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We report a new method to calculate the quasinormal modes of rotating black holes, using a spectral
decomposition to solve the partial differential equations that result from introducing linear metric
perturbations to a rotating background. Our approach allows us to calculate a large sector of the
quasinormal mode spectrum. In particular, we study the accuracy of the method for the (l ¼ 2)-led and
(l ¼ 3)-led modes for different values of theMz azimuthal number, considering the fundamental modes as
well as the first two excitations. We show that our method reproduces the Kerr fundamental modes with an
accuracy of 10−6 or better for a=M < 0.8, while it stays below 0.1% for a=M < 0.98.
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I. INTRODUCTION

The observation of gravitational waves from the merging
of black holes and neutron stars has given us a new window
to the Universe and, in particular, a powerful new means to
learn about the strong gravity sector [1,2]. Future gravita-
tional wave detectors on the ground and in space will allow
us to scrutinize the numerous alternative gravity theories
that have been proposed, by investigating their predictions
for the merger of compact objects [3–6].
The Schwarzschild and Kerr black holes of general

relativity are rather special objects, since these spacetimes
are fully characterized by only two quantities, their mass
and their angular momentum [7]. But in alternative gravity
theories black holes may possess more distinctive proper-
ties, i.e., they may carry hair (see e.g., [8,9]). Besides, even
in general relativity hairy black holes of potential astro-
physical interest may arise when fields beyond the Standard
Model are considered [10,11].
While the merging of black holes proceeds via inspiral,

merger, and ringdown, a full analysis of all these steps in
numerical relativity would be too costly, in particular, in
view of the many possible parameter combinations and
(still) viable alternative gravity theories. A more efficient
way to constrain or rule out alternative gravity theories
could be to focus on a subset of the gravitational waves
emitted in black hole mergers. Therefore our goal is to
determine the quasinormal modes emitted in the ringdown

after the merger of black holes for a variety of alternative
gravity theories and their rapidly rotating black holes.
During the ringdown the newly formed excited black

hole emits gravitational waves to finally settle down to its
stationary limit. The quasinormal modes are thus obtained
by studying black hole perturbations. The complex eigen-
values associated with quasinormal modes consist of the
real part describing the frequency of the oscillation and the
imaginary part yielding the decay time. The quasinormal
modes of the Schwarzschild and Kerr black holes are well
known (see, e.g., [12–14]). Already the presence of the
electromagnetic field has posed a challenge to obtain the
quasinormal modes of the rotating Kerr-Newman black
holes, which was accomplished only a few years ago using
numerical methods [15–17] (see also [18–20] for pertur-
bative studies).
The studies of quasinormal modes of black holes in

alternative gravity theories have focused so far on static
spherically symmetric black holes. These include, for
instance, quasinormal modes of Schwarzschild black
holes in some Horndeski theories [21–23] and in dynami-
cal Chern-Simons theories [24–26], or the quasinormal
modes of hairy black holes in Einstein-dilaton-Gauss-
Bonnet theories [27–34] and Einstein-scalar-Gauss-
Bonnet theories [35–39].
In recent years, though, also strategies for obtaining

quasinormal modes of rotating hairy black holes have
been pushed forward [40,41]. In particular, perturbative
studies of quasinormal modes of slowly rotating black
holes have been performed in higher-derivative gravity
[42–44], Einstein-dilaton-Gauss-Bonnet theory [45,46],
Chern-Simons theory [47,48], and Einstein-bumblebee
gravity [49]. Moreover, quasinormal modes for test
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fields in the background of rapidly rotating black holes
have been studied, as well as gravitational perturbations
employing an ad hoc deformation of the wave equa-
tion [50,51].
The true challenge, however, still remains for the study

of the full set of quasinormal modes of rapidly rotating
black holes in alternative gravity theories. In order to
develop and test appropriate methods to tackle this chal-
lenge, we have considered a scheme based on a spectral
decomposition of the metric perturbations. We have been
inspired by the successful application of such methods to
the quasinormal modes of neutron stars [52–54]. We note
that a spectral scheme has also been applied successfully to
the Schwarzschild case earlier this year [55].
Here we outline our numerical scheme and present first

results testing our scheme with the well-known quasinor-
mal modes of Kerr black holes. In Sec. II we provide the
general setting with the field equations and the Kerr
solution. We discuss the metric perturbations in Sec. III,
where we present the ansatz, the perturbation equations, our
parametrization, the boundary conditions, and the spectral
decomposition. Section IV shows our results for the scalar
modes and the metric modes. We end with our conclusions
in Sec. V.

