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The present paper is devoted to a new black bounce solution that regularizes the well-known rotating
black string in 3þ 1 dimensions. To do so, the procedure pointed out by Simpson-Visser is followed, which
has been already applied successfully to other static cases of black strings, with and without electric charge.
This method implies that we force a bounce on the radial coordinate, such that a wormhole throat arises
before the singularity, which renders a regular solution. An analysis of the metric is conducted, showing the
interpolation between a regular black hole and a wormhole, which provides a much richer family of
solutions than the original metric. Different curvature magnitudes are obtained in order to analyze the
regularity of the solution, including the Ricci and Kretschmann scalars. Finally, by following the Einstein
field equations the corresponding effective energy-momentum tensor is obtained and the energy conditions
are analyzed.
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I. INTRODUCTION

Black holes arise naturally as solutions in Einstein’s
general relativity (GR), featured by the presence of null
hypersurfaces known as event horizons that impose a one-
way path for any type of matter including light. These
solutions play a crucial role in GR as they define the
geometry resulting from the critical collapse of massive
bodies such as stars or star clusters [1]. Over the last years,
these solutions have gained significant attention due to
technological advancements, which have led to the detection
of gravitational waves by LIGO/VIRGO, as well as the first
images surrounding “hypothetical” supermassive black
holes at the center of our galaxy and M87 galaxy [2–5].
In GR, black holes solutions belong to the well-known

Kerr-Newman family. These solutions are characterized by
four basic parameters: mass M, angular momentum J,
electric charge Q and cosmological constant Λ (if any).
They exhibit axial symmetry (axisymmetric) and can be
asymptotically flat (whether the cosmological constant
becomes zero), de Sitter (Λ > 0), or anti–de Sitter
(Λ < 0). Actually the presence of the cosmological con-
stant influences directly their asymptotic behavior [6].
Another type solutions own cylindrical symmetry. These

types of solutions are particularly relevant in cosmology,
since allow the study of topologically stable defects such as
cosmic strings thatmay have formed during phase transitions

after the big bang [7]. Additionally, black strings arise in the
context of extra dimensions, where they represent solutions
of a p-brane model with p ¼ 1, where the black string
corresponds to a D1-brane. In the scenario where the
Universe is described by a brane in a space with extra
dimensions, gravitational collapse can lead to the formation
of a black hole on the brane, such that black strings are
solutions to Einstein’s equations in higher dimensions [8].
Black holes solutions in GR exhibit spacetime singular-

ities, where classical concepts break down and the theory
becomes nonpredictable. Singularities play a significant
role when considering the evaporation of black holes
through Hawking radiation, especially in the final stages
of the evaporation process and it is crucial to describe
accurately the spacetime in these conditions to address
fundamental questions regarding the interplay between
general relativity and quantum mechanics [9]. However,
it is possible to construct black holes solutions that are free
of singularities [10]. One approach is to consider spheri-
cally symmetric, static, asymptotically flat metrics with
regular centers. These regular solutions provide alternative
descriptions of black holes that circumvent the issues
associated with singularities and contribute to a better
understanding of black hole evaporation problems [11].
In this context, several works have been published propos-
ing regular solutions, such as the pioneering work by
Bardeen [12], as well as others [13–15]. Here, we intend to
emphasize on the regular metric proposed by Simpson and
Visser [16], where the metric turns out free of singularities
by introducing a modification on the Schwarzschild metric,
which shows up as follows:
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ds2 ¼ −
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�
dt2 þ dr2�

1 − 2mffiffiffiffiffiffiffiffiffi
r2þa2

p
�

þ ðr2 þ a2ÞdΩ2; ð1Þ

where “a” is a free parameter and “m” is a constant related
to the mass of the central object. Here, essentially the
change r2 → r2 þ a2 was applied to the Schwarzschild
solution. In summary, this metric exhibits the following
properties: if a > 2m, we have a two-way Morris-Thorne
wormhole [16,17]; for a ¼ 2m, a one-way wormhole arises
with a horizon located at the “throat,” similar to a
Schwarzschild wormhole [16,17]; and for a < 2m, the
metric describes a regular black hole with event horizons
located at rH ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ2 − a2

p
[16]. It is worthwhile to

note that the Schwarzschild solution is recovered for a ¼ 0.
An analysis of the tensor and curvature invariants revealed
the absence of singularities at the origin for a ≠ 0.
Nevertheless, the solution requires the violation of the
energy conditions, since it requires exotic sources to
generate such type of solution, regardless of whether it
corresponds to a black hole or a wormhole, at every point of
the spacetime. In addition, the expressions for the Hawking
temperature and the circular orbits for photons (photons
sphere) and massive particles (ISCO) have been analyzed,
where similar results in comparison to those of the
Schwarzschild solution were found, despite a correcting
factor of the type

