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The boundary term and Brown-York (BY) formalism, which is based on the Hamilton-Jacobi principle, are
complimentary of each other as the gravitational actions are not, usually, well-posed. In scalar-tensor theory,
which is an important alternative to general relativity (GR), it has been shown that this complementarity
becomes even more crucial in establishing the equivalence of the BY quasilocal parameters in the two frames
which are conformally connected. Furthermore, the Brown-York tensor and the corresponding quasilocal
parameters are important from two important yet different aspects of gravitational theories: black hole
thermodynamics and fluid-gravity correspondence. The investigation suggests that while the two frames are
equivalent from the thermodynamic viewpoints, they are not equivalent from the perspective of fluid-gravity
analogy or the membrane paradigm. In addition, the null boundary term and null Brown-York formalism are
the recent developments (so far obtained only for GR) which is nontrivial owing to the degeneracy of the null
surface. In the present analysis, these are extended for scalar-tensor theory. The present analysis also suggests
that, regarding the equivalence (or inequivalence) of the two frame, the null formalism draws the same
inferences as of the timelike case, which, in turn, establishes the consistency of the newly developed null
Brown-York formalism.

DOI: 10.1103/PhysRevD.109.064026

I. INTRODUCTION

Several theoretical analyses [1–3] and observational
data [4–12] suggest that Einstein’s general relativity
(GR) is not the ultimate theory of gravitation. As a result,
the interests on modified theories of gravity have surged
over time. Among several modified theories of gravity of
special interests, scalar-tensor (ST) theory is, probably, the
most popular for several reasons. Scalar-tensor theory is
favored by string theory [13], as the spin-2 graviton has a
spin-0 partner known as a dilaton. Therefore, as per string
theory, the actual theory of gravity should be scalar-tensor
gravity. Furthermore, the higher curvature gravity [fðRÞ
theory] can be studied equivalently as scalar-tensor
theory [14]. As a result, scalar-tensor theory is considered
as one of the most important both from the theoretical and
observational viewpoints [15–42]. Furthermore, scalar-
tensor theory is described in the two frames, which are
conformally connected. From the naive perspective of
quantum field theory, one expects that the physical
parameters should be equivalent under the conformal
transformation, which is basically a field reparametriza-
tion. Therefore, scalar-tensor theory provides a perfect
toy model to verify such argument. The equivalence/
inequivalence of the two frames has been the subject of

intense research for a long time, and it is still considered
as a matter for debate [43–72].
For all the importances of ST gravity stated above, the

theory should be studied in a comprehensive manner. The
action of ST gravity is not well-posed. Since the action (in
each frame) of ST gravity contains the first-order derivative
as well as the second-order derivative of the metric tensor,
one has to fix both metrics as well as its first-order
derivative on the boundary. As a result, the principle of
least action becomes ill-defined. To resolve this issue, there
are two choices, which we discuss subsequently in detail.
One of the choices, which is a noncovariant formalism,
has been explored in earlier works [65,68] (also see the
review [71]). There remains another choice, i.e., addition
of a suitable boundary term which negates the problem-
atic terms, which causes the action principle to be ill-
defined. As it has been explored in general relativity, the
boundary term is not unique [73]. There can be several
boundary terms which can be used in order to obtain the
well-posed action principle. On the contrary, it has been
argued recently in the literature that we should not
preimpose the boundary term with the action. Instead,
the action principle should tell us what boundary term is
required to be added so that when the action is well-
posed, the number of components which are required to
be fixed on the boundary should be equal to the number of
true degrees of freedom in the theory [74–78]. Although,
the boundary term required for the well-posed action
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(on timelike/spacelike surface) is known for ST gravity, an
analysis in such spirit is still missing, where the boundary
term is decided by the action principle itself. Furthermore,
there is another major challenge. The formalism of obtaining
the boundary term from the action principle itself is a
foliation-dependent formalism. As a result, the usual
approach for a timelike (or spacelike) surface will not be
valid for a null surface, which is degenerate and possess
several nontrivial traits as compared to the timelike (or
spacelike) counterparts. Even in general relativity (GR), the
proper boundary term for a null surface has been obtained
very recently [75,76,79–83] (which has later been extended
for the Lanczos-Lovelock gravity [78]). Whereas the boun-
dary term required for the actions of ST gravity is not yet
defined for the null surfaces. Once the boundary terms are
known for timelike/spacelike and the null surfaces, one can
obtain the Brown-York tensor and the corresponding qua-
silocal parameters, which are important both from the
perspectives of black hole thermodynamics as well as the
membrane paradigm (or fluid-gravity correspondence)
[84,85]. Although from the previous analysis [86–88] it is
known how the Brown-York energy and mass are confor-
mally related, the connections of other parameters are not yet
studied. More importantly, for the null surface, the Brown-
York tensor and the quasilocal parameters are not yet
obtained in the two frames. So far, only in GR [89,90],
the BY tensor and the quasilocal parameters are obtained for
a null surface owing to its nontrivial properties. As a result,
it is not known how the null quasilocal parameters are
conformally connected and whether it yields the same
connection as of the timelike case.
In the present analysis, we address all these issues

which are described above and obtain all-around under-
standing in this context. We presented subsequent analy-
sis separately for the timelike/spacelike surface and for
the null surface, where we obtain the boundary term from
the action principle itself and, thereafter, the BY tensor
and the corresponding quasilocal parameters. We also
compare how the quasilocal parameters are connected in
the two frames and, thereby, what implication it makes
for black hole thermodynamics and the membrane para-
digm under the conformal transformation. The paper is
organized as follows: In Sec. II, we provide a brief review
of scalar-tensor gravity in the two frames, where we show
how the two actions are conformally connected and also
discuss the equivalence/inequivalence of the two frames
at the action level. In Sec. III, we present the analysis of
obtaining the boundary term and quasilocal parameters
for the timelike/spacelike surface. We also obtain how the
parameters in the two frames are connected. In Sec. IV,
we obtain the same analysis for a more nontrivial case,
i.e., for the null surface. In Sec. V, we compared the
analysis of the timelike/spacelike surface with that of
the null surface. Finally, in Sec. VI, we provide the
conclusions of our analysis.

For the units and notations, we adopted the geometrized
units and have set ℏ ¼ c ¼ G ¼ 1. Furthermore, quantities
with a tilde overhead (such as Ã) correspond to those of the
Einstein frame, and quantities without a tilde (such as A)
correspond to those of the Jordan frame.

II. SCALAR-TENSOR GRAVITY:
A BRIEF REVIEW

Scalar-tensor (ST) gravity is described in the two frames.
The original frame is known as the Jordan frame where
we have a nonminimal coupling of the scalar field and the
Ricci scalar in the action. As a result, the gravity is
mediated not only by the metric tensor, but also the scalar
field ϕ. The action in the Jordan frame is given as

A¼
Z
ν
d4x

ffiffiffiffiffiffi
−g

p
L

¼
Z
ν
d4x

ffiffiffiffiffiffi
−g

p �
1

16π

�
ϕR−

ωðϕÞ
ϕ

gab∇aϕ∇bϕ−VðϕÞ
��

:

ð1Þ
For a generic ST gravity, which we considered in our
analysis, ωðϕÞ is considered as a function of ϕ. Whenω is a
constant, it boils down to Brans-Dicke theory [91]. Now,
the above action (1) has an Einstein frame representation,
where the nonminimal coupling is no longer present.
From the Jordan frame, one can arrive at the Einstein
frame via the following transformation relations: (i) a
conformal transformation in the metric along with (ii) a
rescaling in the scalar field ϕ. The transformation relations
are provided as

gab → g̃ab ¼ Ω2gab; Ω ¼
ffiffiffiffi
ϕ

p
; ð2Þ

and

ϕ → ϕ̃ with dϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðϕÞ þ 3

16π

r
dϕ
ϕ

: ð3Þ

With the above transformations (2) and (3), the above
action (1) can be written in the Einstein frame as

Ã ¼
Z
ν
d4x

ffiffiffiffiffiffi
−g̃

p
L̃

¼
Z
ν
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃abe∇aϕ̃e∇bϕ̃ −Uðϕ̃Þ

�
; ð4Þ

whereUðϕ̃Þ ¼ VðϕÞ=ð16πϕ2Þ. As we mentioned earlier, in
the Einstein frame [which is described by the action (4)],
the nonminimal coupling is no longer present. Note that the
two actions, (1) and (4), are not exactly equivalent. In fact,
the exact relation of the two actions are provided as follows:

Ã ¼ A −
3

16π

Z
ν

ffiffiffiffiffiffi
−g

p
□ϕd4x: ð5Þ
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The origin of the extra term (□ϕ) can be traced back from
the conformal connection of the Ricci scalar, which is
provided as

R̃ ¼ 1

ϕ

�
Rþ 3

2ϕ2
ð∇iϕÞð∇iϕÞ − 3

ϕ
□ϕ

�
: ð6Þ

However, since the last term (i.e., the□ϕ term) in (5) is a
total derivative term, it has been disregarded over the ages
as it does not alter the dynamics of the system. Recently, it
has been proved that this term plays a crucial role in the
context of the equivalence of the two frames [65,66,68,71].
In the present case, we see that the above relation (5) will
help us again in establishing the equivalence in the two
frames (see BY formalism in null surface).
We know that the Brown-York formalism of obtaining

the surface stress tensor is based on the Hamilton-Jacobi
(HJ) principle [84,85]. But in the case of gravitational
action (in GR as well as in modified theories of gravity such
as scalar-tensor gravity), it is a bit nontrivial and should
be explained properly. Let L≡ LðqAðtÞ; q̇AðtÞ; tÞ be the
classical Lagrangian of a dynamical system, then the
variation of the action (AðclÞ) yields

δAðclÞ ¼ δ

Z
t2

t1

Ldt

¼
Z

t2

t1

�
∂L
∂qA

−
d
dt

�
∂L
∂q̇A

��
δqAdtþ ∂L

∂q̇A
δqA

����
t2

t1

: ð7Þ

Thus, extremizing the action and fixing the boundary
conditions in such a way that qAðtÞ are fixed at the end
points (boundary), one obtains the Euler-Lagrange’s equa-
tions. Moreover, the above equation (7) also implies that if
we restrict the variation of the action among the solutions
of the dynamical system (i.e., on shell variation), we obtain
the expression of energy (H) and momentum (PA) at the
final boundary [λ2 ≡ λ2ðqAðt2Þ; t2Þ] from the Hamilton-
Jacobi principle as follows:

∂AðclÞ
∂qAðt2Þ

¼ ∂L
∂q̇A

����
λ2

¼ PAjλ2 ; ð8Þ

and

∂AðclÞ
∂t

����
λ2

¼
�
dAðclÞ
dt

−
∂AðclÞ
∂qA

q̇A
�����

λ2

¼ ðL − PAq̇AÞjλ2 ¼ Hjλ2 : ð9Þ

Based on the above HJ principle, the Brown-York stress
tensor (or the surface stress tensor) is defined in GR.
However, for the above definitions to work well, the
prerequisite is that the action principle should be well-
posed beforehand. Since the gravitational action contains
the second-order derivative of the fields (metric tensor and

the scalar field), the above discussion, unfortunately, cannot
be applied in a straightforward manner. For that, let us
consider another example. Let us consider a pair of
Lagrangians L1ðqA; ∂qAÞ and L2ðqA; ∂qA; ∂2qAÞ where
L2 has the specific form

L2ðqA; ∂qA; ∂2qAÞ ¼ L1ðqA; ∂qAÞ − ∂ifiðqA; ∂qAÞ; ð10Þ

where i ¼ f0; 1; 2; 3g represents the spacetime indices, and
A ¼ f1; 2; 3:…:Ng labels all the generalized coordinates
and the corresponding conjugate momentum. Although the
Lagrangian L2 contains the second-order derivative of qA,
the equation of motion is still second order (and the same as
one provided by L1) as the second-order derivative of qA

appears in terms of a total derivative (surface term) in the
Lagrangian. However, the major drawback of L2 is that
the action principle is not a well-posed one for arbitrary
fiðqA; ∂qAÞ [i.e., one has to fix both qAðtÞ and ∂iqAðtÞ on
the boundary, which spoils the well-posedness in the action
principle]. Thus, one can only apply the above HJ principle
by adding a suitable boundary term with L2 to negate the
problematic terms arising from the surface terms so that one
has to fix only qA on the boundary.
For a special case, where fiðqA; ∂qAÞ is given by

fiðqA; ∂qAÞ ¼ P
A q

A
∂L1=∂iqA ¼ P

A q
APi

A (where the
summation “

P
A” is over one/some/all components of

generalized coordinates and the corresponding momenta),
and, thereby, L2 → LPðqA; ∂qA; ∂2qAÞ is defined as

