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We present a model of relativistic elastic stars featuring scale invariance. This implies a linear mass-
radius relation and the absence of a maximum mass. The most compact spherically symmetric
configuration that is radially stable and satisfies all energy and causality conditions has a slightly smaller
radius than the Schwarzschild light ring radius. To the best of our knowledge, this is the first material
compact object with such remarkable properties in general relativity, which makes it a unique candidate for
a black-hole mimicker.
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I. INTRODUCTION

Within general relativity (GR), black holes (BHs) are
fascinating and quite unique solutions to the vacuum
Einstein equations Rμν ¼ 0. Since the Ricci tensor Rμν is
scale-free, the BH mass M is a free parameter of the
solution. This implies that, at least in principle, BHs can
form with any mass. In spherical symmetry, their horizon
radius is proportional to their mass, R ¼ 2M (we use units
such that G ¼ c ¼ 1), and so we have the (dimensionless)
compactness C≡M=R ¼ 1=2 for any BH. Furthermore,
there is strong evidence that GR BHs are stable [1–8].
There exists an active research program aiming to

challenge the BH paradigm and test the nature of compact
objects with the ever-growing wealth of astrophysical
observations [9]. One of the cornerstones of this program
is developing models of BH mimickers (also known as
exotic compact objects), namely horizonless, regular
solutions to GR (or extensions thereof) that replace the
curvature singularity unavoidably present inside BHs
[10,11] with a regular matter content, while mimicking
the peculiar BH properties as closely as possible.
However, coupling to matter almost inevitably introdu-

ces a scale into the Einstein equations, which implies that
the mass of the solutions is not a free parameter anymore.
Well-known examples are white dwarfs and neutron stars,
whose mass scale is set by the Chandrasekhar limit [12],
MChandra ∼ ℏ3=2=m2

N ≈ 1.4M⊙, where mN is the nucleon
mass. More exotic examples are the self-gravitating geons
known as boson stars [13], whose mass scale is set by the
Kaup limit [14], MKaup ∼ ℏ=mB ≈ ð10−10 eV=mBÞM⊙,
where mB is the boson mass (this bound is modified in

case of strong bosonic self-interactions [15,16]). The
presence of a mass scale is very general, and implies the
existence of a maximum mass above which the solution is
unstable against radial perturbations, and either migrates
towards less massive, stable, configurations, or collapses
into a BH. Thus, an exotic compact object can at most
mimic a BH in some mass range, but it cannot encompass
the whole rangeM∈ ð∼1M⊙;∼1010M⊙Þwhere astrophysi-
cal BHs are expected and indeed observed. For the same
reason, in classical GR the merger of two horizonless
compact objects, both of which are near the maximum
mass, is bound to form a BH, providing a strong argument
in favor of the existence of BHs even when very compact
horizonless objects do exist in the Universe.
The main goal of this work is to present the first GR

model that challenges this paradigm. The key idea is to
find a matter content allowing for scale invariance within
GR. This guarantees that the mass is a free parameter of the
solution, and that the mass-radius relation is linear at any
scale. As we shall show, such model exists within the
framework of relativistic elastic materials, and, further-
more, allows for solutions which are radially stable and
physically admissible regarding causality limits and energy
conditions.

II. ELASTIC STARS

In this section we summarize the main features of the
theory of relativistic elasticity. There are several formula-
tions of relativistic elasticity in the literature, starting with
the foundational work of Carter and Quintana [17], and
more recently by Kijowski and Magli [18] and Beig and
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Schmidt [19]. Here we follow closely the formalism put
forward by Beig and Schmidt and the novel formalism
developed in our previous work [20,21] (see [22] for a
detailed description, [19,23] for an introduction to relativ-
istic elasticity theory, and [24–29] for other works on
elastic relativistic stars).

