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In this work, we study spherically symmetric vacuum solutions in one-parameter new general relativity
(NGR), a specific theory in teleparallel gravity which is constructed from the three possible quadratic
scalars obtained from torsion with arbitrary coefficients satisfying the requirements for the absence of
ghosts. In this class of modified theories of gravity, the observable effects of gravity result from the torsion
rather than the curvature of the spacetime. Unlike in GR, where the fundamental quantity is the metric from
which the Levi-Civita connection is derived, in teleparallel theories of gravity the fundamental variable is
the tetrad, from which one constructs the metric and the teleparallel connection. We consider the most
general tetrad for spherical symmetry and we derive the corresponding field equations. Under adequate
assumptions, we find three different branches of vacuum solutions and discuss their associated
phenomenology. In particular, we analyze the photon sphere, the classical tests of GR such as the light
deflection, the Shapiro delay, and the perihelion shift, and also the Komar mass, while providing a detailed
comparison with their Schwarzschild spacetime counterparts. Finally, we analyze how the observational
imprints from accretion disks and shadows are affected in comparison with their GR counterparts, and
conclude that the free parameters of the model might induce additional attractive or repulsive effects to the
propagation of photons, depending on their values.

DOI: 10.1103/PhysRevD.109.064027

I. INTRODUCTION

Since its publication in 1915, the theory of general
relativity (GR) has been proven successful in accounting
for a wide variety of phenomena from the astrophysical and
cosmological point of view [1–3] from the classical tests of
GR [4] to the modern post-Newtonian tests, as well as

experiments involving the time delay of light, gravitational
lensing, and the equivalence principle [5–11]. Nevertheless,
the recent discovery of the late-time cosmic accelera-
tion [12,13] has incited important theoretical problems in
modern cosmology. Although the standard ΛCDM model
of cosmology, where dark energy is described by a cos-
mological constant Λ alongside cold dark matter (CDM) is
favored by observations [14,15], it also exhibits observa-
tional tensions [16–18], which motivate the study of an
alternative scenarios which propose that this cosmological
behavior arises as a consequence of modifications to the
gravitational theory itself [19–22].
There are several ways to modify gravity. In GR, the

effects of gravity are the result of the curvature of the
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spacetime, which depends on the Levi-Civita connection.
A simple generalization of GR, the fðRÞ theory of gravity,
is obtained by generalizing the linear dependency of the
gravitational action on the Ricci scalar R to an arbitrary
function fðRÞ [23,24]. If we assume a general affine con-
nection, the quantities torsion and nonmetricity are also
introduced along with the curvature [25,26]. A particularly
interesting class of these theories are teleparallel theories of
gravity, where the gravitational field is mediated by either
the torsion or nonmetricity [27], or both [28], while the
curvature vanishes. In the following, we focus on metric
teleparallel theories, where the nonmetricity vanishes, and
only torsion is present. While in GR the fundamental
variable is the metric, from which the Levi-Civita con-
nection is derived, the fundamental variables in a tele-
parallel theory are the tetrad and the spin connection, which
in turn define the metric and the teleparallel affine con-
nection [29,30]. It is always possible though to work on
the Weitzenböck gauge where the spin connection van-
ishes [31].
The simplest teleparallel theory of gravity is the so-called

teleparallel equivalent of GR (TEGR) for which the cor-
responding Lagrangian depends on the torsion scalar T.
A commonly considered and quite simple generalization of
the TEGR is the new general relativity (NGR) theory [32].
In this theory, the torsion scalar is decomposed into its
irreducible components, and three free parameters are
introduced in the Lagrangian. Different values of these
parameters correspond to different gravitational theories. In
fact, it has been proved that in order to reproduce the
Newtonian limit, two of the parameters should have fixed
values, the ones from TEGR, and we are left with a single
free parameter. This corresponds to the one-parameter new
general relativity (1PNGR) [33]. Several other modifica-
tions have been studied, e.g., fðTÞ is the analog of fðRÞ in
the teleparallel context. However, despite the fact that
TEGR is equivalent to GR, its generalization fðTÞ is not
equivalent to fðRÞ gravity. Other examples include the
fðT; BÞ gravity, where B is a boundary term between the
Ricci scalar and the torsion scalar, scalar-torsion theories
and the Gauss-Bonnet teleparallel theories (see [30] for a
review).
Several topics in NGR have been already investigated, in

particular the strong coupling problem and instabilities
around Minkowski spacetime [34], the Hamiltonian formal-
ism [35–43], the parametrized post-Newtonian limit [44], the
polarization of gravitational waves [45] as well as their
propagation [46] and a field theory approach [47]. In order to
gain a better understanding of the gravitational theory we are
interested in and its viability and to obtain more information
about black holes and other compact objects, it is useful to
study the spherical solutions of the theory. Spherical sol-
utions have been investigated in various teleparallel exten-
sions such as fðT; BÞ gravity [48], scalar-torsion gravity [49]
and teleparallel scalar Gauss-Bonnet gravity [50]. Solu-
tions with spherical symmetry have also been found in

three-parameterNGR [51]. However, the tetrad thatwas used
is not the most general one and thus, only one branch of
solutions was found.
In this work, we use the most general tetrad [52,53], we

derive the spherically symmetric field equations and we find
three branches of vacuum solutions which we investigate in
1PNGR. The first branch is the one found and analyzed in
the aforementioned paper and this solution leads to the
Schwarzschild metric. The second branch corresponds to a
teleparallel modification of the Schwarzschild metric. Here,
the rr-component of themetric differs from the inverse of the
tt-component by a constant. At first sight this might look like
a mild modification. However, it leads to the fact that this
spacetime is no longer asymptotically flat. We also discuss
phenomenological aspects of the solution found for the
second branch which has two free parameters. In particular,
we investigate the existence of horizons and singularities and
we compute the Komar mass. Furthermore, the physical
relevance of these solutions in an astrophysical context is
assessed throughan analysis of a fewclassical tests ofGR[4],
namely the phenomena of light deflection, Shapiro time
delay and perihelion shift, as well as the more recent
experimental observation of the black hole (BH) shadow
by the EHT Collaboration [54–56], the latter analyzed
recurring to a numerical ray-tracing code widely used in
the literature [57–65].
The paper is organized in the following way: In Sec. II,

the fundamentals of teleparallel gravity and 1PNGR are
introduced. In Sec. III we introduce spherical symmetry.
We solve the antisymmetric field equations immediately in
Sec. III B, where we find three branches of solutions, and
derive the symmetric field equations for each branch in
Sec. III C. In Sec. IV the spherical vacuum solutions are
found for the three branches. In Sec. V, the observables in
spherical symmetry are studied. We summarize the con-
clusions of this work in Sec. VI.
The notational conventions in this article are as follows:

Indices A;B;… label frames/tetrads and μ; ν;… label
coordinates; both run from 0 to 3. The Minkowski metric
components are denoted by ηAB ¼ diagð−1; 1; 1; 1Þ. A ring
above quantities like R̊ marks objects constructed with the
Levi-Civita connection of the metric.

