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It is shown that the Lorentz invariant fðTÞ gravity, defined by the coframe-connection-multiplier form of
the Lagrangian, can be gauge-fixed to the pure coframe form. After clarifying basic aspects of the problem
in the Lagrangian formalism, a more detailed analysis of this gauge equivalence is given relying on the
Dirac Hamiltonian approach.
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I. INTRODUCTION

Teleparallel geometry was introduced into physics by
Einstein in the 1920s, in an attempt to unify general
relativity (GR) with electromagnetism [1]. Although this
goal has never been accomplished, the concept of tele-
parallel geometry was later revived by Møller [2] as a
framework for defining gravitational energy, then it con-
tinued to live on as an arena for the pure gravitational
dynamics. Nowadays, teleparallel gravity (TG) can be most
naturally described as the gauge theory of translations,
a subcase of the Poincaré gauge theory with vanishing
curvature but nontrivial torsion [3,4]. In the absence of
matter, there is a particular choice of the quadratic TG
Lagrangian LT , denoted as T , for which this theory
becomes dynamically equivalent to GR; it is known as
the teleparallel equivalent of GR [5,6] (GRk or TEGR).
Observational predictions of GR, as well as of its

teleparallel equivalent GRk, are highly successful not only
at low energies (solar system), but also in some high energy
regimes [7]. On the other hand, there are some aspects
of the cosmological dynamics, such as dark energy and
dark matter, where convincing explanations within GR are
missing. In such a situation, it has been quite natural
to search for and investigate alternative gravitational theo-
ries [8]. In the present paper, our attention is focused on
fðTÞ gravity [9], an extension of GRk which is presently
less understood than its GR counterpart, fðRÞ gravity [10].
As we know from GR, exact solutions of a gravitational

theory are of essential importance for understanding its
physical content. In particular, these solutions are naturally

related to certain symmetry aspects of the theory. In the
case of pure coframe fðTÞ gravity, where the only dynami-
cal variable is the 1-form ϑi, certain difficulties have existed
in constructing exact solutions, caused by inappropriate
Ansätze for the coframes.1 These difficulties were over-
come by introducing the procedure of covariantization, in
which the (Lorentz) covariant fðTÞ gravity is reconstructed
from its coframe form, see for instance Refs. [11–14].
Nowadays, when the Poincaré gauge theory (PG) is known
to be a well-established gravitational theory [4–6], there is a
more natural way to understand the result of the recon-
struction procedure, based on treating any general TG as
a subcase of PG, characterized by a vanishing curvature
2-form Rij ¼ 0. As a consequence:

(i) the resulting general TG, defined in terms of the
coframe ϑi and the flat (pure gauge) connection ωij,
inherits the Lorentz and translational gauge invari-
ance from PG;

(ii) the coframe gravity can be regarded as the gauge-
fixed version of the general TG, defined by the
Weitzenböck gauge condition ωij ¼ 0.

Any questions concerning gauge symmetries and the real
physical degrees of freedom of a dynamical system can be
most efficiently analyzed in the Dirac Hamiltonian formal-
ism [15]. In the present paper we use this approach to prove
the gauge equivalence between the Poincaré covariant fðTÞ
gravity and its pure coframe form.
This paper is organized as follows. In Sec. II, we

introduce the Lagrangian coframe-connection-multiplier
(ϑ-ω-λ for short) formulation of the general TG as the
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1Lack of understanding the process of construction can be best
illustrated by noting that dynamically incompatible Ansätze were
often referred to as “bad tetrads“, in contrast to the “good” ones.
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subcase of PG, where the condition Rij ¼ 0 is enforced
by a Lagrange multiplier term. Combining gauge sym-
metries of the theory with the equations of motion, we show
that the only physically relevant dynamical variables are the
coframe components ϑi, as expected. In Sec. III, we use the
constrained Hamiltonian approach to make a more detailed
analysis of the gauge structure of fðTÞ gravity. Then, in
Secs. IV and V, we show that gauge symmetries of the
theory can be used to identify the associated first class
constraints. The result is achieved with the help of the so-
called inverse Castellani algorithm, which largely simpli-
fies the standard canonical procedure. Finally, choosing the
appropriate gauge fixing conditions, the ϑ − ω − λ form of
fðTÞ gravity is reduced, first to the coframe-connection
(ϑ − ω), and then to the pure coframe form. In three
appendices, we present some important technical aspects
of the analysis and discuss some alternative approaches.
Our conventions are the same as those in Ref. [16]. Latin

indices ði; j;…Þ are the local Lorentz indices, greek indices
ðμ; ν;…Þ are the coordinate indices, and both run over
0,1,2,3; the orthonormal coframe (tetrad) is ϑi ¼ ϑiμdxμ

(1-form), ϑ ¼ detðϑiμÞ, the dual basis (frame) is ei ¼ ejμ∂μ,
and ωij ¼ ωij

μdxμ is the metric compatible connection
(1-form); the metric components in the local Lorentz
and coordinate basis are gij ¼ ð1;−1;−1;−1Þ and gμν ¼
gijϑiμϑjμ, respectively, the totally antisymmetric symbol
εijmn is normalized by ε0123 ¼ 1, and the square bracket
antisymmetrization is defined by X½iAj� ¼ ðXiAj − XjAiÞ=2,
where A ¼ fm…ng is a set of additional indices; wedge
products between forms are implicitly understood.

II. LORENTZ INVARIANT FORM OF TG

A. Preliminaries

The theories of concern here can be approached via
multiple perspectives and representations. Let us note two
in particular.
On the one hand, one can take a field theory approach

and investigate theories for a dynamical orthonormal
coframe field ϑi on spacetime, as was done for example
by Itin [17]. A coframe field Lagrangian can have the
form L ¼ Lðϑi; dϑiÞ. We stress that such a formulation
fundamentally does not logically depend on any conception
of parallel transport, connection, curvature or torsion.2

Suppose the dynamical equations determine a unique
coframe. Although it is not at all obligatory, nevertheless
the circumstances naturally invite one to use the available
structure to define parallel transport of vectors and tensors
along any path as “keeping the components constant” in the
obtained coframe. This thereby determines a connection of

a special type, associated to a global path-independent
(hence curvature vanishes) distant parallelism, in other
words a teleparallel geometry. In the obtained coframe, the
teleparallel coframe, the connection ωij vanishes.3 Now
that one has a parallel transport, one can of course represent
it in terms of any other local coframe, then the now
nonvanishing connection ωij will still have vanishing
curvature. No matter what the choice of coframe, the
parallel transport is determined by the torsion tensor. In
this approach teleparallel geometry (represented in general
by a coframe and connection) emerges purely from a
dynamical coframe field.
On the other hand, one can take a geometric approach.