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=k2

p
, with k a constant multiple of

m [16].
Moreover, other similar solutions inspired by (1) have

been proposed in recent years. All these solutions have in
common that depart from a nonregular solution and follow
a similar procedure as in the Simpson-Visser case in order
to make the solution free of singularities. Some of these
works include the regularization of the Reisnerr-Nordström
and Kerr-Newman black holes [18], thin disc accretion
analysis for the Simpson-Visser solution [19], the possibil-
ity of the existence of traversable wormholes in semi-
classical gravity [20], solutions in modified gravities [21],
gravitational lensing [22–24], the formation of “shadows”
around the central object [25], the use of the Gauss-Bonet
theorem to determine light deflection and the analysis of
the effects of dark matter [26], the need of phantom fields
[27,28], among other works [29–33]. One significant
question that arises is the nature of the source that could
generate such solutions, as they require exotic sources. In
the literature, as discussed in [34,35], it is quite common to
use nonlinear electrodynamics (NED) to describe regular
black hole solutions, including those with multiple hori-
zons. Another common approach involves a phantom field
to obtain traversable wormholes, as they require exotic
matter that violates the null energy condition (NED).
However, these individual sources cannot be used to
describe “black bounce” solutions. In the case of NED,

the condition T0
0 ¼ T1

1 must hold, which is clearly
violated in the case of the present paper and in other black
bounce scenarios. Similarly, for a regular scalar field or a
phantom field, the condition T0

0 ¼ T2
2 ¼ T3

3 should be
satisfied, which is also not valid for black bounce solutions.
One way to circumvent this problem is to assume a
coupling between two types of solutions, where the
presence of a phantom field is expected due to wormholes
being part of the Simpson-Visser solution, while NED
complements the solution to set the stress-energy tensor to
the Simpson-Visser spacetime, representing regular black
holes [35]. Extensive scientific literature can also be found
by using these sources for black strings, as in [36].
Recently, several works have been published where this

regularization is applied to solutions with cylindrical
symmetry [37–40], known as black strings. In these cases,
the regularization r2 → r2 þ a2 was applied to metrics
defined for static black strings [6,41] and the results were
extremely similar to the cases of static black bounce
solutions with spherical symmetry concerning the inter-
polation between black hole and traversable wormhole
solutions and the violation of the null energy condition for
all types of solutions inside and outside the event horizon,
as well as being regular for every value of a ≠ 0. However,
the solution for rotating black strings, as described in [41],
which are analogous to the case of the regularized Kerr or
Kerr-Newman solution, have not yet been explored yet.
Hence, the aim of the present paper is to apply the

Simpson-Visser procedure to a rotating black string,
following similar previous analysis [42], and study the
new features that might arise for this type of solution. To
do so, we study the structure of the new solution, where
new feature are found as well as its regularity by analyzing
the different curvature magnitudes. Finally, through the
Einstein’s field equations, the corresponding energy con-
ditions are obtained for an effective energy-momentum
tensor. Note also that, despite the use of the term “solution,”
the spacetime metric analyzed here does not correspond to
any knownmatter theory, but rather ametric proposal that is a
mathematical solution to the Einstein equations and exhibits
properties compatible with a rotating regular black string.
The paper is organized as follows: in Sec. II the new

solution for a regular black string is obtained. Section III
is devoted to the analysis of the structure of this new
metric. In Sec. IV, the corresponding curvature invariants
are obtained and show the regularity of the solution.
Section V shows the energy-conditions. Finally, Sec. VI
gathers the main results of the paper.

II. BLACK-BOUNCE FOR ROTATING
BLACK STRINGS

Let us start by introducing the spacetime metric that
describes a rotating black string in a form analogous to the
spherically symmetric case expressed in Boyer-Lindquist
coordinates [41]:
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ds2 ¼ −ΔNRðrÞ
�
γdt −