II. TELEPARALLEL GRAVITY
AND ONE-PARAMETER NGR

In this section we briefly introduce the main concepts of
teleparallel theories of gravity, one-parameter NGR, before
we discuss spherical symmetry and the field equations in
spherical symmetry in Sec. III.
Teleparallel theories of gravity are formulated in terms

of a tetrad eA ¼ eAμdxμ and spin-connection coefficients
ωA

B ¼ ωA
Bμdxμ of a flat, metric-compatible connection

with torsion components TA
μν [29–31,66]. The tetrad itself

defines the metric and the components of the torsion tensor
through the relations,
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gμν ¼ ηABeAμeBν;

TA
μν ¼

1

2
ð∂μeAν − ∂νeAμ þ ωA

BμeBν − ωA
BνeBμÞ: ð1Þ

The spin connection coefficients ensure the invariance
under a simultaneous Lorentz transformation of the tetrads
eA → ẽA ¼ ΛA

BeB and spin connection ωA
B → ω̃A

Bμ ¼
ΛA

CðΛ−1ÞDBω
C
Dμ þ ΛA

C∂μðΛ−1ÞCB. Since the connection
is flat and metric compatible, it is always possible to choose
the so-called Weitzenböck gauge, i.e., a Lorentz frame
satisfying ωA

Bμ ¼ 0, without loss of generality. Thus, in the
following we take the Weitzenböck gauge and consider the
tetrad as the only fundamental dynamical variable.
In order to construct teleparallel theories of gravity, it is

convenient to introduce the following quantities, defined in
terms of the torsion:

aμ ≔
1

6
ϵμνσρTνσρ; vμ ≔ Tσ

σμ;

tσμν ≔
1

2
ðTσμνþTμσνÞþ

1

6
ðgνσvμþ gνμvσÞ−

1

3
gσμvν; ð2Þ

called the axial, vector and tensor torsion, respectively. The
tensor torsion satisfies the symmetries

tαμν ¼ tμαν; tαμν þ tναμ þ tμνα ¼ 0;

tαμα ¼ tααμ ¼ tμαα ¼ 0: ð3Þ

Then, the torsion tensor can be written as

Tμνρ ¼
1

3
ðgμνvρ − gμρvνÞ þ ϵμνρσaσ þ

2

3
ðtμνρ − tμρνÞ: ð4Þ

From these definitions, one can construct three independent
parity-even scalars

Taxi ≔ aμaμ ¼
1

18
ð2TσμνTμσν − TσμνTσμνÞ; ð5aÞ

Tvec ≔ vμvμ ¼ Tσ
σμTρ

ρμ; ð5bÞ

T ten ≔ tσμνtσμν ¼
1

2
ðTσμνTσμν þ TσμνTμσνÞ − 1

2
Tσ

σμTρ
ρμ;

ð5cÞ

which serve as building blocks for the Lagrangian densities
that define the theories we are interested in. One particular
combination of these torsion scalars is the TEGR torsion
scalar given by

T ¼ 3

2
Taxi þ

2

3
T ten −

2

3
Tvec; ð6Þ

which defines the teleparallel formulation of GR through
the action

STEGR½eAμ� ¼
1

2κ2

Z
d4xeð−T þ LmÞ; ð7Þ

where e ¼ detðeAμÞ. A variation of this action with respect
to the tetrad components yields the field equations of
TEGR, which are equivalent to the Einstein field equations
in GR. In [32] an extension of GR called NGR, obtained by
replacing the numeric coefficients in Eq. (6) by arbitrary
parameters caxi, cvec and cten, was proposed. The action
describing such a theory is given by

SNGR½eAμ�

¼ 1

2κ2

Z
d4xeð−cvecTvec − caxiTax − ctenT ten þ LmÞ: ð8Þ

It is thus clear that when the parameters caxi, cten, and cvec
take the following values,

cvec ¼ −
2

3
; cten ¼

2

3
; caxi ¼

3

2
; ð9Þ

then the combination in the action in Eq. (8) reduces to the
scalar torsion [see Eq. (6)], and the theory is equivalent to
TEGR (and, consequently, to GR). This general three-
parameter NGR theory of gravity has been investigated in
some detail, and numerous constraints have been obtained
from its post-Newtonian analysis [44] and from the analysis
of its mathematical self consistency. An important con-
clusion of this analysis is that, in order to prevent the
appearance of ghostly modes, the coefficients cten and cvec
must satisfy the constraint [67]

cten þ cvec ¼ 0: ð10Þ
This result implies that one can, without loss of generality,
parametrize the theory by the following choice of parameters

cvec ¼ −
2

3
; cten ¼

2

3
; caxi ¼

3

2
þ ϵ; ð11Þ

which leads to a Lagrangian of the form of the TEGR torsion
scalar plus a correction arising from the axial part, i.e.,

S1NGR½eAμ� ¼
1

2κ2

Z
d4xeð−T − ϵTaxi þ LmÞ: ð12Þ

The theory described by such an action is called one-
parameter NGR. This theory features the same post-
Newtonian parameters as GR (for any value of ϵ) and,
moreover, the theory predicts two polarization modes as in
GR [46]. By taking variations with respect to the tetrad, the
field equations can be cast in the following form:

κ2Θμν ¼ G̊μν þ ϵ

�
1

2
aρaðρgμνÞ −

4

9
εναβγaαtμβγ

−
2

9
εμνρσaρvσ −

1

3
εμνρσ∇̊ρaσ

�
≔ κ2Eμν; ð13Þ
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where G̊μ is the usual Einstein tensor constructed with the
Levi-Civita connection of themetric, andwe have defined the
energy-momentum tensor as

Θμν ¼
−2ffiffiffiffiffiffi−gp δLm

δgμν
¼ eAμ

�
1

e
δLm

δeAν0

�
gνν0 ¼ eAμΘA

ν0gνν0 : ð14Þ

In Sec. IV we discuss the spherically symmetric vacuum
solutions. To do so, we now introduce spherically sym-
metric teleparallel geometries.

III. 1PNGR IN SPHERICAL SYMMETRY

We now apply the 1PNGR field equations displayed in
the previous section to the case of spherical symmetry. We
first recall the most general spherically symmetric tele-
parallel geometry in Sec. III A, where we also introduce a
convenient parametrization. This is then used to derive the
antisymmetric part of the field equations in Sec. III B.
Assuming that these are solved, we derive the symmetric
part of the field equations in Sec. III C.

