
Gravitational-wave imprints of nonconvex dynamics
in binary neutron star mergers

Giuseppe Rivieccio ,1 Davide Guerra ,1 Milton Ruiz ,1 and José A. Font 1,2
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C/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain

(Received 18 January 2024; accepted 26 February 2024; published 13 March 2024)

Explaining gravitational-wave (GW) observations of binary neutron star (BNS) mergers requires an
understanding of matter beyond nuclear saturation density. Our current knowledge of the properties of
high-density matter relies on electromagnetic and GW observations, nuclear physics experiments, and
general relativistic numerical simulations. In this paper we perform numerical-relativity simulations of
BNS mergers subject to nonconvex dynamics, allowing for the appearance of expansive shock waves and
compressive rarefactions. Using a phenomenological nonconvex equation of state we identify observable
imprints on the GW spectra of the remnant. In particular, we find that nonconvexity induces a significant
shift in the quasiuniversal relation between the peak frequency of the dominant mode and the tidal
deformability (of order Δfpeak≳380 Hz) with respect to that of binaries with convex (regular) dynamics.
Similar shifts have been reported in the literature, attributed however to first-order phase transitions from
nuclear=hadronic matter to deconfined quark matter. We argue that the ultimate origin of the frequency
shifts is to be found in the presence of anomalous, nonconvex dynamics in the binary remnant.
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I. INTRODUCTION

Gravitational waves (GWs) from binary neutron star
(BNS) mergers encode key information about the nature
of matter above nuclear saturation density (n0 ¼ 0.15�
0.01 fm−3). Following merger, the bulk of the GW energy
is emitted and reaches values of ∼0.1M⊙c2 [1]. This energy
is emitted at frequencies ≳2 kHz and would be observable
with the third-generation detectors Einstein Telescope and
Cosmic Explorer [2–4]. The GW spectrum is directly
linked to properties of NS [5] and can be used to impose
tight constraints on the equation of state (EOS), comple-
mentary to those from electromagnetic (EM) observations
and heavy-ion experiments [6–8]. These constraints can in
turn be used to infer a number of key properties of a NS, as
e.g., the mass-radius relationship, the tidal deformability,
or the moment of inertia. In particular, numerical work has
shown that the GW spectra of the remnant is characterized
by the presence of distinctive peaks associated with differ-
ent oscillation modes (see e.g., [9,10] and references
therein). The frequencies of various such modes, e.g.,
the peak frequency at merger fpeak and the quadrupolar
mode frequency f2, have been found to be related quasiu-
niversally with the tidal deformability parameter Λ char-
acterising the quadrupolar deformability of an isolated NS.
Numerical relativity simulations of BNS mergers have

also revealed that following merger the temperature inside

the densest parts of the binary remnant remains below
T≲10MeV, while hot patches of matter with T ≳ 50 MeV
eventually appear, triggering the formation of a hot annulus
(see e.g., [11–14]). Through angular momentum transport,
matter in the outer region of the system gains enough
rotational energy to be ejected, while the inner part contracts
to form a central core, which may undergo a transition to
quark-gluon plasma or other exotic states [15–17]. It has also
been shown (see e.g., [18–20]) that particle production such
as hyperons, a process that becomes relevant as the temper-
ature increases, can trigger a substantial drop in the thermal
pressure of the binary remnant.
Although there have been considerable efforts into the

theoretical understanding of the EOS beyond nuclear
saturation density, systematic calculations of matter proper-
ties at densities larger than n0 based on quantum chromo-
dynamics (QCD) are still not possible. Therefore, many
properties of phase transitions remain unclear, e.g., the
threshold temperature or the densities at which the system
undergoes a phase transition are unknown [21]. So far,
QCD calculations assuming a vanishing baryonic chemical
potential μ predict that a smooth crossover transition will
take place at a temperature of T ¼ 154� 9 MeV [22–24].
Unfortunately, at μ ≠ 0 only perturbative calculation or
phenomenological QCDmodels exist [25–27], and they are
not, in particular, applicable in regions of first-order phase
transitions.
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The possible appearance of phase transitions from
nuclear hadronic matter into quark-gluon plasma or into
matter phases containing exotic particles (e.g., hyperons) in
BNS mergers may modify the stability, dynamics and final
fate of the remnant, and thus the associated GW signal.
Numerical studies have sought to identify the imprints
of the first-order hadron-quark phase transition on the GWs
(see e.g., [16,21,28–31]). In particular, the BNS merger
simulations of [21,29] showed that if the remnant under-
goes a strong first-order phase transition to deconfined
quarks, the dominant GW frequency at merger fpeak
exhibits a significant deviation from a quasiuniversal
(i.e., EOS-insensitive) relation with the tidal deformability
Λ, an effect that could be observationally identified. We
note that phase transitions soften1 the EOS at merger, which
potentially can modify the ejecta properties and, hence, any
EM counterpart [16,28,29,32].
Physical processes involving high-density matter where

the system undergoes a phase transition to exotic states also
affect the monotonic increase of the speed of sound with
density. In particular, at densities above n0 monotonicity is
lost [22–24,33–39]. The nonmonotonicity of the sound
speed can also result from the behavior of the adiabatic
index at such densities [40]. The speed of sound is closely
related to the so-called convexity of the EOS. Namely, the
convexity of a thermodynamical system is determined
by the sign of the so-called fundamental derivative G on
the p–V plane [41,42], a quantity directly connected to the
derivative of the speed of sound. Here p and V ¼ ρ−10 are
the pressure and the specific volume, respectively, with ρ0
the rest-mass density. When G > 0 isentropes on the p–V
plane are convex and the dynamics of the system involves
compressive shocks and expansive rarefaction waves [43].
Such physical systems are said to be convex. By contrast,
when G < 0 the dynamics becomes “anomalous,” involving
expansive shocks and compressive rarefaction waves, and
the system is said to be nonconvex.
In the presence of phase transitions to exotic compo-