A. Mapping formalism: Physical spacetime
and reference space

The configuration of a relativistic elastic body is
described by a projection map Π∶S → B, mapping the
physical spacetime ðS; gÞ, where the physical, deformed,
object exists, to the three-dimensional Riemannian material
space ðB; γÞ, where the object is in its undeformed
reference state. The corresponding pushforward map
dΠ∶T S → T B is called the configuration gradient. We
can assign local coordinates xμ to S and XI to B, so that the
mapping Π reads XI ¼ ΠIðxμÞ, and the configuration
gradient dΠ is fIμ ¼ ∂μΠI . The inverse images by Π of
the points in B are assumed to form a congruence of
timelike curves in S, generated by the 4-velocity uμ of the
particles making up the body, so that

uμ∂μΠI ¼ 0; ð1Þ

where Greek indices run from 0 to 4, and latin indices from
1 to 3.
In relativistic elasticity, the concept of elastic strain is

intimately related to the pushforward of the inverse
spacetime metric HIJ ¼ fIμfJνgμν. It is convenient to define
the Riemannian metric hμν induced on the subspaces
orthogonal to the 4-velocity of the particles uμ,

hμν ¼ fIμfJνHIJ ¼ gμν þ uμuν: ð2Þ

B. Lagrangian formalism and stress-energy tensor

The dynamics of relativistic elastic bodies can be
obtained from a variational principle for the action

S½Π� ¼
Z
S
ρðΠ; dΠÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
d4x; ð3Þ

where ρ is the energy density of the matter.
It follows from this variational principle and from the

diffeomorphism invariance that one can write the stress-
energy tensor as

Tμν ¼ ρuμuν þ σμν; σμνuν ¼ 0; ð4Þ

where

σμν ¼ 2
∂ρ

∂gμν
− ρhμν ð5Þ

is the symmetric stress tensor. The diffeomorphism invari-
ance assumption also entails that the energy density should
not depend on the configuration gradient explicitly, but
instead one should have ρðΠ;HÞ.
We further restrict our analysis to homogeneous and

isotropic materials. For the latter, the energy density
depends only on the pushforward metric via its principal
invariants,

ρ ¼ ρði1ðHÞ; i2ðHÞ; i3ðHÞÞ; ð6Þ

which are given in terms of the eigenvalues h1, h2, h3 of
HI

J ¼ HIKγKJ by the usual symmetric polynomials i1 ¼
h1 þ h2 þ h3, i2 ¼ h1h3 þ h1h2 þ h2h3 and i3 ¼ h1h2h3.
These eigenvalues are positive, and can be seen as the
squares of the normalized linear particle densities n1, n2
and n3 along the principal directions spanned by the
eigenvectors eJðiÞ, i ¼ 1, 2, 3, since [22]

n
n0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1h2h3

p
¼ n1n2n3; ð7Þ

where n and n0 are the number density of particles in the
physical and reference state, respectively.
For these materials it is possible to simplify the sym-

metric stress tensor (5) to obtain

σμν ¼
X3
i¼1

�
ni

∂ρ

∂ni
− ρ

�
eðiÞμeðiÞν; ð8Þ

where eðiÞμ ≔ fIμeðiÞI is the pullback of the orthonormal
coframe eðiÞJ. It is clear that the stress tensor is diagonal in
this frame, and so we can identify the principal pressures as

pi ≔
�
ni

∂ρ

∂ni
− ρ

�
: ð9Þ

C. The wave speeds

For elastic materials there are exactly nine independent
wave speeds, corresponding to longitudinal waves in the
ith direction,

c2Li ¼
ni

∂pi
∂ni

ρþ pi
; ð10Þ

and to transverse waves in the ith direction, oscillating in
the jth direction:

c2Tij ¼
8<
:

n2j
ρþpj

ðpj−piÞ
n2j−n

2
i
; if ni ≠ nj

1
2
nj

ρþpj

�
∂pi
∂ni

− ∂pj

∂ni

�
; if ni ¼ nj

: ð11Þ
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D. Spherically symmetric compact elastic stars

We now restrict the previous discussion to the case of
spherical symmetry. From the eigenvalues of HI

J we find
that, in spherical symmetry, n2 ¼ n3 (and p2 ¼ p3). It is
convenient to introduce the following change of variable:

ϱ ¼ ϱ0nrn2t ; ς ¼ ϱ0n3t ; ð12Þ

where we have defined nr ¼ n1 and nt ¼ n2 ¼ n3. The
quantity ϱ is the baryonic mass density while the quantity ς
is given in terms of the differential equation,

∂rς ¼ −
3

r

�
ς −

ϱ

ð1 − 2m=rÞ1=2
�
; ð13Þ

which is obtained from the eigenvalues of HA
B. By looking

at the integral form of Eq. (13),

ςðrÞ ¼ 3

r3

Z
r

0

ϱðuÞu2du
ð1 − 2mðuÞ=uÞ1=2 ; ð14Þ

we can interpret ς as the average mass density within a
sphere of radius r.
The radial and tangential pressures can be defined as

prad ¼ p1 and ptan ¼ p2 ¼ p3. In the spherically symmet-
ric case, Eq. (9) simplifies to

p̂radðϱ; ςÞ ¼ ϱ∂ϱρ̂ðϱ; ςÞ − ρ̂ðϱ; ςÞ; ð15aÞ

p̂tanðϱ; ςÞ ¼ p̂radðϱ; ςÞ þ
3

2
ς∂ςρ̂ðϱ; ςÞ ð15bÞ

(where ρ̂, p̂rad and p̂tan are the quantities ρ, prad and ptan
written as functions of ϱ and ς). Thus, the ς dependence of ρ̂
is generically associated with anisotropic matter, and the
perfect fluid limit is obtained in the case ∂ςρ̂ ¼ 0, where one
retrieves the isotropic pressure p̂isoðϱÞ≡ p̂radðϱÞ≡ p̂tanðϱÞ.
We consider the stars to be in hydrostatic equilibrium,

so that the spacetime metric can be written as ðgμνÞ ¼
diagð−e2ϕðrÞ; ð1 − 2mðrÞ=rÞ−1; r2; r2 sin2 θÞ. The matter
sector is generically described by the stress-energy tensor
ðTμ

νÞ ¼ diagðρ; prad; ptan; ptanÞ, where ρ, prad and ptan are
radial functions. Einsteins’ field equations imply

dm
dr

¼ 4πr2ρ ; ð16aÞ

dϕ
dr

¼ mþ 4πr3prad

rðr − 2mÞ ; ð16bÞ

dprad

dr
¼ 2

r
ðptan − pradÞ − ðprad þ ρÞ dϕ

dr
: ð16cÞ

This system of equations is closed by prescribing an
equation of state (EOS). In our framework, this is done

by providing the energy density functional ρ̂ðϱ; ςÞ, the
parametric relations for the pressures (15) and the equa-
tion (14) for ς.
Once a given EOS is prescribed, the equations for the

stellar structure are solved by imposing regularity of the
metric and matter functions at the center of symmetry,
which implies ðϱð0Þ; ςð0ÞÞ ¼ ðϱc; ϱcÞ. The radius R of the
star is then defined by pradðRÞ ¼ 0. Due to spherical
symmetry, in the vacuum region r > R the solution is
the standard Schwarzschild metric.
In spherical symmetry there are five independent wave

speeds, related to the speeds of longitudinal and transverse
perturbations along the radial and tangential directions [25].
Three of these quantities, the speed of longitudinal waves in
the radial direction cL, the speed of transverse waves in the
radial direction cT and the speed of transverse waves in the
tangential direction and oscillating in the radial direction c̃T
can be defined from Eq. (15) and its ϱ and ς derivatives,