ω

α2
dφ

�
2

þ r2ðγdφ − ωdtÞ2

þ dr2

ΔNRðrÞ
þ α2r2dz2; ð2Þ

where

ΔNRðrÞ ¼ α2r2 −
b
αr

; b ¼ 4M

�
1 −

3J2α2

2

�
;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J2α2=2
1 − 3J2α2=2

s
; ω ¼ Jα2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3J2α2=2
p : ð3Þ

Here α2 ¼ −Λ=3 is an effective cosmological constant,
M is the mass density and J is a constant associated with
the angular momentum density. For faraway observers,
this solution extends uniformly along the z-axis, providing
a R × S1 topology. Note also that this spacetime is not
asymptotically flat but anti–de Sitter. As shown in
Ref. [41], this theoretical spacetime can be generated by
using nonlinear electrodynamics (NED) and a scalar field,
which will also include a non-null electric charge, not
considered here in order to simplify the mathematical
expressions (its extension can be followed trivially).
Nevertheless, the spacetime metric (1) is geodesically

incomplete, since it contains a singularity located at r ¼ 0
as can be easily inferred by analyzing the Kretschmann
scalar:

RμνλρRμνλρ ¼ 24α4
�
1þ b2

2α6r6

�
: ð4Þ

As in the Kerr metric, the singularity has a ring structure.
Our goal here is to regularize the above metric (1) by
introducing a bounce on the radial coordinate, such that the
Kretschmann scalar becomes regular at every spacetime
point. This follows from the Simpson-Visser spherically
symmetric case [16], also implemented successfully for the
Kerr-Newman metric [42]. To do so, one assumes the radial
coordinate in the metric as r2 → r2 þ a2. Then, the metric
(1) turns out:

ds2 ¼ −ΔðrÞ
�
γdt −

ω

α2
dφ

�
2

þ ðr2 þ a2Þðγdφ − ωdtÞ2

þ dr2

ΔðrÞ þ α2ðr2 þ a2Þdz2; ð5Þ

where

ΔðrÞ ¼ α2ðr2 þ a2Þ − b

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p : ð6Þ

One can easily note that this metric is regular at r ¼ 0 and
also the Kretschmann scalar is. The radial coordinate is

actually defined in the range r∈ ð−∞;þ∞Þ and nothing
occurs at r ¼ 0 but the cylinder has a minimum size that
corresponds to a throat connecting two universes (for more
details, see below). It is straightforward to verify that this
solution reduces to the one defined in (1) as a → 0. This
result is also consistent with the regularization of a static
and neutral black string carried out in [38] by setting J ¼ 0,
which results in ω ¼ 0, γ ¼ 1, and b ¼ 4M. In the
following, we study the properties of this metric by
analyzing event horizons, surface gravity, curvature quan-
tities and finally by evaluating the energy-momentum
tensor through the Einstein equations in order to assess
the energy conditions of the system.

III. EVENT HORIZONS, SURFACE GRAVITY,
AND ERGOREGION

To study the properties of the black string described by
the metric (4), let us discuss the possible existence of
horizons and ergospheres. which follow the approach used
in black-bounce works by evaluating the metric defined in
(5). First, we will assess the existence of event horizons and
examine the behavior of this type of solution as a function
of the Simpson-Visser parameter a. The horizons are given
by the roots of ΔðrÞ, which define null hypersurfaces:

ΔðrÞ ¼ 0 → rH ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=3

α2
− a2

s

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

α2

�
16M2

�
1 −

3J2α2

2

�
2
�
1=3

− a2

s
; ð7Þ

where we have used the expressions in (2). Note that rH ¼
b1=3=α corresponds to the position of the event horizon for
the standard solution (a ¼ 0). Hence, depending on the
relative value of the parameter a, one might have the
following possibilities:

(i) For a2 > b2=3

α2
. For this case, the equation ΔðrÞ ¼ 0

has no real roots, such that there are no event
horizons and the metric (4) describes a rotating
cylindrically symmetric traversable wormhole.

(ii) For a2 < b2=3

α2
. The equation ΔðrÞ ¼ 0 has two real

roots that corresponds to two cylindrically symmet-
ric horizons, each one located in one universe. The
metric (4) describes a regular black hole.

(iii) For a2 ¼ b2=3

α2
. The unique solution for the equation

ΔðrÞ ¼ 0 is r ¼ 0, such that there is just one event
horizon that coincides with the throat of the worm-
hole. This is analogous to the spherically symmetric
case discussed in Ref. [16] and the metric (4)
corresponds to a nontraversable cylindrically sym-
metric rotating wormhole.