A. Spherically symmetric tetrad ansatz

In teleparallel gravity, it is usually assumed that the tetrad
and spin connection follow the same symmetries. This
condition can be achieved by introducing the vector fields
Zζ ¼ Zμ

ζðxÞ∂μ on the spacetime, such that the tetrad and
spin connection are invariant under the flow of the fields,
see [52,53], yielding

LZζ
eaμ ¼ −λaζ bebμ;

LZζ
ωa

bμ ¼ ∂μλ
a
ζ b

þ ωa
cμλ

c
ζb

− ωc
bμλ

a
ζ c
; ð15Þ

where λaζ b defines the Lie algebra homomorphism mapping
the symmetry algebra of the vector fields Zζ into the
Lorentz algebra. The above equations therefore take the
same role in the teleparallel geometry as the Killing
equations in Riemannian geometry, while taking into
account that the tetrad and spin connection are defined
only up to a local Lorentz transformation. The intuitive
picture behind this definition is that any given solution to
the symmetry condition (15), consists of a tetrad and a spin
connection which change along the flow of the symmetry
generating vector fields by a local Lorentz transformation
only. This ensures that the resulting metric-affine geometry
defined by the metric and teleparallel affine connection
becomes invariant. Due to the local Lorentz invariance, and
thus the freedom to choose a Lorentz transformation at any
point, one may always choose a particular gauge, which
then enters as an additional condition on the solution
alongside with the symmetry condition, so that the sym-
metry of the remaining gauge-fixed field variables becomes
less obvious. For the case of spherical symmetry [i.e.,
invariant under the group SO(3)], one finds that the most
general tetrad in the Weitzenböck gauge ωa

bμ ≡ 0 is
given by

e0 ¼ C1dtþ C2dr; ð16aÞ

e1 ¼ C3 sin ϑ cosφdtþ C4 sinϑ cosφdrþ ðC5 cosϑ cosφ − C6 sinφÞdϑ − sin ϑðC5 sinφþ C6 cos ϑ cosφÞdφ; ð16bÞ

e2 ¼ C3 sin ϑ sinφdtþ C4 sinϑ sinφdrþ ðC5 cosϑ sinφþ C6 cosφÞdϑþ sinϑðC5 cosφ − C6 cosϑ sinφÞdφ; ð16cÞ

e3 ¼ C3 cosϑdtþ C4 cosϑdr − C5 sin ϑdϑþ C6sin2ϑdφ; ð16dÞ

in the usual spherical coordinates ðt; r;ϑ;φÞ, where Ci ¼ Ciðt; rÞ are six unknown functions depending on the radial and
time coordinates. By using Eqs. (16), the line element takes the form

ds2 ¼ ðC2
3 − C2

1Þdt2 þ 2ðC3C4 − C1C2Þdtdrþ ðC2
4 − C2

2Þdr2 þ ðC2
5 þ C2

6ÞdΩ2; ð17Þ

where dΩ2 ¼ dϑ2 þ sin2 ϑdφ2 is the standard line element on the two-sphere. It is then possible to choose a coordinate
system such that the crossed term in the line element cancels out. One simple way of doing that is by introducing the
following parametrization for the tetrad functions:

C1ðt; rÞ ¼ Aðt; rÞ cosh βðt; rÞ; C3ðt; rÞ ¼ Aðt; rÞ sinh βðt; rÞ; ð18aÞ

C4ðt; rÞ ¼ Bðt; rÞ cosh βðt; rÞ; C2ðt; rÞ ¼ Bðt; rÞ sinh βðt; rÞ; ð18bÞ

C5ðt; rÞ ¼ Rðt; rÞ cos αðt; rÞ; C6ðt; rÞ ¼ Rðt; rÞ sin αðt; rÞ; ð18cÞ

which implies that the line element in Eq. (17) reduces to
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ds2 ¼ −Aðt; rÞ2dt2 þ Bðt; rÞ2dr2 þ Rðt; rÞ2dΩ2: ð19Þ

Furthermore, the function Rðt; rÞ can be set to Rðt; rÞ ¼ r by an additional coordinate freedom. The final form of the tetrad
is thus

e0 ¼ A cosh βdtþ B sinh βdr; ð20aÞ

e1 ¼ A sinϑ cosφ sinh βdtþ B sin ϑ cosφ cosh βdrþ rðcos ϑ cosφ cos α − sinφ sin αÞdϑ
− r sin ϑðcos ϑ cosφ sin αþ sinφ cos αÞdφ; ð20bÞ

e2 ¼ A sinϑ sinφ sinh βdtþ B sin ϑ sinφ cosh βdrþ rðcosϑ sinφ cos αþ cosφ sin αÞdϑ
þ r sinϑðcosφ cos α − cos ϑ sinφ sin αÞdφ; ð20cÞ

e3 ¼ A cosϑ sinh βdtþ B cos ϑ cosh βdr − r sin ϑ cos αdϑþ rsin2ϑ sin αdφ; ð20dÞ

which is used in the forthcoming sections to find spheri-
cally symmetric solutions. One notices that the metric
contains two degrees of freedom (d.o.f.) given by Aðt; rÞ
and Bðt; rÞ, and the tetrad contains four d.o.f. expressed by
Aðt; rÞ, Bðt; rÞ, αðt; rÞ, and βðt; rÞ.

B. The antisymmetric part of the field equations

The field equations of one-parameter NGR expres-
sed by Eq. (13) contain symmetric and antisymmetric

contributions, where the antisymmetric part of the
matter side of the field equations vanishes identically
due to the symmetries of the energy-momentum tensor.
Hence, for any solution to the field equations, one must
impose that the antisymmetric part of the gravitational
side also vanishes. The antisymmetric part in spherical
symmetry with the tetrad in Eq. (20) vanishes identically
due to these symmetries except for the two following
components:

E½tr� ∝ ϵ sin αðBα;t cosh β − Aα;r sinh βÞ ¼ 0; ð21Þ

E½ϑφ� ∝ ϵ½rA2BfrA;rα;r − 2B sin αððBβ;t − A;rÞ cosh β þ B;t sinh βÞg − r2AB2ðB;tα;t þ Bα;ttÞ
þ r2A;tB3α;t þ A3frðð2B − rB;rÞα;r þ rBα;rrÞ þ 2B2ðrβ;r sinh β þ cosh βÞ sin α − 2B3 sinð2αÞg� ¼ 0; ð22Þ

where commas denote derivatives with respect to either
t or r. There are several alternative methods to solve the,
each yielding different branches of solutions. In particular,
we consider the following three main branches:
(1) Branch 1: sin α ¼ 0 which implies α ¼ kπðk∈ZÞ.
(2) Branch 2: sin α ≠ 0 with α ¼ α0 (constant).
(3) Branch 3: sinα ≠ 0 with α ¼ αðr; tÞ variable and

Bα;t cosh β − Aα;r sinh β ¼ 0.
In [51], the first branch specified above was analyzed in the
context of NGR, but the other two branches were omitted
in that study. In Sec. IV we analyze all of the branches
separately.

