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Asymptotically de Sitter black holes have nonzero tidal Love numbers
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The Love numbers of compact objects quantify their tidal deformability against external perturbations. It
is expected that the Love numbers of asymptotically flat black holes (BHs) in general relativity are
identically zero. We show that quite contrary to common expectations, the tidal Love numbers of

asymptotically de Sitter black holes are nonzero.
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I. INTRODUCTION

Gravitational wave (GW) observations have opened up a
new frontier for testing Einstein’s general relativity and any
possible modification to the same [1,2]. Gravitational wave
observations can potentially test general relativity in the
strong field regimes, where we expect to see possible
signatures of new gravitational physics.

One of the captivating implications of Einstein’s gen-
eral theory of relativity (GR) is the existence of configu-
rations with an event horizon, representing a causal
boundary such that any event within the confines of an
event horizon cannot exert causal influence on events
outside it. GW observations serve as a valuable tool for
testing the existence of astrophysical black holes with
event horizons [2—-16].

An important observation with regard to the black hole
solutions of general relativity (GR) is that they have zero
tidal deformability [17-30]—the tidal deformability being
quantified through the linear response of the multipole
moments of the compact object to an external tidal field.
The real part of the constant quantifying the linear
response is called the Love number [17-20]. Love num-
bers of compact objects, as measured through the GWs
emitted from binaries, are regarded as a powerful tool to
test for black holes, and thus potential deviations from
Einstein gravity [3,8—12]. The vanishing of static black
hole Love numbers of the Kerr family of black holes in
Einstein gravity is also of significant interest from a purely
theoretical perspective. This is due to its association with
the no-hair theorem and with certain symmetries of the
spacetime, resulting in a ladder structure which can be used
to relate different modes of perturbations on the black hole
background [31-34].
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This work establishes that not all black holes in GR have
zero tidal Love numbers. We demonstrate that asymptoti-
cally de Sitter (dS) black holes within Einstein’s gravity
with a mass M and cosmological constant A have a nonzero
scalar Love number at O(AM?). This has many significant
consequences, as it demonstrates that even in GR, objects
with horizons can have a nonzero Love number. This is
besides the fact that current observations suggest our
Universe to be de Sitter. As a result, the asymptotically
dS black holes of GR, known as Schwarzchild—de Sitter
(SdS) black holes, may be more observationally relevant
than the asymptotically flat family of black holes.

For computing the Love numbers of SdS black holes,
we will use the worldline effective field theory (EFT)
[22,27,35], originally developed for asymptotically flat
compact objects, adapted for comoving asymptotically de
Sitter compact objects. At the level of the macroscopic
worldline EFT [28,36-39], the characteristic length scales
of the extended bodies are integrated out, allowing us to
treat them as point particles, moving on the background
spacetime. The finite-size effects are accounted for through
the coupling of additional fields on the point-particle
worldline. In the context of the dS worldline EFT, we
will note that the necessary calculations are more trans-
parent in the conformally flat coordinates of the Poincaré
patch. As a result, we will construct the worldline EFT for
extended bodies on a de Sitter background in the con-
formally flat coordinates of the Poincaré patch.

We will use the scattering amplitudes of scalar fields
within the dS worldline EFT framework as measured by a
faraway comoving observer on the de Sitter background to
define Love numbers. We adopt this approach to define
Love numbers, as the conventional approaches [19,20]
cannot be used if the spacetime is not asymptotically flat.
So, our formalism extends the definition based on scattering
coefficients from worldline EFT in flat spacetime [27,40,41]
to describe dS Love numbers.

© 2024 American Physical Society
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Following this, we focus on the microscopic details of
the compact object [22,25,27] to compute the macroscopic
scattering coefficients of the worldline EFT. At the micro-
scopic level, we will solve the scalar field equations
perturbatively on the SdS background, with the ingoing
boundary condition at the black hole horizon.