nents, the fundamental derivative can indeed be negative,
implying that the EOS should be nonconvex in that regime.
This would lead to nonconvex, atypical dynamics. In
particular, at the phase transition the fundamental derivative
is discontinuous, i.e., in the continuous limit there is a
single point along an isentrope where G < 0. However,
state-of-the-art numerical simulations of BNS mergers
employ microphysical, finite-temperature EOS tables
constructed using data from observations and nuclear
physics [44–46]. Because of the discrete nature of the
tables, it is unlikely that tabulated points coincided with the
locus of the discontinuity of the fundamental derivative

which may cause nonconvex behavior to spread spuriously
along neighboring points. Besides, finite difference deriv-
atives of the thermodynamical variables may also induce
spurious oscillations in G, artificially triggering nonconvex
dynamics in a finite region. An example of numerical loss
of convexity associated with insufficient thermodynamic
discretization of some tabulated EOSs when the adiabatic
index is nonconstant was reported in [47].
Studies of nonconvex, relativistic fluid dynamics

and magnetohydrodynamics (MHD) have been presented
in [48–54]. Particularly relevant for the topic discussed
in this paper are the results reported in [50,51,53]. In
particular [51] probed the effects of a nonconvex EOS on
the dynamics of both spherically symmetric and uniformly
rotating NS undergoing gravitational collapse to black
holes (BHs). The stars were evolved assuming a phenom-
enological Γ-law EOS first proposed in [50] for which the
adiabatic index Γ depends on the rest-mass density in a way
which leads to G < 0 in some regions of the rest-mass
density distribution. The results of [51] showed that a
nonconvex EOS has a major effect on the dynamics of
gravitational collapse, accelerating the onset of the collapse
and leaving distinctive imprints on the GW signal, as
compared to the case of a convex dynamics. Moreover, [51]
suggested that to properly capture the transition from
nuclear matter to exotic matter states, EOS tables should
be more densely populated with nodal points along regions
where the fundamental derivative displays large variations,
specially when these variations drive negative values of G.
We also note that [51] pointed out that convexity across
phase transitions may occasionally be recovered numeri-
cally if the singularities in the Gibbs or Helmholtz free
energies are removable. Thermodynamic consistency
requires the Gibbs free energy to be a jointly concave
function. This requirement can be imposed by convolving
the Gibbs free energy with a non-negative smoothing
function, which smoothes out singularities along phase
transitions [41]. Recently, an analytic model for a tabulated
EOS that focuses on the modeling of phase transitions
through a thermodynamically adaptive piecewise-
polytropic approximation has been reported [53]. This
method is able to reproduce the nonconvex behavior of
several nuclear EOSs.
In this work we analyze the possible repercussion the

use of a nonconvex EOS may have on the dynamics of
BNS mergers, focusing in particular on the evolution of the
postmerger remnant. These astrophysical systems offer a
perfect framework to study the impact of nonconvex
thermodynamics on their (hydro)dynamics, as they are
characterized by the presence of high-density regions
(above nuclear saturation density) where the dynamics
may become nonconvex. Moreover, they also allow to
investigate the potential influence of nonconvex effects on
multimessenger observables such as GW and EM waves.
Here, we perform a numerical-relativity survey of BNS

1In a NS modeled with a stiff (soft) EOS the pressure increases
promptly with density. Hence, its core is relatively resistant
(susceptible) to compression giving rise to stars with larger
(smaller) radii.
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mergers in quasicircular orbit that merge and form a
transient remnant. The stars are assumed to be irrotational
and are modeled using piecewise-polytropic representa-
tions of different microphysical, nuclear EOSs. The
effects of nonconvex thermodynamics in the BNS merg-
ers are incorporated using the same phenomenological
EOS employed in [50,51], i.e., a Γ-law EOS allowing
for shock heating. Following [50] we assume that the
adiabatic index Γ is not constant but depends on the rest-
mass density. This allows us to mimic some key features
of tabulated, nuclear-matter EOS such as the nonmono-
tonic dependence of the speed of sound (or the adiabatic
index) with the rest-mass density [55] and, thus, the
appearance of nonconvex dynamics. We find that the
use of a nonconvex EOS does influence the postmerger
dynamics in a significant way. In particular, nonconvex
dynamics can strongly impact the frequency of the peak
first visible in the GW spectra right after merger, fpeak.
Depending on the parameters of our EOS, deviations
from a Λ − fpeak quasiuniversal relation can be in mag-
nitude as large as Δfpeak≥ 380 Hz with respect to that of
binaries with pure convex evolution. Such frequency
shifts are reminiscent of the results reported by [21,29],
where they were attributed as due to a strong first-order
phase transitions from nuclear/hadronic matter to decon-
fined quark matter. We argue that the explanation for the
observed frequency shift is to be found in the presence of
anomalous, nonconvex dynamics in the binary remnant.
Our explanation does not exclude the interpretation of
the shifts as due to a first-order phase transition, as the
dynamics is indeed nonconvex there. The explanation
based on the existence of a first-order phase transition can
be regarded as a particular manifestation of a more general
reason, namely the possible nonmonotonic behavior of the
EOS of NSs above nuclear saturation density.
The rest of the paper is organized as follows: Sec. II

presents a brief summary of non-convex thermodynamics
and of the phenomenological EOS used in this study. The
description of the numerical methods employed in the
simulations of BNS mergers, including also the initial data
and the grid structure, are given in Secs. III A and III B. We
present our results in Sec. IV and summarize our findings
and conclusions in Sec. V. Finally, the Appendix gathers
further evidence from additional simulations to validate our
main findings.

II. NONCONVEX THERMODYNAMICS AND EOS

The study of the physical properties of BNS merger
remnants requires of the understanding of the EOS at
densities typically higher than nuclear saturation density.
As discussed above, at such densities the system may
develop nonconvex dynamics. In the following, we sum-
marize key properties of nonconvex dynamics, referring the
reader to [50,51] for further details.