The central concept is parallel transport which is deter-
mined, with respect to any orthonormal coframe field ϑi, by
a set of connection coefficients; these, in turn determine the
torsion and curvature. A geometrically interesting special
case, teleparallel geometry, has vanishing curvature. The
associated parallel transport is path independent. Given a
teleparallel geometry, one can start with an orthonormal
coframe at any convenient point, parallel transport it along
some path (every possible path will give the same result) to
every other point, and thereby constructs a global coframe
field, the teleparallel coframe,.4 which is unique, up to a
rigid Lorentz transformation. With respect to the tele-
parallel coframe, the global parallelism is described by
the vanishing connection coefficients. In this approach a
preferred global coframe field is determined by a tele-
parallel geometry.
Geometrically, the natural domain for our considerations

is the Riemann-Cartan geometry of spacetime in the
Poincaré gauge theory, a theory of gravity based on the
localization of the Poincaré group of spacetime symmetries
(translations and Lorentz rotations) [5,6]. In PG, the basic
dynamical variables are the coframe field ϑi and the metric
compatible connection5 ωij. The corresponding field
strengths are the torsion Ti ¼ dϑi þ ωi

kϑ
k and the curva-

ture Rij ¼ dωij þ ωi
kω

kj (2-forms), which satisfy the
Bianchi identities

∇Ti ¼ Ri
kϑ

k; ∇Rij ¼ 0: ð2:1Þ

The general geometric arena of PG can be a priori
restricted by imposing certain conditions on the field
strengths. Thus, the Riemannian geometry of spacetime
in GR is defined by the requirement of vanishing torsion,
whereas the Weitzenböck geometry of TG is based on the
complementary restriction

2One would, however, need to introduce a connection in order
to discuss coupling to sources beyond scalar fields, Maxwell or
Yang-Mills gauge fields.

3Called the Weitzenböck gauge.
4Kopczyński [18] called these frames OT, an acronym for

orthonormal teleparallel. They are also called Weitzenböck
frames.

5For orthonormal coframes, the metric compatibility condition
∇gij ¼ 0 implies that ωij is antisymmetric.
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RijðωÞ ¼ 0: ð2:2Þ

It ensures, under certain topological assumptions,6 path
independence of the parallel transport. The simplest sol-
ution of the condition (2.2) is obtained by choosing
ωmn ¼ 0. In that case, we are left with ϑi as the only
dynamical variable, and the resulting form of TG is known
as the coframe gravity. In PG, the standard local Lorentz
transformation of the (orthonormal) coframe ϑi is accom-
panied by an inhomogeneous transformation of the asso-
ciated connection,

ϑi → Λi
mϑ

m; ωij → Λi
mðΛj

nω
mn þ dΛjmÞ; ð2:3Þ

where → stands for “is transformed to”. Apart from
ωmn ¼ 0, there is another solution of (2.2) given by
ωij ¼ Λi

mdΛjm, which is known as the pure gauge con-
nection. It can be related to ωmn ¼ 0 by a special Lorentz
transformation, whereupon the coframe field can be trans-
formed only by constant Lorentz transformations.

B. Lagrange multiplier formalism

The variation of a Lagrangian in the presence of
subsidiary conditions is mathematically well defined by
introducing a suitable Lagrange multiplier term. Thus, in
the framework of PG, the TG Lagrangian can be naturally
defined by [19,20]

L ¼ LT þ 1

4
λij

μνRij
μν; ð2:4aÞ

where LT ¼ LTðϑiμ; Ti
μνÞ is, in general, any expression

invariant under local Poincaré transformations, and the λR
term ensures the teleparallelism condition (2.2).7 The
standard PG form of LT is given as a sum of three
independent, quadratic, (parity even) torsion invariants8

with arbitrary coefficients,

LT ≔ ϑLT; LT ¼ a0Tijkðh1Tijk þ h2Tjik þ h3ηijVkÞ;
ð2:4bÞ

where Vk ≔ Tm
mk. The coframe-connection-multiplier

form of the TG Lagrangian (2.4) is invariant not only

under the standard local Poincaré transformations9 (trans-
lations with parameters ξμ, and Lorentz transformations
with parameters εij),

δ0ϑ
i
μ ¼ εimϑ

m
μ − ð∂μξρÞϑiρ − ξρ∂ρϑ

i
μ;

δ0ω
ij
μ ¼ −∇με

ij − ð∂μξρÞωij
ρ − ξρ∂ρω

ij;

δ0λij
μν ¼ εi

mλmj
μν þ εj

mλim
μν þ ð∂ρξμÞλijρν

þ ð∂ρξνÞλijμρ − ∂ρðξρλijμνÞ; ð2:5Þ

but also under an extra family of the so-called lambda
transformations, which will be discussed in the next
subsection; see Ref. [23], Eqs. (2.3) and (2.4).
The TG field equations can be conveniently expressed

in terms of the covariant momentum associated with the
coframe,

Hijk ≔
∂LT

∂Tijk ¼ ϑHijk;

Hijk ¼ 4a0
�
h1Tijk − h2T ½jk�i þ h3ηi½jVk�

�
: ð2:6Þ

Indeed, the variation of the Lagrangian (2.4a) with respect
to ϑiμ;ωij

μ and λij
μν yields a compact form of the field

equations in vacuum (compare to [16]):

Ei
ν≔−

δL
δϑiν

¼∇μHi
μνþTmn

iHmn
ν−eiνLT ¼ 0; ð2:7aÞ

Eij
ν ≔ −

δL
δωij

ν
¼ ∇μλij

μν þ 2H½ij�ν ¼ 0; ð2:7bÞ

Rij
μν ¼ 0: ð2:7cÞ

Let us now focus on some very interesting dynamical
properties of these equations.
(p1) The third equation (2.7c) ensures that the geometry of

spacetime is teleparallel, which means that the
Lorentz connection is a pure gauge (unphysical)
variable.

(p2) The first equation (2.7a), which is completely deter-
mined by LT, does not depend on λ.

(p3) The second equation (2.7b) is the only one that can
be used to dynamically determine λ. To clarify its
content, note that, for Rij

μν ¼ 0, the covariant
divergence of that equation satisfies the 6 Noether
identities (A7),

∇νEij
ν þ 2E½ij� ≡ 0; ð2:8Þ

6Here, for simplicity, we consider only simply connected
spaces or regions. These are parallelizable, admitting globally
defined coframe fields. The issues of global topological compli-
cations associated with nonsimply connected spaces are beyond
the scope of the present work.

7In the absence of the λR term, the Lagrangian LT defines
teleparallel gravity only if ωij is restricted to the pure gauge form.
For an application of the Lagrange multiplier formalism to
metric–affine gravity, see Refs. [21,22].

8More general choices include any function of the three
quadratic torsion invariants, and beyond that, higher order torsion
invariants.