LPðqA; ∂qA; ∂2qAÞ ¼ L1ðqA; ∂qAÞ −
X
A

∂iðqAPi
AÞ; ð11Þ

it can be shown that L1 and LP yields the same equation
of motion. However, for L1, one has to fix qA ∀ A ¼
f1; 2;…Ng, while, for LP, one has to fix (one/some/all) Pi

A
on the boundary. Thus, L1 can be interpreted as the action
of the coordinate space, while the Lagrangian LP, which is
still not well-posed, can be interpreted as the action of the
momentum space. Furthermore, for the Lagrangian LP, the
bulk part (which is the same as L1, i.e., Lbulk¼L1) and
the surface part [Lsur¼−

P
A∂iðqAPi

AÞ] are not indepen-
dent. Instead, the bulk and the surface part are related by the
following connection:

Lsur ¼ −
X
A

∂i

�
qA

∂Lbulk

∂iqA

�
: ð12Þ

Again, we emphasize that in the above relation (12),
Einstein summation convention has been implied for
the spacetime index i, whereas the summation

P
A is

arbitrary, which can include one/some/all components of
the generalized coordinates and the corresponding con-
jugate momenta.
The above general discussion is applicable for the action

principle in general relativity (GR) and for the scalar-tensor
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theory as well. The Einstein-Hilbert Lagrangian LEH is
given as LEH ¼ R, where R is the Ricci scalar. Note that R
contains both the first-order derivative as well as the
second-order derivative of the metric tensor gab. Also,
the equation of motion obtained by the variation of the
Einstein-Hilbert action (i.e., the Einstein’s equation) is also
a second-order derivative. This is possible because the
Einstein-Hilbert Lagrangian LEH can be decomposed into

the bulk part LðEHÞ
bulk and the surface part LðEHÞ

sur , where LðEHÞ
bulk

contains only the first-order derivative of gab, whereas the

surface term LðEHÞ
sur , which is a total derivative term, contains

the second-order derivative of gab (for more details,
see [92]). Furthermore, it can be shown that the bulk part
and the surface part are not independent. Instead, they are
related by the “Holographic relation” [93–100], which is

basically the analogous relation of Eq. (12). Thus, LðEHÞ
bulk

corresponds to L1, and the total Lagrangian LEH corre-

sponds to LP of the above discussion. Moreover, both LðEHÞ
bulk

and LEH yield the same equation of motion, and LðEHÞ
bulk can

be interpreted as the Lagrangian of the coordinate space,
whereas the total Lagrangian LEH can be interpreted as the
Lagrangian of the momentum space.
In scalar-tensor theory, the situation is a bit different in the

two different frames. In the Einstein frame, which is very
similar to the Einstein-Hilbert case, the total Lagrangian [as
defined in Eq. (4)] can be decomposed into bulk and surface
terms, i.e.,

ffiffiffiffiffiffi
−g̃

p
L̃ ¼ ffiffiffiffiffiffi

−g̃
p

L̃bulk þ L̃sur, where

L̃bulk ¼
1

16π
g̃abðΓ̃i

jaΓ̃
j
ib − Γ̃i

abΓ̃
j
ijÞ −

1

2
g̃abe∇aϕ̃e∇bϕ̃ −Uðϕ̃Þ;

ð13Þ

and the surface term is given as

L̃sur ¼ −∂cP̃c; ð14Þ

where

P̃c ¼
ffiffiffiffiffiffi
−g̃

p
16π

ðg̃ckΓ̃i
ki − g̃ikΓ̃c

ikÞ: ð15Þ

Furthermore, in the Einstein frame, one can obtain the
“Holographic relation” like the Einstein-Hilbert action,
which is provided as follows:

L̃sur ¼ −∂c
�
∂

ffiffiffiffiffiffi
−g̃

p
L̃bulk

∂g̃ij;c
g̃ij

�
: ð16Þ

Thus, in the Einstein frame,
ffiffiffiffiffiffi
−g̃

p
L̃bulk corresponds toL1 and

can be interpreted as the Lagrangian of the coordinate space.
On the contrary, the total gravitational Lagrangian

ffiffiffiffiffiffi
−g̃

p
L̃

can be interpreted as the Lagrangian of the momentum
space and corresponds to LP of the above discussion.

Both
ffiffiffiffiffiffi
−g̃

p
L̃bulk and

ffiffiffiffiffiffi
−g̃

p
L̃ yield the same equation of

motion. More importantly,
ffiffiffiffiffiffi
−g̃

p
L̃bulk provides a well-posed

action principle (albeit not in a covariant way as the
aforementioned decomposition in terms of bulk and surface
parts has been done in a noncovariant manner; for details
see [65,68,71]). But, the total Lagrangian

ffiffiffiffiffiffi
−g̃

p
L̃ does not

provide a well-posed action principle, and one has to
incorporate an additional boundary term in order to negate
the contribution from the L̃sur on the boundary.
Let us now discuss the Jordan frame action in light of

the above discussions. The Jordan frame Lagrangian can
be decomposed into the bulk and surface terms, i.e.,ffiffiffiffiffiffi−gp

L ¼ ffiffiffiffiffiffi−gp
Lbulk þ Lsur, where

Lbulk ¼ ð1=16πÞ½Ω2gab½Γi
jaΓ

j
ib − Γi

abΓ
j
ij�

− 2Ω2gabΓi
abð∂i lnΩÞ þ 2Ω2Γi

ijð∂j lnΩÞ�

−
4

16π
ωΩ2ð∂i lnΩÞð∂i lnΩÞ −

VðϕÞ
16πϕ2

; ð17Þ

and

Lsur ¼
1

16π
∂c½Ω2 ffiffiffiffiffiffi

−g
p ðgikΓc

ik − gckΓm
kmÞ�; ð18Þ

where the bulk part contains only the first-order derivative
of the field variables (i.e., the metric tensor and the scalar
field ϕ ¼ Ω2), and the surface part contains the second
order derivative. Again, in this case, both the bulk
Lagrangian

ffiffiffiffiffiffi−gp
Lbulk and the total Lagrangian

ffiffiffiffiffiffi−gp
L

correspond to the same equation of motion (for more
details, see [65,68,71]). Similar to the Einstein frame,
in order to define a well-posed action principle for the
total Lagrangian

ffiffiffiffiffiffi−gp
L, one has to incorporate a suitable

boundary term. On the contrary, the bulk Lagrangian
defines a well-posed action principle in a noncovariant
manner. However, there exists a major difference as
opposed to the Einstein frame. In this case, the earlier
holographic relation does not hold; i.e., the bulk part and
the surface part are related to each other by the following
relation [65,68,71]:

Lsur ¼ −∂c
�
∂

ffiffiffiffiffiffi−gp
Lbulk

∂gab;c
gab

�
þ 3

16π

ffiffiffiffiffiffi
−g

p
□ϕ: ð19Þ

It is the last term of the above Eq. (19) which spoils the
holographic relation. As a result, the Jordan frame
Lagrangian cannot be interpreted as the Lagrangian of
the momentum space; i.e.,

ffiffiffiffiffiffi−gp
L corresponds to L2

(not LP) whereas the bulk part Lbulk corresponds to L1

of the above discussion. Therefore, there exists an inequi-
valence of the two frames even at the classical level. It has
been investigated in the earlier works [66] that this
inequivalence at the action level translates to the major
inequivalences of the two frames, especially at the
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thermodynamic level. However, the root of this inequiva-
lence lies in Eq. (5). Instead of discarding the □ϕ term, if
we incorporate it in the Jordan frame Lagrangian, i.e., we
define the Jordan frame Lagrangian as L0 ¼ L − 3□ϕ=16π,
it can be shown that the action in the two frames are
exactly equivalent, i.e., Ã¼A0, where A0 ¼ R

ν d
4x

ffiffiffiffiffiffi−gp
L0.

In addition, the holographic relation holds for the
Lagrangian L0. The bulk and surface parts of L0 can be
defined as L0

bulk ¼ Lbulk (i.e. the bulk part of L and L0 are
the same), and

L0
sur ¼ Lsur −

3
ffiffiffiffiffiffi−gp

16π
□ϕ

¼ 1

16π
∂c½

ffiffiffiffiffiffi
−g

p fϕðgikΓc
ik − gckΓm

kmÞ− 3gcd∂dϕg�: ð20Þ

In this case, the bulk and surface parts are related to each
other by the holographic relation, i.e.,

L0
sur ¼ −∂c

�
∂

ffiffiffiffiffiffi−gp
L0
bulk

∂gab;c
gab

�
: ð21Þ

Thus, the inequivalence can be removed, and L0 can be
interpreted as the Lagrangian of the momentum space (i.e.,
LP of the above discussion). In our subsequent analysis,
when we obtain the boundary term and, thereby, establish
the well-posedness, we find that the same argument will be
valid. The gravitational action of the Einstein frame can
be interpreted as the action of momentum space, whereas
the action of the Jordan frame cannot be interpreted as the
same unless the □ϕ term is accounted.
In order to obtain a well-posed action principle, we,

therefore, have two choices: We obtain the equation of
motion solely from the bulk Lagrangians

ffiffiffiffiffiffi
−g̃

p
L̃bulk andffiffiffiffiffiffi−gp

Lbulk, respectively. This method is noncovariant and
has been explored earlier [65,68,71], and we briefly
discussed this above. Secondly, we can incorporate suitable
boundary terms along with the gravitational Lagrangians
in order to obtain a well-posed action principle (similar to
the Gibbons-Hawking-York boundary term which is added
along with the Einstein-Hilbert Lagrangian). In the follow-
ing, we explore the second route in detail. This method is
covariant, yet foliation dependent. In addition, this method
helps us to obtain the surface energy momentum and to
define the quasilocal charges using the Brown-York for-
malism. As we discussed, the Brown-York formalism and
obtaining the suitable boundary term for a well-posed
action principle are foliation dependent. Therefore, in the
following section, we analyze for the timelike (or space-
like) surfaces. Thereafter, the null surface is treated
separately, which is more nontrivial.
Before proceeding to the next section, let us summarize

the discussion provided in this section as follows: First,
both the gravitational actions in the two frames (A and Ã)
are not well-posed. In order to obtain the equation of

motion, there are two possibilities: (i) One can follow a
noncovariant approach whereby one decomposes the
gravitational action into bulk and surface parts where
one obtains the equation of motion from only the bulk
part of the action. (ii) One can add a suitable boundary term
with the gravitational action, which cancels the problematic
terms on the boundary. This method is covariant yet
foliation dependent and has been followed in the sub-
sequent discussions of the paper. Second, the usual actions
in the two frames (A and Ã) are not exactly equivalent.
Not only are they mathematically inequivalent, they carry
different interpretations. While Ã can be interpreted as the
action of the momentum space, we cannot draw the same
conclusion for A. In addition, the holographic relation
cannot be obtained in the Jordan frame, whereas the same is
available for the Einstein frame. Third, the aforementioned
inequivalence can be removed by redefining the action
of the Jordan frame as A0, whereby one can obtain the
holographic relation and can interpret A0 as the action of
the momentum space. Furthermore, the earlier analysis
from the viewpoint of black hole thermodynamics also
lauds A0.