The convexity properties of Newtonian hydrodynamical
flows is determined by the EOS through the concept of the
fundamental derivative [43,56,57] defined as

G≡ −
1

2
V

∂
2p

∂V2 js
∂p
∂V js

; ð1Þ

with s being the specific entropy. A change in the sign of
the fundamental derivative measures the convexity of the
isentropes on the p–V plane. When G > 0 the system is
convex and its dynamics involves expansive rarefaction
waves and compressive shocks. This is the usual regime in
which many astrophysical scenarios develop. By contrast,
when G < 0 the system is nonconvex and its (anomalous)
dynamics involves compressive rarefaction waves and
expansive shocks. This nonstandard behavior has been
experimentally observed in transonic and mildly supersonic
fluids [58,59]. Fluids attaining negative values of the
fundamental derivative are called Bethe-Zel’dovich–
Thompson fluids, after [43,56,57].
Following [41,50], the speed of sound cs can be related

to the fundamental derivative as

G ¼ 1þ ∂ ln cs
∂ ln ρ0

����
s
: ð2Þ

Therefore, the fundamental derivative becomes negative
when ∂ ln cs=∂ ln ρ0js < −1. A generalized fundamental
derivative for relativistic fluids was found in [48], given by

GR ¼ G −
3

2
c2sðRÞ; ð3Þ

where csðRÞ is the relativistic speed of sound that can be
related to cs through c2s ¼ hc2sðRÞ where h ¼ 1þ ϵþ p=ρ0
is the specific enthalpy and ϵ is the specific internal energy
density.
Figure 1 displays the relativistic fundamental derivative

for a set of selected EOSs from the CompOSE database [60]
as a function of baryon density nb. EOS DD2F-SF and
EOS DD2-SF include a phase transition to hadron-quark
matter while EOS DD2 does not. The presence of the phase
transition induces the loss of monotonicity of the speed of
sound which, subsequently, triggers the loss of convexity.
Indeed, at densities where the EOS suffers a phase
transition, the relativistic fundamental derivative GR (as
well as the Newtonian one) becomes negative. Notice that,
as pointed out in [51], the oscillating behavior in GR is a
numerical artifact due to the computation of the funda-
mental derivative using a discrete EOS table. This causes
the nonconvex behavior to spread spuriously along neigh-
boring points.
Using the above definitions, the effects of a nonconvex

EOS on the stability and dynamics of isolated NS were
probed in [51] employing a phenomenological Gaussian
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Γ-law (GGL) EOS p ¼ ðΓ − 1Þρ0ϵ. Here Γ is an effective
thermal index that, to mimic its dependency on the
nucleon effective mass for densities above half nuclear
saturation [55], is given by [50]

Γ ¼ Γth þ ðΓ1 − ΓthÞ exp
�
−
ðρ0 − ρ1Þ2

Σ2

�
; ð4Þ

where Γth, Γ1, ρ1, and Σ are free constant parameters. The
results reported by [51] indicate that a nonconvex dynamics
can accelerate the onset of the collapse of the NS to a BH
with respect to that of a convex dynamics. Nonconvexity
also leaves an imprint on the GW signal, amplifying
the amplitude of the GWs emitted by the collapsing star.
The maximum amplitude is about twice as large as in the
convex case. These imprints are large enough to be
detectable by third-generation, ground-based detectors.

III. NUMERICAL SETUP FOR NONCONVEX
BNS MERGER SIMULATIONS

A. Initial data

We consider BNS configurations in quasiequilibrium
circular orbits that inspiral, merge and form dynamical
stable remnants lasting more than ≳15 ms. The binaries
consist of two identical irrotational NS modeled by a
piecewise polytropic representation of (several) nuclear
EOSs using seven pieces as in [61]. The initial data are
computed using the LORENE code [62–64]. The initial
coordinate separation of the binary is ∼44.3 km, and the
rest mass of each NS isM0 ¼ 1.4M⊙. The initial properties
of our binaries are summarized in Table I. These repre-
sentative EOSs broadly satisfy the current observational
constraints on NS masses and radii (see Fig. 2). For
instance, all EOSs predict that the maximum (gravitational)

mass configuration of an isolated spherical star is larger
than 2M⊙, consistent with: (i)Mmax

sph > 2.072þ0.067
−0.066M⊙ from

the NICER and XMM analysis of PSR J0740þ 6620 [65];
(ii)Mmax

sph > 2.01þ0.017
−0.017M⊙ from the NANOGrav analysis of

PSR J1614-2230 [66]; (iii) Mmax
sph > 2.01þ0.14

−0.14M⊙ from the
pulsar timing analysis of PSR J0348þ 0432 [67]; and
(iv) Mmax

sph > 2.14þ0.20
−0.18M⊙ from the NANOGrav and the

Green Bank Telescope [68]. However, the LIGO=
Virgo=KAGRA analysis of GW170817 predicts that the
tidal deformability of a 1.4M⊙ NS is Λ1.4 ¼ 190þ390

−120 at the
90% credible level [69], and hence only a few EOSs in
Table I satisfy this constraint. Also note that the constraints
imposed by GW190814 are more uncertain as there is not
complete confirmation that the secondary of this compact
binary coalescence is actually a NS [70]. We stress that we
consider these EOSs because, as shown in Fig. 2, they span
a large range of NS central rest-mass densities, radii
and maximum gravitational masses for irrotational NSs,
allowing us to probe the impact of a nonconvex dynamics
on the GW spectrum of BNS mergers.

B. Simulations

Much of the numerical approach employed here has been
extensively discussed in previous work (see e.g., [73,74]).
Therefore, in the following we only summarize the basic
aspects, referring the reader to those references for further
details and code tests.

1. Evolution

We carry out the simulations employing the well-tested,
publicly available IllinoisGRMHD code [73,74] embedded in

FIG. 2. Gravitational mass MG vs circumferential radius Rcirc
for all the EOSs listed in Table I along with the observational NS
mass constraints within 95% confidence levels from the mea-
surements of pulsars from NICER=XMM-Newton [65,66,71],
and the BNS observations from the LIGO=Virgo=KAGRA
Collaboration [70,72].