9There is one very special case of (2.4b) with certain specific
values of h1, h2, h3 (the teleparallel equivalent of GR) that has (up
to a total differential) an extra local Lorentz symmetry acting on
the coframe by itself [19].
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which do not depend on λ. Consequently, the anti-
symmetric part of Eij contains all the multiplier
independent content of Eij

ν.
At this stage, some dynamical aspects of the Lagrange

multipliers are still not clear: Equation (2.7b) is an equation
with 6 × 4 ¼ 24 components, but only 24 − 6 ¼ 18 of
them are independent and relevant for the multiplier
dynamics. However, that number is not sufficient to
determine the 36 components of λijμν.

C. Lambda symmetry

The worrying aspect of the property (p3) can be better
understood by noting that there exists an extra local
symmetry acting on the multipliers λij

μν, which allows
one to eliminate some of them as gauge (unphysical)
variables [19,20,23]. Namely, the Lagrangian (2.4) is, by
construction, invariant (up to a divergence) under the local
λ-transformation

δ0λij
μν ¼ ∇λτij

μνλ; ð2:9aÞ

where the parameter τij
μνλ is completely antisymmetric

with respect to ðμ; ν; λÞ, as well as ði; jÞ. The invariance
follows from the Bianchi identity ð2.1Þ2. By expressing
τij

μνλ in an equivalent form as τijμνλ ¼ εμνλρwijρ, one finds

δ0λij
μν ¼ εμνλρ∇λwijρ: ð2:9bÞ

The number of the local parameters wijρ is 6 × 4 ¼ 24.
However, wijλ is not uniquely defined, it has its own gauge
freedom (reducibility),

wijρ → wijρ þ∇ρwij: ð2:10Þ

Since the 6 parameters wij have no influence on δ0λijμν, the
effective number of gauge parameters wijλ is 24 − 6 ¼ 18.
They can be used to gauge-fix 18 of the λ’s, while the
remaining 18 can be determined by the 18 independent
field equations (2.7b).10 The above analysis confirms the
consistency of the multiplier dynamics.
The only role of Eq. (2.7c) is to ensure that the spin

connection has the pure gauge form. Moreover, from the
physical point of view, one can discard Eq. (2.7b) as it
merely determines the (physically uninteresting) Lagrange
multiplier, whereas the complete gravitational dynamics is
contained in Eq. (2.7a). The only dynamical variables
in (2.7a) are the coframe field ϑiμ (16 components) and
the pure gauge spin connection ωij

μ (24 components).

However, since ωij
μ can be gauge fixed by a suitable choice

of the 6 Lorentz parameters Λik, see Eq. (2.3), one can
simply ignore (2.7b) and (2.7c), and use the 16-component
Eq. (2.7a) to determine the 16 coframe components.

D. f ðTÞ gravity
The dynamical content of the standard quadratic

Lagrangian LT in (2.4b) depends on the values of the
coupling constants hn. There is one particularly interesting
choice, ðh1; h2; h3Þ ¼ ð1=4; 1=2;−1Þ, for which the gravi-
tational dynamics, although determined by torsion, is
equivalent to GR:

Ljj ≔ ϑT þ 1

4
λij

μνRij
μν;

T ≔
1

4
a0Tijk

�
Tijk þ 2Tjik − 4ηijVk

�
: ð2:11Þ

This Lagrangian represents the ϑ-ω-λ formulation of GRk.
Inspired by the fðRÞ extension of GR, one can introduce

an analogous extension of GRk, known as fðTÞ gravity.
In order to simplify further analysis, we represent the
Lagrangian fðTÞ in an equivalent form as a Legendre
transform of a function VðϕÞ,

Lf ¼ ϑLf þ 1

4
λij

μνRij
μν; Lf ≔ ϕT − VðϕÞ; ð2:12Þ

where ϕ is an auxiliary scalar field. This Lagrangian is
invariant under local Poincaré transformations, but, as a
consequence of the presence of the multiplier and the
scalar field, they are slightly modified [23]. In this
representation, the covariant momentum Hf

ijk is propor-
tional to the GRk form,

Hf
ijk ≔

∂Lf

∂Tijk ¼ ϕHijk: ð2:13Þ

The previous discussion offers a Lagrangian explanation
on how the ϑ-ω-λ form of fðTÞ gravity, based on the
Lagrangian (2.12), can be gauge-fixed to obtain the pure
coframe form. In what follows, we shall use the
Hamiltonian approach to analyze that transition in detail.

III. HAMILTONIAN ANALYSIS OF f ðTÞ GRAVITY

The canonical analysis of a gauge theory of gravity
becomes more efficient by adopting the Dirac-ADM
(1þ 3) formalism [15], which relies on two technical
premises: (i) at each point of spacetime, there exists the
unit vector n ¼ ðnkÞ normal to the spatial section Σ of
spacetime, and (ii) any spacetime vector V ¼ ðVkÞ can be
projected onto a component V⊥ ≔ nkVk orthogonal to Σ,
and a component Vk̄ ≔ Vk − nkV⊥ lying in Σ.

10Reference [19] notes that there is a possible global topo-
logical obstruction to solving this equation for the multiplier for
spaces with nonvanishing 3rd cohomology. Some spacetimes of
physical interest do have this property, e.g., the Einstein static
3-sphere cosmology.
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A. Primary constraints

Starting with the fðTÞ Lagrangian (2.12) and its dynami-
cal variables ðϑiμ;ωij

μ; λijμν;ϕÞ, one can introduce the
corresponding canonical momenta ðπiμ; πijμ; πijμν; πϕÞ as

πi
μ ¼ ∂Lf

∂ð∂0ϑiμÞ
¼ ϕHi

0μ; πij
μ ¼ ∂Lf

∂ð∂0ωij
μÞ

¼ λij
0μ;

ð3:1aÞ

πijμν ¼
∂Lf

∂ð∂0λijμνÞ
¼ 0; πϕ ¼ ∂Lf

∂ð∂0ϕÞ
¼ 0: ð3:1bÞ

The absence of time derivatives of ðϑi0;ωij
0; λijμν;ϕÞ

implies the following (sure) primary constraints:

ϕi
0 ≔ πi

0 ≈ 0; ϕij
0 ≔ πij

0 ≈ 0; ð3:2aÞ

ϕij
αβ ≔ πijαβ ≈ 0; ϕij

0β ≔ πij0β ≈ 0; ð3:2bÞ

ϕij
α ≔ πij

α − λij
0α ≈ 0; ð3:2cÞ

πϕ ≈ 0: ð3:2dÞ

The specific form of T produces some “extra” con-
straints, which can be found by rewriting the relation πiα ¼
ϕHi

0α as

π̂ik̄ ¼ ϕJHi⊥k̄; ð3:3Þ

where π̂ik̄ ≔ πi
βϑkβ are the “parallel” canonical momenta.

Indeed, by analyzing this 12-component equation, one
finds that the components which are independent of the
“velocities” Ti⊥k̄ can be combined to obtain 6 new
constraints [16,19],

Cik ¼ π̂ik̄ − π̂k{̄ þ a0ϕBik ≈ 0;

Bij ≔ ∇αB0α
ij ; B0α

ij ≔ ε0αβγijmnϑ
m
βϑ

n
γ: ð3:4Þ

The remaining 6 components can be solved for the 6
velocities TT{̄⊥k̄ and Tm̄⊥m̄.