C. The symmetric part of the field equations

For the previously identified three branches of solutions,
which solve the antisymmetric field equations, it is now
possible to derive and display the symmetric field equations.
The branches provide three different sets of equations, and so

lead to different dynamics and different solutions:
(1) Branch 1: The condition α ¼ kπðk∈ZÞ solves both

antisymmetric equations in Eqs. (21)–(22). Further-
more, it is possible to set k ¼ 0 without loss of
generality. Then, by introducing these conditions into
the symmetric part of the field equations in Eq. (13)
we find the following symmetric field equations:

Ett ¼
2A2B;r

rB3
−

A2

r2B2
þ A2

r2
¼ Θtt; ð23Þ

Err ¼
2A;r

rA
−
B2

r2
þ 1

r2
¼ Θrr; ð24Þ

Eϑϑ ¼
r2A;tB;t

A3B
−
r2A;rB;r

AB3
þ r2A;rr

AB2
þ rA;r

AB2
−
r2B;tt

A2B

−
rB;r

B3
¼ Θϑϑ; ð25Þ
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Etr ¼
2B;t

rB
¼ Θtr: ð26Þ

Note that in this branch, ϵ does not appear, meaning
that the resulting equations are identical to the GR
equations in spherical symmetry. Hence all spheri-
cally symmetric solutions to the usual Einstein equa-
tions, are solutions of 1PNGR.

(2) Branch 2: When αðt; rÞ ¼ α0 with α0 ≠ kπ ðk∈ZÞ,
the first antisymmetric field equation, Eq. (21), is
identically satisfied. Thus, one is left with a single
antisymmetric field equation [see Eq. (22)]. The sym-
metric field equations for this branch are as follows:

Ett ¼
2A2B;r

rB3
−

A2

r2B2
−
4ϵ cosð2α0ÞA2

9r2
þ 4ϵA2

9r2

þ A2

r2
¼ Θtt; ð27Þ

Err ¼
2A;r

rA
þ 4ϵ cosð2α0ÞB2

9r2
−
4ϵB2

9r2
−
B2

r2

þ 1

r2
¼ Θrr; ð28Þ

Eϑϑ ¼
r2A;tB;t

A3B
−
r2A;rB;r

AB3
þ r2A;rr

AB2
þ rA;r

AB2
−
r2B;tt

A2B

−
rB;r

B3
¼ Θϑϑ; ð29Þ

Etr ¼
2B;t

rB
¼ Θtr: ð30Þ

These equations feature corrections induced by the
teleparallel modifications of general relativity, which
are controlled by the constant ϵ. One can also verify
that the off-diagonal part of the field equation, Etr,
coincides with the one from Branch 1.

(3) Branch 3: This branch is the most complex one since
α ¼ αðt; rÞ with sinα ≠ 0 implies that the first term
in Eq. (21) is nonzero. Therefore, the only possible
way of solving the first antisymmetric field equation
is by imposing Bα;t cosh β − Aα;r sinh β ¼ 0, which
introduces complexity in the remaining equations.
For this branch, the symmetric field equations
become:

Ett ¼
2A2B;r

rB3
−

A2

r2B2
þ 8ϵA2α;r sinðαÞ coshðβÞ

9rB
þ 2ϵA2α2;r

9B2
−
4ϵA2 cosð2αÞ

9r2
þ 4ϵA2

9r2
þ A2

r2
þ 2

9
ϵα2;t ¼ Θtt; ð31Þ

Err ¼
2A;r

rA
þ 8ϵB2α;t sinðαÞ sinhðβÞ

9rA
þ 2ϵB2α2;t

9A2
þ 4ϵB2 cosð2αÞ

9r2
−
4ϵB2

9r2
−
B2

r2
þ 2

9
ϵα2;r þ

1

r2
¼ Θrr; ð32Þ

Eϑϑ ¼
r2A;tB;t

A3B
−
r2A;rB;r

AB3
þ r2A;rr

AB2
þ rA;r

AB2
−
r2B;tt

A2B
þ 2ϵr2α2;t

9A2
þ 4ϵrα;t sinðαÞ sinhðβÞ

9A
−
rB;r

B3

−
2ϵr2α2;r
9B2

−
4ϵrα;r sinðαÞ coshðβÞ

9B
¼ Θϑϑ; ð33Þ

Etr ¼
2B;t

rB
þ 8ϵBα;t sinðαÞ coshðβÞ

9r
þ 4

9
ϵα;rα;t ¼ Θtr; ð34Þ

which form indeed a more complicated set of
differential equations in comparison with the ones
obtained in Branches 1 and 2.

Having found all field equations, we solve the vacuum
solutions of the equations for each branch next.

IV. SPHERICAL SYMMETRIC VACUUM
SOLUTIONS

In order to find the spherically symmetric vacuum
solutions of the theory, we set the energy momentum
tensor to zero, and study the symmetric field equations
for each branch that we identified from the antisymmetric
field equations in Sec. III B.

A. Branch 1: sinα= 0

We now solve the system of differential equations
expressed in Eqs. (23)–(26) for the vacuum case. From
Eq. (26) we find that the tr component takes the following
constraint form:

EðtrÞ ∝ B;t ¼ 0; Bðt; rÞ ¼ BðrÞ: ð35Þ

Furthermore, by using the tt and rr components of the field
equations [see Eqs. (23) and (24)] one immediately finds

Aðt; rÞ2 ¼
�
1−

2M
r

�
A0ðtÞ; BðrÞ2 ¼

�
1−

2M
r

�
−1
; ð36Þ
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where A0ðtÞ is an integration function and M is a constant
that plays the role of the mass. The above form of the metric
functions corresponds to the Schwarzschild metric. This
can be clarified by performing a time-coordinate trans-
formation A0ðtÞdt → dt such that one absorbs the arbitrary
function A0ðtÞ. It is worth mentioning that the tetrad in
Eq. (20) for this branch,

e0 ¼
�
1 −

2M
r

�
1=2

cosh βdtþ
�
1 −

2M
r

�
−1=2

sinh βdr;

ð37Þ

e1 ¼
�
1 −

2M
r

�
1=2

sin ϑ cosφ sinh βdt

þ
�
1 −

2M
r

�
−1=2

sin ϑ cosφ cosh βdr

þ r cos ϑ cosφdϑ − r sin ϑ sinφdφ ð38Þ

e2 ¼
�
1 −

2M
r

�
1=2

sin ϑ sinφ sinh βdt

þ
�
1 −

2M
r

�
−1=2

sin ϑ sinφ cosh βdr

þ r cosϑ sinφdϑþ r sinϑ cosφdφ ð39Þ

e3 ¼
�
1 −

2M
r

�
1=2

cosϑ sinh βdt

þ
�
1 −

2M
r

�
−1=2

cos ϑ cosh βdr − r sinϑdϑ; ð40Þ

contains β ¼ βðt; rÞ as any arbitrary function. This com-
putation showed that, on the level of the metric there is
a unique spherically symmetric solution for the Branch 1
in the one-parameter NGR which is described by the
Schwarzschild metric. This is obvious to obtain since
the symmetric field equations in Eqs. (23)–(26) are iden-
tical to the GR ones, while the antisymmetric field
equations are solved, leading β as an arbitrary tetrad
function. This means that the tetrad is not unique, since
it contains the free function β. In principle, this could have
an impact at the perturbation level.