III. BOUNDARY TERM AND THE BROWN-YORK
FORMALISM ON A TIMELIKE HYPERSURFACE

In order to define a well-posed action principle, it was
found that one can add several boundary terms along with
the gravitational action [73], which was originally found in
GR. Recently, it was argued [74–78] that we should not
preimpose the boundary term, in order to define a well-
posed action principle. Instead, the action principle itself
should tell us what boundary term one should add so that
if the action is well-posed, the number of degrees of
freedom which are required to be fixed on the boundary
will correspond to the number of true degrees of freedom
in the theory (for details, see [75]). Although the gravi-
tational actions (in both the frames) of scalar-tensor theory
are also not well-posed (as we discussed in an earlier
section), a discussion on such spirit (i.e., letting the action
principle decide what to be fixed on the boundary) is
missing in literature. In addition, the boundary term for a
null surface has not been defined earlier for ST gravity.
In our following discussion, we completed this picture.
Furthermore, we obtain the quasilocal Brown-York
parameters in both the frames, and we compare how they
are related in both the frames.
In this section, we discuss the issues related to the

variation of the action, boundary terms, and the Brown-
York formalism for a timelike/spacelike hypersurface.
In the following section, the null surface is treated
separately due to the fact that the usual formalism of a
timelike (or spacelike) surface does not work for the null
surface. For simplicity, we first perform the analysis
in the Einstein frame, which is exactly similar to the
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Einstein’s gravity (GR), and then, the discussions on the
Jordan frame will follow.

A. Einstein frame

In Einstein frame, the nonminimal coupling is not
present and, therefore, the analysis is simpler. In this case,
the variation of the gravitational action is given as

δÃ ¼
Z
ν
δð

ffiffiffiffiffiffi
−g̃

p
L̃Þd4x

¼
Z
ν

ffiffiffiffiffiffi
−g̃

p
½Ẽabδg̃ab þ Ẽðϕ̃Þδϕ̃þ e∇aΘ̃aðq̃; δq̃Þ�d4x;

ð22Þ
where q̃∈ fg̃ab; ϕ̃g. The exact expressions of Ẽab, Ẽðϕ̃Þ and
Θ̃aðq̃; δq̃Þ are given as follows:

Ẽab ¼
G̃ab

16π
−
1

2
e∇aϕ̃e∇bϕ̃þ 1

4
g̃abe∇iϕ̃e∇iϕ̃þ 1

2
g̃abUðϕ̃Þ;

Ẽðϕ̃Þ ¼ e∇a
e∇aϕ̃−

dU

dϕ̃
;

and

Θ̃aðq̃;δq̃Þ ¼ δṽa

16π
− ðe∇aϕ̃Þδϕ̃: ð23Þ

Here, δṽa ¼ 2P̃ibade∇bδg̃id, with P̃abcd ¼ ðg̃acg̃bd −
g̃adg̃bcÞ=2. One can identify that Ẽab ¼ 0 and Ẽðϕ̃Þ ¼ 0

correspond to the equations of motion of the fields g̃ab and
ϕ̃. However, one has to properly deal with the boundary
term in order to obtain a well-posed action principle.
Dealing with the boundary term in the present case is
problematic (as is the case for the Einstein-Hilbert action).
The last term of Θ̃aðq̃; δq̃Þ (i.e., the term containing δϕ̃)
vanishes if we fix ϕ̃ on the boundary. On the contrary, δṽa

vanishes only if we fix both the metric tensor (g̃ab) as well
as its first-order derivative (e∂ig̃ab) on the boundary, which is
not physical. To get rid of such situation one can add a
boundary term such a way that one has to fix g̃ab or e∂ig̃ab on
the boundary. We do not preimpose the boundary term with
the gravitational Lagrangian. Instead, we let the action
principle decide what boundary term should be added with
the gravitational action so that minimal information is
required to be fixed on the boundary.1 This method is in

contrast to the usual approach where one adds a boundary
term and shows that the problematic terms go away.
We first consider a three-dimensional surface (say

ψ ¼ const), upon which r̃a is unit normal, i.e., r̃ar̃a ¼ ϵ
(where ϵ ¼ −1 for timelike normal or ϵ ¼ þ1 for spacelike
normal on the different parts of the boundary ∂ν. In order to
keep the generality of the surface, we keep it ϵ.). Our aim is
to obtain the boundary term which makes the action
principle well-posed on this surface. One can construct
the following induced metric on this surface:

h̃ðr̃Þab ¼ g̃ab − ϵr̃ar̃b; ð24Þ

which acts as the projection tensor, that projects everything

on to the tangent plane of the surface (as h̃ðr̃Þab r̃
a ¼ 0 and

h̃ðr̃Þab h̃ðr̃Þbc ¼ h̃ðr̃Þac ). On this surface, the contribution from
the boundary term [i.e., the last term of Eq. (22)] is given as

B̃ ¼
Z
∂ν
ϵ

ffiffiffiffiffiffiffi
h̃ðrÞ

p
r̃aΘ̃ad3x

¼
Z
∂ν
ϵ

ffiffiffiffiffiffiffi
h̃ðrÞ

p �
1

16π
r̃aδṽa − ðr̃ae∇aϕ̃Þδϕ̃

�
d3x: ð25Þ

The above expression in (25) is obtained using Stoke’s
theorem, i.e., by changing the volume integration to surface
integration. Our goal is to identify the surface term which
is required to be subtracted from B̃ in order to obtain a
well-posed action principle. Schematically, we expect the
following expression of B̃:

B̃ ¼
Z
∂ν
d3x½δðBoundary TermÞ

þ ðConjugate MomentumÞ δ ðVariables to be fixedÞ
þ Total Derivative Term�: ð26Þ

To obtain such expression, we use the following geomet-
rical identity ([74], also see Appendix A),

Xaδva ¼ ∇aðδXa þ gabδXbÞ − δð2∇aXaÞ þ∇aXbδgab;

ð27Þ

where Xa is any vector (timelike/spacelike/null), and
δva ¼ 2Pibad∇bδgid. Using the above identity (27), the
boundary contribution [as defined in (25)] finally yields
(the mathematical details are the same as of GR [74])

B̃¼
Z
∂ν
ϵ

�
1

16π
ð

ffiffiffiffiffiffiffi
h̃ðrÞ

p
ðr̃ÞD̃aðh̃ðrÞai r̃jδg̃ijÞþ 2δð

ffiffiffiffiffiffiffi
h̃ðrÞ

p
θ̃ðr̃ÞÞ

þ
ffiffiffiffiffiffiffi
h̃ðrÞ

p
ðθ̃ðr̃Þh̃ðr̃Þab − θ̃ðr̃Þab Þδh̃abðrÞÞ−

ffiffiffiffiffiffiffi
h̃ðrÞ

p
ðr̃ae∇aϕ̃Þδϕ̃

�
d3x;

ð28Þ

1As per the argument provided in [74–78], the number of
quantities which are required to be fixed should correspond to
the true degrees of freedom in the theory. In GR, it has been
found that six components of the induced metric are required to
be fixed on the boundary. In the present case, we see that the
scalar field is required to be fixed on the boundary in addition to
the six components of the metric tensor. Thus, in ST gravity, we
have additional scalar degrees of freedom which act as the true
degrees of freedom in the theory (as implied in the name
“scalar-tensor theory”).
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where the extrinsic curvature is defined as

θ̃ðr̃Þab ¼ −h̃ðr̃Þia hðr̃Þjb
e∇ir̃j ¼ −h̃ðr̃Þia

e∇ir̃b

¼ −e∇ar̃b þ ϵr̃aã
ðr̃Þ
b ; ð29Þ

and the covariant derivative operator on ∂ν, which is

compatible with h̃ðr̃Þab , is defined as

ðr̃ÞD̃aÃb ¼ h̃ðr̃Þia hðr̃Þjb
e∇iÃj: ð30Þ

In Eq. (28), we finally obtain the desired expression of
the form (26). One can identify the boundary term which is
required to be added to the gravitational action Ã in order to
obtain a well-posed action principle on the surface ∂ν,
which is given as

Ãsur ¼ −
ϵ

8π

Z
∂ν

ffiffiffiffiffiffiffi
h̃ðrÞ

p
θ̃ðr̃Þd3x

≡ −
1

8π

Z
ν

ffiffiffiffiffiffi
−g̃

p e∇aðθ̃ðr̃Þr̃aÞd4x; ð31Þ

where the last expression is the equivalent bulk term
corresponding to the surface term. The first term of (28)
is a total derivative term on the three surface, which can be
neglected. In scalar-tensor gravity, the dynamical param-
eters are the metric tensor g̃ab and the scalar field ϕ̃, which
consist of 11 independent components in total (ten are the
independent components of the metric tensor and the scalar
field). As we can see, all the components of the metric
tensor (i.e., ten independent components) are not required
to be fixed. Instead, we require to fix only six independent
components of h̃abðr̃Þ (h̃

ab
ðr̃Þ as it is a symmetric tensor with the

constraint r̃ahabðr̃Þ ¼ 0). Thus, in the present case, we require

to fix seven components on the boundary (i.e., six inde-
pendent components of h̃abðr̃Þ and the scalar field ϕ̃), whereas
in GR, we had to fix only six independent components of
the induced metric.
Thus, for this generic timelike/spacelike surface, the

well-posed action will be ÃWP ¼ Ãþ Ãsur, and the varia-
tion of ÃWP (where WP stands for well-posed) is given as

δÃWP ¼
Z
ν

ffiffiffiffiffiffi
−g̃

p
½Ẽabδg̃ab þ Ẽðϕ̃Þδϕ̃�d4x

þ ϵ

Z
∂ν

ffiffiffiffiffiffiffi
h̃ðrÞ

p h
ðr̃ÞD̃aT̃a

ðr̃Þ þ Π̃ðrÞ
abδh̃

ab
ðrÞ

− ðr̃ae∇aϕ̃Þδϕ̃
i
d3x; ð32Þ

where T̃a
ðr̃Þ ¼ h̃ðrÞai r̃jδg̃ij=16π, and

Π̃ðrÞ
ab ¼ 1

16π
ðθ̃ðr̃Þh̃ðr̃Þab − θ̃ðr̃Þab Þ; ð33Þ

which is the canonical momentum conjugate to h̃abðrÞ. From

Eq. (32), it can be concluded that ÃWP can be interpreted as
the action of the coordinate space. One can now ask
whether Ã can be interpreted as the action of the momen-
tum space as discussed in Sec. II. With the above definition
of canonical momentum in Eq. (33), the surface term Ãsur
can be defined as

Ãsur ¼ −ϵ
Z
∂ν

ffiffiffiffiffiffiffi
h̃ðrÞ

p
Π̃ab

ðrÞh̃
ðrÞ
abd

3x: ð34Þ

Therefore, another expression of the variation of the
gravitational action Ã ¼ ÃWP − Ãsur is given as

δÃ ¼
Z
ν

ffiffiffiffiffiffi
−g̃

p
½Ẽabδg̃ab þ Ẽðϕ̃Þδϕ̃�d4x

þ
Z
∂ν
ϵ
h ffiffiffiffiffiffiffi

h̃ðrÞ
p

ðr̃ÞD̃aT̃a
ðr̃Þ þ h̃abðrÞδ

� ffiffiffiffiffiffiffi
h̃ðrÞ

p
Π̃ðrÞ

ab

	

−
ffiffiffiffiffiffiffi
h̃ðrÞ

p
ðr̃ae∇aϕ̃Þδϕ̃

i
d3x: ð35Þ

Thus, we again find that the gravitational action Ã can be
interpreted as the action of the momentum space, where the

conjugate momenta (rather
ffiffiffiffiffiffiffi
h̃ðrÞ

p
Π̃ðrÞ

ab ) are required to be
fixed on the boundary. This agrees with the discussions we
provided in Sec. II, where we had mentioned that the whole
gravitational action can be interpreted as the action of the
momentum space, whereas its bulk decomposition (which
is a noncovariant term) can be interpreted as the action of
the coordinate space. In this section, we find that the above
well-posed action ÃWP, which is covariant yet foliation
dependent, can again be interpreted as the action of the
coordinate space. Thus, analyses from different directions
converge toward the similar conclusion.
The above analysis is performed for a particular surface,

which is defined by the normal r̃. We consider that the
whole four-dimensional manifold (M) has the boundary
∂M, which consists of initial and final spacelike hyper-
surfaces (defined by ti ¼ const. and tf ¼ const, respec-
tively) and a three-dimensional timelike boundary 3B.
We further assume that the normal on 3B is denoted as
s̃a (s̃as̃a ¼ þ1, i.e., ϵ ¼ þ1 for 3B), and the normal to a
generic t ¼ const hypersurface (say Σ) is denoted as ña
(ñaña ¼ −1, i.e., ϵ ¼ −1 for Σ). For simplicity, we consider
the hypersurface foliations Σ and 3B are orthogonal to each
other (i.e., ñas̃a ¼ 0). Since our final goal is to obtain the
boundary term and to define the Brown-York quasilocal
parameters, this does not break any generality. The boun-
dary of Σ is a two surface which we denote as B, where
B ¼ 3B ∩ Σ. On these surfaces, the induced metric and the
extrinsic curvature are provided in Table I.
With all the above definitions (provided in Table I), we

can now define the well-posed action for the manifold M,
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which is the gravitational action added with the boundary
terms for each three surfaces, i.e.,

Ãtot ¼ Ã −
1

8π

Z
3B

ffiffiffĩ
γ

p
K̃d3xþ 1

8π

Z
tf

ti

ffiffiffĩ
h

p
K̃d3x; ð36Þ

where
R tf
ti is the shorthand of

R
tf
−
R
ti
. The variation of the

above action yields

δÃtot ¼
Z
M

ffiffiffiffiffiffi
−g̃

p
½Ẽabδg̃ab þ Ẽðϕ̃Þδϕ̃�d4x

þ
Z

3B

ffiffiffĩ
γ

p
ðD̃aT̃

a þ Π̃abδγ̃
ab − ðs̃ae∇aϕ̃Þδϕ̃Þd3x

−
Z

tf

ti

ffiffiffĩ
h

p
ðD̃aT̃a þ P̃abδh̃

ab − ðñae∇aϕ̃Þδϕ̃Þd3x;

ð37Þ

where D̃a and D̃a are the covariant derivative operators
compatible with γ̃ab and h̃ab, respectively, and

Π̃ab ¼
1

16π
½K̃γ̃ab − K̃ab�; P̃ab ¼

1

16π
½K̃h̃ab − K̃ab�;

T̃ a ¼ 1

16π
γ̃ai s̃jδg̃

ij; T̃a ¼ 1

16π
h̃ai ñjδg̃

ij: ð38Þ

The total derivative terms D̃aT̃
a and D̃aT̃a can be ignored.