We observe that these results are consistent with black-
bounce type solutions, where the horizon position, if any, is
corrected by a factor of the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=r2HNR

p
, with rHNR
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being the position of the horizon in the usual black string
solution. Hence, the result in (7) is consistent with previous
results [6] when setting a ¼ 0 and identical to that in [38]
for J ¼ 0. Moreover, the surface gravity can be also easily
obtained as a function of rH in those cases that exists:

κrH ¼ 1

2

d
dr

ΔðrHÞ ¼ κNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2H

r2H þ a2

s
; ð8Þ

where κNR ¼ 3αb1=3
2

is the surface gravity of the standard
solution. This result is again consistent with the standard
case (a ¼ 0) and with the regular static solution (J ¼ 0).
Moreover, the metric (4) might also provide an ergo-

region, limited by the roots of gtt ¼ 0, which are given by:

rE ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

bγ2

αðw2 − α2γ2Þ
�
2=3

− a2

s

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

α2

�
16M2

�
1 −

J2α2

2

�
2
�
1=3

− a2

s
: ð9Þ

As above, this open a new set of possibilities, absent in
the singular black string solution (1). In addition, note
that for this type of metrics, the ergoregion will show up
as an infinite cylinder, as the topology of the event
horizon. Moreover, unlike the Kerr spacetime, both hyper-
surfaces do not coincide at any point. Let us define
B ¼ 1

α2
½16M2ð1 − J2α2

2
Þ2�1=3, then the following possibil-

ities might arise:
(i) For a2 ≥ B, there is no ergoregion and neither an

event horizon.
(ii) For a2 < B, there is an ergoregion. The possible

existence of an event horizon depends on the relative
value of a, as explained above.

Now that we have assessed some basic properties of the
metric, we need to study the curvature quantities to analyze
the regularity of this solution. For this purpose, we will
determine the curvature invariants such as the Ricci scalar
and the Kretschmann scalar, as well as the curvature tensors
such as the Riemann tensor and the Ricci tensor, and
evaluate them at r ¼ 0 to verify their finiteness.

IV. CURVATURE INVARIANTS
AND REGULARITY

To evaluate whether this solution is free of singularities,
the analysis of the behavior of curvature magnitudes
evaluated at r ¼ 0 is required, since the original metric
shows a singularity, similar to the one in the Kerr
metric. For the case of static solutions, the analyze of
the Kretschmann scalar is enough, as pointed out in
Refs. [38,40,42]. Wether this scalar is finite when evaluated
at r ¼ 0, the solution turns out regular [43]. Nevertheless,
since the solution studied here is not static but rotating, the

Kretschmann scalar by itself is not enough for the regularity
analysis, which means that a complete analysis including
other curvature invariants is necessary [42].
Then, the Ricci scalar, the Ricci contraction and the

Kretschmann scalar can be easily obtained for the space-
time metric defined in (5), leading to:

R ¼ −12α2 þ 3α2a2½b=α3 þ 2ðr2 þ a2Þ3=2�
ðr2 þ a2Þ5=2 ; ð10Þ

RμνRμν

¼ 36α4 −
18a2α4½b=α3 þ 2ðr2 þ a2Þ3=2�

ðr2 þ a2Þ5=2

þ 3a4α4½3b2=α6 þ 4ðr2 þ a2Þ3=2b=α3 þ 8ðr2 þ a2Þ3�
2ðr2 þ a2Þ5 ;

ð11Þ

RμνλρRμνλρ

¼ 24α4
�
1þ b2

2α6ðr2þa2Þ3
�
þ 3a2b2½11a2− 12ðr2þa2Þ�

α2ðr2þa2Þ5

þ 12α4a2½a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p
− 2ðr2þa2Þ3=2−b=α3�

ðr2þa2Þ5=2 : ð12Þ

One can note that these results are consistent with the
standard black string solution by setting a ¼ 0, as shown in
[44], and are consistent with the case of a regular neutral
black string when J ¼ 0, as shown in [38]. By evaluating
the above expressions (12) at r ¼ 0, one finds:

R ¼ −6α2 þ 3b
αa3

; ð13Þ

RμνRμν ¼ 12α4 þ 9b2

2α2a6
−
12αb
a3

; ð14Þ

RμνλρRμνλρ ¼ 24α4
�
1

2
þ 3b2

8α6a6
−

b
2α3a3

�
: ð15Þ

We can easily infer that this solution is free of singularities
as far as a ≠ 0, which is the fundamental parameter for
regularizing the solution, as these results show. Let us now
complete this analysis on the regularity of the solution (5)
by evaluating the curvature tensors at r ¼ 0 and verify that
all the components of these tensors are finite there. Since
our metric is not orthogonal, the tensors have a more
complex form than the static case. For instance, the Ricci
tensor is not diagonal as the component R02 is nonzero
(as neither R20). One way to simplify the analysis is to work
in the local frame by using the so-called “orthonormal
tetrads” (for more details on the local frame, one can study
Cartan structures in [45]). To simplify the calculations,
let us perform a change of variable in r by defining the
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new radial variable x such that x2 ¼ r2 þ a2, and
dr2 ¼ ð1 − a2=x2Þ−1dx2. In terms of this new variable,
the orthonormal tetrads can be written as:

ðe0̂Þμ ¼
α2ffiffiffiffiffiffiffijΔjp ðα2γ2 − ω2Þ ðγ; 0;ω; 0Þ; ð16Þ

ðe1̂Þμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj

�
1 −

a2

x2

�s
ð0; 1; 0; 0Þ; ð17Þ

ðe2̂Þμ ¼
1

xðα2γ2 − ω2Þ ðω; 0; α
2γ; 0Þ; ð18Þ

ðe3̂Þμ ¼
1

αx
ð0; 0; 0; 1Þ: ð19Þ

This result is consistent with what one would expect for the
nonrotating case as the terms where the index μ is different
from the index with the “hat” vanish when we set ω ¼ 0.
Therefore, the tetrads are diagonal, as occurs for the static
solution. In addition, for γ ¼ 1 the terms of the tetrads for the
static case are recovered, according to the metric defined
in [38].
Hence, from these results, we can determine the com-

ponents of the curvature tensors. In particular, we can
obtain the Ricci tensor as follows:

R0̂ 0̂ ¼ sign½Δ�
�
3α2 þ a2α2ðb=α3 − 4x3Þ

2x5

�
; ð20Þ

R1̂ 1̂ ¼ sign½Δ�
�
3a2α2ðb=α3Þ

2x5
− 3α2

�
; ð21Þ

R2̂ 2̂ ¼ R3̂ 3̂ ¼
a2α2

x2

�
b

α3x3
þ 2

�
− 3α2; ð22Þ

where sign½Δ� ¼ �1, with the positive sign used when
Δ > 0, i.e., outside the event horizon, and the negative sign
is used when Δ < 0, i.e., inside the horizon. Note that all
these components are identical to those of the regular
neutral black string when written as Rμ̂ ν̂, explicitly showing
their consistency with this solution when J ¼ 0. It can also
be observed that all of them, in the form of a (1,1)-tensor
result in −3α2 for a ¼ 0, as expected since the vacuum
solution is recovered, where Rμ̂ ν̂ ¼ Λ ¼ −3α2.
To evaluate these components at r ¼ 0, one has to take

x ¼ a, according to the definition for x. Then, the following
expressions for the Ricci components are obtained:

R0̂ 0̂ ¼ sign½Δ�
�
α2 þ b

2αa3

�
; ð23Þ

R1̂ 1̂ ¼ sign½Δ�
�
3b
2αa3

− 3α2
�
; ð24Þ

R2̂ 2̂ ¼ R3̂ 3̂ ¼
b
αa3

− α2: ð25Þ

Hence, as we have shown above, all these components are
finite as far as a ≠ 0. The same applies to the Riemann
tensor, which also has no divergences at r ¼ 0 under this
condition. Therefore, we can ensure that the spacetime
metric (5) is indeed regular, similar to what happens in the
case of Kerr-Newman black hole, except for the fact that in
this solution, R2̂ 2̂ ¼ R3̂ 3̂, what does not occur in the
regularization of Kerr-Newman black hole. In other words,
while the Kerr-Newman solution has all distinct pressures,
representing a completely anisotropic fluid, our solution is
anisotropic with pφ ¼ pz, analogous to what occurs in
other black string bounce solutions.
In the next section, the corresponding energy conditions

associated with the stress-energy tensor are analyzed
through Einstein equations field equations.

V. STRESS-ENERGY TENSOR
AND ENERGY CONDITIONS

In order to obtain the corresponding effective energy-
momentum tensor, we follow the Einstein equations,
given by Gμ̂ ν̂ þ ημ̂ ν̂Λ ¼ 8πT μ̂ ν̂. Then, the components of
the Einstein tensor from the Ricci tensor and the Ricci
scalar are:

G0̂ 0̂ ¼ sign½Δ�
�
a2α2ð2b=α3 þ x3Þ

x5
− 3α2

�
; ð26Þ

G1̂ 1̂ ¼ sign½Δ�3α2
�
1 −

a2

x2

�
; ð27Þ

G2̂ 2̂ ¼ G3̂ 3̂ ¼ 3α2 −
a2α2

x2

�
b

2α3x3
þ 1

�
: ð28Þ

This result is once again identical to what was for the
regular neutral black string (J ¼ 0) when considering the
Einstein tensor and it reproduces the usual case for a ¼ 0,
where these components should all be equal to −Λ ¼ 3α2.
On the other hand, the components of the stress-energy

tensor, outside the event horizon (when x > b1=3=α), are
given by:

T 0̂ 0̂ ¼ ρ; T 1̂ 1̂ ¼ pk; T 2̂ 2̂ ¼ T 3̂ 3̂ ¼ p⊥: ð29Þ

Hence, outside the event horizon, for example, we will
have:

ρ ¼ α2a2ð2b=α3 þ x3Þ
8πx5

; ð30Þ

pk ¼ −
3α2a2

8πx2
; ð31Þ
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p⊥ ¼ −
a2α2

8πx2

�
b

2α3x3
þ 1

�
: ð32Þ

To determine the components of the energy-momentum
tensor inside the horizon, we simply set sign½Δ� ¼ −1 and
interchange the spacelike and timelike features. In other
words, we will have T 0̂ 0̂ ¼ pj and T 1̂ 1̂ ¼ ρ, as mentioned
in [16].
Now let us examine the energy conditions. According to

[35], the null energy condition (NEC) is necessarily
violated in black bounce solutions. Consequently, the weak
energy condition (WEC) is also violated, as the WEC is
equivalent to the NEC with the additional condition ρ ≥ 0.
However, the strong energy condition (SEC) and the
dominant energy condition (DEC) are not always violated.
Let us specifically evaluate the NEC and the SEC:

ðNECÞ → ρþ pk ¼ sign½Δ�
�
2a2α2ðb=α3 − x3Þ

8πx5

�
; ð33Þ

ðSECÞ → ρþ pk þ 2p⊥ ¼ sign½Δ�
�
2a2α2ðb=α3 − x3Þ

8πx5

�

−
a2α2ðb=α3 þ 2x3Þ

8πx5
: ð34Þ

By analyzing the NEC, we see that it is indeed violated both
inside and outside the horizon. Note that in the coordinate
x, the position of the horizon is given by b1=3=α. Hence,
outside the horizon, one should have b=α3 − x3 < 0 and
sign½Δ� ¼ 1, which makes the expression (30) negative for
every x. Inside the horizon, b=α3 − x3 > 0 and sign½Δ� ¼
−1 hold, such that it results again in a negative value. As for
the SEC, each case has to be evaluated separately:

ρþ pk þ 2p⊥ ¼
�
a2α2ðb=α3 − 4x3Þ

8πx5

�
; seΔ > 0; ð35Þ

ρþ pk þ 2p⊥ ¼ −
3ba2

8παx5
; seΔ < 0: ð36Þ

Since b=α3 − 4x3 < 0 for x > b1=3=α, the SEC must also
be violated for every x inside and outside the event horizon.

A. Sources for rotating black strings bounces

Finally, we will explore the possible sources for the
rotating black-bounce solution (4). As shown in previous
literature [34,35,39], static black strings regularized by
following the Simpson-Visser procedure can be generated
through a combination of a phantom scalar field and a
source associated with nonlinear electrodynamics (NED).
Both sources are necessary, since it is not possible to
consider just one of them. This stems from the fact that by
considering only the scalar field, one obtains T0

0 ¼ T2
2,

which is not true for static black-bounce solutions. On the
other hand, by assuming only NED leads to T0

0 ¼ T1
1,

which is also not valid for these solutions. However, when
both sources are considered together, a final solution is
obtained with energy-mass density independent of the
radial pressure and both also independent of lateral
pressures.
Regarding the source associated with electrodynamics,

one can choose an electric source with the presence of only
electric charge or a magnetic source with the presence of a
magnetic charge. Both types of systems are capable of
generating regular solutions for static black strings.
However, the electric sourced solution is unable to recover
the behavior of Maxwell’s electrodynamics in the weak-
field limit (LF → 1). In the case of dyonic solutions, where
both charges exist simultaneously, they cannot generate a
regular static black hole solution. Further details can be
found in [46].
What we are going to attempt here is to consider the

same sources for the rotating case as well by assuming the
following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R − 2Λ − 16πðϵgμν∂μϕ∂νϕþ VðϕÞÞ

− 16πLðFÞ�: ð37Þ

Here ϕðrÞ represents the scalar field that is coupled to
the system, which can be a canonical scalar field when
setting ϵ ¼ 1 (positive kinetic energy) or a phantom field
for ϵ ¼ −1 (negative kinetic energy), while VðϕÞ is the
potential energy associated to the scalar field. The
Lagrangian LðFÞ describes a nonlinear electrodynamics,
where F ¼ FμνFμν=4 represents the usual Maxwell
Lagrangian. By applying the variational principle to the
action in (37), the following equations of motion are
obtained:

Rμν −
1

2
gμνRþ gμνΛ ¼ 8πð½Tϕ�μν þ ½TNED�μνÞ; ð38Þ

2ϵ∇μ∇μϕ ¼ dV
dϕ

; ð39Þ

∇μ½LFFμν� ¼ 1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
LFFμν� ¼ 0; ð40Þ

where LF ¼ ∂L=∂F and the components of the scalar field
and NED stress-energy tensor are respectively:

½Tϕ�μν ¼ 2ϵ∂μϕ∂νϕ − gμνðϵ∂αϕ∂αϕþ VðϕÞÞ; ð41Þ

½TNED�μν ¼ LFFμ
αFνα − gμνLðFÞ: ð42Þ

Following Ref. [39], we will assume the presence of a
magnetic charge Q as the source of the electrodynamics
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part, such that F23 ¼ −F32 ¼ Q. Consequently, the
Maxwell invariant leads to:

F ¼ Q2α2γ2

2x4ðα2γ2 − ω2Þ2 þ
Q2α3ω2

2xðb − α3x3Þðα2γ2 − ω2Þ2 : ð43Þ

One can note that in absence of rotation (J ¼ 0), which
implies ω ¼ 0 and γ ¼ 1, one leads to F ¼ Q2=2x4α2, as
was found in Ref. [39]. We can interpret Q as a magnetic
charge density per length, so the term F will have the units
of magnetic charge squared per length to the fourth power.
Hence, the nonzero components of the energy-momentum

tensor in the local frame are:

T 0̂ 2̂ ¼ T 2̂ 0̂ ¼
Q2α2ωγLFðrðxÞÞ

x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2x2 − b

αx

q
ðα2γ2 − ω2Þ2

; ð44Þ

T 0̂ 0̂ ¼
Q2α3ω2LFðrðxÞÞ

xðα3x3 − bÞðα2γ2 − ω2Þ2

þ ða2 − x2Þðb − α3x3Þϵϕ0ðrðxÞÞ2
αx3

þ VðrðxÞÞ þ LðrðxÞÞ; ð45Þ

T 1̂ 1̂ ¼
ða2 − x2Þðb − α3x3Þϵϕ0ðrðxÞÞ2

αx3

− VðrðxÞÞ − LðrðxÞÞ; ð46Þ

T 2̂ 2̂ ¼
Q2α2γ2LFðrðxÞÞ
x4ðα2γ2 − ω2Þ2 −

ða2 − x2Þðb − α3x3Þϵϕ0ðrðxÞÞ2
αx3

− LðrðxÞÞ − VðrðxÞÞ; ð47Þ

T 3̂ 3̂ ¼
Q2α2γ2LFðrðxÞÞ
x4ðα2γ2 − ω2Þ2 −

ða2 − x2Þðb − α3x3Þϵϕ0ðrðxÞÞ2
αx3

− LðrðxÞÞ − VðrðxÞÞ − Q2α3ω2LFðrðxÞÞ
xðα3x3 − bÞðα2γ2 − ω2Þ2 :

ð48Þ

Here the primes denote derivatives with respect to r.
However, some inconsistencies arise when comparing
these expressions with the ones obtained above in (30),
(31), and (32), since for these sources, we have T 2̂ 2̂ ≠ T 3̂ 3̂,
although both lateral pressures must remain the same.
Furthermore, the component T 0̂ 2̂ is not zero, which is not
reasonable, as in the local frame, the energy-momentum
tensor should be diagonal, as obtained above. However,
when considering the static case (J ¼ 0), the result
becomes entirely consistent with the solution, as expres-
sion (44) reduces to zero and T 2̂ 2̂ ¼ T 3̂ 3̂. We can conclude,
therefore, that the combination of a scalar field with a
magnetic charge associated with NED is not enough to

generate a rotating black string solution, even though it can
reproduce static solutions.
The motivation of this analysis is to show that results

found in the literature for static black bounces, such
as [34,35], are not easily obtained when rotation is
involved. In other words, a more complex adaptation of
the sources will be necessary in order to generate a rotating
solution. As we can see from the components of the energy-
momentum tensor, rotation produces some undesirable
effects for the electromagnetic source, which is associated
to the fact that by assuming the existence of a NED that
depends only on the radial coordinate and a magnetic
charge is not consistent with the symmetry of the problem.
However, these issues do not occur with the scalar field.
To solve this problem, a more in-depth study of the