B. Branch 2: sinα ≠ 0 with α=α0 (constant)

Similarly as we computed it in the previous section, one
can use the tt, rr and tr, components of the field equations
[see Eqs. (27), (28) and (30) respectively] to obtain

Aðt; rÞ2 ¼
�
1 −

2M
r

�
A0ðtÞ; BðrÞ2 ¼ h

�
1 −

2M
r

�
−1
;

ð41Þ

where again one notices that one can redefine the time-
coordinate such that the time function A0ðtÞ is absorbed.
Here, for the sake of notation simplicity, we have intro-
duced the parameter,

h ¼ hðα; ϵÞ ¼ 1

1 − 4
9
ϵ½cos ð2αÞ − 1� : ð42Þ

Then, for this branch, the metric must be static in the
absence of matter fields, and the solution is described by a
modified Schwarzschild-like form with the following line
element:

ds2 ¼−
�
1−

2M
r

�
dt2þh

�
1−

2M
r

�
−1
dr2þ r2dΩ2: ð43Þ

There is still one remaining field equation in the system,
Eq. (22), which under the line element above takes
the form

0 ¼ ϵ

�
3rð2M − rÞβ;r sinh β

B
þ 3ðM − rÞ cosh β

B

þ 3r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
β;t cosh β þ 6 cos α0ðr − 2MÞ

�
; ð44Þ

which constrains the form of the tetrad function βðt; rÞ and
does not affect the form of the metric. In general, the
above differential equation cannot be easily solved.
However, for the specific case when βðt; rÞ ¼ βðrÞ we
obtain the analytical solution,

βðrÞ ¼ arccosh

�
2BðrÞ cos α0

r
ðM2β0 þ rÞ

�
; ð45Þ

for which the tetrad in the static case reduces to

e0 ¼ 2
ffiffiffi
h

p
cos α0ðβ0M2 þ rÞ

r
dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

r − 2M

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hcos2α0ðβ0M2 þ rÞ2

r − 2M
− r

r
dr; ð46Þ

e1 ¼ sinϑ cosφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hcos2α0ðβ0M2 þ rÞ2 þ rð2M − rÞ

p
r

dt −
2h cos α0 sin ϑ cosφðβ0M2 þ rÞ

2M − r
dr

þ rðcos α0 cos ϑ cosφ − sin α0 sinφÞdϑ − r sinϑðsin α0 cosϑ cosφþ cos α0 sinφÞdφ; ð47Þ
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e2 ¼ sinϑ sinφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hcos2α0ðβ0M2 þ rÞ2 þ rð2M − rÞ

p
r

dt −
2h cos α0 sin ϑ sinφðβ0M2 þ rÞ

2M − r
dr

þ rðcos α0 cos ϑ sinφþ sin α0 cosφÞdϑþ r sin ϑðcos α0 cosφ − sin α0 cos ϑ sinφÞdφ; ð48Þ

e3 ¼ cosϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hcos2α0ðβ0M2 þ rÞ2 þ rð2M − rÞ

p
r

dt −
2h cos α0 cosϑðβ0M2 þ rÞ

2M − r
dr

− r cos α0 sinϑdϑþ r sin α0sin2ϑdφ: ð49Þ

It is worth mentioning that, for the specific case when
α0 ¼ π=2, the form of the tetrad reduces to the complex
tetrad form used in [48–50], where exact and numerical
black holes solutions were found in fðTÞ gravity and also
in scalar-tensor theories. Note, however, that this tetrad is
not necessarily complex for r > 2M, provided that the
parameters of the model satisfy the conditions h > 0,
4h cos2 α0 > 1, and the following quadratic equation:

4hcos2α0ðβ0M2 þ rÞ2 þ rð2M − rÞ ¼ 0; ð50Þ

does not have any solutions in the region r > 2M. On the
other hand, in the region r < 2M, where e0 becomes
spacelike and e1 becomes timelike, their roles must be
reversed in the ansatz given in Eq. (20), such that the
interior solution is kept real as well. We point out that
this reversal is only due to the choice of coordinates and the
Lorentz gauge, while the metric and torsion defining the
teleparallel connection remain real.

C. Branch 3: sinα ≠ 0 with α=αðr;tÞ variable
This branch is more involved than the previous ones [see

Eqs. (31)–(34) for the vacuum case]. In order to explore this
branch, let us assume for the entirety of this section that the
functions Bðr; tÞ and Aðr; tÞ satisfy the constraint B ¼ 1=A

(i.e., grr ¼ −1=gtt), a choice for which the equations
simplify significantly. Under this assumption, the system
of Eqs. (31)–(34) with the antisymmetric Eqs. (21)–(22)
can be rewritten by using Eq. (21), yielding

α;r ¼ −
2 sin α cosh β

rA
; α;t ¼ −

2A sin α sinh β
r

; ð51Þ

0 ¼ sinh β½AððA − rA;rÞ tanh β − rAβ;rÞ þ rβ;t tanh β�;
ð52Þ

0 ¼ 2rA;rAþ A2 − 1; A;t ¼ 0: ð53Þ

Equation (53) can be directly integrated in order to obtain
Aðt; rÞ2 ¼ 1–2M=r. This means that there is a unique
solution for the metric functions when we assume
B ¼ 1=A, which is given by the Schwarzschild spacetime.
This conclusion holds for the generic case where the
functions depend on r and t. Consequently, any solution
beyond Schwarzschild must satisfy B ≠ 1=A. Even though
we already found the form of the metric, Eqs. (51)–(52)
need to be solved for αðt; rÞ and βðt; rÞ. Solving the
equations above proves to be a difficult task. Nevertheless,
taking the assumption βðt; rÞ ¼ βðrÞ one finds

βðrÞ ¼ arcsinh

�
c1r3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p
�
; αðt; rÞ ¼ 2arccot½e2c1tþα2ðrÞ�; α2ðrÞ ¼