Thus, we found that on each surface one has to fix the
corresponding induced metric and the scalar field ϕ̃. This
allows us to define the boundary stress tensor (or the
Brown-York tensor), which is defined as [84,85]

T̃ðBYÞ
ab ¼ −

2ffiffiffĩ
γ

p δÃtot

δγ̃ab
¼ −2Π̃ab ¼

1

8π
½K̃ab − K̃γ̃ab�: ð39Þ

From this surface tensor, one can obtain the quasilocal
parameters of the surface. The quasilocal surface energy
density (also known as the Brown-York quasilocal energy
density, ϵ̃ðBYÞ), surface tangential momentum density (j̃a),
and the spatial stress (s̃ab) are defined as

ϵ̃ðBYÞ ¼ T̃ðBYÞ
ab ñañb ¼ k̃

8π
;

j̃a ¼ T̃ðBYÞ
bc ñbq̃ac;

s̃ab ¼ q̃acq̃bdT̃ðBYÞ
cd : ð40Þ

Furthermore, the Brown-York energy is defined as the
energy density integrated over the two surface, i.e.,

ẼðBYÞ ¼
Z
B

ffiffiffĩ
q

p ðϵ̃ðBYÞ − ϵ̃ðBYÞ0 Þd2x; ð41Þ

where ϵ̃ðBYÞ0 corresponds to the contribution from the
reference frame [84,85], and q̃ is the determinant of the
induced metric q̃ab. When there is a rotational Killing
vector ξ̃a, the corresponding angular momentum is
obtained from the BY tensor as

J̃ ¼
Z
B

ffiffiffĩ
q

p
j̃aξ̃

a d2x: ð42Þ

Furthermore, the spatial stress s̃ab can be expressed as the
stress tensor of a viscous fluid of the following form:

s̃ab ¼ ½2η̃σ̃ab þ q̃abðζ̃ Θ̃−P̃Þ�; ð43Þ

where the shear tensor σ̃ab is the traceless part of k̃ab, i.e.,
σ̃ab ¼ k̃ab − k̃q̃ab=2. On the other hand, the bulk viscosity
(Θ̃) is identified as Θ̃ ¼ k̃, and the pressure term is

identified as P̃ ¼ −ãðñÞi s̃i=8π, where ãðñÞi ¼ ñae∇añi. In
addition, the shear viscosity coefficient η̃ is obtained as
η ¼ 1=16π, and the bulk viscosity coefficient is obtained as
ζ̃ ¼ −1=16π. The above expressions interpret the two
surface B as the membrane of a two-dimensional viscous
fluid, which is the central theme of the “membrane
paradigm” [101,102]. One striking aspect in this case is
the negative value of the bulk viscosity coefficient, which
indicates the instability against a perturbation which
triggers expansion or contraction. Furthermore, one can
show that the ratio of the shear viscosity η̃ to the entropy
density s̃ ¼ 1=4 saturates the Kovtun-Son-Starinets (KSS)
bound, i.e.,

η̃

s̃
¼ 1

4π
: ð44Þ

We now move on to the analysis in the original frame,
i.e., the Jordan frame. Thereafter, we can compare the two
frames. Due to the presence of the nonminimal coupling,
the analysis in the Jordan frame is more nontrivial, which is
provided as follows.

TABLE I. Normals and extrinsic curvatures of different surfaces of the manifold in the Einstein frame.

Surface Normal(s) Induced metric Extrinsic curvature Trace of the extrinsic curvature

Σ ña h̃ab ¼ g̃ab þ ñañb K̃ab ¼ −h̃iae∇iñb K̃ ¼ −e∇aña
3B s̃a γ̃ab ¼ g̃ab − s̃as̃b K̃ab ¼ −γ̃iae∇is̃b K̃ ¼ −e∇as̃a

B ña and s̃a q̃ab ¼ g̃ab þ ñañb − s̃as̃b k̃ab ¼ −q̃iaq̃
j
b
e∇is̃j k̃ ¼ −qij∇̃is̃j ¼ ðK̃ab − K̃γ̃abÞñañb
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B. Jordan frame

Earlier, we showed how the well-posed action can be
formulated in the Einstein frame. In that case, we showed
that the proper boundary term can be obtained from
the action principle itself. In the following, we follow
the same principle for the gravitational action in the
Jordan frame. The variation of the gravitational action (1)
is given as

δA ¼
Z
ν
δð ffiffiffiffiffiffi

−g
p

LÞd4x

¼
Z
ν

ffiffiffiffiffiffi
−g

p ðEabδgab þ EðϕÞδϕþ∇aΘaðq; δqÞÞd4x;

ð45Þ
where q∈ fgab;ϕg, and the exact expressions of Eab, EðϕÞ,
and Θaðq; δqÞ are provided as follows:

Eab ¼
1

16π

�
ϕGab þ

ω

2ϕ
∇iϕ∇iϕgab −

ω

ϕ
∇aϕ∇bϕþ V

2
gab −∇a∇bϕþ∇i∇iϕgab

�
;

EðϕÞ ¼
1

16π

�
Rþ 1

ϕ

dω
dϕ

∇iϕ∇iϕþ 2ω

ϕ
□ϕ −

dV
dϕ

−
ω

ϕ2
∇aϕ∇aϕ

�
;

and

Θaðq; δqÞ ¼ 1

16π

�
−2gab

ω

ϕ
ð∇bϕÞδϕþ ϕδva − 2ð∇bϕÞpiabdδgid

�
; ð46Þ

where δva¼2Pibad∇bgid, withPabcd¼ðgacgbd−gadgbcÞ=2.
Again, Eab and EðϕÞ correspond to the dynamical equation
of the fields gab and ϕ, respectively. However, the actionA
is not a well-posed one for the arguments provided earlier.
As we did for the Einstein frame, we first obtain the surface
term for a generic surfacewhichmakes the action principle
awell-posed one.We consider a three-dimensional generic
hypersurface ψ ¼ const, upon which ra is the unit normal,
i.e., rara ¼ ϵ ¼ �1 depending on timelike or spacelike
hypersurface. It can be shown that r̃a and ra are connected
as (remember r̃a is the normal in the Einstein frame on the
same surface)

r̃a ¼
ffiffiffiffi
ϕ

p
ra; and r̃a ¼ 1ffiffiffiffi

ϕ
p ra: ð47Þ

On this surface (with normal ra), the projection tensor can
be defined as

hðrÞab ¼ gab − ϵrarb: ð48Þ

Again, on this surface, we obtain the contribution from
the boundary term, which is provided as

B ¼
Z
∂ν
ϵ

ffiffiffiffiffiffiffi
hðrÞ

p
raΘad3x

¼ 1

16π

Z
∂ν
ϵ

ffiffiffiffiffiffiffi
hðrÞ

p �
ϕraδva − 2rað∇bϕÞpiabdδgid

−
2ω

ϕ
ðri∇iϕÞδϕ

�
d3x; ð49Þ

where the volume integration has been reduced to the
surface integration using Stoke’s theorem. Again, our goal

is to restructure the above expression of B in terms of
the structure as provided in Eq. (26). We provide the
final expression (detail calculations can be found in
Appendix B), which is given as

B¼ ϵ

16π

Z
∂ν

h ffiffiffiffiffiffiffi
hðrÞ

p
ðrÞDaðϕhðrÞai rjδgijÞþ 2δ

� ffiffiffiffiffiffiffi
hðrÞ

p
ϕθðrÞ

	

− 2
ffiffiffiffiffiffiffi
hðrÞ

p �
ω

ϕ
ðri∇iϕÞþ θðrÞ

�
δϕ

þ
ffiffiffiffiffiffiffi
hðrÞ

p �
ϕ
n
−θðrÞab þ θðrÞhðrÞab

o
− ri∇iϕh

ðrÞ
ab ÞδhðrÞab

i
d3x:

ð50Þ

The first term, being a total derivative term on the
three surface can be ignored. Also, from the above
expression (50), one can determine the boundary term
which is required to be added to the gravitational action in
order to define a well-posed action principle. The boundary
term can be identified as

Asur ¼ −
ϵ

8π

Z
∂ν

ffiffiffiffiffiffiffi
hðrÞ

p
ϕθðrÞd3x

≡ −
1

8π

Z
ν

ffiffiffiffiffiffi
−g

p ∇aðϕθðrÞraÞd4x; ð51Þ

where the last expression is the equivalent bulk term
corresponding to the surface term. More importantly,
we find that if we add the surface term Asur with the
gravitational action A, we obtain a well-posed action
principle. In addition, we find that we do not need to
fix all the ten independent components of the metric tensor
gab on the boundary. Instead, we need to fix hðrÞab which
has six independent components (as hðrÞab is a symmetric
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tensor with the condition hðrÞabra ¼ 0). Also, we require to
fix ϕ on the boundary. Thus, like the Einstein frame,
we require to fix seven independent components on the
boundary. Moreover, the variation of the well-posed action
(i.e., AWP ¼ AþAsur) is given as

δAWP ¼
Z
ν

ffiffiffiffiffiffi
−g

p ðEabδgab þEðϕÞδϕÞd4x

þ ϵ

Z
∂ν

ffiffiffiffiffiffiffi
hðrÞ

p h
ðrÞDaTa

ðrÞ þΠðrÞ
abδh

ab
ðrÞ þΠðrÞ

ðϕÞδϕ
i
d3x;

ð52Þ

where Ta
ðrÞ ¼ ϕhðrÞai rjδgij=16π. From the above Eq. (52),

one can identify that the well-posed action AWP can be
interpreted as the action of the coordinate space, and the
conjugate momenta are defined as

ΠðrÞ
ab ¼ 1

16π

h
ϕðθðrÞhðrÞab − θðrÞab Þ − ri∇iϕh

ðrÞ
ab

i

ΠðrÞ
ðϕÞ ¼ −

1

8π

�
θðrÞ þ ω

ϕ
ðri∇iϕÞ

�
: ð53Þ

In order to check whether the gravitational action A can be
interpreted as the action of the momentum space, we obtain

the surface term in terms of the conjugate momentum ΠðrÞ
ab ,

which is given as

Asur ¼ −ϵ
Z
∂ν

ffiffiffiffiffiffiffi
hðrÞ

p �
Πab

ðrÞh
ðrÞ
ab þ 3

16π
ri∇iϕ

�
d3x: ð54Þ

Unlike the Einstein frame, here the surface term is not

obtained only in terms of the product of Πab
ðrÞ and hðrÞab .