II. GENERAL SETTING

A. Theory and field equations

We consider the standard action of an Einstein-Hilbert
term with a minimally coupled scalar field φ,

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μφ∂

μφ

�
: ð1Þ

The Einstein equations are

Gμν ¼ Gμν − Tμν ¼ 0; ð2Þ

where Gμν is the Einstein tensor and Tμν is the scalar stress
energy tensor, which is given by

Tμν ¼
1

2
∂μφ∂νφ −

1

4
gμνð∂φÞ2: ð3Þ

On top of that, we have the scalar field equation,

S ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ ¼ 0: ð4Þ

B. Kerr solution in Boyer-Lindquist coordinates

In Boyer-Lindquist coordinates ðr; θÞ, the Kerr
solution is

ds2¼−
�
1−

2Mr
r2þa2cos2θ

�
dt2þ

�
r2þa2cos2θ
r2þa2−2Mr

�
dr2

þðr2þa2cos2θÞdθ2þ
�
r2þa2þ 2Ma2rsin2θ

r2þa2cos2θ

�
dϕ2

−
4Marsin2θ
r2þa2cos2θ

dtdϕ; ð5Þ

where a is the Kerr parameter, which is related to the angular
momentum J and the black hole mass M: a ¼ J=M. The
black hole horizons are located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð6Þ

Here we will work with the outer horizon, rþ ≡ rH. The
exterior part of the black hole solution is defined in the
domain of r∈ ½rH;∞Þ, θ∈ ½0; π�, and ϕ∈ ½0; 2πÞ.
The area of the black hole horizon is

AH ¼ 4πðr2H þ a2Þ; ð7Þ

and the horizon angular velocity is given by

ΩH ¼ a
r2H þ a2

: ð8Þ

In the extremal Kerr limit rþ ¼ r−, the following relation,

M ¼ jaj; ð9Þ

holds between the black hole mass and the Kerr parameter.

III. GENERAL METRIC PERTURBATIONS
OF KERR

A. Ansatz

Here we perturb Kerr black holes nonradially. The
perturbations are tracked to linear order by the auxiliary

parameter ϵ. The background metric gðbgÞμν is given by
Eq. (5), while the background scalar field φ vanishes.
The superscript ðbgÞ denotes the background.
We keep the perturbations as general as possible, and

decompose only the time dependence into harmonics.
Additionally we make use of the axial symmetry of the
background, and factorize the ϕ dependence of the per-
turbations with the corresponding harmonic dependence,
namely by introducing the azimuthal number Mz.
The full metric can be written like

gμν ¼ gðbgÞμν þ ϵδhμνðt; r; θ;ϕÞ; ð10Þ

and the metric perturbations can be further separated into
axial and polar components,

δhμν ¼ δhðAÞμν þ δhðPÞμν : ð11Þ
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The superscripts (A) and (P) denote axial-led and polar-led
perturbations, respectively. The ansatz for the axial and
polar metric perturbations is, respectively, given by

δhðAÞμν ¼ eiðMzϕ−ωtÞ

0
BBBBB@

0 0 a1ðr;θÞ a2ðr;θÞ
0 0 a3ðr;θÞ a4ðr;θÞ

a1ðr;θÞ a3ðr;θÞ 0 0

a2ðr;θÞ a4ðr;θÞ 0 0

1
CCCCCA

ð12Þ

and

δhðPÞμν ¼ eiðMzϕ−ωtÞ

0
BBBBB@

N0ðr;θÞ H1ðr;θÞ 0 0

H1ðr;θÞ L0ðr;θÞ 0 0

0 0 T0ðr;θÞ 0

0 0 0 S0ðr;θÞ

1
CCCCCA
;

ð13Þ

where the following definitions are convenient in order to
fix the gauge and simplify the equations:

a1ðr; θÞ ¼ −iMz
h0ðr; θÞ
sin θ

; ð14Þ

a2ðr; θÞ ¼ sin θ∂θh0ðr; θÞ; ð15Þ

a3ðr; θÞ ¼ −iMz
h1ðr; θÞ
sin θ

; ð16Þ

a4ðr; θÞ ¼ sin θ∂θh1; ð17Þ

N0ðr; θÞ ¼ ðgðbgÞrr ðr; θÞÞ−1Nðr; θÞ; ð18Þ

L0ðr; θÞ ¼ ðgðbgÞrr ðr; θÞÞLðr; θÞ; ð19Þ

T0ðr; θÞ ¼
�
gðbgÞθθ ðr; θÞ

�
Tðr; θÞ; ð20Þ

S0ðr; θÞ ¼
�
gðbgÞϕϕ ðr; θÞ

�
Tðr; θÞ: ð21Þ

In addition we have the perturbation of the scalar field,
which is just a test field in the Kerr background,