c2Lðϱ; ςÞ ¼
ϱ∂ϱp̂radðϱ; ςÞ

ρ̂ðϱ; ςÞ þ p̂radðϱ; ςÞ
; ð17aÞ

c2Tðϱ; ςÞ ¼
p̂tanðϱ; ςÞ − p̂radðϱ; ςÞ

ðρ̂ðϱ; ςÞ þ p̂tanðϱ; ςÞÞð1 − ðϱςÞ2Þ
; ð17bÞ

c̃2Tðϱ; ςÞ ¼
�
ϱ

ς

�
2 p̂tanðϱ; ςÞ − p̂radðϱ; ςÞ
ðρ̂ðϱ; ςÞ þ p̂radðϱ; ςÞÞð1 − ðϱςÞ2Þ

; ð17cÞ

while the other two independent velocities, the speed of
longitudinal waves in the tangential direction c̃T, and the
speed of transverse waves in the tangential direction
oscillating in the tangential direction c̃TT, must be obtained
from the general form of the energy density function, before
reducing to spherical symmetry. If one starts from the
reduced form, then the residual freedom allows us to freely
choose one of these speeds as part of the model prescription,
the other being fixed by this choice; in this case, the simplest
option is the so-called natural choice, introduced in [20,22],
which we will use in this work:

c̃2Lðϱ; ςÞ ¼
ϱ∂ϱp̂tanðϱ; ςÞ þ 3ς∂ςp̂tanðϱ; ςÞ

ρ̂ðϱ; ςÞ þ p̂tanðϱ; ςÞ
; ð18aÞ

c̃2TTðϱ; ςÞ ¼
3
2
ς∂ςp̂tanðϱ; ςÞ

ρ̂ðϱ; ςÞ þ p̂tanðϱ; ςÞ
: ð18bÞ

III. SCALE-INVARIANT ELASTIC MATERIALS

A spherically symmetric matter source is said to be
scale-invariant if, under the scaling transformation given
by r → A−1r̃, with A an arbitrary positive real number, the
energy density, the radial and the tangential pressures
transform as
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ðρðrÞ; pradðrÞ; ptanðrÞÞ → A2ðρ̃ðr̃Þ; p̃radðr̃Þ; p̃tanðr̃ÞÞ: ð19Þ

It then follows that mðrÞ → A−1m̃ðr̃Þ and ϕðrÞ → ϕ̃ðr̃Þ, so
that the system (16) is invariant under the scaling
transformation.
For spherically symmetric perfect fluids, it is well

known [30] that scale invariance is achieved for a subclass
of models with a linear EOS,

ρ̂ðϱÞ ¼ np̂isoðϱÞ ¼ nKϱ1þ1
n; ð20Þ

where K is a positive constant and n > 0 is the polytropic
index. Such an EOS has constant sound speed c2s ¼
dpiso=dρ ¼ 1=n. However, it does not support self-
gravitating objects with finite radius [31].
A natural extension of Eq. (20) to the elastic setting

consists in requiring that the isotropic pressure, defined as
piso ¼ 1=3ðprad þ 2ptanÞ, satisfies

ρ̂ðϱ; ςÞ ¼ np̂isoðϱ; ςÞ ¼
n
3
ðp̂radðϱ; ςÞ þ 2p̂tanðϱ; ςÞÞ: ð21Þ

Replacing prad and ptan by Eq. (15), we can solve the
resulting partial differential equation for ρ to obtain the
expression for the scale-invariant EOS in the elastic setting:

ρ̂ðϱ; ςÞ ¼ nKς1þ1
nhðyÞ; ð22Þ

where y ¼ ϱ=ς and hðyÞ is a free function that in the perfect
fluid case (20) reduces to hðyÞ ¼ y1þ1=n. It turns out that
ρ̂ðϱ; ςÞ is a positive homogeneous function of degree
1þ 1=n, as in the perfect fluid case (20). In the Appendix
we show that the class of EOS (22) arises generically when
imposing scale invariance.
A specific scale-invariant EOS corresponds to choosing

the function hðyÞ. The most simple ansatz, that is also
motivated by the fluid expression, is a power-law type
function,

hðyÞ ¼ α0 þ α1yþ α2yβ2 : ð23Þ

The unknown constants αi can be determined by the
compatibility with the isotropic state (y ¼ 1) and with
the linear elasticity conditions [20,22],

hð1Þ¼1; h0ð1Þ¼1þ1

n
; h00ð1Þ¼3

n

�
1þ1

n

��
1−ν

1þν

�
;

where ν∈ ð−1; 1=2� is the Poisson ratio. Finally, we arrive
at the form for the scale-invariant EOS:

ρ̂ðϱ; ςÞ ¼ nKς1þ1
n

�
1 −

1þ n
n

�
1 − 3

s
n

�
1 − ν

1þ ν

���
1 −

ϱ

ς

�

−
3ð1þ nÞs2
ð1þ sÞn2

�
1 − ν

1þ ν

��
1 −

�
ϱ

ς

�
1þ1

s
��

; ð24Þ

where we introduced the shear index s through β2 ¼ 1þ 1
s.