B. Hamiltonians

Having found all the primary constraints, we now
introduce the canonical Hamiltonian,

Hc ¼ πi
α
∂0ϑ

i
α þ

1

2
πij

α
∂0ω

ij
α þ πϕ∂0ϕ − Lf: ð3:5Þ

Since Lf is linear in ∂0ω
ij
α, as follows from Rij

0α ≡
∂0ω

ij
α −∇αω

ij
0, one can use ϕij

α ≈ 0 to obtain

πij
α
∂0ω

ij
α ≈ λij

0α
�
Rij

0α þ∇αω
ij
0

�
:

Then, after eliminating the coframe velocities with the help
of the relations defining Ti

0α,

Ti
0α ≡ ∂0ϑ

i
α þ ωi

k0ϑ
k
α −∇αϑ

i
0 ¼ NTi⊥α þ NβTi

βα;

where N and Nα are the lapse and shift functions,
respectively, and using the (1þ 3) decomposition ∂0ϕ ¼
N∂⊥ϕþ Nβ

∂βϕ, the canonical Hamiltonian takes the
Dirac-ADM form

Hc ¼ NH⊥ þ NαHα −
1

2
ωij

0Hij −
1

4
λij

αβRij
αβ þ ∂αDα;

ð3:6aÞ

where

H⊥ ≔ π̂i
m̄Ti⊥m̄ − JLf − nk∇βπk

β þ ûϕπϕ;

Hα ≔ πk
βTk

αβ − ϑkα∇βπk
β þ πϕ∂αϕ;

Hij ≔ π̂i|̄ − π̂j{̄ þ∇απij
α;

Dα ≔ ϑk0πk
α þ 1

2
ωij

0πij
α: ð3:6bÞ

Following the spirit of the Dirac algorithm, the πϕ term in
H⊥ is written in the form ûϕπϕ, where ûϕ is an independent
“velocity” multiplier, defined by ûϕ ≔ ∂⊥ϕ. The canonical
Hamiltonian is linear in the unphysical variables ϑi0;ωij

0

and λij
αβ. The lapse Hamiltonian H⊥ is the only dyna-

mical component of Hc, as it depends on the Lagrangian.
Using (3.3) to eliminate the velocities ∂0ϑiα from H⊥, one
obtains [16]

H⊥ ¼ 1

2a0ϕ
P2− JðϕT̄ −VÞ−ni∇απi

αþ ûϕπϕ;

P2 ≔
1

2J

�
π̂m̄ n̄π̂

m̄ n̄−
1

2
ðπ̂m̄m̄Þ2

�
;

T̄ ≔
1

4
a0
�
T{̄m̄ n̄T{̄ m̄ n̄þ 2Tm̄ {̄ n̄T{̄ n̄ m̄− 4Tm̄

m̄ k̄Tn̄
n̄ k̄
�
: ð3:7Þ

The general Hamiltonian dynamics is determined by the
total Hamiltonian

HT ¼ Hc þ ui0πi0 þ
1

2
uij0πij0 þ

1

2
uijαϕij

α

þ 1

2
uij0βπij0β þ

1

4
uijαβπijαβ þ ðv · CÞ; ð3:8Þ

where v · C ≔ 1
2
vmnCmn. In Ref. [16], the term πϕ∂0ϕ is

relocated from Hc to HT , where it appears in the
form uϕπϕ.
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C. Preservation of the primary constraints

The preservation of the primary constraints (3.2a) yields

−∂0πi0∶ χi ≔ Hi ¼ niH⊥ þ e{̄αHα ≈ 0; ð3:9aÞ

∂0πij
0∶ χij ≔ Hij ≈ 0: ð3:9bÞ

Similarly, the preservation of (3.2b) is given by

∂0π
ij
αβ∶ χijαβ ≔ Rij

αβ ≈ 0; ð3:10aÞ

∂0π
ij
0β∶ χij0β ≔ uijβ ≈ 0: ð3:10bÞ

Since the equation of motion for ωij
α has the form

∂0ω
ij
α ¼ ∇αω

ij
0 þ uijα ⇔ Rij

0α ¼ uijα ≈ 0; ð3:11Þ

it follows that all components of the curvature tensor
weakly vanish, as expected.
The preservation of the primary constraints (3.2c) takes

the general form

∂0ϕij
α∶ uij0α ¼ fϕij

α; Hc þ ðv · CÞg: ð3:12Þ

Similarly, the preservation of πϕ yields

∂0πϕ∶ χϕ ≔ NFϕ −
1

2
vmnFmn ≈ 0; ð3:13aÞ

where

Fϕ ≔ fπϕ;H⊥g ¼ 1

2a0ϕ2
P2 þ JðT̄ − ∂ϕVÞ;

Fmn ≔ −fπϕ; Cmng ¼ a0Bmn: ð3:13bÞ

Finally, as for the preservation of the extra primary
constraints Cij, we have

∂0Cij∶ χij ≔ Gij
kð∂kϕÞδ ≈ 0; ð3:14Þ

where the (complicated, multiplier dependent) coefficients
Gij

k can be found in Ref. [16], Eq. (3.17), modified
by ∂ → ∇.
One can summarize the present situation as follows: the

preservation of the primary constraints (3.2) yields the
secondary constraints (3.9), (3.10a), (3.13a) and (3.14),
plus the conditions (3.10b) and (3.12) on the multipliers.
Hence, fðTÞ gravity is described by the total Hamiltonian
(3.8), with the set of constraints and canonical multipliers
(the fixed ones are marked by a bar), displayed in Table I.
The vanishing of ūijα is the canonical counterpart of the

Lagrangian relation Rij
0α ¼ 0.

D. Preliminary Dirac brackets

Further analysis can be simplified by noting that the
primary constraints ðπmn

0β;ϕij
αÞ, which are second class,

can be used to introduce the preliminary Dirac brackets
(DBs). Then, one can use these constraints as strong
equalities and eliminate the pair of the canonically con-
jugate variables ðλij0α; πmn

0βÞ from the theory, λij0α ¼ πij
α

and πmn
0β ¼ 0. After that, DBs in the remaining phase

space reduce to Poisson brackets (PBs).11

In such a reduced phase space, denoted by R1, the terms
ūij0απij0α and ūijαϕij

α in HT strongly vanish, so that

HTðR1Þ ¼ Hc þ ui0πi0 þ
1

2
uij0πij0 þ

1

4
uijαβπijαβ

þ ðv · CÞ: ð3:15Þ

The constraints characterizing the phase space R1 are given
in Table II.
In R1, the relation Rij

0β ¼ 0 is a dynamical consequence
of ūijβ ¼ 0.