FIG. 1. Relativistic fundamental derivative GR as a function of
baryon density nb for a few selected EOS with (DD2F-SF and
DD2-SF) and without (DD2) a first-order hadron-quark phase
transition.
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the Einstein Toolkit infrastructure [75], employing the
Carpet code [76] for the moving-box mesh capability. The
code evolves the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) equations for the spacetime fields [77,78] coupled
with puncture gauge conditions cast in first-order form. We
use fourth-order spatial stencils. We set the damping
coefficient appearing in the shift condition to 1=MADM.
Fifth-order Kreiss-Oliger dissipation [79] is also added in
the BSSN evolution equations. The IllinoisGRMHD code
evolves the matter fields using the equations of ideal,
general-relativistic MHD, which are cast in a conservative
scheme using the Valencia formulation [80–82], via a high-
resolution shock-capturing (HRSC) technique [74] that
employs the piecewise parabolic method (PPM) [83]
coupled to the Harten, Lax, and van Leer (HLL) approxi-
mate Riemann solver [84]. The time integration is per-
formed via the method of lines using a fourth-order
accurate, Runge-Kutta integration scheme with a
Courant-Friedrichs-Lewy factor of 0.45.
We notice that, if the approximate Riemann solver for the

system of hydrodynamics equations closedwith a nonconvex
EOS induces enough numerical viscosity to allow the
formation of compound waves, then the resulting numerical
scheme is stable (see e.g., [85–87]). In particular, the use of
the HLL solver allows us to resolve compound waves [50].

2. Grid structure

In all simulations we use three sets of nested refinement
boxes centered on each star and on the center of mass of the

binary. Each of them contains six boxes that differ in size
and in resolution by factors of two. When two boxes
overlap they are replaced by a common box centered on the
center-of-mass of the BNS. The finest box around the NS
has a half-side length of 1.25RNS, where RNS is the radius
of the NS. The finest level has a resolution of ∼220 m and
resolves the star by ∼45 grid point across its radius. We
place the outer boundary at ∼1600 km.

3. EOS for the dynamical evolution

The cold EOSs listed in Table I are adequate to model the
NS prior to merger. However, during merger considerable
shock heating increases the internal energy and temperature
to values over 10 MeV. Such high temperatures provide
additional pressure support that may alter the structure
and evolution of the remnant. To account for this and
following common practice, we adopt an EOS that has both
a thermal and a cold contribution. The total pressure can be
expressed as

p ¼ pth þ pcold; ð5Þ

where pcold ¼ κi ρ
Γi
0 , with κi and Γi the corresponding

polytropic constant and the polytropic exponent in the
rest-mass density range ρ0;i−1 ≤ ρ0 ≤ ρ0;i, respectively (see
e.g., [61]), and the thermal pressure is given by

pth ¼ ðΓ − 1Þρ0ðϵ − ϵcoldÞ; ð6Þ

where

ϵcold ¼ −
Z

pcolddð1=ρ0Þ: ð7Þ

Following [50,51], in order to incorporate nonconvex
thermodynamics in the evolution of the BNS initial data
we employ the phenomenological GGL EOS. Therefore,
the effective thermal index Γ given by Eq. (4) is used in the
thermal part of the pressure, Eq. (6). For comparison
purposes with our previous simulations in [88] we set
Γth ¼ 1.8. The other three parameters of the GGL EOS
are chosen such as the resulting EOS is causal, i.e., the
speed of sound csðRÞ < 1. In particular, we set ρ1 ¼
9.1 × 1014 g cm−3, and Σ ¼ 0.35 ρ1. On the other hand,
we consider different values of Γ1 to study the impact of
this parameter on the EOS and ultimately on the fate of the
remnant. In our fiducial model we set Γ1 ¼ 3.0 and in some
selected cases we set Γ1 ¼ 3.5.
Figure 3 displays the convexity behavior of the GGL

EOS on the p − ρ0 plane. For typical values of the rest-
mass density of a NS (ρ0 ≲ 1015 g cm−3) the GGL EOS is
convex (blue regions), i.e., the fundamental derivatives G
and GR are both positive. By contrast, in the green region
G≲ 0 and so is the relativistic fundamental derivative. This
is the nonconvex region of the EOS. There is also a

TABLE I. Summary of the initial properties of the BNS
configurations. We list the EOS, the gravitational mass
M½M⊙�, the compactness C≡M=Req and the tidal deformability
Λ ¼ ð2=3Þκ2C−5 for each individual star. Here Req is the
equatorial coordinate radius, and κ2 is the second Love number.
The ADM mass MADM½M⊙�, the ADM angular momentum
JADM½M2

⊙�, the angular velocity Ω ½krad=s�, for an initial binary
coordinate separation of ∼44.3 km, and the initial maximum
value of the rest-mass of the system ρ0;max ½g cm−3�. In all cases
the NS has a rest-mass M0 ¼ 1.4M⊙.

EOS M C Λ MADM JADM Ω ρ0;max

WFF1 1.26 0.18 406.07 2.50 6.45 1.76 1015.01

WFF2 1.27 0.17 1115.06 2.52 6.54 1.76 1014.90

APR4 1.28 0.17 440.75 2.52 6.56 1.77 1014.93

SLy4 1.28 0.16 511.70 2.54 6.62 1.77 1014.93

APR3 1.28 0.16 620.00 2.53 6.61 1.77 1014.86

ENG 1.28 0.16 636.35 2.53 6.60 1.77 1014.87

MPA1 1.28 0.15 784.52 2.54 6.64 1.77 1014.81

LS220 1.29 0.15 899.05 2.55 6.69 1.77 1014.84

ALF2 1.29 0.15 941.42 2.54 6.66 1.77 1014.79

DD2 1.29 0.13 1113.92 2.56 6.73 1.78 1014.76

HShen 1.30 0.14 1633.24 2.58 6.82 1.78 1014.69

GNH3 1.30 0.13 1371.15 2.58 6.81 1.78 1014.77

MS1 1.30 0.13 2020.75 2.58 6.83 1.79 1014.63
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nonconvex relativistic region displayed in red where
GR < 0, although G > 0. Regions where the speed of sound
becomes superluminal are shown in black. Our BNS
simulations are tuned in such a way that their evolution
takes place in the red and/or green regions.

IV. RESULTS

We turn now to describe the results of our simulations.
We first note that for every nonconvex model we consider
(evolved with the GGL EOS), we also simulate the
corresponding convex one, which is simply evolved using
a constant value of the thermal index Γ [simply achieved by
setting Γth ¼ Γ1 in Eq. (4)]. The main quantitative results of
this comparison, with regard to the time of merger and to
the GW peak frequency at merger, are reported in Table II.