The perfect fluid limit is obtained by taking s ¼ n and
ν ¼ 1=2, corresponding to the linear EOS (20).
By computing the central density ρc ¼ ρ̂ðϱc; ϱcÞ, central

pressure pc ¼ p̂radðϱc; ϱcÞ ¼ p̂tanðϱc; ϱcÞ, and the wave
speeds at center, we obtain inequalities giving necessary
conditions for the energy and causality conditions to be
satisfied:

K > 0; n ≥ 3

�
1 − ν

1þ ν

�
; −1 < ν ≤

1

2
: ð25Þ

IV. NUMERICAL RESULTS

Self-gravitating perfect fluid solutions with a linear EOS
and finite radius do not exist within GR [31]. Remarkably,
however, such bounded configurations do exist in this
model for sufficiently high values of the elasticity. We show
some representative examples in the mass-radius diagram
on the left panel of Fig. 1. As anticipated above, due to the

FIG. 1. Left: mass-radius diagram of our scale-invariant elastic material for representative values of the EOS parameters (n, s, ν).
Right: compactness of different solutions as a function of the Poisson ratio ν and for different n ¼ s. Unphysical configurations
(violating either the energy conditions or the causality bounds) are denoted by a dashed style.
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scale invariance of the model, the mass-radius relation is
linear, and so the compactness is independent of the central
value of the baryonic density: it only depends on the model
parameters ðn; s; νÞ, while the sole dimensionful parameter
K simply sets a reference scale, as in the standard perfect
fluid case in Newtonian gravity (see e.g. [32]). The
compactness of representative solutions in this model is
shown in the right panel of Fig. 1 as a function of ν and for
different values of n ¼ s. Note that, for fixed values of n
and s, elastic stars can only exist for ν ≤ νcritðn; sÞ < 1=2, in
agreement with the fact that a certain amount of elasticity is
required for their existence.
We observe that decreasing the Poisson ratio (i.e.,

increasing elasticity), or decreasing the index n, increases
the compactness of the solutions. Although the compact-
ness can reach very high values (up to the BH limit,
C → 1=2, for n → 0), this happens for unphysical configu-
rations where some of the sound speeds in the material
exceed the speed of light (dashed branches). We find that
physically admissible configurations (solid branches)
require sufficiently high values of n and ν.
The linear mass-radius diagram is a truly remarkable

feature, which, to the best of our knowledge, has never been
reported for viable matter within GR. Scale invariance
implies that there is no maximummass in the model, so that
these solutions can exist with any mass. These features
make them akin to ordinary BHs, for which the mass is
indeed a free parameter, and M ¼ R=2 in the nonspin-
ning case.
Prompted by these quite unique properties, we analyze

the radial stability of these solutions using the (Eulerian)
perturbation formalism developed in [22], which is based
on introducing radial metric and matter perturbations with
∼e−iωt time dependence and recasting the linearized
Einstein equations into an eigenvalue problem for ω2

[20,26]. In Fig. 2 we show the squared frequency of the
fundamental mode, ω2, as a function of the Poisson ratio of

the material for some representative values of (n, s). In all
cases that we have numerically explored, we always found
ω2 > 0, indicating that the solutions are radially stable.
Therefore, the physically admissibility of the solution

depends only on the subluminality of the wave speeds and
on the energy conditions of the elastic material. By
imposing these constraints, we obtain the maximum com-
pactness of physically admissible configurations for this
model,