Z
dr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21r

2 þ 1 − 2M=r
p

r − 2M
; ð54Þ

yielding the following form of the tetrad:

e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

þ c21r
2

r
dtþ c1r2

r − 2M
dr; ð55Þ

e1 ¼ c1r sinϑ cosφdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðc21r3 þ r − 2MÞ

p
r − 2M

sin ϑ cosφdrþ rðcosϑ cosφ sinhð2c1tþ α2Þ − sinφÞsechð2c1tþ α2Þdϑ
− r sin ϑðsinφ sinhð2c1tþ α2Þ þ cosϑ cosφÞsechð2c1tþ α2Þdφ; ð56Þ

e2 ¼ c1r sinϑ sinφdtþ
sin ϑ sinφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðc21r3 þ r − 2MÞ

p
r − 2M

drþ rðcosϑ sinφ sinhð2c1tþ α2Þ þ cosφÞsechð2c1tþ α2Þdϑ
þ r sin ϑsechð2c1tþ α2Þðcosφ sinhð2c1tþ α2Þ − cos ϑ sinφÞdφ; ð57Þ

e3 ¼ c1r cosϑdtþ
cosϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðc21r3 − 2M þ rÞ

p
r − 2M

dr − r sinϑ tanhð2c1tþ α2Þdϑþ rsin2ϑsechð2c1tþ α2Þdφ: ð58Þ
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This indicates that, even though the metric is static
(Schwarzschild), the extra degrees of freedom that only
appear in the tetrad are nonstatic in general. Thus, one
obtains the Schwarzschild metric, with the Minkowski
limit M → 0, albeit expressed by a boosted tetrad with a
nontrivial coordinate dependent αðt; rÞ.
For the static case, one sets c1 ¼ 0, and this implies

consequently that β ¼ 0 and that the integral appearing in
αðrÞ can be explicitly obtained yielding

α2ðrÞ ¼ α0 þ 4tanh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2M
r

r �
⇒ αðrÞ

¼ 2arccot½eα0þ4arctanhð
ffiffiffiffiffiffiffiffi
1−2M

r

p
Þ�; ð59Þ

where α0 is an integration constant. Furthermore, for the
nonstatic case in Minkowski (M ¼ 0), we find that the
integral appearing in α2 in the above equation can be solved
yielding the following form for α2:

α2ðrÞ ¼ 2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c21r
2

q
− arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21r

2

q �i
þα0; ð60Þ

which is a Minkowski solution for our theory with a
nontrivial time and radial dependence tetrad given by

e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21r

2

q
dtþ c1rdr; ð61Þ

e1 ¼ c1r sinϑ cosφdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21r

2

q
sin ϑ cosφdr

þ ½r cos ϑ cosφ tanhð2c1tþ α2Þ
− r sinφsechð2c1tþ α2Þ�dϑ
− r sin ϑ½sinφ tanhð2c1tþ α2Þ
þ cosϑ cosφsechð2c1tþ α2Þ�dφ; ð62Þ

e2 ¼ c1r sinϑ sinφdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21r

2

q
sin ϑ sinφdr

þ r½cosϑ sinφ tanhð2c1tþ α2Þ
þ sechð2c1tþ α2Þ cosφ�dϑ
þ r sin ϑ½cosφ tanhð2c1tþ α2Þ
− cos ϑ sinφsechð2c1tþ α2Þ�dφ; ð63Þ

e3 ¼ c1r cos ϑdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21r

2

q
cosϑdr

− r sinϑ tanhð2c1tþ α2Þdϑ
þ rsin2ϑsechð2c1tþ α2Þdφ; ð64Þ

with α2 given by Eq. (60).

V. OBSERVABLES IN SPHERICALLY
SYMMETRIC VACUUM SOLUTIONS

Our analysis of the 1PNGR field equations implies
that there exist spherically symmetric solutions beyond

Schwarzschild geometry. For the derivationof the observable
consequences of such findings, and to be able to identify
constraints on the 1PNGR parameter ϵ, we focus on the
analytic solution we found in Branch 2, see Sec. IV B. These
solutions contain a second parameter α ¼ α0, which emerges
from solving the field equations. In this section, we study
the properties of this new vacuum solution. In Sec. VA, we
start by studying its geometric properties, such as horizons
and asymptotic flatness. In Sec. V B, we study the classical
observables, in particular the perihelion shift, light deflection
and Shapiro delay. In Sec. V C we discuss the Komar mass
and singularities. Finally, in Sec. V D we study the photon
sphere and shadow of the solution.

A. Geometric properties of the solution

The metric for which we perform the following phe-
nomenological analysis is described by the line-element
given in Eq. (43), which can be recast into the more
convenient form

ds2 ¼ −fðrÞdt2 þ hðα; ϵÞ
fðrÞ dr2 þ r2dΩ2; ð65Þ

where the functions fðrÞ and hðα; ϵÞ are given explicitly by

fðrÞ ¼ 1 −
2M
r

; hðα; ϵÞ ¼
�
1 −

4

9
ϵ½cos ð2αÞ − 1�

�
−1
:

ð66Þ
Before proceeding with the analysis that follows, a few
considerations are worth mentioning:

(i) To preserve the Lorentzian signature of the metric,
the condition hðα; ϵÞ > 0 must hold for all values of
ϵ and α. Then, the metric features an event horizon at
rH ¼ 2M, at which both the gtt and grr components
of the metric change signs. For a solution with an
arbitrary α and ϵ to preserve the same signs of the
metric components as the Schwarzschild solution
(ϵ ¼ 0), it is necessary that the constant ϵ satisfies
the following requirement:

ϵ >
9

4
½cos ð2αÞ − 1�−1 ≡ δmin < 0: ð67Þ

(ii) The solution is asymptotically nonflat. The Ricci
tensor of the metric features the following non-
vanishing components:

R̊φφ ¼ R̊ϑϑsin2ϑ ¼
�
1 −

1

hðα; ϵÞ
�
sin2ϑ: ð68Þ

(iii) Due to the spherical symmetry of the solution, the
motion of particles in the spacetime under consid-
eration is fully determined by the normalization
condition for curves gμνðxÞẋμẋν ¼ σ restricted to the
equatorial plane ϑ ¼ π=2, where σ ¼ 0 for null and
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σ ¼ −1 for timelike particle trajectories. This equa-
tion can be rewritten in the form,

1

2
ṙ2 þ Veffðr; E; L; σÞ ¼ 0; ð69Þ

where here, the effective potential, in terms of the
constants of motion E and L (energy and angular
momentum, respectively), is given by

VeffðrÞ ¼
1

hðα; ϵÞ
�
−
E2

2
þ f

2

�
L2

r2
− σ

��
;

E ¼ −fṫ; L ¼ r2φ̇: ð70Þ

Thus, the teleparallel modification of the effective
potential in comparison with the Schwarzschild
result is given by Veff ¼ hðϵ; αÞ−1VeffSchw, where
the subscript Schw denotes the Schwarzschild counter-
part of the same quantity.

In general, for particle motion, this implies that
the orbits of test particles in the 1PNGR generalization
of the Schwarzschild spacetime differ from the ones
Schwarzschild geometry only by a constant factor depend-
ing on the teleparallel parameters ϵ and α, since

ṙ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞp ṙSchw;

dφ
dr

¼ φ̇

ṙ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p dφ
drSchw

;

dt
dr

¼ ṫ
ṙ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p dt
drSchw

: ð71Þ

In particular, the circular orbits, which are characterized by
the conditions ṙ ¼ ̈r ¼ 0, are identical as in Schwarzschild
spacetime.