E. Preservation of the secondary constraints

Now, we are going to examine the preservation of the
sure secondary constraints in R1.
Regarding the preservation of Rij

αβ, one can use the
equation of motion (3.11) for ωij

α to obtain

∇0Rij
αβ ¼ ∇αūijβ −∇βūijα; ð3:16Þ

which implies that the preservation of Rij
αβ is automatically

satisfied. Since Rij
0β ≈ ūijβ, the relation (3.16) can be

interpreted as the weak version of the second Bianchi
identity ð2.1Þ2.
As follows from the analysis of the translational and

local Lorentz symmetry in Appendix B and Sec. VA,

TABLE I. Constraints and multipliers, the present status.

Primary πi
0; πij0 πijαβ πϕ; Cmn πmn

0β;ϕij
α

Secondary H⊥;Hα;Hij Rij
αβ χϕ; χmn

Multipliers ui0; uij0 uijαβ ûϕ; vmn ūij0β; ūijα

TABLE II. Constraints in R1.

Sure constraints Extra

Primary πi
0; πij0, πijαβ πϕ; Cmn

Secondary H⊥;Hα;Hij, Rij
αβ χϕ; χmn

11After eliminating λij
0α, any variable from the reduced phase

space has a vanishing PB with πmn
0β. Then, by construction, any

DB reduces just to the PB form.
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respectively, the Hamiltonian constraints ðH⊥;HαÞ andHij

must be first class. Thus, the secondary constraints
ðH⊥;Hα;Hij; Rij

αβÞ are preserved independently of the
status of any other constraint in R1.
We defer discussion of preserving the extra constraints

ðχϕ; χijÞ until the end of section V.

IV. GAUGE FIXING THE LOCAL LAMBDA
SYMMETRY

In this section, we discuss how the ϑ-ω-λ formulation of
fðTÞ gravity can be reduced to the ϑ-ω form, by gauge
fixing the local lambda symmetry.

A. The inverse Castellani algorithm

In 1918 Noether presented two theorems regarding
symmetry in dynamical systems. Briefly, they stated that
for each global or local Lagrangian symmetry there is a
conserved current or differential identity, and conversely,
see for instance [24]. The Hamiltonian counterpart of these
theorems is richer: the conserved current is the generator of
the symmetry, furthermore local symmetries are associated
with first class constraints. For local symmetries, Castellani
[25] showed in detail how to construct the gauge generator
from the first class constraints. As we shall demonstrate in
the fðTÞ case, the converse of the Castellani construction
can be quite useful: if one knows that the Lagrangian has

certain local symmetries, one can infer that the Hamiltonian
formulation has corresponding gauge generators containing
canonical constraints, and these constraints are necessarily
first class. This can be quite helpful in the process of
identifying and classifying the constraints in a complicated
system.
The gauge fixing procedure of a local symmetry is

closely related to the form of the associated first class
constraints. The standard canonical procedure for identify-
ing first class constraints requires one to complete the
Hamiltonian constraint analysis, which includes finding all
the constraints and calculating their PB algebra [15]. In
fðTÞ gravity, such a program would be extremely com-
plicated, see, for instance, Ref. [16]. Fortunately, there is a
simpler and more practical approach to the problem,
described by the following set of instructions:
(i1) one starts from the known canonical generator of a

local symmetry in GRk;
(i2) then, by the “guess and check” strategy, one tries to

find its correct form in fðTÞ gravity;
(i3) once the correct generator is found, one can immedi-

ately identify the associated first class constraints in
fðTÞ gravity.

Let us now apply this approach to the local lambda
symmetry. In GRk, the corresponding canonical gauge
generator has the form [23]

G ¼ GA þGB;

GA ≔ −
1

4
τ̇ij

αβπijαβ þ
1

4
τij

αβSijαβ; Sijαβ ≔ −4Rij
αβ þ 2ω½i

k0π
j�k

αβ;

GB ≔ −
1

4
τij

αβγ∇απ
ij
βγ: ð4:1Þ

The result is obtained using the systematic Castellani
algorithm [25], based on the fact that the constraints
(πijαβ; Rij

αβ) are first class.
Since the local lambda symmetry in fðTÞ gravity is

generated by the same mechanism as in GRk, stemming
from the presence of the λR terms in their Lagrangians, it is
not surprising that it has the same form in both theories.
Thus, one can infer that G is also the correct generator in
the framework of fðTÞ gravity,12 reduced to the phase space
R1.

13 Hence:

(a1) Since G is the correct gauge generator for fðTÞ
gravity, the constraints ðπijαβ; SijαβÞ, or equivalently
ðπijαβ; Rij

αβÞ, are first class, regardless of the exist-
ence of any other constraint.

Indeed, if ðπijαβ; Rij
αβÞ were not first class, the form of the

generator (4.1) would be in contradiction to the Castellani
algorithm. Hence, (πijαβ; Rij

αβ) must be first class.
The procedure just described can be naturally called the

“inverse” Castellani algorithm: starting with the generator
of local lambda symmetry, one concludes that the con-
straints multiplying the parameters ε̇ and ε, are first class. In
fact, a more general treatment of the same idea has been
used in PG [26,27], not only to identify first class
constraints, but also to determine their PB algebra.

B. The coframe-connection form of f ðTÞ gravity
Having found that πij

αβ are first class, we choose
λij

αβ ≈ 0 as the associated gauge conditions. Treating these

12The statement can be explicitly checked using the trans-
formation rule δ0φA ≔ fφA; Gg. A direct calculation yields the
result which is in agreement with the corresponding Lagrangian
formula (2.9a), provided τij

αβ is identified with τij
αβ0 [23]. The

conclusion holds also for the momentum variables πijμ.
13The whole gauge fixing procedure can be easily extended to

the original, unrestricted phase space described in Table I, relying
on the results of Ref. [23].
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conditions as any other constraint, we find that their
preservation takes the form ∂0λij

αβ ¼ uijαβ ¼ 0. Hence,
the momentum πij

αβ disappears from HTðR1Þ, remaining
dynamically decoupled from the rest of R1. Such a status of
the pair ðλijαβ; πmn

γδÞ can be equivalently described by
constructing the corresponding DBs and eliminating these
variables from R1 via the strong equalities λij

αβ ¼ 0,
πijαβ ¼ 0. The DBs among the remaining variables take
the PB form, and the new, reduced phase space R2 is
described in Table III.
Taking into account that λijαβ strongly vanishes, the total

Hamiltonian now reads

HTðR2Þ ¼ NH⊥ þ NαHα −
1

2
ωij

0Hij þ ∂αDα

þ ui0πi0 þ
1

2
uij0πij0 þ ðv · CÞ: ð4:2Þ

Here, the Hamiltonian constraints ðH⊥;Hα;HijÞ contain
the nontrivial covariant derivatives ∇α, in contrast to the
situation in pure coframe gravity.
(a2) By fixing the local lambda symmetry, the present

canonical formulation corresponds to the ϑ − ω form
of fðTÞ gravity, defined by the Lagrangian (2.12)
with λij

μν ¼ 0 and Rij
μν ¼ 0, that is with

Lf ¼ ϑ½ϕT − VðϕÞ�; ð4:3Þ

where ωij
μ is a pure gauge connection.