CPASmax ≈ 0.335; ð26Þ

which is saturated for n ¼ s ≈ 5.4 and ν ≈ 0.23 (solid blue
curve in the left panel in Fig. 1). Intriguingly, the radius of
the most compact physically admissible model is only
slightly smaller than the light ring at r ¼ 3M. In Fig. 3 we
show the profiles for the energy density, radial pressure and
tangential pressure for the configuration saturating the CPAS
bound (26). In addition to satisfying causality and radial
stability the solution also satisfies all energy conditions.
Finally, higher values of the shear index s tend to slightly

increase the mass and the compactness of the solution, but
also contribute to make the material superluminal. In the
mass-radius diagram of Fig. 1, we compare the curve
corresponding to the solution that approaches our bound
(26) (blue line) with a solution with the same parameters
but a much larger shear index s (black dashed line).
Although the mass-radius diagram is very similar in both
cases, the solution with higher shear index is always
superluminal near the radius of the star. While there is
no a priori upper limit for the shear index s, its lower
bound is fixed by the condition that the shear ratio on the
boundary should satisfy ϱ=ς ≥ 0. This condition sets the
bound s ≥ nð3ð1 − νÞ=ð1þ νÞ þ 2nð1 − 2νÞ=ð1þ νÞÞ−1.
As expected, decreasing the shear index is analogous to
decreasing the effective elasticity on the body, and thus the
compactness decreases with respect to the s ¼ n case.

FIG. 2. Squared frequency of the fundamental mode for linear
radial perturbations of scale-invariant elastic stars as a function of
the Poisson ratio ν, for some representative values of n ¼ s. The
dashed and solid lines correspond to unphysical and physically
admissible configurations, respectively. In all cases, we found no
evidence of unstable modes.

FIG. 3. Energy density, radial pressure, and tangential pressure
profiles for the most compact physically admissible solution,
corresponding to the compactness (26). By virtue of scale-
invariance the normalized profiles do not depend on the value
of central density.
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V. DISCUSSION AND OUTLOOK

Our model of elastic star provides the first example of a
self-gravitating material object with scale invariance within
GR. While the radial stability of these solutions is already
promising, future work should assess their full linear
stability beyond spherical symmetry.
An interesting avenue would be to link our framework to

an underlying microscopic description of elastic matter at
(ultra)nuclear densities, as those expected in neutron star
cores and during gravitational collapse. Indeed, solid
phases of matter may be relevant for astrophysical compact
objects: while degenerate fermions behave as a weakly
interacting gas at relatively small densities, nuclear inter-
actions and QCD effects become crucial inside relativistic
stars, and the perfect fluid idealization eventually breaks
down. This is certainly the situation in the crust of a neutron
star [33,34], while the fundamental constituents in the core
are still largely unknown [35].
Our formalism can be naturally extended in two impor-

tant directions. First, an extension beyond spherical sym-
metry is underway. This would allow us to study rotating
solutions, in particular observable quantities such as their
moment of inertia and spin-induced quadrupole moment. It
would be interesting to assess whether elastic stars feature
approximately universal (i.e., EOS independent) relations
among these quantities, as in the case of perfect fluid
neutron stars [36], since these relations have important
astrophysical consequences. Furthermore, an extension
beyond spherical symmetry would allow building generi-
cally deformed elastic objects, which are not allowed in the
fluid limit [37]. Overall, we anticipate that it should be
possible to study the entire multipolar structure of these
solutions, which is richer than fluid stars and also different
from BHs, providing more realistic models and a way to
discriminate compact elastic stars from BHs or perfect fluid
neutron stars [9,38,39].
The second important extension concerns the nonlinear