B. Classical observables

For the classical observables, i.e., light deflectionΔφlight,
perihelion shift Δφperi, or the Shapiro delay ΔtShap, which
are derived from the different parametrizations of the orbits
above, this allows for the following comparison:

(i) The perihelion shift Δφperi is determined from the
orbits parametrized as curves rðφÞ or φðrÞ. If the
orbits were perfect elipses, the angular difference
between the perihelion R− and the aphelion Rþ
would be exactly π. Any deviations from this value
define the perihelion shift Δφ,

Δφperi ¼ 2

				
Z

Rþ

R−

dφ
dr

dr

				 − 2π

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p
2

				
Z

Rþ

R−

dφ
drSchw

dr

				 − 2π

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p
ΔφperiSchw þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p
− 1Þ2π:

ð72Þ

(ii) The light deflection by isolated gravitating objects is
determined as angle Δφlight, about which a light ray
bends when it passes by a gravitating object. Since
we are studying the effect on an asymptotically
nonflat spacetime, we consider a light ray that is
emitted by a source at r ¼ RS with angle ΨSðRSÞ ¼
L=E

ffiffiffiffiffiffiffiffiffiffiffiffi
fðRSÞ

p
=RS with respect to the radial direction,

and observed by a receiver at r ¼ RR with an angle
ΨRðRRÞ ¼ L=E

ffiffiffiffiffiffiffiffiffiffiffiffi
fðRRÞ

p
=RR with respect to the

radial direction. Following [68], the deflection angle
Δφlight can be calculated as

Δφlight

¼
Z

RS

rc

dφ
dr

drþ
Z

RR

rc

dφ
dr

drþ ΨR −ΨS

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p �Z
RS

rc

dφ
drSchw

drþ
Z

RR

rc

dφ
drSchw

dr

�

þΨRSchw − ΨSSchw

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p
ΔφlightSchw

þ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p
ÞðΨRSchw −ΨSSchwÞ: ð73Þ

The angles ΨS and ΨR depend solely on the metric
component gttðrÞ, which explains why they take
identical values as in Schwarzschild geometry.

(iii) The Shapiro time delay is the additional time in the
travel time of a light signal in the presence of a
gravitating object, compared to the absence of the
object. Again, the derivation is straightforward,

ΔtShap ¼
Z

r2

r1

dt
dr

dr −
�Z

r2

r1

dt
drSchw

dr

�
M¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p Z
r2

r1

dt
drSchw

dr

−
�Z

r2

r1

dt
drSchw

dr

�
M¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p
ΔtShapSchw

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα; ϵÞ

p
− 1Þ

�Z
r2

r1

dt
drSchw

dr

�
M¼0

:

ð74Þ

C. Komar mass and singularities

Defining the quantity δ̄ ¼ ϵ=δmin, which by construction
is constrained to vary in the interval δ̄∈ ð−∞; 1�, with
δ̄ ¼ 0 corresponding to the Schwarzschild solution, the
function hðα; ϵÞ can be conveniently redefined into a one-
parameter function of the form

hðα; ϵÞ ¼ hðδ̄Þ ¼ 1

1 − δ̄
: ð75Þ
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Indeed, there are an infinite amount of parameter combi-
nations α and ϵ that result in the same value of δ̄ and,
consequently, correspond to the same spacetime metric.
Furthermore, all possible solutions satisfying the require-
ment ϵ > δmin can be mapped to a value of δ̄ < 1. Thus,
instead of analyzing the parameters α and ϵ separately in
what follows, we chose to analyze different values of δ̄.
It is also useful to calculate the Komar mass M for this

spacetime which is related to the force needed by an
observer at infinity to keep a spherical uniform mass
distribution. For that, one must assume the existence
of a timelike Killing vector field ξμ ¼ f1; 0; 0; 0g and a
spacelike hypersurface Σt from the event horizon to spatial
infinity in a constant slice t whose normal vector is
nμ ¼ f−gtt; 0; 0; 0g. Then, the Komar mass reads [69]

M ¼ −
1

8π

Z
St

∇̊μξνdSμν; ð76Þ

where St is the 2-boundary of Σt and dSμν is the surface
element of St which is dSμν ¼ −2n½μσν�

ffiffiffi
s

p
dϑdφ with

s ¼ r4 sin2 ϑ being the determinant of the two-dimensional
metric on St and σμ ¼ f0; ffiffiffiffiffiffi

grr
p

; 0; 0g. By replacing the
form of the metric in Eq. (65) into the equations above, we
find that the Komar mass of the spacetime is

M ¼ 1

8π
lim
r→∞

Z
π

0

Z
2π

0

r2g0ttffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p sinϑdφdϑ

¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

9
ϵsin2ðα0Þ

r
: ð77Þ

It is also useful to compute the Kretschmann invariant
K̊ ¼ R̊αβμνR̊αβμν for our spacetime whose value becomes

K̊ ¼ 16M2ð−4ϵ cosð2α0Þ þ 4ϵþ 9Þ2
27r6

þ 128ϵMsin2ðα0Þð4ϵ cosð2α0Þ − 4ϵ − 9Þ
81r5

þ 256ϵ2sin4ðα0Þ
81r4

; ð78Þ

from which one observes that, similarly to the
Schwarzschild case, the solutions considered features a

singularity at r ¼ 0. Note that for ϵ ≠ 0 it is also easy to see

this by computing the Ricci scalar which is R̊ ¼ 2ðh−1Þ
hr2

where one can also see the singularity appearing at the
origin.

D. Photon sphere and shadow

Let us now analyze the observational properties of the
spherically symmetric solutions deduced in this manuscript
when surrounded by optically thin accretion disks. To
produce the observed images and intensity profiles of the
solutions in consideration, we recur to a Mathematica-
based ray-tracing code previously used in other publica-
tions [57–65]. In this code, the trajectories of photons
are computed via numerical solutions of the geodesic
equation. For spherically symmetric solutions like the ones
considered in this work, the geodesic equation can be
conveniently rewritten in terms of radial derivatives of the
azimuthal angle in the form,

φ0ðrÞ ¼
ffiffiffi
h

p
φ0
Schw ¼ � b

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gtt

b2

r2

q ; ð79Þ

where b≡ L=E is the impact parameter, with L the angular
momentum and E the energy of the photon. In Fig. 1 we
provide a set of null geodesics computed in the background
spacetime for models with different values of the parameter
δ̄ and different impact parameters b. These panels clarify
the effect of δ̄ in the propagation of photons. Indeed, a
comparison with the middle panel, corresponding to the
Schwarzschild solution, with δ̄ ¼ 0, indicates that positive
values of δ̄ have a repulsive effect in the photons approach-
ing the central black hole, whereas negative values of δ̄
contribute with an additional attractive effect. These addi-
tional effects are expected to induce non-negligible quali-
tative modifications in the observational properties of the
solutions considered in comparison to the Schwarzschild
solution.
In the Mathematica-based ray-tracing code used to

produce the results that follow, the accretion disk in the
equatorial plane is modeled by a monochromatic intensity
profile that follows the Gralla-Lupsasca-Marrone (GLM)
model [70], which in the reference frame of the emitter
takes the form