Therefore, although the well-posed action AWP can be
interpreted as the action of the coordinate space, the
gravitational action Að¼ AWP −AsurÞ cannot be inter-
preted as the action of the momentum space as

δA ¼
Z
ν

ffiffiffiffiffiffi
−g

p ðEabδgab þ EðϕÞδϕÞd4x

þ ϵ

Z
∂ν

� ffiffiffiffiffiffiffi
hðrÞ

p �
ðrÞDaTa

ðrÞ þ ΠðrÞ
ðϕÞδϕ

	

þ hðrÞabδ
� ffiffiffiffiffiffiffi

hðrÞ
p

Πab
ðrÞ
	
þ 3

16π
δ
� ffiffiffiffiffiffiffi

hðrÞ
p

ri∇iϕ
	�

d3x:

ð55Þ

The presence of the last term in (55) provides the extra term
which is required to be fixed in addition to the conjugate

momenta
ffiffiffiffiffiffiffi
hðrÞ

p
Πab

ðrÞ. Thus, the gravitational action A

cannot be considered as the action of the momentum space
(unlike what we found in the Einstein frame). However, if
we consider the gravitational action of the Jordan frame as

A0 (which has been defined in Sec. II) instead of A, the
required surface term for the well-posed action could be
identified as

A0
sur ¼ −

ϵ

8π

Z
∂ν

ffiffiffiffiffiffiffi
hðrÞ

p �
ϕθðrÞ −

3

2
ri∇iϕ

�
d3x

≡ −
1

8π

Z
ν

ffiffiffiffiffiffi
−g

p �
∇aðϕθðrÞraÞ −

3

2
□ϕ

�
d4x: ð56Þ

Note that this modification in the action does not alter
the expressions of the conjugate momenta and the expres-
sion of the well-posed action AWP ¼ AþAsur ¼
A0 þA0

sur. Unlike Asur, A0
sur can be obtained as the

integration of the product of Πab
ðrÞ and hðrÞab , i.e., A

0
sur ¼

−ϵ
R
∂ν

ffiffiffiffiffiffiffi
hðrÞ

p
Πab

ðrÞh
ðrÞ
ab d

3x. Therefore, the modified action

A0 ¼ AWP −A0
sur can be interpreted as the action of the

momentum space. Its variation is given as follows:

δA0 ¼
Z
ν

ffiffiffiffiffiffi
−g

p ðEabδgab þ EðϕÞδϕÞd4x

þ ϵ

Z
∂ν

h ffiffiffiffiffiffiffi
hðrÞ

p �
ðrÞDaTa

ðrÞ þ ΠðrÞ
ðϕÞδϕ

	

þ hðrÞabδ
� ffiffiffiffiffiffiffi

hðrÞ
p

Πab
ðrÞ
	i

d3x: ð57Þ

This agrees with the discussions provided in Sec. II, where
we found (using the bulk and surface decomposition
analysis) that the gravitational action in the Jordan frame
(A) cannot be interpreted as the action of the momentum
space. Hence, there exists an inequivalence even at the
classical level. This inequivalence can be removed if we
incorporate the □ϕ term in the action, as the modified
actionA0 can be interpreted as the action of the momentum
space. However, as we noticed above, the □ϕ term only
contributes to the surface term and not on the dynamics or
the conjugate momenta. Hence, it will also not contribute to
the Brown-York tensor which we obtain in the following.
Therefore, the following discussion has been done under
the consideration of the action in the Jordan frame as
A. However, in black hole thermodynamics, we showed
earlier [66] that the thermodynamic parameters depend on
the surface term. Hence, in that case, the right approach was
to consider the action in the Jordan frame asA0 instead ofA
(for more discussions in this regard, please follow [68,71]).
The above discussion has been presented for a particular

timelike/spacelike surface. Our final goal is to obtain the
well-posed action for the given manifold (M) and to obtain
the Brown-York tensor and the quasilocal parameters.
We follow the same procedure as of the Einstein frame
to obtain the Brown-York tensor. In the Jordan frame, the
unit (spacelike) normal on 3B is denoted as sa, and the unit
(timelike) normal on Σ is defined as na. Furthermore, the
two surface B ¼ 3B ∩ Σ are characterized by both the
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normals na and sa. On these surfaces, the induced metric
and the extrinsic curvature are provided in Table II. With
these definitions (as provided in Table II), we can define the
well-posed gravitational action as

Atot ¼ A −
1

8π

Z
3B

ffiffiffi
γ

p
ϕKd3xþ 1

8π

Z
tf

ti

ffiffiffi
h

p
ϕKd3x; ð58Þ

and the total variation of the above action (58) yields

δAtot ¼
Z
M

ffiffiffiffiffiffi
−g

p ½Eabδgab þ EðϕÞδϕ�d4x

þ
Z

3B

ffiffiffi
γ

p ðDaT a þ Πabδγ
ab þ ΠðϕÞδϕÞd3x

−
Z

tf

ti

ffiffiffi
h

p
ðDaTa þ Pabδhab þ PðϕÞδϕÞd3x: ð59Þ

Here, Da and Da are the covariant derivative operators
compatible with γab and hab, respectively. The conjugate
quantities and the total derivative terms are defined as

Πab ¼
1

16π
½ϕðKγab −KabÞ − γabsi∇iϕ�;

Pab ¼
1

16π
½ϕðKhab − KabÞ − habni∇iϕ�;

ΠðϕÞ ¼ −
1

8π

�
Kþ ω

ϕ
si∇iϕ

�
;

PðϕÞ ¼ −
1

8π

�
K þ ω

ϕ
ni∇iϕ

�
;

T a ¼ 1

16π
ϕγai sjδg

ij; Ta ¼ 1

16π
ϕhai njδg

ij: ð60Þ

Thus, the surface stress tensor (or the Brown-York tensor)
in the Jordan frame can be defined as

TðBYÞ
ab ¼ −

2ffiffiffi
γ

p δAtot

δγab
¼ −2Πab

¼ 1

8π
½ϕðKab −KγabÞ þ γabsi∇iϕ�: ð61Þ

From the above expression of the Brown-York tensor, one
can obtain the expression of quasilocal energy density
(or the Brown-York energy density), surface tangential
momentum density, and spatial stress as

ϵðBYÞ ¼ TðBYÞ
ab nanb ¼ 1

8π
½ϕk − si∇iϕ�;

ja ¼ TðBYÞ
bc nbqac;

sab ¼ qacqbdTðBYÞ
cd : ð62Þ

Above we obtained the density of the quasilocal parameters
from the Brown-York tensor. In the following, we make
further comments where we compare the quasilocal param-
eters in the two frames.

C. Connection of the quasilocal parameters
in the two frames

Connection of different quantities in the two frames can
be obtained straightforwardly once we know how the
normals in the two frames are related. The connection of
the normals in the two frames can be obtained in the
following manner. Consider the timelike normals ña and
na. These normals have the following general expressions:
ña ¼ c̃∂t and na ¼ c∂t. However, since these are normal-
ized to unity, i.e., ñaña ¼ nana ¼ −1, c̃ and c can be fixed
as c ¼ −1=

ffiffiffiffiffiffiffiffiffiffi
−g00

p
and c̃ ¼ −1=

ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
. This establishes

the connection of the normals and other quantities in the
two frames, which are mentioned in Table III.

TABLE II. Normals and extrinsic curvatures of different surfaces of the manifold in the Jordan frame.

Surface Normal(s) Induced metric Extrinsic curvature Trace of the extrinsic curvature

Σ na hab ¼ gab þ nanb Kab ¼ −hia∇inb K ¼ −∇ana
3B sa γab ¼ gab − sasb Kab ¼ −γia∇isb K ¼ −∇asa

B na and sa qab ¼ gab þ nanb − sasb kab ¼ −qiaq
j
b∇isj k ¼ −qij∇isj ¼ ðKab −KγabÞnanb

TABLE III. Connection of different quantities of the two
frames.

Quantities Connection across the two frames

Normal(s) ña ¼
ffiffiffi
ϕ

p
na s̃a ¼

ffiffiffi
ϕ

p
sa,

ña ¼ naffiffiffi
ϕ

p s̃a ¼ saffiffiffi
ϕ

p
Extrinsic curvature of ð3ÞB K̃ab ¼ ffiffiffi

ϕ
p

Kab − 1

2
ffiffiffi
ϕ

p γabsi∇iϕ

Extrinsic curvature of B k̃ab ¼ ffiffiffi
ϕ

p
kab − 1

2
ffiffiffi
ϕ

p qabsi∇iϕ

Trace(s) of extrinsic
curvature(s)

K̃ ¼ Kffiffiffi
ϕ

p − 3

2ϕ
3
2

si∇iϕ

k̃ ¼ kffiffiffi
ϕ

p − 1

ϕ
3
2

si∇iϕ

Brown-York tensor T̃ðBYÞ
ab ¼ TðBYÞ

abffiffiffi
ϕ

p

Quasilocal parameters ϵ̃ðBYÞ ¼ ϕ−3
2ϵðBYÞ

j̃a ¼ ϕ−2ja

s̃ab ¼ ϕ−5
2sab
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In the Jordan frame, the Brown-York energy is defined as

EðBYÞ ¼
Z
B

ffiffiffi
q

p ðϵðBYÞ − ϵðBYÞ0 Þd2x; ð63Þ

where ϵðBYÞ0 provides the contribution of the reference
spacetime. Also, q is the determinant of the induced
metric qab. Thus, we obtain that the Brown-York energies
in the two frame are related as (which has also been found
in [87,88])

EðBYÞ ¼
ffiffiffiffi
ϕ

p
ẼðBYÞ: ð64Þ

For the presence of a timelike Killing vector χa on
the boundary, one can define an associated quasilocal
mass [103], which is defined as

MðBYÞ ¼
Z
B

ffiffiffi
q

p
NðϵðBYÞ − ϵðBYÞ0 Þd2x; ð65Þ

where N is the lapse function which is related to χa ¼ Nna.
The lapse functions in the two frames are connected as
Ñ ¼ ffiffiffiffi

ϕ
p

N (which also implies χ̃a ¼ χa). As a result, it can
be shown [87] that the Brown-York mass is invariant in the
two frames, i.e.,

MðBYÞ ¼ M̃ðBYÞ: ð66Þ

Furthermore, in the presence of a rotational Killing vector
ξa, the corresponding angular momentum is obtained as

J ¼
Z
B

ffiffiffi
q

p
jaξad2x: ð67Þ

Since ξ̃a ¼ ξa [65], it can be proved that the angular
momenta are also equivalent in the two frames, i.e.,

J̃a ¼ Ja: ð68Þ

Although the transformation of BY mass and energy has
been discussed in earlier work [87,88], the conformal
equivalence of the angular momenta, obtained from the
BY tensor, has not been shown earlier. Furthermore, the
spatial stress in the Jordan frame, as defined in Eq. (62) can
be expressed as the stress tensor of a two-dimensional
viscous fluid, i.e.,

sab ¼ 2ησab þ qabðζΘ − PÞ; ð69Þ

where the shear tensor σab is the traceless part of kab, i.e.,
σab ¼ kab − kqab=2.The bulk viscosity (Θ) is given as
Θ ¼ k, and the expression of pressure is identified as

P ¼ −ðϕaðnÞi þ∇iϕÞsi=8π, where aðnÞi is given as aðnÞi ¼
na∇ani. In addition, the shear viscosity coefficient (η)
and the bulk viscosity coefficient ζ can be identified,

respectively, as η ¼ ϕ=16π and ζ ¼ −ϕ=16π. Therefore,
the analogy of the fluid membrane can also be provided in
the Jordan frame as well. However, one important remark in
this regard is that the two frames are not equivalent from
this fluid-gravity analogy. It is obvious that the shear and
bulk viscosity coefficients are not equivalent in the two
frames. In addition, the other fluid parameters are con-
nected in the two frames in the following manner:

σab ¼ ϕ
3
2σ̃ab; Θ̃ ¼ ϕ−3

2ðϕΘ − si∇iϕÞ; and

P̃ ¼ ϕ−3
2

�
Pþ 1

16π
si∇iϕ

�
: ð70Þ

Although the fluid parameters are not equivalent in the two
frames, one can show that the ratio of the shear viscosity
coefficient (η) to the entropy density (s ¼ ϕ=4) matches to
the saturation value of the KSS bound and agrees to that of
the Einstein frame, i.e.,

η

s
¼ 1

4π
: ð71Þ

Furthermore, it is also noteworthy that although the
original actions in the two frames are not exactly equivalent
in the two frames [they are connected by the relation (5)],
the well-posed actions on any timelike/spacelike surface are
equivalent in the two frames, i.e.,

ÃWP ¼ Ãþ Ãsur ¼ AWP ¼ AþAsur ¼ A0 þA0
sur: ð72Þ

So far, the entire analysis is for the timelike/spacelike
surface. However, since the formalism is foliation depen-
dent, the formalism mentioned above will not be straight-
forwardly applicable for the null surface as the null surface
is degenerate. Therefore, in order to complete the picture,
we provided the same discussion for the null surface in the
following section.
Before proceeding to the discussions in the following

section, we summarize the important findings of this
section as follows: (i) Although the usual gravitational
actions in the two frames are not exactly equivalent, the
well-posed actions (gravitational actionþ boundary term)
are exactly equivalent in the two frames. (ii) Again, in a
different approach, it is proven that the usual gravitational
action in the Jordan frame (A) cannot be interpreted as the
action of the momentum space as opposed to the modified
action A0. (iii) Since the dynamics of A and A0 are the
same, the modification in the action (A → A0) does not
alter the expression of the Brown-York tensor and the
Brown-York parameters. (iv) The Brown-York mass and
angular momentum are conformal invariant, whereas the
Brown-York energy is not invariant. (v) The two frames are
not equivalent from the viewpoint of membrane paradigm.
However, the ratios of shear viscosity to the entropy density
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are the same in the two frames and satisfy the celebrated
result known as the KSS bound.