V. GAUGE FIXING THE LOCAL LORENTZ
SYMMETRY

A. First class constraints in the Lorentz sector

As we mentioned in Sec. II A, the transition from the
pure gauge connection to ωij

μ ¼ 0 can be understood as a
reduction of the local Lorentz symmetry to its rigid form.
To examine that conclusion in the Hamiltonian formalism,
we start from the canonical generator of the standard local
Lorentz transformations in GRk [23]. After reducing it to
the phase space R̄2 of GRk, it takes the form

GL ≔ −
1

2
ε̇ijπij

0 −
1

2
εijSij;

Sij ≔ −Hij þ 2ϑ½i0πj�0 þ 2ωk½i0πkj�0: ð5:1Þ

The above generator produces the correct Lorentz trans-
formations of the fields ðϑkμ;ωij

νÞ and their conjugate
momenta, in accordance with the standard PG rules.
However, the phase space R2 of fðTÞ gravity contains

two additional variables, ϕ and πϕ, on which the gene-
rator (5.1) acts trivially,

δ0ϕ ¼ fϕ; GLg ¼ 0; δ0πϕ ¼ fπϕ; GLg ¼ 0: ð5:2Þ
How can this result help us in a search for the true Lorentz
generator in fðTÞ gravity? Recalling that ϕ is a scalar field,
it follows that the first relation is, in fact, quite correct.
Similarly, since πϕ ≈ 0, the second relation is also correct.
Thus, the Lorentz gauge generator (5.1) is also the proper
generator of Lorentz transformations in fðTÞ gravity.
(b1) Hence, as a consequence of the inverse Castellani

algorithm, the constraints ðπij0; SijÞ, or equivalently
ðπij0;HijÞ, are necessarily first class.

The conclusion is based on the fact that πj0 is first class, as
shown in Appendix B.

B. The coframe form of f ðTÞ gravity
The reduction of fðTÞ gravity to the coframe form requires

a suitable mechanism for breaking the local Lorentz sym-
metry. That mechanism can be understood as follows.
First, starting from the first class constraint πij

0, we
impose the gauge condition

ωij
0 ≈ 0: ð5:3aÞ

Its preservation takes the form ∂0ω
ij
0 ¼ uij0 ¼ 0. Then,

for consistency, local Lorentz symmetry has to be restricted
to a subclass, defined by

δ0ω
ij
0 ¼ fωij

0; GLg ¼ ∂0ε
ij ¼ 0: ð5:3bÞ

The pair ðωij
0; πij0Þ can be eliminated from R2 by con-

structing the corresponding DBs.
And second, the first class nature of Sij motivates us to

impose another gauge condition

ωij
α ≈ 0: ð5:4aÞ

It is automatically preserved, as follows from the relation
(3.11), and its consistency with local Lorentz symmetry
takes the form

δ0ω
ij
α ¼ fωij

α; GLg ≈ −∂αεij ¼ 0: ð5:4bÞ

(b2) The gauge fixing conditions (5.3a) and (5.4a) imply
that the local Lorentz invariance is reduced to its
rigid form.

In the resulting phase space R3, the total Hamiltonian reads

HTðR3Þ ¼ NH⊥ þ NαHα þ ui0πi0 þ ðv · CÞ; ð5:5Þ

TABLE III. Constraints in R2.

Sure constraints Extra

Primary πi
0; πij0 - πϕ; Cmn

Secondary H⊥;Hα;Hij, Rij
αβ χϕ; χmn
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It represents the canonical description of the coframe
formulation of fðTÞ gravity, defined by the Lagrangian
(2.12) with λij

μν ¼ 0 and ωij
ρ ¼ 0.

(i) All the previous considerations imply our main
result: The ϑ − ω − λ, the ϑ − ω, and the pure
coframe forms of fðTÞ gravity, are just three gauge
equivalent versions of the same theory.

At this point, we add a brief remark on the preservation
of the extra constraints ðχϕ; χijÞ. The rather complicated
details of how one uses χϕ and χij to find one further
tertiary constraint and determine the multipliers uϕ ≡ ∂0ϕ
and vmn, are given in our paper [16]. However, the results
obtained here do not depend on these details.

VI. CONCLUDING REMARKS

In this work, we analyzed the gauge structure of fðTÞ
gravity using the Dirac Hamiltonian approach, in which, as
explicitly shown by Castellani [25], gauge symmetries are
generated by first class constraints. However, the standard
procedure for identifying these constraints requires a large
number of the PB calculations. To avoid these complica-
tions, we introduced another, much simpler but equally
reliable method, suitably named the inverse Castellani
algorithm, see Sec. IV. After having found all the first
class constraints associated to the lambda, the Lorentz,
and the translational gauge symmetries, we applied the
standard canonical gauge fixing procedure to show that the
ϑ − ω − λ, the ϑ − ω, and the pure coframe formulations of
fðTÞ gravity are gauge equivalent. As a direct consequence,
the three formulations have the same number of the
physical degrees of freedom.
There is another interesting consequence that implicitly

follows from our analysis. Namely, since the set of first
class constraints found through the inverse Castellani
algorithm does not depend on the existence of any other
constraint in the theory, the present proof of gauge
equivalence can be straightforwardly extended to any
Poincaré gauge invariant TG. In particular, it holds for
fðTÞ gravity, or for its extension in which T is replaced by a
more general torsion invariant, such as the one defined in
Eq. (2.4b), or its subcase known as new general relativity
(NGR) [3].14 With the known set of first class constraints,
the full Hamiltonian analysis becomes notably simpler.
In our approach, the ϑ − ω form of TG is obtained from

its ϑ − ω − λ version by fixing the lambda gauge symmetry.
As a result, the original Lorentz gauge symmetry is left
untouched, it continues to be a valid symmetry of the ϑ − ω
formulation. The only remnant of the original formulation
is an extra geometric restriction, the teleparallelism con-
dition Rij ¼ 0, which is independent of, but fully compat-
ible with the Lorentz gauge symmetry. As a consequence,

the flat spin connection ωij can be varied off shell as an
ordinary Riemann-Cartan connection. This approach yields
the standard form of the Noether differential identity (A7),
which relates the second field equation of fðTÞ gravity
(2.7b) with the first one, (2.7a); see also [20]. The result is
quite general, it follows only from the gauge structure of the
theory and offers a clear description of the dynamical role
of the second field equation; compare to [13,14].
The geometric structure of the ϑ − ω form of TG is quite

naturally described as a subcase of the Riemann-Cartan
geometry. Still, there are opinions, see for instance [11,12],
that the covariant TG can be more conveniently defined by
replacing the vanishing spin connection of the pure coframe
TG with its Lorentz transform ωijðΛÞ ¼ Λi

mdΛjm. In this
coframe-Lorentz formalism the basic dynamical variables
are (ϑi;Λi

m), in contrast to the genuine geometric choice
ðϑi;ωijÞ. At present, it is not yet clear to what extent the
coframe-Lorentz formalism will become a useful alterna-
tive to the more geometric ϑ − ω approach; for more
details, see Appendix C.
Much of what we did in the present work would easily

extend to D > 4 dimensions. We also wish to remark that
here, we considered only metric compatible connections.
Symmetric teleparallel connections with nonmetricity are
also of interest [29], but are not covered in the present work.