FIG. 1. Geodesic congruences for δ̄ ¼ f−2;−1; 0; 0.5; 0.7g, from left to right. The black disk represents the photon sphere at r ¼ 3M,
i.e., all photons approaching this disk eventually reach the event horizon.
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Ieðr; γ; β; σÞ ¼
exp f− 1

2
½γ þ arcsinhðr−βσ Þ�2gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − βÞ2 þ σ2

p ; ð80Þ

where γ, β, and σ are free parameters that control the shape
of the emission profile. In this work we consider two
different disk models based on the GLM model; the first,
which we denote the ISCO model, is motivated by the fact
that circular orbits in the spacetimes considered in this
manuscript become unstable for orbital radii smaller than
the radius of the innermost stable circular orbit (ISCO),

which stands at rISCO ¼ 6M, and thus the intensity profile
is expected to peak at this radius and rapidly decrease for
smaller radii, and the second, which we denote the EH
model, is motivated by the fact that even if stable cir-
cular orbits do not exist in the region between the ISCO
and the EH, the infalling of matter towards the EH should
contribute to the emitted intensity profile, thus leading
to a peak of intensity closer to the EH. The ISCO disk
model is characterized by the parameters γ ¼ −2, β ¼ 6M,
and σ ¼ M=4, whereas the EH disk model is characte-
rized by the parameters γ ¼ −3, β ¼ 2M, and σ ¼ M=8.

FIG. 2. Intensity profiles in the reference frame of the emitter (left panel), and observed intensity profiles for the ISCO disk model
(middle panel) and the EH disk model (right panel) for different values of δ̄.

FIG. 3. Observed images for the ISCO disk model (top two rows) and the EH disk model (bottom row rows) with inclination angle of
0° (top) and 80° (bottom), for δ̄ ¼ f−2;−1; 0; 0.5; 0.7g, from left to right.
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The emitted intensity profiles are plotted in the left panel
of Fig. 2.
In the reference frame of the observer, the observed

intensity profiles Io are redshifted with respect to the
emitted intensity profiles Ie, an effect that takes into
consideration the background metric where the photons
are propagating. Indeed, the observed intensity profiles
are given by

IoðrÞ ¼ g2ttIeðrÞ: ð81Þ
The observed intensity profiles for both the ISCO disk
model and the EH disk model are given in the middle and
right panels of Fig. 2, respectively, for different values of
the free parameter δ̄, where the thick black line represents
the Schwarzschild solution. The corresponding observed
images are shown in Fig. 3. The results indicate that
negative values of δ̄ result in a reduction of the light ring
contribution to the observed profiles and images, while
the opposite effect occurs for positive values of δ̄. This
result is consistent with the expectation from the analysis of
the geodesic congruences in these spacetimes, as negative
values of δ̄ have a repulsive effect, thus reducing the
number of photons that reach the observer after approach-
ing the photon sphere, and vice versa for positive values of
δ̄. Furthermore, the size of the black hole shadow is also
affected by the parameter δ̄, with positive values of this
parameter resulting in an increase in the size of the shadow
and negative values resulting in a decrease of the size of the
shadow. For the ISCO model, it can even be observed that
for δ̄ ¼ 0.9 an additional secondary image appears outside
of the light ring due to the increased light bending.

VI. CONCLUSIONS

In this work, we derived the field equations for spherical
symmetric spacetimes in 1PNGR by using the most general
tetrad for spherical symmetry. These equations were
decomposed in their symmetric and antisymmetric parts,
and three branches of solutions to the antisymmetric field
equations were found.
We then discussed vacuum solutions for all three

branches. The first branch is analyzed in Sec. IVA. In
this branch, one observes that after a time-coordinate trans-
formation, the metric can be reduced to a Schwarzschild
form. The second branch is analyzed in Sec. IV B.
Similarly, after a time-coordinate transformation, the metric
takes the form of a mildly modified Schwarzschild metric,
see Eq. (43), which renders the metric asymptotically
nonflat. Since this branch is more difficult to analyze,
we presented the most general metric solution for the metric
degrees of freedom, but not the most general solution for
the full tetrad. Assuming that the tetrad is independent of
the time coordinate, an analytic solution for the remaining
degree of freedom β ¼ βðrÞ could be found, see (45).
We emphasize that the tetrad considered encompasses a

particular case used in previous works for fðTÞ gravity and
scalar-tensor theories, where exact and numerical black
hole solutions have been found [48–50]. Finally, the third
branch was analyzed in Sec. IV C. This branch is more
involved and also quite difficult to solve in general. In order
to simplify the equations, we considered the static case with
grr ¼ −1=gtt which corresponds to a Schwarzschild metric
and reduces to the Minkowski metric for M → 0.
We also studied some phenomenological aspects of the

analytic solution we found for the second branch which
involves two free parameters ϵ and α0. In particular, we
found that there is an event horizon at rH ¼ 2M, and we
calculated the Komar mass, which attains a teleparallel
correction, and found a curvature singularity at r ¼ 0. We
showed that modification of the classical phenomena of
light deflection, Shapiro delay and the perihelion shift can
easily be expressed in terms of their value in Schwarzschild
geometry. These can be used to find constrains on the
teleparallel parameters. Moreover, we gave a detailed study
of the photon sphere and the black hole shadow. We
realized that our results are in agreement with the results
from the analysis of the congruences of geodesics. In
particular, we have shown that, depending on the values
chosen for the free parameters of the solution, one might
observe additional attractive or repulsive effects on the
propagation of photons, which could result in a non-
negligible observable distortion of the primary, secondary,
and light-ring components of the observed image, and in a
modification of the size of the black hole shadow. In the
future, the next generation of long baseline interferometers
like the ngEHT could provide observations precise enough
to allow one to constrain the values of the free parameters of
the models considered in this work with experimental data.
Moreover, we could derive the perturbed equations at

linear or higher order around these background solutions in
order to study the perturbations of black holes or other
spherically symmetric compact objects in this theory, and
then analyze the emission of gravitational waves in the
ringdown phase of merger events, which are characterized
by the quasinormal mode frequencies. Comparing these to
observations in the last stage of the gravitational wave
signal may show how these modes compare to their GR
counterparts. This analysis would not only provide addi-
tional information about the source of the gravitational
waves, but also test and constrain the gravitational theories
we consider. The propagation of gravitational waves in
teleparallel gravity has been already studied [46].
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