φ ¼ φðbgÞ þ ϵδφðt; r; θ;ϕÞ ¼ ϵeiðMzϕ−ωtÞΦðr; θÞ: ð22Þ

B. Perturbation equations

In general, the system of equations is described by

Gμν ¼ GðbgÞ
μν þ ϵδGμνðr; θÞeiðMzϕ−ωtÞ ¼ 0; ð23Þ

S ¼ SðbgÞ þ ϵδSðr; θÞeiðMzϕ−ωtÞ ¼ 0: ð24Þ

Since the background is Kerr, the equations GðbgÞ
μν and SðbgÞ

are all trivially zero. The components δGμν result in a
system of partial differential equations (PDEs) in r and θ
for the metric perturbations, while δS is a PDE for the
scalar field perturbationΦðr; θÞ. The equations are linear in
the perturbation functions, and the coefficients of the linear
equations are functions that depend on the background
metric components, i.e., the coefficients are functions of the
variables ðr; θÞ, and the background parameters such as
mass M and Kerr parameter a. These coefficients also
depend on the angular numberMz of the perturbations, and
the eigenfrequency ω. For example, the scalar equation in
the Kerr background is

2ðr−MÞ∂Φ
∂r

þ cosθ
sinθ

∂Φ
∂θ

þ ðr2 þ a2 − 2MrÞ∂
2Φ
∂r2

þ ∂
2Φ
∂θ2

þM2
z
2Mr− r2 − a2cos2θ
ð2Mr− a2 − r2Þsin2θΦ

þω2
cos2θð2Ma2r− a4 − a2r2Þ− 2Ma2r− a2r2 − r4

2Mr− a2 − r2
Φ

þ 4ωMzMar
2Mr− a2 − r2

Φ¼ 0: ð25Þ

The system of equations resulting from the Einstein
equation has a similar structure but is much more involved,
since the axial and polar functions couple with each other
nontrivially.

C. Parametrization and equations

In order to solve the above system of equations and
extract the quasinormal mode eigenvalues ω, it is conven-
ient to change the parametrization in the following way.
First we choose a compactification of the coordinates,

x ¼ 1 − rH=r; y ¼ cos θ: ð26Þ

The domain of integration is then 0 ≤ x ≤ 1 and
−1 ≤ y ≤ 1. The horizon is located at x ¼ 0, and at x ¼
1 is the asymptotic infinity, while y ¼ −1 gives the south
pole semiaxis and y ¼ 1 the north pole semiaxis.
Next we parametrize the metric perturbation functions so

that we can restrict to solutions that are outgoing waves at
infinity and ingoing waves at the horizon. An appropriate
choice for the metric perturbations is
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H1 ¼ H̃1ðx; yÞ
1

xð1 − xÞ ð1 − y2ÞMz=2eiR̂; ð27Þ

T ¼ T̃ðx; yÞð1 − y2ÞMz=2eiR̂; ð28Þ

N ¼ Ñðx; yÞ 1

xð1 − xÞ ð1 − y2ÞMz=2eiR̂; ð29Þ

L ¼ L̃ðx; yÞ 1

xð1 − xÞ ð1 − y2ÞMz=2eiR̂; ð30Þ

h0 ¼ h̃0ðx; yÞ
1

1 − x
ð1 − y2ÞMz=2eiR̂; ð31Þ

h1 ¼ h̃1ðx; yÞ
1

xð1 − xÞ ð1 − y2ÞMz=2eiR̂: ð32Þ

For the scalar perturbation we choose

Φ ¼ Φ̃1ðx; yÞð1 − xÞð1 − y2ÞMz=2eiR̂: ð33Þ

The function R̂ is chosen such that the perturbations satisfy
the outgoing wave conditions at x ¼ 1 and the ingoing
wave conditions at x ¼ 0.
The metric perturbation equations to be solved are

in the components of the linearized Einstein equation,
δGμν ¼ 0, which has ten components. There are six
undetermined perturbation functions for the metric,
fH̃1; T̃; Ñ; L̃; h̃0; h̃1g. Additionally there is the scalar
perturbation Φ̃1, which is decoupled from the other
perturbations since we are considering a scalar test field.
We proceed by simply choosing the following six com-
ponents of the Einstein equation for numerical integration:
fδGtr; δGtθ; δGrr; δGrθ; δGrϕ; δGθϕg. The scalar equation is
given by δS, Eq. (25).
It is possible to choose other combinations of compo-

nents for the numerical integration, however, our numerical
calculations indicate that the results do not change signifi-
cantly. In fact, an inspection of the equations reveals that
the above combination of components is slightly simpler
than other combinations. For instance, in the static case, the
above system of equations reduces to a system of ordinary
differential equations (ODEs). It is formed of two first order
ODEs for the axial functions h̃0 and h̃1, two first order
ODEs for the polar functions T̃ and H̃1, and two algebraic
equations for Ñ and L̃, while the remaining Einstein tensor
components include second order derivatives of the per-
turbation functions. In the presence of rotation, we have a
complicated system of PDEs, but this choice of compo-
nents contains a lower order of derivatives as compared to
other choices.
Defining a vector consisting of the perturbation func-

tions, X⃗ ¼ ½H̃1; T̃; Ñ; L̃; h̃0; h̃1; Φ̃1�, the system of seven
linear and homogeneous PDEs in the compactified coor-
dinates ðx; yÞ can be written as

DIðx; yÞX⃗ðx; yÞ ¼ 0; I ¼ 1;…; 7: ð34Þ

Equation (34) must be satisfied in the bulk of the domain,
while on the four boundaries of the domain we need to
impose appropriate conditions, which are discussed in the
next subsection.