APPENDIX A: NOETHER IDENTITIES

Consider a general TG Lagrangian (2.4a), and introduce
the notation

Hi
μν ≔

∂L
∂Ti

μν
; Hij

μν ≔
∂L

∂Rij
μν
; Ei

μ ≔
∂L
∂ϑiμ

;

Ei
ν ≔ ∇μHi

μν − Ei
ν; Eij

ν ≔ ∇μHij
μν þHij

ν −Hji
ν:

ðA1Þ

Then, using the formulas

δTi
μν ¼

�∇μδϑ
i
ν þ δωi

kμϑ
k
ν

�
− ðμ ↔ νÞ;

δRij
μν ¼ ∇μδω

ij
ν − ðμ ↔ νÞ; ðA2Þ

one can calculate the general variation of the Lagrangian,
δL ¼ δ1Lþ δ2L:

δ1L ≔
1

2
δTi

μνHi
μν þ 1

4
δRij

μνHij
μν þ δϑiμEi

μ

¼ ∇μ

�
δϑiνHi

μν þ 1

2
δωij

νHij
μν

�
− δϑiνEi

ν

−
1

2
δωij

νEij
ν; ðA3aÞ

δ2L ≔
1

4
ðδλijμνÞRij

μν: ðA3bÞ14A Hamiltonian analysis of NGR as a pure coframe theory
was given in Ref. [28].
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Let us now assume the invariance of L under the local
Lorentz transformations,

δϑiμ ¼ εikϑ
k
μ; δωij

μ ¼ −∇με
ij;

δλij
μν ¼ εi

kλkj
μν − εj

kλki
μν; ðA4Þ

as well as the validity of the teleparallelism condition
Rij

μν ¼ 0. Then, δL takes the form

δεL ¼ ∇μ

�
−εijHij

μ −
1

2
εij∇ρHij

ρμ

�

− εikϑ
k
μEi

μ þ 1

2

�∇με
ij
�
Eij

μ

¼ 1

2

�∇με
ij
��
Eij

μ −∇ρHij
ρμ − 2Hij

μ
�

−
1

2
εij

�
∇μð∇ρHij

ρμ þ 2Hij
μ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Eijμ

Þ þ 2Eij

�
: ðA5Þ

Since δεL ¼ 0, the coefficients of the εij and ∇με
ij terms

vanish separately. The vanishing of the ∇ε term defines the
Noether current

Jijμ ≔ ∇ρHij
ρμ þ 2H½ij�μ ≡ Eij

μ; ðA6Þ

whereas the vanishing of the ε term yields the Noether
differential identity

∇μEij
μ þ 2E½ij� ≡ 0: ðA7Þ

These identities are obtained without assuming the Euler-
Lagrange field equations, i.e., the vanishing of Ei

μ and Eij
μ.

Equivalent results can be found in earlier works, e.g.
Refs. [20–22].

APPENDIX B: LOCAL TRANSLATIONS
AND FIRST CLASS CONSTRAINTS

In this appendix, we use the inverse Castellani algorithm
to identify the first class constraints associated with local
translations.
Let us begin with the case of GRk in R̄2, where the

lambda sector of the phase space is gauge fixed. The cano-
nical generator for local translations is given by the
standard PG form, see Eqs. (5.1c,d) of Ref. [23]:

ḠTðξÞ ¼ −ξ̇μ
�
ϑkμπk

0 þ 1

2
ωij

μπij
0

�
− ξμP̄μ;

P̄0 ≔ H̄T − ∂αDα;

P̄α ≔ H̄α −
1

2
ωij

αHij þ πk
0
∂αϑ

k
0 þ

1

2
πij

0
∂αω

ij
0: ðB1Þ

The terms that differ from the corresponding fðTÞ expres-
sions are marked by a bar.
In contrast to the Lorentz generator (5.1), the translational

generator is affected by the structure of the Lagrangian.
Namely, since the GRk Hamiltonians ðH̄⊥; H̄αÞ do not
depend on the fðTÞ variables ðϕ; πϕÞ, the generator ḠT

cannot be a proper generator in fðTÞ gravity. According to
Ref. [16], section IV, the problem can be simply resolved by
replacing the GRk Hamiltonians ðH̄⊥; H̄αÞ with the corre-
sponding fðTÞ expressions ðH⊥;HaÞ, given by

H⊥ ¼ H̄⊥ þ ûϕπϕ; Hα ¼ H̄α þ πϕ∂αϕ: ðB2aÞ

As a consequence,

P0 ¼ P̄0 þ πϕ∂0ϕ; Pα ¼ P̄α þ πϕ∂αϕ: ðB2bÞ

Then, applying the inverse Castellani algorithm to the fðTÞ
gauge generator GT, one can conclude:
(c1) The two sets of constraints, ðπk0; πij0Þ and ðP0; PαÞ,

are both first class. SinceHij is shown to be first class
in section V, it follows that ðH⊥;HαÞ must also be
first class.

The above analysis can be straightforwardly extended
“backward” to the phase space R1. Namely, the gauge
generator GT in R1 is modified by the presence of several
additional terms, proportional to the lambda momenta
πij

αβ [23]. However, as shown in Sec. IV, these momenta
are first class constraints, so that the above conclusion
remains valid also in R1.

APPENDIX C: ON THE COFRAME-LORENTZ
FORMULATION OF TG

Inspired by some ideas appearing in the recent literature,
we discuss certain aspects of the coframe-Lorentz form of
TG, in which the Lorentz matrix Λi

n appearing in the pure
gauge spin connection ωijðΛÞ≡ Λi

ndΛjn, is treated as an
independent dynamical variable.
1. In the coframe-Lorentz formalism, with ϑi and Λi

k as
the basic dynamical variables, local Lorentz (LL) trans-
formations, parametrized by Λ̃i

k, are naturally defined by

ϑ̂i ≔ Λ̃i
nϑ

n; Λ̂i
n ≔ Λ̃i

mΛm
n: ðC1Þ

As a consequence, the Lorentz transforms of ωijðΛÞ and
Ti ≡ dϑi þ ωi

nðΛÞϑn are given by

ω̂ij ≔ ωijðΛ̃ΛÞ≡ Λ̃i
m½ωmnðΛÞΛ̃j

n þ dΛ̃jm�; ðC2aÞ

T̂i ≔ dϑ̂i þ ω̂i
mϑ̂

m ≡ Λ̂i
mTm: ðC2bÞ

Hence, the coframe-Lorentz transformations (C1) cor-
rectly reproduce the well-known PG rules.
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In the particular case when Λ̃ ¼ Λ−1 ≡ ΛT , relations
(C2) imply