A. Morphology and dynamics

The binaries start from a coordinate separation of
∼44.3 km, which roughly corresponds to ∼6 orbits before
merger. As GWs extract energy and angular momentum
from the system, the coordinate orbital separation shrinks
causing the stars to eventually merge forming a transient
remnant with a lifetime ≳15 ms.
During inspiral the dynamics for convex and nonconvex

EOS is similar although some differences appear. In
particular, we observe that a nonconvex dynamics tends
to reduce the NS compactness compared to those with a
convex dynamics. This behavior is somehow anticipated

because during inspiral, the binary companion induces tidal
forces that stretch the star out along the line connecting the
centroids of the two stars. This effect triggers expansive
shock waves in the bulk of a nonconvex NS pushing out its
outer layers, which in turn accelerates the merger. We
observe that this behavior depends on the EOS employed to
build the initial data. The softer the EOS the shorter the
merger time of the nonconvex binary compared with that
of binaries with convex dynamics. Binaries built with soft
EOS, such as WFF1 or APR4, when evolved with the GGL
EOS merge ≳5 ms earlier than their counterparts evolved
with a constant Γ ¼ 1.8 EOS. By contrast, binaries
built with stiff EOS, such as DD2 or LS220, when evolved
with the GGL EOS merge roughly at the same time
(Δtmer≲1 ms) than their constant Γ ¼ 1.8 EOS counter-
parts (see Table II). These different dynamics can also be
deduced from Fig. 4 which displays the minimum value
of the relativistic fundamental derivative GR for binaries
evolved with the GGL EOS and Γ1 ¼ 3.0. Soft EOS
binaries tend to have smaller values of GR, and so are
susceptible quite generally to developing strong expansive
shock waves, that in turn puff the star out. By contrast, stiff
EOS binaries tend to have larger values of GR, closer to
zero, with expansive waves that only perturb the stars
slightly. The dynamics of the latter mimics that of the
convex binaries.
Following merger, a massive remnant forms with two

dense cores rotating about each other. Depending on the
compactness of the progenitors, and so on the value of the
relativistic fundamental derivative (see Fig. 4), the two
cores collide during the first ≲5 ms after merger giving

FIG. 3. Convexity behavior of the GGL EOS for the canonical
values of the free parameters used in our simulations. We set
Γth ¼ 1.8 (as in typical BNS simulations; see e.g., [14,88,89]),
Γ1 ¼ 3.0, ρ1 ¼ 9.1 × 1014 g cm−3, and Σ ¼ 0.35ρ1. The blue
area corresponds to the region of the parameter space where the
EOS is convex (i.e., G > 0 and GR > 0). The green region
corresponds to the region where G < 0 (and thus GR < 0), i.e.,
the EOS is nonconvex. The red area is the relativistic nonconvex
region (i.e., G > 0 and GR < 0). Noncausal regions are displayed
in black.

TABLE II. Summary of key results. First three columns display
the times and frequencies at merger reported in milliseconds,
while the three last columns report the frequency in kiloHertz.
Superindices denote the EOS used during the evolution: (i) const
Γ denotes Γ ¼ 1.8; (ii) GGL, 3.0 denotes GGL with Γth ¼ 1.8
and Γ1 ¼ 3.0; and (iii) GGL, 3.5 denotes GGL with Γth ¼ 1.8 and
Γ1 ¼ 3.5. We define the merger time as the peak GW amplitude.
An empty cells denotes “not applicable.”

EOS tconstΓmer tGGL;3.0mer tGGL;3.5mer fconstΓpeak fGGL;3.0peak fGGL;3.5peak

WFF1 19.70 9.00 3.56 3.44
WFF2 18.79 10.43 3.35 3.15
APR4 18.52 10.96 7.34 3.33 3.05 2.40
SLy4 17.67 11.33 7.91 3.17 2.78 2.41
APR3 17.33 11.50 2.99 2.77
ENG 17.14 11.43 2.95 2.77
MPA1 16.31 11.97 2.73 2.67
LS220 15.70 12.57 9.60 2.80 2.42 2.08
ALF2 15.73 11.76 2.70 2.52
DD2 14.66 12.39 9.67 2.57 2.29 2.09
HShen 12.47 12.06 2.20 2.14
GNH3 13.78 12.96 2.48 2.29
MS1 11.69 11.52 2.18 2.04
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birth to a highly differentially rotating star wrapped in a
Keplearian-like cloud of low density matter. These rota-
tional profiles are displayed in Fig. 5 at t ∼ 15 ms after
merger for some selected cases, but the behavior is similar

for all models we have evolved. At this stage of the
evolution only the convex version of EOS SLy4 and
LS220 are still in corotation with the pattern speed
frequency of the dominant quadrupolar mode (shown by
the horizontal lines). The remnant settles down shortly after
that, i.e., the maximum value of the rest-mass density
reaches a quasisteady state. In particular, we observe
that the WFF1-GGL binary remnant settles down at
tmerg∼5.5 ms, the WFF1 remnant with Γ ¼ 1.8 at
tmerg∼4.2 ms, while both the DD2-GGL and DD2 with
Γ ¼ 1.8 remnants settle down at about tmerg∼1.0 ms.
Figure 6 displays the rest-mass density ρ0 on the

equatorial plane at t ∼ 6 ms for some binary remnants
in Table II (see legend at the bottom-left corner in each
panel), normalized to its initial maximum value ρ0;max ∼
1014.8 g cm−3 (see Table I for all cases). The left half of
each panel in this figure shows the snapshot of the
evolution with the GGL EOS while the right half corre-
sponds to the Γ-law EOS with Γ ¼ 1.8. Following [11,90],
we define the bulk of the remnant as the region enclosed by
the rest-mass isodensity contour ≳1012.5 g cm−3. During
the early post-merger evolution with the GGL EOS, the
bulk of the remnant undergoes a transient period where
nonconvex relativistic regions (GR < 0), identified by the
green shaded areas in Fig. 6, expand and contract con-
tinuously. We observe that depending on the softness of the
EOS these regions, as expected, may spread covering a
large part of the bulk of the remnant or be confined around
its central core. For all cases, once the remnant settles down
we observe that the nonconvex regions remain bounded
within ρ0 ≳ 1013.7 g cm−3 (see Fig. 6). We note that, for all
EOS listed in Table II, the remnants resulting from non-
convex evolutions are in general more extended than those
of the convex ones, which implies that the presence of a
nonconvex dynamics tends to increase the pressure support
in the remnant. Therefore, one may conclude that non-
convex dynamics hardens the EOS of the remnant.
Consistent with this, the angular velocity profiles shown
in Fig. 5 for some of our models indicate that nonconvex
remnants tend to rotate more rapidly at the core than convex
ones. This behavior applies to our full set of models. Notice
that this effect has also been observed in remnants under-
going quark-hadron phase transitions [16,28].