D. Boundary conditions

Next we require that the perturbation functions behave
like an outgoing wave at infinity. This means that the
perturbation functions must have the well-known form of

T ¼ eiωR
�
�
TþðθÞ þO

�
1

r

��
; ð35Þ

H1 ¼ reiωR
�
�
Hþ

1 ðθÞ þO
�
1

r

��
; ð36Þ

N ¼ reiωR
�
�
NþðθÞ þO

�
1

r

��
; ð37Þ

L ¼ reiωR
�
�
LþðθÞ þO

�
1

r

��
; ð38Þ

h0 ¼ reiωR
�
�
hþ0 ðθÞ þO

�
1

r

��
; ð39Þ

h1 ¼ reiωR
�
�
hþ1 ðθÞ þO

�
1

r

��
; ð40Þ

Φ1 ¼
1

r
eiωR

�
�
Φþ

1 ðθÞ þO
�
1

r

��
; ð41Þ

where we have expressed them in ðr; θÞ variables for clarity,
and dR�

dr ¼ 1þ 2M
r þOð 1r2Þ.

Introducing these expansions into the perturbation equa-
tions, we obtain a set of six boundary conditions for the
metric perturbations, plus a condition for the scalar. Using
the parametrization from the previous subsection, some of
these conditions are particularly simple, such as

iL̃jx¼1 þ rHωT̃jx¼1 ¼ 0; ð42Þ

rHωT̃jx¼1 − iÑjx¼1 − 2iH̃1jx¼1 ¼ 0: ð43Þ

These are the same structural conditions one finds in the
static case. Other relations are, however, more complicated,
e.g. involving derivatives in r and θ of the functions. In
general, the conditions can be written in an operator form,

AIðx; yÞX⃗ðx; yÞjx¼1 ¼ 0; I ¼ 1;…; 7; ð44Þ

where AI are linear operators in ðx; yÞ.
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The procedure at the horizon is similar. We require the
perturbation functions to be ingoing waves at the horizon,
meaning

T ¼ e−iðω−MzΩHÞR� ðT−ðθÞ þOðr − rHÞÞ; ð45Þ

H1 ¼
rH

r − rH
e−iðω−MzΩHÞR� ðH−

1 ðθÞ þOðr − rHÞÞ; ð46Þ

N ¼ rH
r − rH

e−iðω−MzΩHÞR� ðN−ðθÞ þOðr − rHÞÞ; ð47Þ

L ¼ rH
r − rH

e−iðω−MzΩHÞR� ðL−ðθÞ þOðr − rHÞÞ; ð48Þ

h0 ¼ e−iðω−MzΩHÞR� ðh−0 ðθÞ þOðr − rHÞÞ; ð49Þ

h1 ¼
rH

r − rH
e−iðω−MzΩHÞR�ðh−1 ðθÞ þOðr − rHÞÞ; ð50Þ

Φ1 ¼
1

r
e−iðω−MzΩHÞR�ðΦ−

1 ðθÞ þOðr − rHÞÞ; ð51Þ

where dR�
dr ¼ rHða2þr2HÞ

ðr2H−a2Þðr−rHÞ
þOð1Þ.

This dictates that an ingoing wave solution must satisfy
relations that can be written in a similar form by defining
another set of linear operators BI,

BIðx; yÞX⃗ðx; yÞjx¼0 ¼ 0; I ¼ 1;…; 7: ð52Þ

In addition, we have to ensure regularity at the north pole
and south pole semiaxis. We require the perturbation
functions to have the following regular expansion at
y ¼ 1, the north pole semiaxis:

T ¼ TNPðxÞ þOðy − 1Þ; ð53Þ

H1 ¼ HNP
1 ðxÞ þOðy − 1Þ; ð54Þ

N ¼ NNPðxÞ þOðy − 1Þ; ð55Þ

L ¼ LNPðxÞ þOðy − 1Þ; ð56Þ

h0 ¼ hNP0 ðxÞ þOðy − 1Þ; ð57Þ

h1 ¼ hNP1 ðxÞ þOðy − 1Þ; ð58Þ

Φ1 ¼ ΦNP
1 ðxÞ þOðy − 1Þ; ð59Þ

and we find another set of relations that can be written in an
operator form:

αIðx; yÞX⃗ðx; yÞjy¼1 ¼ 0; I ¼ 1;…; 7: ð60Þ

Similarly, we require the perturbation functions to be
regular at y ¼ −1, the south pole semiaxis,

T ¼ TSPðxÞ þOðyþ 1Þ; ð61Þ
H1 ¼ HSP

1 ðxÞ þOðyþ 1Þ; ð62Þ
N ¼ NSPðxÞ þOðyþ 1Þ; ð63Þ

L ¼ LSPðxÞ þOðyþ 1Þ; ð64Þ

h0 ¼ hSP0 ðxÞ þOðyþ 1Þ; ð65Þ

h1 ¼ hSP1 ðxÞ þOðyþ 1Þ; ð66Þ

Φ1 ¼ ΦSP
1 ðxÞ þOðyþ 1Þ; ð67Þ

and find another set of relations of the form

βIðx; yÞX⃗ðx; yÞjy¼−1 ¼ 0; I ¼ 1;…; 7: ð68Þ

E. Spectral decomposition

At this stage we have the system of PDEs and the
boundary conditions that describe the quasinormal mode
perturbations. In order to solve the problem numerically,
we use a spectral method. Thus we decompose the metric
perturbations in a series of special functions,

H̃1ðx; yÞ ¼
XNx−1

k¼0

XNyþjMzj−1

l¼jMzj
C1;k;lTkðxÞPMz

l ðyÞð1 − y2Þ−Mz=2;

ð69Þ

T̃ðx; yÞ ¼
XNx−1

k¼0

XNyþjMzj−1

l¼jMzj
C2;k;lTkðxÞPMz

l ðyÞð1 − y2Þ−Mz=2;

ð70Þ

L̃ðx; yÞ ¼
XNx−1

k¼0

XNyþjMzj−1

l¼jMzj
C3;k;lTkðxÞPMz

l ðyÞð1 − y2Þ−Mz=2;

ð71Þ

Ñðx; yÞ ¼
XNx−1

k¼0

XNyþjMzj−1

l¼jMzj
C4;k;lTkðxÞPMz

l ðyÞð1 − y2Þ−Mz=2;

ð72Þ

h̃0ðx; yÞ ¼
XNx−1

k¼0

XNyþjMzj−1

l¼jMzj
C5;k;lTkðxÞPMz

l ðyÞð1 − y2Þ−Mz=2;

ð73Þ

h̃1ðx; yÞ ¼
XNx−1

k¼0

XNyþjMzj−1

l¼jMzj
C6;k;lTkðxÞPMz

l ðyÞð1 − y2Þ−Mz=2:

ð74Þ
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We proceed in the same way for the scalar perturbation,

Φ̃1ðx; yÞ ¼
XNx−1

k¼0

XNyþjMzj−1

l¼jMzj
C7;k;lTkðxÞPMz

l ðyÞð1 − y2Þ−Mz=2:

ð75Þ

We have decomposed the radial behavior of the perturba-
tion functions in TkðxÞ functions, which are the Chebyshev
polynomials of the first kind. The angular dependence is
decomposed in the PMz

l functions, which are the Legendre
functions of the first kind.
The constants Cn;k;l are to be determined by solving the

PDEs subject to the boundary conditions. Note that there
are a total of 6 × Nx × Ny undetermined constants for the
metric perturbations, plus an additional Nx × Ny constants
for the scalar perturbation.
The next step of the spectral method is to discretize the

domain of integration. For the x coordinates we choose the
Gauss-Lobatto points,

xI ¼
1

2

�
1þ cos

�
I−1

Nx−1
π

��
; I¼ 1;…;Nx: ð76Þ

As for the y coordinates, we choose uniformly separated
points,

yK ¼ 2
K − 1

Ny − 1
− 1; K ¼ 1;…; Ny: ð77Þ

This forms a grid of Nx × Ny points. The next step is to
evaluate the equations at every point of this grid.
In principle, it is possible to use other distributions of

points for the grids. For example, we have also tested
uniformly separated points for both coordinates, obtaining
very similar results. However, it is well known that
typically the choice of the Gauss-Lobato points optimizes
the numerical calculations when dealing with Chebyshev
polynomials, and we have observed in some cases a
significant reduction in the calculation time when using
the Gauss-Lobato points as compared to the uniformly
distributed points.
On the boundaries, we evaluate the corresponding boun-

dary conditions, while in the bulk of the domain we evaluate
the PDEs. Note that at each point of the grid we evaluate the
six metric perturbation equations plus the scalar equation.
This means that, after evaluating the equations at each point
of the grid, we have a total of 7 × Nx × Ny algebraic
equations. These equations can be written in a matrix form
in the following way:

ðM0 þM1ωþM2ω
2ÞC⃗ ¼ 0: ð78Þ

Here C⃗ is a vector consisting of all the constants Ca;k;l with
a ¼ 1;…; 7, and M0, M1, andM2 are square matrices of
size ð7 × Nx × NyÞ × ð7 × Nx × NyÞ.
Equation (78) has the form of a standard quadratic

eigenvalue problem, where the eigenvalue is ω. In
order to obtain the quasinormal modes and the corre-
sponding eigenvectors C⃗, we have implemented the
numerical procedures in both Maple and MATLAB

with the Multiprecision Computing Toolbox
Advanpix [56].
To numerically cross-check our results, we evaluate the

resulting quasinormal modes and the corresponding per-
turbation functions in the remaining set of PDEs that we did
not use for the spectral decomposition. They are the four
equations fδGtt; δGtϕ; δGθθ; δGϕϕg, which are required to be
satisfied at each point of the grid with a tolerance smaller
than 10−4. In this way we guarantee that the resulting
quasinormal modes are physical.
As shown in the next section, this method not only

allows for the calculation of the fundamental modes, but it
also computes several excited modes with good precision.
In addition, it also allows us to study modes of different
leading multipoles.

IV. RESULTS

A. Scalar modes

We present first the results for the scalar perturbation,
which can be treated as an independent problem as it is
decoupled from the metric perturbations. Let us focus the
discussion on the modes with Mz ¼ 2, and, in particular,
on the fundamental (l ¼ 2)-led mode. By (l ¼ 2)-led
mode, we mean the mode that connects to the purely
l ¼ 2 mode in the static limit, where spherical symmetry
is restored. In the following discussions, we will refer to
the mode simply as the fundamental l ¼ 2;Mz ¼ 2 mode,
but be aware that in general, when the background is
spinning, the perturbation function Φ is a sum of different
l multipoles.
Shown in Fig. 1 is the dependence of the real ωR

and imaginary ωI frequency parts on the Kerr parameter
a, scaled with the black hole mass M. In particular,
these results are obtained using a relatively small grid,
with just Nx ¼ 18 and Ny ¼ 14. The red points are
obtained by the spectral method, and the solid black line
is the well–known result obtained from the Teukolsky
equation [13].
A comparison between both calculations reveals an

excellent precision of the spectral method, ranging from
a relative error of the order of 10−8 for solutions with
moderate angular momentum (a=M < 0.5), to a 1% error
as we almost reach extremality at a=M ¼ 0.995. These
results can be easily improved by increasing the number of
grid points as we approach extremality.
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B. Metric modes

Here we present the core results for the full metric
perturbations of Kerr using the spectral method.
In Fig. 2 we show a section of the typical quasinormal

mode spectrum that can be generated with our spectral
method. In particular, we show the Mz ¼ 2 spectrum for
rH ¼ 2, in the range of the real part of the frequency−0.8 <
ωR < 0.8 and in the range of the imaginary part of the
frequency ωI > −0.6. We present the spectrum for three
different values of the Kerr parameter a: in purple we
indicate with þ the a ¼ 0 (static) case, in blue with × the
a ¼ 0.6 case, and in red with � (asterisks) the a ¼ 1 case.
These results have been obtained for a grid of
Nx ¼ Ny ¼ 20. Note that we can obtainmodeswith positive
and negative real parts (corotating and counterrotating
modes, respectively). We also obtain modes with different
leading multipolar contribution and excitations. For this

particular grid, the remaining set of PDEs is satisfied within
10−4 error or less at each point.
For example, let us focus on the modes for the a ¼ 1

black hole (with red asterisks). The first row of modes
contains the fundamental modes (n ¼ 0), namely the
modes with the smallest value of jωIj. The modes closest
to the ωR ¼ 0 axis are those that are dominated by the
quadrupolar spherical harmonics (i.e. l ¼ 2 modes in our
terminology). As we move away from the ωR ¼ 0 axis, we
get modes dominated by higher multipoles, i.e. l ¼ 3, 4, 5
modes, sequentially.
Below the row of fundamental modes, we find other rows

of modes, containing the excitations. In Fig. 2 we also show
some of the n ¼ 1, 2, 3 and n ¼ 4 excitations. These
excitations are ordered in a similar way as the fundamental
modes: the modes closest to the ωR ¼ 0 axis are the
(l ¼ 2)-led modes, and as we move away from the axis,
we get modes dominated by higher multipoles, l ¼ 3; 4;….
The spectrum of modes for other values of the angular

momentum exhibits a similar pattern, as is seen for the
other values of a shown in Fig. 2 (blue and purple points).
As the black hole spins faster, the absolute value of the

imaginary part of the modes tends to decrease, i.e., the
modes tend to be longer lived. In general, there is a
tendency for the modes to pile up as the angular momentum
increases. As we will explain below, it becomes more
challenging to extract the higher excitation modes and the
higher multipoles as the spin increases towards extremality.
It is important to note that there is a degeneracy in the