time evolution for elastic objects. This is a major obstacle
for various models of BH mimickers that are either
phenomenological or do not have a well-posed time
evolution [9]. Remarkably, the initial-value problem in
spherical symmetry in our model can be shown to be
strictly hyperbolic, at least in Minkowski spacetime [22].
This provides a promising starting point to study the full
nonlinear evolution of elastic stars within our framework.
An outstanding question concerns the merger of two elastic
stars in this model: due to the absence of a maximum mass,
it is possible that the merger remnant is always a (stable)
heavier and larger star living in the same linear mass-radius
diagram, thus preventing BH formation. Finally, a healthy
time evolution beyond spherical symmetry would allow
studying the tidal perturbations of elastic stars and their
ringdown, both of which have direct consequences for
gravitational-wave astronomy. Based on our results, we
expect the phenomenology of tidal perturbations and the

ringdown of physically viable elastic stars to be qualita-
tively more similar to that of perfect fluid neutron stars than
to BHs, but it would anyway quantitatively depart from the
standard perfect fluid case. Thus, it would be interesting to
study the inspiral, merger and postmerger phase of elastic
star coalescences in this model to distinguish the emitted
gravitational-wave signal from that of binary BHs or
perfect fluid neutron stars. We hope to report on these
followups elsewhere.
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APPENDIX: DERIVATION OF THE GENERAL
SCALE-INVARIANT EOS

In this appendix, we show that Eq. (22), obtained from
the straightforward generalization of the fluid linear
EOS (21), is in fact the most general form for a scale-
invariant EOS.
As discussed in the main text, for a scale-invariant matter

source in spherical symmetry, the energy density, the radial
and the tangential pressures transform as Eq. (19), and
the Tolman-Oppenheimer-Volkoff system of equations is
invariant under the scaling transformation

r → A−1r̃: ðA1Þ

In the perfect fluid case, scale invariance is achieved
for a subclass of models [30] with constant adiabatic index
γ ¼ d ln p̂iso=d ln ϱ, and a linear EOS, see Eq. (20). This is
in turn equivalent to ρ̂ðϱÞ being a positively homogeneous
function of degree γ, and the Tolman-Oppenheimer-Volkoff
system (16) is invariant under the scaling transformation
(A1) and
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ϱðrÞ → A2=γϱ̃ðr̃Þ: ðA2Þ

Extending to the elastic setting, the fact that ρ, prad and
ptan scale in the same fashion [see Eq. (19)] suggests that
we look for an EOS in which ρ is a linear function of prad,
and ptan,

ρ̂ðϱ; ςÞ ¼ n
3

	
ap̂radðϱ; ςÞ þ bp̂tanðϱ; ςÞ



; ðA3Þ

where n and γ are related by γ ¼ 1þ 1=n, and the constants
a, b are constrained by aþ b ¼ 3 in order to recover the
fluid limit, Eq. (20). Substituting the definitions of the
pressures [Eq. (15)], the above equation can be written as a
linear partial differential equation for ρ̂ðϱ; ςÞ, whose sol-
ution is

ρ̂ðϱ; ςÞ ¼ nKς1þ1
nhðyÞ; ðA4Þ

where y ¼ ϱð3−aÞ=2=ς and hðyÞ is a free function. From the
definition of ς [Eq. (13)], it follows from the scaling
transformations (A1), (A2) that

ςðrÞ → A2=γς̃ðr̃Þ: ðA5Þ

That is, ϱ and ς transform in the same fashion under the
scaling transformation. Thus, Eq. (19) imposes that hðyÞ
must be invariant under the scaling, and hence a ¼ 1,
b ¼ 2 is the only choice, leading to the ansatz (21) in the
main text, i.e.,

ρ̂ðϱ; ςÞ ¼ np̂isoðϱ; ςÞ ¼
n
3
ðp̂radðϱ; ςÞ þ 2p̂tanðϱ; ςÞÞ; ðA6Þ

and the scale-invariant quantity yðrÞ≡ ϱðrÞ=ςðrÞ is
the spherically symmetric shear variable. Just as in
the perfect fluid case, the above choice is equivalent
to ρ̂ðϱ; ςÞ being a positively homogeneous function of
degree γ,

ρ̂ðϱ; ςÞ ¼ ς1þ1
nρ̂ðϱ=ς; 1Þ ¼ nKς1þ1

nhðyÞ; ðA7Þ

which justifies Eq. (22) used in the main text.
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