B. Gravitational wave spectra

Figure 7 displays the GW spectra of the binaries for four
representative initial-data EOS (APR4, DD2, LS220, and
SLy4). The spectra are computed assuming a distance to the
source of 50 Mpc, optimal orientation and sky localization,
and using a fixed time window of 2 ms, from 20 ms before
merger to 5 ms past merger. Following [14], we do not
apply any windowing functions to obtain a cleaner sepa-
ration of the contributions in the spectra. As a result, the
FFT may include small artifacts due to the finite size of the

FIG. 4. Minimum value of the relativistic fundamental
derivative GR vs coordinate time for some selected EOSs,
evolved with the GGL EOS setting Γ1 ¼ 3.0 (see Table II). The
inset displays the evolution of GR for two configurations
evolved with Γ1 ¼ 3.5. Notice that the coordinate time has
been shifted to the merger time.

FIG. 5. Rotational profiles of the binary remnant along the
coordinate radius r at t ∼ 15 ms after merger for the EOS
indicated in the legend. Binaries with nonconvex (convex)
dynamics are displayed with dashed (continuous) lines. Hori-
zontal lines show the pattern speed frequencies of the main modes
(fpeak=2) for each model. The colors of the horizontal lines are the
same as for the EOS labels. Similar profiles are observed for all
other EOSs in Table I.
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time intervals. Each panel in the figure contains three
spectra, one obtained with a convex EOS and the other two
with the nonconvex GGL EOS. To illustrate the impact of
the free parameters of the GGL EOS, the last two spectra
correspond to evolutions with Γ1 ¼ 3.0 and Γ1 ¼ 3.5. The
frequencies of the dominant mode fpeak for each of these
three evolutions are indicated with vertical dashed lines in
each plot of the figure. The precise values are reported in
the last three columns of Table II for all EOS.
During inspiral, the existence of GR < 0 regions slightly

modifies the maximum GW frequency which reaches a
maximum value below 2.2 KHz depending on the initial-
data EOS. Following merger, the GW amplitude and
frequency strongly depend on both the softness of the
initial-data EOS and of the existence of nonconvex regions.
Our simulations reveal that the frequency fpeak of the
dominant oscillation mode of the remnant for binaries with
nonconvex dynamics is always smaller than that of their
convex dynamics counterparts (i.e., the peak frequency
in nonconvex evolutions shifts to the left in Fig. 7). In the
most extreme cases analyzed, a frequency shift of
Δfpeak∼300 Hz was found for the stiff DD2 EOS evolved
with the GGL EOS with Γ1 ¼ 3.0 and a corresponding
shift of Δfpeak∼1 kHz was found for the soft APR4 EOS
with Γ1 ¼ 3.5. All peak frequency values are reported
in Table II for all cases.
It is well known that the GW spectra of the postmerger

remnant strongly depend on the EOS (see e.g., [89,95,96])

and, in particular, it has been shown that the radius of
the NS remnant depends on the peak prequency as RNS ∼
f−2=3peak [97]. As the tidal deformability Λ is basically a
function of the chirp mass M and RNS [98,99], it has
been shown that future observations of the postmerger
GW dominant mode could be used in combination
with “quasiuniversal” relations between Λ and fpeak (see
e.g., [100,101]) to constraint the EOS of the NS. Notice
that third-generation GW observatories may measure fpeak
within an accuracy ≲30 Hz [102–104]. Besides, it has also
been suggested [21,29] that significant deviations of fpeak
from these quasiuniversal relations with Λ may indicate the
presence of a first-order phase transition in the EOS leading
to the formation of merger remnants with a quark-matter
core. In particular [21,29] performed numerical studies of
BNS mergers in which the stars were modeled with a
hybrid DD2F-SF EOS that exhibits a strong first-order
phase transition to deconfine quarks within the standard
Maxwell approach [60,105]. Those simulations showed
that there is a shift of up to Δfpeak∼700 Hz with respect to
the value of the frequency attained in BNS simulations
modeled with the purely hadronic EOS DD2F, an EOS
equivalent to DD2F-SF but without phase transitions.
The frequency shifts and “outliers” in the fpeak − Λ

quasiuniversal relation found by [21,29] may be attributed
to the existence of nonconvex dynamics in the postmerger
remnant discussed here. Figure 8 displays the dominant

FIG. 6. Rest-mass density ρ0, normalized to its initial maximum value ρ0;max ∼ 1014.8 g cm−3 (see Table I for all cases), in log scale of
the BNS remnant at t ∼ 6 ms following merger for some of the EOSs listed in Table II. Negative values of the relativistic fundamental
derivative are displayed in greenish (cold) color. Each panel shows a side-by-side comparison between the quasisteady configuration of
the remnant evolved using either the phenomenological GGL EOS (left) or the constant Γ-law EOSs (right).
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frequency as a function of the tidal deformability Λ for
all evolutions listed in Table II. As expected, when the BNS
merger is simulated using a convex EOS (green circles)
fpeak is correlated with Λ in a quasiuniversal (EOS-
insensitive) manner according to

fconstΓpeak ¼ ½ð4.52� 0.79Þ × 10−7Λ2

− ð1.80� 0.18Þ × 10−3 Λþ ð3.99� 0.08Þ� kHz:
ð8Þ

However, when the system is subject to nonconvex dynam-
ics the peak frequency is more than 1–σ away from the
above quasiuniversal relation (yellow and blue circles in
Fig. 8). We notice that a 1–σ deviation in our previous fit
corresponds to ∼64 Hz. This significant shift in frequency
can solely be attributed in our study to the presence of a
nonconvex dynamics and not to the presence of a physical
process such as a phase transition in the binary remnant,
as our GGL EOS does not account for such an effect, and
neither to spurious artifacts induced by the numerical
access to a tabulated EOS.