IV. BROWN-YORK CHARGES
ON A NULL SURFACE

In an earlier section, we obtained the boundary term
(required to define a well-posed action principle) and the
Brown-York quasilocal parameters in the two frames. Also,
we obtained how the quasilocal parameters are connected
under the conformal transformation. So far, the entire
analysis is performed for a timelike/spacelike surface.
Since the null surface is distinctively different from a
spacelike/timelike surface, the above analysis will not be
applicable for the null surface. In this section, we extend the
above analysis for a null surface. Even in GR, the boundary
terms and the Brown-York formalism have been developed
long ago for timelike/spacelike surface. Whereas for the
null surface, the boundary term [75,76,79–83] and the
Brown-York quasilocal parameters [89,90] have been
obtained quite recently. The main reason for such difficulty
is that the null surface is degenerate. Therefore, one
cannot define a proper projection tensor on a null surface
as opposed to a timelike or spacelike hypersurface. In
the following discussion, we obtain the boundary term
and the Brown-York quasilocal parameters in scalar-
tensor theory for a null hypersurface. Again, for sim-
plicity, we start with the Einstein frame, and then the
analysis in the Jordan frame follows. Furthermore, again
we do not preimpose the boundary term to cancel the
problematic terms on the boundary. We let the action
principle decide the boundary term.

A. Einstein frame

We consider, in the four-dimensional manifold (M, g̃ab),
the null hypersurface (H, γ̃αβ) is defined as, say, ψ ¼ const.
The main property of the null surface is that it is degenerate,
which means it is possible to find the vector ṽα which lies
on the tangent plane of H that satisfies the condition
γ̃αβṽα ¼ 0. The null surface H is also characterised by the
null normal l̃a ¼ Ã∂aψ , which is self-orthogonal, i.e.,
l̃al̃a ¼ 0. For this reason, we cannot uniquely determine
Ã. This leaves us with the major challenge of determining
δl̃a and δl̃a as it has been discussed in the literature
[75,79,80]. However, in keeping with the usual prescription
of literature [75,89,90], we keep Ã ¼ 1. This sets δl̃a ¼ 0

(however, δl̃a ≠ 0).
Since l̃a is self-orthogonal, it is not possible to define an

induced metric onH. Furthermore, the null normals can be

shown to satisfy the geodesic equation l̃ae∇al̃
b ¼ κ̃l̃b, where

κ̃ is the nonaffinity parameter which corresponds to the
surface gravity when the null surface in consideration is a
black hole horizon. As one cannot define the induced
metric by l̃a alone, it was suggested by Carter [104] to

choose an auxiliary vector k̃a, which lays out of the surface.
The normalization of the null normals are considered
everywhere as

l̃al̃a ¼ 0; k̃ak̃a ¼ 0; l̃ak̃a ¼ −1: ð73Þ

We consider those variations in the metric tensor which
keeps the null surface null. Therefore, the above relation
(73) will be respected by the variations. We now focus to
obtain the contribution of the boundary term of the action
δÃ on the null hypersurface.
In the Einstein frame, the boundary contribution from

the gravitational action (4) can be obtained as (using
Stoke’s theorem)

B̃ðnullÞ ¼
Z
∂ν

ffiffiffiffiffiffi
−g̃

p
l̃a

Ã
Θ̃ad3x

¼
Z
∂ν

ffiffiffiffiffiffi
−g̃

p

Ã

�
1

16π
l̃aδṽa − ðl̃ae∇aϕ̃Þδϕ̃

�
d3x: ð74Þ

As we discussed above, we do not have a unique way
to determine Ã (unlike a timelike/spacelike scenario).
Therefore, using the standard prescription of the literature
[75,89,90], from here on we set Ã ¼ 1. Using (27), we
finally obtain (for mathematical details in the Einstein
frame, please see the analysis in GR [75,76])

ffiffiffiffiffiffi
−g̃

p
l̃aΘ̃a ¼ 1

16π
½∂a½

ffiffiffiffiffiffi
−g̃

p
p̃a
bl̃

b⊥� − 2δ½
ffiffiffiffiffiffi
−g̃

p
ðθ̃ðlÞ þ κ̃Þ��

þ
ffiffiffiffiffiffi
−g̃

p
P̃abδq̃ab þ

ffiffiffiffiffiffi
−g̃

p
P̃ðl̃Þ

a δl̃a

−
ffiffiffiffiffiffi
−g̃

p
ðl̃ae∇aϕ̃Þδϕ̃; ð75Þ

where

P̃ab ¼
1

16π
ðθ̃ðlÞab − ðθ̃ðlÞ þ κ̃Þq̃abÞ;

P̃ðl̃Þ
a ¼ 1

8π
ððθ̃ðlÞ þ κ̃Þk̃a − k̃ie∇al̃iÞ; ð76Þ

and θ̃ðlÞab and κ̃ are defined by the relations θ̃ðlÞab ¼ q̃iaq̃
j
b
e∇il̃j

and l̃ae∇al̃b ¼ κ̃l̃b. Furthermore, p̃a
b and qab are the two

projection operators, which are defined as follows:

p̃a
b ¼ δab þ k̃al̃b;

q̃ab ¼ δab þ k̃al̃b þ l̃ak̃b: ð77Þ

Note that p̃a
b projects orthogonal to l̃a, whereas q̃ab

projects orthogonal to both l̃a and k̃a. We emphasize that
p̃a
b is simply the projection operator and not any induced

metric of H. On the contrary, q̃ab is indeed the projection
metric but not on the three-dimensional surfaceH. Instead,
it is an induced metric on the two surface, upon which both
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l̃a and k̃a are the normals (similar to the two surface B for
the timelike/spacelike surface).
Again, it can be noticed [from (75)] that all the

independent (i.e., ten) components of the metric tensor
g̃ab are not required to be fixed on the boundary. Instead,
one has to fix three independent components of q̃ab (q̃ab

has three independent components as q̃ab is a symmetric
tensor with the constraint relations q̃abl̃a ¼ 0 and
q̃abk̃a ¼ 0) and three independent components of l̃a (as
the four vector l̃a satisfies the constraint relation l̃al̃a ¼ 0).
Thus, similar to the timelike case, the total components
which are required to be fixed on the boundary are seven
(one extra component of the scalar field ϕ̃). In addition, we
find the total well-posed action for a null surface can be
identified as

ÃtotjðnullÞ ¼ Ãþ 1

8π

Z
H

ffiffiffiffiffiffi
−g̃

p
ðθ̃ðlÞ þ κ̃Þd3x: ð78Þ

Obtaining the Brown-York tensor for the null surface,
however, can be tricky. Since we cannot define the induced
metric on the null surface, we cannot obtain the Brown-
York energy-momentum tensor using the earlier definition
of the timelike surface [given in Eq. (39)]. However, there
can be another way to connect the above variation for
the null surface with the same for the timelike one. Note
that Π̃abδγ̃

ab [of Eq. (37)] can be further decomposed as

Π̃abδγ̃
ab ¼ P̃abδq̃ab þ P̃ðñÞ

a δña (as q̃ab, defined in Table I,
can be written as q̃ab ¼ γ̃ab þ ñañb), which can be com-
pared with the expression provided in (75). The expression

of the Brown-York tensor for the timelike surface [T̃ðBYÞ
ab

which is obtained in (39)] can be obtained in terms of P̃ab

and P̃ðñÞ
a as T̃aðBYÞ

b ¼ 2q̃aiP̃ib þ ñaP̃ðñÞ
b . This provides the

hint of the expression of the BY tensor for a null surface in
the Einstein frame. In addition, while obtaining the Brown-
York tensor for the null surface in GR [90], arguments
from different viewpoints also suggest that the expression
of the BY tensor for a null surface has the expression

2q̃aiP̃ib þ l̃aP̃ðl̃Þ
b . Thus, the Brown-York tensor for the null

surface in the Einstein frame can be identified as

T̃a
bjðnullÞ ¼ 2q̃aiP̃ib þ l̃aP̃ðl̃Þ

b ¼ 1

8π
½W̃a

b − p̃a
bW̃�; ð79Þ

where W̃a
b ¼ θ̃ðlÞab − l̃ak̃ie∇bl̃i and W̃ ¼ W̃a

a ¼ θ̃ðlÞ þ κ̃.
Note that the structure of the BY tensor in (79) is similar
to the timelike case as described in (39), only K̃a

b is replaced
by W̃a

b and γ̃
a
b is replaced by p̃

a
b in this case. However, one

major difference from the timelike surface is that for the
null surface the energy-momentum tensor does not appear
to be symmetric. This has been noticed for Einstein’s
gravity as well [90,105]. The major reason for such a case
could be the fact that one cannot construct a symmetric

induced metric on H unlike the timelike surface. The
quasilocal parameters can be identified as

ϵ̃ðBYÞjðnullÞ ¼ T̃a
bjðnullÞk̃al̃b ¼

θ̃ðlÞ

8π
;

j̃cjðnullÞ ¼ T̃a
bjðnullÞk̃aq̃bc ¼

Ω̃c

8π
;

s̃abjðnullÞ ¼ q̃acq̃bdT̃c
djðnullÞ ¼

1

8π
½θ̃ðlÞab − ðθ̃ðlÞ þ κ̃Þq̃ab�:

ð80Þ

Here, Ω̃a is given as Ω̃a ¼ q̃abω̃b, where ω̃a ¼ l̃ie∇ik̃a is
known as the rotation 1-form [106]. Notice that although the
BY tensor is not symmetric, the spatial stress on the two
surface (upon which both l̃a and k̃a are normals) is a
symmetric tensor. From the above quasilocal densities,
defined in the above Eq. (80), the total parameters (such
as BY energy, angular momentum, etc.) can be defined
as earlier (that we defined for the timelike surface).
Furthermore, the spatial stress can be obtained in the form
of expression provided in (43), where the values of the shear
viscosity coefficient and bulk viscosity coefficient remain
unchanged (i.e., as of the timelike surface). The expression
of the shear tensor is provided as σ̃ab ¼ θ̃ðlÞab − θ̃ðlÞq̃ab=2.
The expression of the bulk viscosity is provided as Θ̃ ¼ θ̃ðlÞ,
and the expression of pressure is provided as P̃ ¼ κ̃=8π.
Thus, the analogy of membrane paradigm can be provided
for the null surface as well. In addition, the KSS bound will
also be satisfied, and the ratio of η̃=s will be the same as that
of the timelike surface.