modes that cannot be appreciated in Fig. 2. Essentially, at
each point we have two modes. One is the axial-led mode
and the other is the polar-led mode. In order to distinguish if
a mode is axial-led or polar-led, one has to look at the
profile of the perturbation functions.
This brings us to Fig. 3. In Fig. 3 we show the profiles of

some representative perturbation functions. On the left
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FIG. 1. Scalar l ¼ 2;Mz ¼ 2 fundamental modes: (a) Real frequency part scaled with the mass ωRM versus the Kerr parameter
inversely scaled with the mass a=M. In red are results from the spectral method withNx ¼ 18 andNy ¼ 14, and the solid line constitutes
the well-known results from the Teukolsky equation. (b) Analogous plot for the imaginary frequency part scaled with the mass ωIM.
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black holes.
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panels we show the polar function T̃ and on the right panels
the axial function h̃1. These perturbation functions corre-
spond to the l ¼ Mz ¼ 2 fundamental mode, for a con-
figuration with a ¼ 0.6 and rH ¼ 2.
Figures 3(a) and 3(b) show the profiles for the polar-led

mode. Since these figures correspond to the functions of the
(l ¼ 2)-led mode, the polar perturbation function T̃ behaves
predominantly like an even function with respect to the y
coordinate. The rest of the polar perturbation functions
behave similarly. Meanwhile, the axial perturbation func-
tion h̃1 behaves predominantly like an odd function with
respect to the y coordinate. The other axial function
behaves in the same manner as well. This behavior of
the functions is exchanged in the axial-led perturbations, as
it can be appreciated in Figs. 3(c) and 3(d), showing again
the l ¼ Mz ¼ 2 fundamental mode for the same back-
ground solution. Note also that in the polar-led mode (top
panels), the amplitude of the T̃ function is significantly
larger than that of the axial function h̃1, and vice versa for
the axial-led mode (bottom panels). This is also useful in
order to identify the nature of a mode.
In order to study more systematically the quasinormal

modes as functions of the angular momentum, we have
generated the spectrum for different values of the Kerr

parameter a considering Mz ¼ 0, 1, 2, 3, and extracted
the (l ¼ 2)-led and (l ¼ 3)-led modes. We also extract
the n ¼ 1, 2 excited modes, when it is possible to do so
with sufficient accuracy. In the following, we show the
results for an Nx ¼ Ny ¼ 20 grid. These are the modes
that are astrophysically interesting since they could be
part of the spectrum of the ringdown phase of the
gravitational waves, although this may change for other
models of gravity.
In Fig. 4 we show in the left panels ωRM as a function of

a=M, and in the right panels ωIM as a function of a=M.
The first row of figures is for Mz ¼ 0, the second for
Mz ¼ 1, the third for Mz ¼ 2 and the last for Mz ¼ 3. The
l ¼ 2 modes are shown by solid lines, and the l ¼ 3 modes
by dashed lines. Note that in the Mz ¼ 3 figures, there is
obviously no (l ¼ 2)-led mode. In blue we show the
fundamental mode, in red the first excitation and in purple
the second excitation.
In order to estimate the accuracy of our method, we

compare our results with those obtained from the
Teukolsky equation [13]. To that end we define the
following quantities:

ϵ1 ¼ j1 − ωðPÞ=ωðTÞj; ð79Þ
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ϵ2 ¼ j1 − ωðPÞ=ωðAÞj: ð80Þ

With Eq. (79) we calculate the difference between our
polar-led mode ωðPÞ and the corresponding mode calcu-
lated using the Teukolsky equation ωðTÞ. With Eq. (80) we
calculate the difference between our axial-led mode ωðAÞ

and our polar-led mode ωðPÞ.
We show in Fig. 5 the value of these two parameters ϵi

for i ¼ 1, 2 as a function of the angular momentum of the
black hole. Note that the y axis has a logarithmic scale. In
the left panels we show the error estimations for (l ¼ 2)-led
modes, and in the right panels for the (l ¼ 3)-led modes.
The first row is for Mz ¼ 0, the second for Mz ¼ 1, the
third for Mz ¼ 2, and the single panel at the bottom is for
l ¼ Mz ¼ 3. The curves for ϵ1 are solid, while those for ϵ2

are dashed. We show in blue the curves for the fundamental
modes, in red and purple for the first and second excita-
tions, respectively.
From Fig. 5, it can be appreciated that the quasinormal

modes typically have an estimated relative error well below
10−3. The results are noticeably good for the fundamental
modes in Mz ¼ 2, 3. Clearly the errors increase for faster
rotating background solutions, as well as for the higher
excitations of a mode.
Finally, we end this section by presenting a number of

tables with the numerical values for the quasinormal
modes. In Table I we provide the values for the polar
and axial fundamental modes for l ¼ Mz ¼ 2. In Table II
we provide the corresponding values for the first excita-
tion. Similarly, Tables III and IV contain the values for

