the even and odd dimension

cases are

q12ðrÞ¼A12

�
r
l

�2lþd−2
2

�
1þr2

l2

�
n−ω12l

2

× 2F1

�
−nþω12l;−n;lþ

d−1

2
;

r2

l2

1þ r2

l2

�
: ðB20Þ

Vector-type perturbation:
The vector-type perturbations are described by the

function q3, where the value of j that appears in
Eq. (B1) is j ¼ l. The constant H in this case is
H ¼ ðd−2Þðd−4Þ

4l2 , which leads to the expression of β in
Eq. (B1) to become β ¼ 1

4
ðd − 2Þ.

For even dimensions, the expansion at spatial infinity
of q3 is described by Eq. (B9), since β ≥ 1

2
and

c − a − b ≠ −m0, with m0 ∈N0. At spatial infinity, it turns
out that the first term in Eq. (B9) vanishes while the second

term seems to diverge for d > 4 and assumes a finite value
for d ¼ 4. Despite the d ¼ 4 case, we impose Dirichlet
boundary conditions and the second term only vanishes if
b ¼ −n, with n∈N0. Therefore, the normal mode eigen-
frequencies are given by

ω3l ¼ 2nþ lþ d − 2: ðB21Þ

For odd dimensions, the expansion at spatial infinity
of q3 is described by Eq. (B11), since β > 1

2
and

c − a − b ¼ −m0, with m0 ∈N. At spatial infinity, the
first term in Eq. (B11) seems to diverge. Imposing the
Dirichlet boundary conditions, these terms vanish if again
b ¼ −n with n∈N0. The normal mode eigenfrequencies
for odd dimensions have then the same expression as
Eq. (B21).
The eigenfunctions for all the even and odd dimension

cases are

q3 ¼ A3

�
r
l

�2lþd−2
2

�
1þ r2

l2

�
n−ω3l

2

× 2F1

�
−nþ ω3l;−n;lþ d − 1

2
;

r2

l2

1þ r2

l2

�
: ðB22Þ
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