B. Jordan frame

We consider the same null hypersurface (H, γab) which
is inside the four-dimensional manifold (M, gab). Again,
the null surface H is defined by ψ ¼ const, and the null
surface is degenerate. Furthermore, the normal which
characterizes the null surface is defined as la ¼ A∂aψ ,
and it is self-orthogonal, i.e., lala ¼ 0. As a result, A is not
uniquely determined, and we, for our convenience (and also
following the practice in literature [75,89,90]), consider
A ¼ 1. Furthermore, the null normals satisfy the geodesic
equation la∇alb ¼ κlb, where κ is the nonaffinity parameter
that corresponds to the surface gravity when the null
surface is black hole event horizon. In addition, following
Carter’s prescription, we consider the auxiliary null vector
ka, and the normalizations of null normals are given as

lala ¼ 0; kaka ¼ 0; laka ¼ −1: ð81Þ

Using the two null normals la and ka, one can define the
two projection operators as follows:

pa
b ¼ δab þ kalb; and qab ¼ δab þ lakb þ kalb: ð82Þ
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With all the above definitions, the boundary contribution
from the gravitational action (1) can be obtained as

BðnullÞ ¼
Z
H

ffiffiffiffiffiffi
−g

p
laΘad3x

¼ 1

16π

Z
H

ffiffiffiffiffiffi
−g

p �
ϕlaδva − 2lað∇bϕÞpiabdδgid

−
2ω

ϕ
ðli∇iϕÞδϕ

�
dx: ð83Þ

Using (27) and following the similar steps of algebra as of
the Einstein frame, one obtains

ffiffiffiffiffiffi
−g

p
laΘa ¼ 1

16π

�
ϕf∂að

ffiffiffiffiffiffi
−g

p
pa

bδl
b⊥Þ − 2δð ffiffiffiffiffiffi

−g
p

pa
b∇albÞ

þ ffiffiffiffiffiffi
−g

p ð∇alb − gabpc
d∇cldÞδgabg

− 2
ffiffiffiffiffiffi
−g

p
pibadlað∇bϕÞδgid −

2ω

ϕ
ðla∇aϕÞδϕ

�
:

ð84Þ

Again, our goal is to obtain a total surface derivative and a
total variation term as expressed in Eq. (26). Therefore, we
bring ϕ inside the derivative of the first term and inside the
variation of the second term. Therefore, after performing
some analysis (i.e., writing δgab in terms of δqab and δla),
we finally obtain

ffiffiffiffiffiffi
−g

p
laΘa ¼ 1

16π
½∂að

ffiffiffiffiffiffi
−g

p
ϕpa

bδl
b⊥Þ − 2δð ffiffiffiffiffiffi

−g
p

ϕpa
b∇albÞ�

þ ffiffiffiffiffiffi
−g

p
Pabδqab þ

ffiffiffiffiffiffi
−g

p
PðlÞ

a δla

þ ffiffiffiffiffiffi
−g

p
PðϕÞδϕ; ð85Þ

where

Pab ¼
1

16π

h
ϕfθðlÞab − ðθðlÞ þ κÞqab þ la∇bϕ− qabli∇iϕg

i
;

PðlÞ
a ¼ 1

8π
½ϕfli∇aki þ ðθðlÞ þ κÞkagþ kali∇iϕ�;

PðϕÞ ¼
1

8π

�
θðlÞ þ κ −

ω

ϕ
li∇iϕ

�
: ð86Þ

The first term of (85) can be identified as a total three-
derivative term (due to pψ

b ¼ lapa
b ¼ 0), which can be

neglected. The second term indicates the counterterm
which is required to be added with the gravitational action
in order to define a well-posed action principle, which is
given as

AðnullÞ
sur ¼ 1

8π

Z
H

ffiffiffiffiffiffi
−g

p
ϕðθðlÞ þ κÞd3x

≡ 1

8π

Z
ν

ffiffiffiffiffiffi
−g

p ∇aðϕðθðlÞ þ κÞkaÞd4x; ð87Þ

and the well-posed action in the Jordan frame for a null

surface can be identified as Atot ¼ AþAðnullÞ
sur . In addition,

it is now obvious that all the ten independent components
of the metric tensor are not required to be fixed on the
boundary. Instead, we need to fix three independent
components of qab and three independent components
of la. Thus, we need to fix seven components in total
(one coming from ϕ).
The prerequisite of the BY formalism is a well-posed

action principle. In this regard, the boundary term plays a
complementary role as it makes the action well-posed. Note
that the boundary term is already known for GR and for ST
gravity as well (particularly for the timelike surfaces).
However, there is a long-standing issue is this regard: it is
that the boundary terms are, generally, preimposed and
are not unique. Let us take the example of GR. Although in
GR, the standard boundary term in GR is considered to be
the Gibbons-Hawking-York (GHY) term, there can be
several other terms that can be used in substitution for
the GHY term (kindly see the review [73]). This issue of
nonuniqueness can be resolved only when the boundary
term is obtained directly from the action principle itself
(in the context of GR, it has been discussed in [74,75]).
Moreover, obtaining the boundary term from the action
principle has also been shown to be consistent with the
analysis of dynamical degrees of freedom corresponding to
the initial value problem [74–78]. Therefore, we keep the
same spirit of [74–78] and obtain the boundary terms from
the action principle itself. We emphasize that the term that
we finally obtain for a timelike surface is already known
(rather preimposed in earlier cases) but, as far as our
knowledge, it has not been derived with the same spirit.
Furthermore, to the best of our knowledge, the boundary
term that we derived for the null surface (for ST gravity) is
not known earlier and is completely a new result.
Providing the same arguments as of the Einstein frame,

we obtain the expression of the Brown-York tensor as

Ta
bjðnullÞ ¼ 2qaiPib þ laPðlÞ

b

¼ 1

8π
½ϕðWa

b −Wpa
bÞ − pa

bl
i∇iϕ�; ð88Þ

whereWa
b is defined asW

a
b ¼ θðlÞab − laki∇bli. Again, the

structure of the BY tensor for the null hypersurface (88) is
similar to the timelike case (61), onlyKa

b is replaced byW
a
b

and γab is replaced by pa
b in this case. But, unlike the

timelike BY tensor, the null BY tensor is not symmetric for
the reasons which we discussed during the analysis in the
Einstein frame. In addition, the asymmetry has also been
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found for the null BY tensor in GR as well [90,105]. The
quasilocal parameters can be identified as follows:

ϵðBYÞjðnullÞ ¼ TabjðnullÞkalb ¼
1

8π
½ϕθðlÞ þ li∇iϕ�;

jcjðnullÞ ¼ TabjðnullÞkaqbc ¼
ϕΩc

8π
;

sabjðnullÞ ¼ TcdjðnullÞqacqbd

¼ 1

8π
½ϕfθðlÞab − ðθðlÞ þ κÞqabg − qabli∇iϕ�;

ð89Þ

where Ωc ¼ qacωa, and ωa ¼ li∇ika is known as the
rotation 1-form. Again, the spatial stress of the two
surface sab is symmetric despite the asymmetry in the
BY tensor. This is because one can define the induced
metric of the two surface (qab) which is symmetric. From
the above quasilocal densities [as defined in Eq. (89)],
one can define the total parameters (such as Brown-York
energy, momentum, etc.) using the definitions provided
for the timelike surface. Furthermore, sab can be inter-
preted as the stress tensor of a two-dimensional viscous
fluid with the identifications σab ¼ θðlÞab − θðlÞqab=2,
Θ ¼ θðlÞ, and P ¼ ðϕκ þ li∇iϕÞ=8π. The expressions of
the shear viscosity coefficient and the bulk viscosity
coefficient are the same as of the timelike surface. Thus,
the analogy of the membrane paradigm can be provided
for the null surface in the Jordan frame as well. Finally,
we see that the ratio η=s saturates the KSS bound,
i.e., η=s ¼ 1=4π.
We summarize the discussion of this section as follows:

(i) The null hypersurface is degenerate. One cannot define
an induced metric on the null surface. Hence, the usual
(timelike) approach of obtaining the boundary term and
quasilocal parameters do not work for the null surface.
(ii) The structure of the Brown-York is similar to that of the
timelike surface. However, unlike the timelike case, the null
BY tensor is not symmetric in the two indices. (iii) The
projection of null BY tensor on the two surface is
symmetric. (iv) Using the null BY formalism, one can
obtain the BY energy and momentum and also can obtain
the interpretation of the membrane paradigm.

V. COMPARISON: TIMELIKE VS NULL

Earlier, in the timelike case, we found that the quasilocal
parameters in the two frames are proportional to the same
of the other frame (see Table III); i.e., they differ at most by
the proportional factor of ϕm (where m ¼ 3=2 for energy
density and so on, see Table III). This is an interesting
result, given that each constituent of the Brown-York tensor
(i.e., the extrinsic curvature and its trace) is not proportional
under conformal transformation. Furthermore, we also
obtained that the parameters like BY mass and total angular

momentum are equivalent in the two frames. We can obtain
these connections in the two frames mainly because, for the
timelike (or spacelike) case, one can uniquely determine
how the corresponding normals are connected (see
Table III) in the two frames. But, for null surface, there
is no unique way to determine how the null normals are
connected in the two frames. We can consistently connect
the null vectors in the two frames in the following arbitrary
manner:

l̃a ¼ ϕpla; l̃a ¼ ϕp−1la;

k̃a ¼ ϕ−pþ1ka; k̃a ¼ ϕ−pka; ð90Þ

where p can be arbitrary. In spite of the arbitrariness,
the above connection is consistent with the normaliza-
tion conditions (73) and (81). This arbitrariness is not
applicable for, say, a timelike normal (i.e., one cannot
define ña ¼ ϕpna where p is arbitrary; after all, it has
to satisfy ñaña ¼ nana ¼ −1, which uniquely deter-
mines p). Since we cannot uniquely determine p for
a null surface, we cannot compare how the quasilocal
parameters in the two frames are connected to the same
of another frame. In addition, if we fix p as per our
choice, say we fix p ¼ 0 or p ¼ 1 for the simplicity in
calculation, we find that the quasilocal parameters in
the two frames are no longer proportional to the same
of the other frame.
However, there exists a way out to get rid of this issue,

which comes from the study of the boundary terms. As we
discussed earlier, the gravitational actions are not exactly
equivalent in the two frames due to Eq. (5). But, for
timelike/spacelike surface, we earlier obtained in Eq. (72)
that the well-posed actions (i.e., the gravitational action
along with the boundary term) are equivalent. This was true
even if we consider the action of the Jordan frame as A0
instead of A. Let us assume that this equivalence of the
well-posed action will be valid for the null surface as well.
For the arbitrary relation among the null vectors (90),
we can obtain the following connections for the extrinsic
curvature and the surface gravity:

θ̃ðlÞab ¼ ϕp

�
θðlÞab þ

qab
2ϕ

li∇iϕ

�
;

θ̃ðlÞ ¼ ϕp−2½ϕθðlÞ þ li∇iϕ�;
κ̃ ¼ ϕp−2½ϕκ þ p li∇iϕ�: ð91Þ

This implies that the surface term of the Einstein frame
is related to that of the Jordan frame in the following
manner:

∂a½
ffiffiffiffiffiffi
−g̃

p
ðθ̃ðlÞ þ κ̃Þk̃a�

¼ ∂a½
ffiffiffiffiffiffi
−g

p ðϕðθðlÞ þ κÞ þ ðpþ 1Þli∇iϕÞka�: ð92Þ
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If we consider that the well-posed action in the two frames
are equivalent in the two frames, it fixes p as p ¼ 1=2.
Interestingly, for this choice, we also obtain that the
quasilocal parameter density are related in the same way
as of the timelike case, i.e.,

ϵðBYÞjðnullÞ ¼ ϕ
3
2ϵ̃ðBYÞjðnullÞ;

jajðnullÞ ¼ ϕ2j̃ajðnullÞ;
sabjðnullÞ ¼ ϕ

5
2s̃abjðnullÞ: ð93Þ

For this choice, one can also obtain that the BY mass and
the angular momentum are equivalent in the two frames,
and the total BYenergies are related in the same way as that
of the timelike case. In other words, Eqs. (64), (66),
and (68) will be valid for the null surface as well.
The arbitrariness in the connection of null normals [as

described by [Eq. (90)] lies in the property of the null
surface itself (owing to its degeneracy). In fact, our
analysis helps us to resolve this arbitrariness as we find
that one can explicitly show the connection of the null
normals and, thereby, the BY parameters if one claims
that the well-posed action (gravitational action along with
the boundary term) is equivalent. We proved this claim
for timelike/spacelike surfaces, and one can expect it to
be valid for the null surface as well. After all, the
equations of motions, which arise from the gravitational
actions, are equivalent, and the problematic parts are
canceled by the boundary terms. Therefore, the well-
posed actions, which are equivalent in the timelike/
spacelike surface, are expected to be the same for the
null surface as well.
Note that the null formalism (as presented in the

present section and in previous section) simply upholds
the conclusions of the timelike surface (as described in
Sec. III). Since the null normals are related arbitrarily
(due to the degeneracy in the tangent plane of the null
surface), one cannot straightforwardly obtain the con-
formal connections between the BY parameters.
However, if we claim that the well-posed action, i.e.,
the gravitational action along with the boundary term, is
equivalent (which is the case in the timelike/spacelike
case), one can obtain the connection between the null
normals in the two frames and show how the BY
parameters are connected in the two frames. In this case
as well, we find that the BY parameters which appears
in BH thermodynamics (such as the mass and angular
momentum) are equivalent. On the other hand, the
parameters, which are related to fluid-gravity correspon-
dence (such as bulk and shear viscosity coefficients,
pressure, etc.) are not equivalent in the two frames. Thus,
the analyses in the timelike surface and in the null surface
provide us with the same conclusions.
We summarize the discussion of the present section as

follows: (i) Unlike the timelike normals, the connection of

null normals of the two frames are not uniquely deter-
mined. Therefore, one cannot uniquely determine how the
BY tensor and the parameters are connected. (ii) If one
assumes that the well-posed action is conformally equiv-
alent, it leads to a specific choice on the connection of the
null normals. For this choice, one can again establish
the same connection relations among the parameters of the
two frames.