FIG. 7. GW spectra of both GGL and constant Γ-law binaries at 50 Mpc with optimal orientation and with a time window t − tmer ¼
½−20; 5� ms which emphasizes the contribution of the dominant spectral mode fpeak following merger. The two spectra for the GGL EOS
correspond to Γ1 ¼ 3.0 and Γ1 ¼ 3.5. Sensitivity curves of Advanced Virgo (aVirgo) [91], Advanced LIGO (aLIGO) [92], Einstein
Telescope (ET-D) [93], and Cosmic Explorer (CE) [94] are also displayed. Vertical lines mark the location of the peak frequency fpeak.

FIG. 8. GW peak frequency of the postmerger remnant fpeak as
a function of the tidal deformability Λ for all simulations in
Table II. Each circle corresponds to one initial-data EOS, the
corresponding colors indicating the EOS used in the evolutions
(see legend). Solid curves display the quasiuniversal relations
given by Eqs. (8) and (9). Colored regions represent the standard
deviation of the corresponding fit.
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Notice that, in contrast with the results reported in [29]
where the effects of the first-order phase transition increase
the peak frequency of the dominant mode, the appearance
of a nonconvex dynamics decreases this frequency. This
discrepancy is simply due to the effective stiffening of the
EOS remnant associated with our specific choice of the free
parameters of our phenomenological GGL EOS, Eq. (4).
However, the magnitude of the frequency shifts is, in both
cases, comparable. We expect that a survey of parameters
of the GGL EOS, in particular accounting for a softening of
the EOS remnant, may not only reproduce the magnitude of
the shifts but also reconcile the direction of the shift of the
peak frequency with the values reported by [29].
Interestingly, we find that the outliers to the fitting

formula (8) corresponding to binaries evolved with the
GGL EOS setting Γ1 ¼ 3.0 satisfy their own quasiuniversal
relation according to

fGGLpeak ¼ ½ð5.4� 1.1Þ × 10−7 Λ2

− ð1.95� 0.25Þ × 10−3 Λþ ð3.82� 0.12Þ� kHz;
ð9Þ

with a deviation of Δfpeak ≲ 380 Hz with respect to
binaries subject to convex dynamics. This finding suggests
that the appearance of nonconvex regions might induce a
displacement of the quasiuniversal relation on the fpeak–Λ
plane for nonconvex EOSs.
The effects of a nonconvex dynamics on the postmerger

GWs can be enhanced by fine-tuning the free parameters
of the thermal index in Eq. (4). In particular, by setting
ρ1 ¼ 9.1 × 1014 g cm−3, Σ ¼ 0.35 ρ1, and Γ1 ¼ 3.5 we
obtain the largest shift in fpeak, namely ∼1 kHz (see
Table II and the blue markers in Fig. 8).
To further corroborate that the frequency shifts observed

in our nonconvex evolutions are due to the “anomalous”
dynamics and not to the specific parameters of the GGL
EOS of our fiducial model, we also simulate BNS mergers
for the initial-data EOS DD2 with values of the GGL EOS
parameters so that the evolution remains convex throughout
(see the Appendix for details). In all cases we find that
10 Hz≲ Δfpeak ≲ 50 Hz, i.e., less than 1–σ away from the
quasiuniversal relation of Eq. (8) found for convex EOSs.
This suggests that the significant shifts in the peak
frequency reported in this paper should be induced by
the nonconvex dynamics.

V. DISCUSSION

Understanding the properties of matter beyond nuclear
saturation density is essential for explaining GW observa-
tions of BNS mergers. Knowledge has been collected
through combined experimental and theoretical efforts
including EM and GW observations, nuclear physics
experiments, and numerical simulations. The latter are

distinctly driven by the ongoing GW observations of
compact binary coalescences reported by the LIGO-
Virgo-KAGRA (LVK) Collaboration [106] and by the
expected significant increase in the rate of detections
once third-generation detectors come online. Moreover,
BNS mergers are the prime sources for multimessenger
astronomy. EM, GW, and neutrino observations of these
systems, in combination with theoretical and numerical
work, will help advance our understanding of the origin of
short gamma-ray bursts, r-process nucleosynthesis, or the
nature of matter beyond nuclear saturation density.
In the past few years numerical simulations of BNS

mergers have advanced in the treatment of the thermody-
namics of the system, encoded in the EOS of high-density
matter. Current simulations incorporate microphysical,
finite-temperature EOS tables constructed using “tabu-
lated” data from observations and nuclear physics
experiments [16,29,73,88,107–110]. Some of the EOS
employed also allow for phase transitions from nuclear
hadronic matter into quark-gluon plasma or into matter
phases containing exotic particles, processes that may
modify the dynamics of the merger remnant and the
GW emission. Numerical studies have searched for a
first-order hadron-quark phase transition on the GWs
(see e.g., [16,21,28–31]). In particular [21,29] reported a
deviation of the quasiuniversal relation between the tidal
deformability Λ and the peak GW frequency at merger
fpeak if the EOS allows for a strong first-order phase
transition to deconfined quarks. The presence of a phase
transition may also affect the monotonic increase of the
speed of sound with density, turning a convex dynamics
into a nonconvex one.
In this paper we have performed numerical-relativity

simulations of BNS mergers subject to nonconvex dynam-
ics, allowing for the appearance of expansive shock waves
and compressive rarefactions. To this aim we have used
a phenomenological nonconvex EOS proposed in [50]
and also used in [51]. The latter work showed that the
appearance of nonconvex dynamics during the gravitational
collapse of uniformly rotating NS leaves a distinctive
imprint on the GW signal, and served as a motivation for
this study. Further motivation was gathered by our attempt
to provide an explanation to the loss of the Λ − fpeak
quasiuniversal relation found by [21,29] for EOS admitting
a strong first-order phase transition. We have surveyed a
number of BNS initial configurations modeled with a
piecewise-polytropic representation of different (cold)
nuclear EOS. Those have been subsequently evolved with
a Γ − law EOS to allow for shock heating, considering two
different possibilities for the adiabatic index Γ, either a
constant value, which induces a convex (regular) dynamics,
or a variable index depending on the rest-mass density,
which induces a nonconvex (anomalous) dynamics.
By comparing the two types of dynamics—convex vs