TABLE I. (l ¼ 2)-led fundamental mode with Mz ¼ 2. ωðPÞ denotes the polar-led modes, and ωðAÞ the axial-led modes.

a=M MωðPÞ
R MωðPÞ

I MωðAÞ
R MωðAÞ

I

0 0.37367166 −0.08896229 0.37367174 −0.08896235
0.19801980 0.40182569 −0.08832052 0.40182598 −0.08832050
0.38461538 0.43648965 −0.08703396 0.43648967 −0.08703397
0.55045872 0.47837203 −0.08479363 0.47837213 −0.08479357
0.68965517 0.52807220 −0.08117468 0.52807216 −0.08117469
0.8 0.58601699 −0.07562956 0.58601709 −0.07562954
0.88235294 0.65240125 −0.06754576 0.65240075 −0.06754426
0.93959732 0.72729300 −0.05634091 0.72717684 −0.05637753
0.97560976 0.81059113 −0.04136491 0.81036056 −0.04143177
0.99447514 0.90265786 −0.00286097 0.91278868 −0.00287144

TABLE III. (l ¼ 3)-led fundamental mode with Mz ¼ 3. ωðPÞ denotes the polar-led modes, and ωðAÞ the axial-led modes.

a=M MωðPÞ
R MωðPÞ

I MωðAÞ
R MωðAÞ

I

0 0.59944329 −0.09270305 0.59944329 −0.09270305
0.19801980 0.64428239 −0.09198385 0.64428239 −0.09198385
0.38461538 0.69846639 −0.09040666 0.69846641 −0.09040666
0.55045872 0.76257659 −0.08763656 0.76257658 −0.08763656
0.68965517 0.83698662 −0.08330186 0.83698660 −0.08330187
0.8 0.92188452 −0.07699524 0.92188480 −0.07699528
0.88235294 1.01730126 −0.06827042 1.01730017 −0.06827104
0.93959732 1.12313403 −0.05661411 1.12309151 −0.05664894

TABLE II. (l ¼ 2)-led first excited mode with Mz ¼ 2. ωðPÞ denotes the polar-led modes, and ωðAÞ the axial-led modes.

a=M MωðPÞ
R MωðPÞ

I MωðAÞ
R MωðAÞ

I

0 0.34670286 −0.27391106 0.34670894 −0.27389876
0.19801980 0.37862368 −0.27058212 0.37861153 −0.27059227
0.38461538 0.41715522 −0.26531334 0.41716402 −0.26530018
0.55045872 0.46287636 −0.25730339 0.46286703 −0.25729661
0.68965517 0.51632185 −0.24545199 0.51632348 −0.24544819
0.8 0.57791808 −0.22814828 0.57792130 −0.22814314
0.88235294 0.64766289 −0.20338646 0.64765752 −0.20332111
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the l ¼ Mz ¼ 3 fundamental mode and the first excitation,
respectively.

V. CONCLUSIONS

In this paper we report a new method to calculate the
quasinormal modes of rotating black holes and compact
objects in general. We have focused the analysis on Kerr,
since the spectrum of quasinormal is well known and
available for numerical comparison.
Our method combines two new aspects.
First, we study the standard nonradial metric perturba-

tions, introducing at the same time both axial and polar
linear perturbations on the rotating metric background. This
is in contrast to the previous standard approach for studying
perturbations on Kerr, which has usually been done by
making use of the Newman-Penrose formalism that results
in the simple and well studied Teukolsky equation [57].
However, in our approach the nonradial metric perturba-
tions result in a complicated system of PDEs. While it is
nontrivial to decouple these into ordinary differential
equations in the Kerr case, this difficulty could increase
tremendously, when considering other gravity theories.
Second, we have devised a spectral method to solve for

the quasinormal modes of such PDE systems. We have
decomposed the perturbation functions into a sum of
Chebyshev polynomials and Legendre functions. Clearly,

the order of the expansions can be calibrated to improve the
accuracy of the calculations.
In this paper we have tested our approach by calculating

the spectrum of the Kerr black hole. We have shown that
this method successfully produces with excellent precision
a good number of quasinormal modes: modes with different
leading multipolar behavior, as well as excitations of the
spectrum. The accuracy of the calculation is particularly
good for the fundamental modes of the more astrophysi-
cally relevant part of the spectrum.
In the futurewe plan to generalize our method to studies of

quasinormal modes of black holes in alternative gravity
theories, and to quasinormal modes of other compact objects.

Note added. While finalizing our manuscript a similar
study was reported by Chung et al. [58].
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