ω̂ij ¼ 0; ðC3aÞ

T̂i ¼ dϑ̂i; ðC3bÞ

which describes the pure coframe TG. The Lagrangian
(which is a Lorentz scalar valued function of its arguments)
can be transformed to an equivalent form as follows:

Lðϑi; TiÞ≡ LðΛ̃i
nϑ

n; Λ̃i
nTnÞ≡ Lðϑ̂i; T̂iÞ≡ Lðϑ̂i; dϑ̂iÞ:

ðC4Þ

Thus, the coframe-Lorentz TG (left) and its pure coframe
form (right) are interrelated by an LL transformation, hence
they are physically indistinguishable.
2. In the following parts of this appendix, to aid clarity,

we will use tilde indices to refer to the teleparallel frame,15

ϑñ ¼ Λj
ñϑj, which satisfies the Weitzenböck gauge con-

dition (vanishing connection):

ωk̃
ñ ¼ Λi

k̃
�
ωi

jΛj
ñ þ dΛi

ñ

� ¼ 0: ðC5Þ

A deeper understanding of the LL invariance can be
obtained in the Hamiltonian approach. Let us begin by
defining the canonical momenta associated to ðϑiμ;ΛiñÞ by
πi

μ ≔ ∂L=∂Ti
0μ and Piñ ≔ ∂L=∂∂0Λiñ, which, in view of

Ti
0α ¼ ∂0ϑ

i
α þ Λi

ñ∂0Λjñϑjα −∇αϑ
i
0, lead to the 6 primary

constraints

ϕij ≔ P½iñΛj�ñ þ π½iαϑj�α ≈ 0: ðC6Þ

Next, we introduce the canonical Hamiltonian

Hc ≔ πi
α
∂0ϑ

i
α þ Piñ∂0Λiñ − L ¼ πi

αðTi
0α þ∇αϑ

i
0Þ − L;

ðC7Þ

where the last equality follows from (C6). Using the
definition of πiα, one can eliminate the “velocities” Ti

0α

and obtain Hc as a function on the phase space.
The form of the constraints (C6) indicates that they are

first class. To test this possibility, one could calculate the
PB algebra of constraints, but the inverse Castellani algo-
rithm is more simple. It is based on showing that the object
G ≔

R
εijϕijd3x generates LL transformations of phase

space variables Z by δ0Z ≔ fZ;Gg.16 The result takes
the expected form, δ0ϑ

i
α ¼ εijϑ

j
α, δ0Λiñ ¼ εijΛjñ, and

similarly for the momentum variables. Hence, G is the

correct gauge generator and consequently, ϕij are indeed
first class.
3. The Lorentz matrix Λi

ñ has 16 components, but not all
of them are independent—they satisfy 10 constraints
ΛTgΛ ¼ g, so they effectively have only 6 degrees of
freedom. To examine the dynamical consequences of this
consider the identity

∂μΛjm̃ ≡ Pjm̃
lñ∂μΛlñ; Pjm̃

lñ ≔
1

2

�
δm̃ñ δ

j
l − Λl

m̃Λj
ñ

�
:

ðC8Þ

Iterating, one gets ∂Λ ¼ P∂Λ ¼ P2
∂Λ. This suggests that

P is a projector, P ¼ P2, a property that is easily verified.
Then, since P is self-adjoint, Λ∂Λ ¼ ðΛPÞðP∂ΛÞ≡
ðPΛÞðP∂ΛÞ. Thus each Λ in the combination Λ∂Λ that
appears in ωijðΛÞ has effectively only six independent
(Lorentz) components, the same as the number of inde-
pendent components of ωijðΛÞ. Similarly, the term P∂0Λ in
Hc can be written as P∂0Λ ¼ ðPPÞðP∂0ΛÞ, showing that
effectively, both Λ and P have six independent compo-
nents each.
The same projection technique could be used in defining

the Poisson bracket—but this is not essential—in practice,
one has the option of using the more simple, direct 16
component representation. With N ¼ 16þ 6 independent
Lagrangian variables ðϑi;Λi

m̃Þ, and generically, with just
the diffeomorphism and Lorentz first class constraints
ðN1¼2 ·4þ6Þ and no second class constraints ðN2¼0Þ,
the number of d.o.f is N⋆ ¼ N − N1 − N2=2 ¼ 8, as
expected.
4. The above considerations allow us to make a few

simple comments on the literature.
Let us start with the work of Blixt et al. [30,31], whose

aim is to show that the number of d.o.f in the coframe-
Lorentz TG is not affected by fixing the LL symmetry.
For that purpose, they introduce a kind of “instantaneous
angular velocity” variable aij ¼ Λi

ñ
∂0Λjñ and its associ-

ated “canonical momenta” π̂ij ≔ ∂L=∂aij, which satisfy the
constraints17

Φij ≔ π̂ij − π½iαϑj�α ≈ 0: ðC9Þ

Although the momenta π̂ij are not independent of πiα, one
cannot conclude that they are pure gauge variables, as the
authors claim. Namely, to verify the gauge nature of π̂ij,
one needs to know the form of their LL transformations and
the related first class constraints. Although the constraints
Φij look like they might be first class, the authors did
not address the issue of precisely verifying that possibility.

15Unique up to constant Lorentz transformations.
16In the next paragraph, we show that calculations based on the

naive PBs produce the correct result.

17The constraints (C6) and (C9) imply π̂ijaij ¼ Pjñ∂0Λjñ, and
consequently πiα∂0ϑiα þ π̂ijaij ¼ πi

αðTi
0α þ∇αϑ

i
0Þ, which gives

the same form of the canonical Hamiltonian as in (C7).
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In particular, they did not explain which variable is the
canonically conjugate partner of π̂ij. In the absence of more
convincing arguments, one cannot accept the authors’
analysis as a valid Hamiltonian proof of the pure gauge
nature of Λi

k.
The Hamiltonian analysis of the coframe-Lorentz GRk

by Golovnev et al. [32] is to a large extent complete. After
defining the Λ sector of the phase space by the canonically
conjugate pair ðΛi

m̃; Pi
m̃Þ, they identify three sets of the

primary constraints: the standard diffeomorphism con-
straints πi

0, the standard Lorentz constraints (C6), and

the extra Lorentz constraints Cij, stemming from the
special structure of GRk. By recognizing the role of
projectors for a proper definition of PBs, they show that
the PB algebra of the primary constraints is closed. Their
analysis could be easily completed by using the diffeo-
morphism invariance to conclude that the four Hamiltonian
components are (secondary) first class constraints, see
Appendix B. As a consequence, all the constraints of
GRk are first class, as expected [19]. However, in the case
of fðTÞ gravity, the extra LL symmetry associated to Cij is
broken [16].
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