geometry of rotating systems is necessary to understand
how they affect the type of matter used as the source of
these solutions. Specifically, how a nondiagonal metric
interferes with the calculation of the components of the
energy-momentum tensor, especially for electromagnetic
sources. However, this work requires careful consideration;
hence, it will be left for future research where we will focus
more specifically on this aspect.
Another possible way to overcome this issue might be to

consider a third source in such a way that makes the
equations consistent. To do so, an anisotropic fluid is
necessary, whose components of the energy-momentum
tensor associated to the φ̂ and ẑ coordinates must be
different in order to accomplish T 2̂ 2̂ ¼ T 3̂ 3̂ when added
to the total energy-momentum tensor in (47) and (48).
Furthermore, the component T 0̂ 2̂ of this fluid must cancel
out the term (44), resulting in a complete system compat-
ible with the solution (4). This method would be analogous
to what was done in [42] for the case of the regularization of
Kerr-Newman solution. However, it is important to note
that in this case, the three sources should be consistent with
the static case. In other words, the Einstein equations
should be satisfied for the case where ω ¼ 0, which may
not hold true if the third source is not chosen carefully.
Regarding the scalar field, we have the equation:

ða2− x2Þðb−α3x3Þϕ00ðrðxÞÞϕ0ðrðxÞÞ

− x½bþα3xð3a2− 4x2Þ�ϕ0ðrðxÞÞ2 ¼ αx3V 0ðrðxÞÞ
2ϵ

: ð49Þ

We can solve it to find ϕðrðxÞÞ, which in principle should
be possible to be integrated together with the Einstein field
equations.

VI. CONCLUSIONS

Along this paper we have considered the solution found
in Ref. [41] for a rotating black string and have found a
new regular solution motivated by the Simpson-Visser
black bounce. Then, we have studied the structure of the

REGULARIZING ROTATING BLACK STRINGS WITH A NEW … PHYS. REV. D 109, 064038 (2024)

064038-7



spacetime metric by analyzing the existence of event
horizons and ergoregions, revealing the same pattern as
in the case of standard black bounce solutions, where there
is an interpolation between a regular black hole and a
traversable wormhole. The surface gravity of this solution
was also obtained, showing consistency with some pre-
vious results found for the singular black string case as well
as for the static metric [38].
To verify the regularity of the solution, an analysis of the

curvature magnitudes has been conducted, particularly
focusing on the curvature invariants such as the Ricci
and Kretschmann scalars and the Ricci tensor. All nonzero
components of the Ricci tensor were also determined,
using the nonholonomic basis and the “tetrads” method to
diagonalize the Ricci and Einstein tensors. By evaluating
these quantities at r ¼ 0, all of them become finite and
consequently free of singularities, as long as a ≠ 0, con-
firming the solution’s regularity.
Then, by the Einstein field equations, we have obtained

the components of the effective energy-momentum tensor
for this solution. By analyzing its components, we have
obtained the energy conditions, showing that the null and
strong energy conditions are violated, which follows the
same pattern as in other black bounce solutions where the
null energy condition is necessarily violated.
Regarding the energy-momentum tensor, we have

explored the possible potential sources for this type of
solution based on previous analysis regarding sources for
static black bounces. These sources involve a scalar field
and nonlinear electrodynamics with a magnetic source. By
following a similar approach as in Ref. [39] for the static
case of regular black strings, we found that the rotating case
becomes a challenge to find a consistent energy-momentum
tensor that satisfies the Einstein field equations. This is due
to the presence of three different pressures and a component

off the diagonal in the tensor’s matrix representation.
To address this issue, we can consider a different form
for the electromagnetic source, according to the rotating
geometry of the solution, or introduce a third source that is
provided by an anisotropic fluid, which makes the solution
consistent with the rotating scenario and forms a basis for
future research on black bounce sources with rotation.
However, this analysis requires a bit more attention and
therefore will be carried out in future works.
For a future work, we lead the analysis of the orbits that

particles might follow within this spacetime. It is important
to clarify that this model developed throughout this paper
could not represent common any astrophysically relevant
systems. In other words, the recent results mentioned in the
first paragraph of the introduction could not be modeled
by this metric due to the presence of a negative cosmo-
logical constant that generates a solution that is not
asymptotically flat, making it incompatible with common
black hole solutions. Therefore, the significance of this
solution mainly lies on a further in-depth studies of regular
solutions and potential applications in other gravitational
physics scenarios.
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