nonconvex—we have identified observable differences in
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the GW spectra of the remnant. In particular, we have
found that nonconvexity induces a significant shift in the
Λ−fpeak quasiuniversal relation, of order Δfpeak ≳380Hz,
with respect to that of binaries with convex dynamics.
These values are similar in magnitude to those reported
by [21,29], attributed however to a first-order phase
transition from nuclear/hadronic matter to deconfined
quark matter. We argue that the ultimate origin of the
frequency shift is to be found in the presence of anomalous,
nonconvex dynamics in the binary remnant.
The BNS merger simulations of [29] comprise an

extensive number of EOS. Their fiducial model is based
on the temperature-dependent, microscopic, hadron-quark
hybrid EOS DD2F-SF of [111] and its nucleonic counter-
part DD2F (with no phase transition). They consider
different choices of parameters for the description of the
quark phase, resulting in seven hybrid DD2F-SF EOS,
which cover models with different onset densities and
density jumps. In addition they also consider a represen-
tative sample of 15 EOSs describing purely hadronic
models, three of which include a second-order phase
transition to hyperonic matter, as well as the EOS ALF2
and EOS ALF4 from [61], which resemble models with a
continuous transition to quark matter without a density
jump. Out of all these EOS, the only ones departing from
the tight quasiuniversal scaling between fpeak and the tidal
deformability are the seven hybrid DD2F-SF EOS. For this
subset of hybrid EOS [29] observed that the larger the
density jump the more prominent the departure from the
quasiuniversal relation. However, the three EOSs from their
sample including a second-order phase transition to hyper-
onic matter were found to follow closely the fpeak − Λ
relation similarly to a purely nucleonic EOS (in agreement
with early results from [28]). The same scaling is found for
EOS ALF2 and ALF4 in which the phase transition is
continuous. In summary [29] conclude that only a suffi-
ciently strong first-order phase transition can alter the
postmerger GW signal in such a way that a measurable
deviation from the fpeak − Λ relation occurs.
The fact that the scaling is lost only when the density

jump is large enough might be, perhaps, an indication of
possible numerical inaccuracies. In particular, the evalu-
ation (through discretization) of high-order derivatives in
tabulated dense-matter EOS across coexistence boundaries
in phase transitions may introduce small-scale oscillations
of numerical origin. This is visible in Fig. 1 (showing the
results for the DD2F-SF EOS employed by [21,29]) and in
Figs. 2 and 3 of [51]. We recall that those oscillations in the
fundamental derivative are a numerical artifact due to
the computation of the derivatives in G using a discrete
EOS table. (See also [47] for an additional example of the
numerical loss of convexity associated with insufficient
thermodynamic discretization in tabulated EOS.) The effect
of these oscillations is to spread spuriously the nonconvex
behavior to points beyond the phase transition boundaries.

In addition, as showed in [51], many of the microphysical
EOSs investigated in that work display a sensitive reduction
of the relativistic fundamental derivative as the baryon
number density grows above 1 fm−3. In that regime, even
spurious small-scale oscillations may drive the relativistic
fundamental derivative towards negative values. This
would artificially trigger nonconvex thermodynamics of
a numerical origin in those regions with number densities
above 1 fm−3. As suggested by [51], this artificial behavior
could be attenuated using a finer number of data points in
those regions of the EOS tables where the fundamental
derivative displays large variations (i.e., near the boundaries
of first-order phase transitions), specially if these variations
drive G to negative values.
The phenomenological GGL EOS employed in the

simulations reported in this work can only be regarded
as a toy model. Nevertheless, it has served the purpose of
highlighting the potential relevance the development of
nonconvex dynamics may have on important observables in
BNS mergers such as the GWemission (as was also shown
by [51] in the context of gravitational collapse). Notice that
the free parameters of our EOS have been chosen such
that the dynamics of the binary is always nonconvex. In
particular, for all our simulations Γ1 > Γth which induces a
stiffer EOS compared to the constant Γ-law EOS (convex
models). One might also consider a softer GGL EOS by
choosing Γ1 < Γth and analyze the impact of the EOS
stiffness on the nonconvex dynamics. Such a study has
not been attempted in this work. We hypothesize that our
results are robust against changes in the stiffness of the
phenomenological GGL EOS as long as the resulting
dynamics is nonconvex, since the latest is responsible
for hardening the EOS of the binary remnant. We stress
that our GGL EOS does not account for phase transitions
and is not affected by potential spurious artifacts induced
by the numerical access to a tabulated EOS as all
derivatives can be computed analytically. A natural exten-
sion of this work will be to revisit these simulations using
actual microphysical EOS allowing for such nonconvex
dynamics. Those could also be carried out in combination
with the analytic model for modeling phase transitions in
tabulated EOSs recently reported by [54].
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APPENDIX: IMPACT OF Γ ON fpeak

Thermal effects to account for shock heating during
merger are modeled in our simulations using a hybrid
approach, in which the EOS has a cold part and a thermal
part [see Eq. (5)]. The value of the thermal index Γ
appearing in the ideal-gaslike part of the pressure can be
chosen somewhat arbitrarily, as long as it lays in the range
1 ≤ Γ ≤ 2 due to causality constraints (see e.g., [89]).
However, the choice of Γ controls the thermal pressure
produced during and after merger [see Eq. (6)]. In this
appendix we address if the observed shift on fpeak could be
triggered by changes in the value of Γ. To do so we evolve

the BNS built with the initial-data DD2 EOS using both the
constant Γ-law and the GGL EOS using the parameters in
Table III. We tune these parameters such that the dynamics
of the system remains convex during the whole evolution.
In all cases we find that the shift in the frequency of the
dominant mode is Δfpeak ≲ 50 Hz (see last column in
Table III). These results imply that the changes on the GW
spectra discussed in this work are triggered by the non-
convex dynamics of the BNS mergers.
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