VI. CONCLUSIONS

The “local” definition of mass energy has been the
subject of intense research for a long time. However, it has
not been possible so far to arrive at an unanimous
conclusion. In the absence of a local definition of mass
energy, the Brown-York formalism provides a powerful
way to define quasilocal parameters like mass, angular
momentum, spatial stress, etc. which are important both
from the perspectives of black hole thermodynamics as
well as fluid-gravity correspondence. So far, people only
have studied the properties of BY mass and energy under
the conformal transformation. Therefore, in order to
obtain a thorough understanding, we studied the con-
formal connection of all quasilocal parameters, which are
provided by the Brown-York formalism. Furthermore, the
important prerequisite of Brown-York energy is that the
action principle must be well-posed. However, the gravi-
tational actions of ST gravity are not well-posed ones
like the Einstein-Hilbert action. As a result, one has to
incorporate proper boundary terms in order to make the
action principle well-defined and to obtain the Brown-
York quasilocal parameters. For scalar-tensor theory,
the boundary term required for the action principle
on a timelike/spacelike surface is preimposed, i.e., not
obtained in a consistent manner. On the other hand, it has
been argued recently that the action principle should
suggest to us what boundary term should be added.
Therefore, we performed our analysis in such a spirit.
Moreover, the boundary terms for a null surface and the
null Brown-York formalism have not been obtained so far
in the context of ST gravity. To fill this gap, we provided a
complete analysis on the null boundary term and the null
BY quasilocal parameters.
Here, we first outlined the properties of the gravitational

actions of ST gravity in the two frames briefly, which has
been obtained in the works of one of the authors [65,71].
We showed that the two frames are not exactly equivalent
at the action level itself. Instead, the gravitational actions
in the two frames differ by a total derivative (□ϕ) term
which is usually neglected. Moreover, we also showed
that the (gravitational) action in the Einstein frame can be
regarded as the action of the momentum space, and the
well-known holographic relation can be obtained. But,
the same (holographic) relation cannot be obtained for the
gravitational action in the Jordan frame, and therefore,
the action cannot be interpreted as the action of the
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momentum space. This shows that there lies an in-built
inequivalence of the two frame when we neglect the □ϕ
term. When this term is accounted for, the inequivalence
in the two frames can be removed. Later, we focused on
obtaining the BY tensor and the boundary term from
the single analysis of action principle. First, we made
the analysis for the timelike/spacelike surface. From the
variation of the gravitational action, we obtained the
boundary term which is required to be added with
the gravitational action, the variables which are required
to be fixed and the conjugate quantities corresponding to
those variables. Once these quantities are obtained, we
obtained the Brown-York tensor and the corresponding
quasilocal parameters. Later, we repeated the same analy-
sis for a more nontrivial case, i.e. for the null surface, and
obtained the same quantities.
Our analysis shows that the quantities which are related

to the black hole thermodynamics (like mass, angular
momentum, etc.) are conformally equivalent. However,
the quantities which are related to the fluid-gravity con-
nection (such as bulk and shear viscosity coefficient,
pressure, etc.) are not conformally invariant. Also, both
analyses, which are individually performed for a timelike/
spacelike surface (in Sec. III) as well as for a null surface
(in Secs. IV and V), yield the same conclusions (i.e., the
parameters related to black hole thermodynamics are
conformally equivalent, and the parameters related to the
fluid-gravity analogy are inequivalent). In the recent paper
by one of the authors [67], it has been found that one can
have both equivalent and inequivalent pictures for fluid-
gravity correspondence in ST theory while obtaining the
Damour-Navier-Stokes equation in both the frames. In
order to identify which of these pictures (inequivalent or
inequivalent) are more appropriate, one has to examine
from other perspectives. From the viewpoint of BY
formalism (as presented in this paper), we find that the
fluid parameters are not equivalent, and their expressions
are the same as the inequivalent picture of the earlier
work [67]. This is how the present analysis favors the
inequivalent viewpoint of [67]. Also, we mention that,
although our analysis has been performed for scalar-tensor
theory, it will be valid for fðRÞ [107,108] theory as well,
where ϕ will be replaced by f0ðRÞ ¼ ∂fðRÞ=∂R.
The main goal of this paper is to provide and all-around

perspective regarding the BY formalism in ST gravity.
Moreover, the null BY formalism and the null boundary
term are recent developments in GR. Therefore, in the
present work, we discussed BY formalism and the boun-
dary term (which plays a complementary role in the study
of BY formalism) in ST gravity both for the timelike
surface as well as the null surface. For the timelike surface,
the boundary term is known. But, we derived it from the
action principle itself to be on par with the recent arguments

regarding uniqueness and consistency with the analysis of
the degrees of freedom. Our analysis provides a mixed view
regarding the (in)equivalence of the two frames. While it
supports the equivalence of the parameters which appear
in BH thermodynamics, it shows that the parameters,
which are related to fluid-gravity analogy, are not equiv-
alent and favos the inequivalent picture of [67]. The
analysis in the null surface also supports this finding.
Although apparently the analysis in the null surface seems
to be inconclusive regarding the (in)equivalence when we
claim that the well-posed action is invariant under the
conformal transformation (as is the case in timelike
surface), it it yields the same conclusions as of the
analysis in the timelike surface.
Our present analysis suggests that the fluid-gravity

analogy in its current form shows to be inequivalent
under the conformal transformation. Therefore, more
investigations are solicited in this direction for better
understanding [109]. This paper provides a robust analysis
in the context of the boundary term and the BY quasilocal
parameters, and we hope it will be a significant contri-
bution in the understanding of ST gravity and overall
behavior of gravitational physics under the conformal
transformation.
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APPENDIX A: OBTAINING EQ. (27)

Since δva ¼ 2Pibad∇bδgid, we obtain

Xaδva ¼ −Xa∇bδgab þ Xagij∇aδgij

¼ −∇bðXaδgabÞ þ ð∇aXbÞδgab þ Xagij∇aδgij:

ðA1Þ

Now, we need to compute the last term of (A1), which can
be simplified as Xagij∇aδgij ¼ Xa

∂aðgijδgijÞ. Also, one
can obtain

∂aðgijδgijÞ¼−
2ffiffiffiffiffiffi−gp ∂aðδ

ffiffiffiffiffiffi
−g

p Þ− 1ffiffiffiffiffiffi−gp gijδgij∂að
ffiffiffiffiffiffi
−g

p Þ

¼−
2ffiffiffiffiffiffi−gp ∂aðδ

ffiffiffiffiffiffi
−g

p Þþ 2

ð ffiffiffiffiffiffi−gp Þ2δð
ffiffiffiffiffiffi
−g

p Þ∂að
ffiffiffiffiffiffi
−g

p Þ:

ðA2Þ

Therefore,
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Xagij∇aδgij ¼ −
2ffiffiffiffiffiffi−gp Xa

∂aðδ
ffiffiffiffiffiffi
−g

p Þ þ 2

ð ffiffiffiffiffiffi−gp Þ2 δð
ffiffiffiffiffiffi
−g

p ÞXa
∂að

ffiffiffiffiffiffi
−g

p Þ

¼ −
2ffiffiffiffiffiffi−gp ∂aðXaδ

ffiffiffiffiffiffi
−g

p Þ þ 2ffiffiffiffiffiffi−gp δ
ffiffiffiffiffiffi
−g

p
∂aXa þ 2

ð ffiffiffiffiffiffi−gp Þ2 δð
ffiffiffiffiffiffi
−g

p ÞXa
∂að

ffiffiffiffiffiffi
−g

p Þ

¼ −
2ffiffiffiffiffiffi−gp ∂aðXaδ

ffiffiffiffiffiffi
−g

p Þ þ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi
−g

p Þ∇aXa

¼ −
2ffiffiffiffiffiffi−gp δð∂að

ffiffiffiffiffiffi
−g

p
XaÞÞ þ 2ffiffiffiffiffiffi−gp ∂að

ffiffiffiffiffiffi
−g

p
δXaÞ þ 2

ð ffiffiffiffiffiffi−gp Þ2 δð
ffiffiffiffiffiffi
−g

p Þ∇aXa

¼ −2δ
�

1ffiffiffiffiffiffi−gp ð∂að
ffiffiffiffiffiffi
−g

p
XaÞÞ

�
þ 2δ

�
1ffiffiffiffiffiffi−gp

�
∂að

ffiffiffiffiffiffi
−g

p
XaÞ þ 2∇aðδXaÞ þ 2

ð ffiffiffiffiffiffi−gp Þ2 δð
ffiffiffiffiffiffi
−g

p Þ∇aXa

¼ −2δð∇aXaÞ þ∇aðδXa þ gabδXb þ XbδgabÞ: ðA3Þ

Substituting Eq. (A3) in Eq. (A1), we obtain Eq. (27).

APPENDIX B: OBTAINING EQ. (50)

Using (27), the first term of (49) is given as

ffiffiffiffiffiffiffi
hðrÞ

p
ϕraδva ¼

ffiffiffiffiffiffiffi
hðrÞ

p
ϕ∇ara⊥ −

ffiffiffiffiffiffiffi
hðrÞ

p
ϕδð2∇araÞ

þ
ffiffiffiffiffiffiffi
hðrÞ

p
ϕ∇arbδgab: ðB1Þ

In the Jordan frame, the extrinsic curvature of the surface
(upon which ra is the unit normal) can be defined as

θðrÞab ¼ −hðrÞia hðrÞjb ∇irj ¼ −hðrÞia ∇irb

¼ −∇arb þ ϵraa
ðrÞ
b ; ðB2Þ

where aðrÞi ¼ ra∇ari, and the trace of the extrinsic curva-
ture is given as

θðrÞ ¼ −∇ara: ðB3Þ

In addition, the covariant derivative operator, which is
adapted to the surface, can be defined as

ðrÞDaAb ¼ hðrÞia hðrÞjb ∇iAj: ðB4Þ

Replacing (B2), (B3), and (B4) in (B1), one can obtain

ffiffiffiffiffiffiffi
hðrÞ

p
ϕraδva ¼

ffiffiffiffiffiffiffi
hðrÞ

p
ðrÞDaðϕhðrÞai rjδgijÞ

þ 2δ
� ffiffiffiffiffiffiffi

hðrÞ
p

ϕθðrÞ
	
−

ffiffiffiffiffiffiffi
hðrÞ

p
hðrÞai rjδgij∇aϕ

þ
ffiffiffiffiffiffiffi
hðrÞ

p
ϕ
�
−θðrÞab þ θðrÞhðrÞab

	
δhðrÞab

− 2
ffiffiffiffiffiffiffi
hðrÞ

p
θðrÞδϕ: ðB5Þ

Thus, the first term of (49) is obtained above in (B5). We
replace (B5) in (49) and finally obtain (50).
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