Since the dS worldline EFT was defined on the con-
formally flat coordinates of the Poincaré patch, we will use
the flat-slicing coordinates [42—44] of the SdS black hole to
match the microscopic picture with the macroscopic world-
line EFT [22,27]. However, since the location of the
horizon is more apparent in the static chart of the SdS
black hole, the scalar field equation will be solved in the
static chart. Following this, we will perform a coordinate
transformation from the static coordinates to the flat-slicing
coordinates within the static patch of the SdS black hole,
allowing for matching with the dS worldline EFT.

Computing the scattering coefficients from the micro-
scopic picture requires a near zone—far zone matching
calculation of the kind discussed in [4,27,45,46]. In this
work, we will perform the calculation with two different
notions of the near zone. The first is an extension of the
conventional notion used for Schwarzchild black holes
[4,27,45], with the consideration of an additional length
scale related to the cosmological constant. The second is a
notion of proximity to the horizon developed through a
perturbative expansion in (R — Ry,)/Ry,, with Ry, being the
black hole horizon; this notion of proximity can best be
described as the near-horizon region [46]. In this work, we
have used both these notions of the near zone to illustrate
the intricacies associated with the appropriate notion of a
near zone in Love number computations.

We will start with a brief review of Love numbers in
Sec. II. Following this, we have the two main parts of this
work: Secs. III and I'V. In Sec. III, we will extend the notion
of the worldline EFT developed for asymptotically flat
compact objects to the asymptotically nonflat case. Here,
we shall illustrate how the worldline EFT can be used to
define Love numbers for asymptotically nonflat space-
times. Following this, we will specialize to asymptotically
de Sitter compact objects. We will work in the conformally
flat coordinates on the Poincaré patch of the dS spacetime
to simplify the calculations. Finally, we obtain an expres-
sion for the scalar Love numbers as measured by a faraway
comoving observer on a dS background. Here, we shall
make some key observations regarding the response func-
tion for the compact object being time dependent due to the
observer time not being Killing.

In Sec. 1V, we use the worldline EFT developed in
Sec. III and the associated notion of Love numbers to
obtain an explicit expression for the SdS black hole Love
numbers up to O(AM?). This shall proceed through
solving the scalar field equation on a SdS background
perturbatively in AM? with the ingoing boundary condition
at the horizon. Here, we will perform a near zone—far zone

matching calculation to extract the scattering coefficients
for a SdS black hole. Following this, we have a summary
and discussion of the results in Sec. V and the conclusions
in Sec. VL.

Notations and conventions. Throughout the paper, we
have used the mostly positive signature convention. The
greek indexing runs over both spatial and temporal direc-
tions. The roman indexing is restricted to spatial directions.
L = (iy,i5...,1,) is a multi-index, and each i runs over the
spatial directions {1,2,3}. A; represents a spatial sym-
metric traceless tensor with the spatial multi-index L. For
example, the unit vector n*=% =n' = n'n/ — 5. We
have also set the fundamental constants G and ¢ to unity.

II. TIDAL LOVE NUMBERS

Let us consider a mass distribution p(X) in Newtonian
gravity. An external massive body interacts gravitationally
with p(X) such that it induces a change Sp(X) in mass
distribution, resulting in an additional multipole moment
Q7 . Then, the gravitational potential sufficiently away from
the center of mass of the mass distribution p(X) will be
given by [20]

® (£ -2)!

Utot(r) = U/J(r) - Z £ nLger
P :
© (2¢ — 1)1nlQ,
D D e (1)
P :
Here we have &, = —ﬁ(ﬁ Uei(1)|5—0, the tidal field

exerted by the external body. U, is the gravitational
potential exerted by the external body, and U, is the
potential sourced by the unperturbed mass distribution p(X).

We can further note that the change in the mass
distribution Jp(X) in response to an external field depends
on the properties of the matter and can be quantified
through the associated change in the multipole moment in
response to the external tidal field. In fact, for spherically
symmetric systems, we may write

0(t) = ko&1 (1) = Touelr (1) + -+ (2)

In the above equation, we refer to k, as the Love number
of the mass distribution, and z; is a timescale character-
izing the change in the mass distribution in response to the
time variation of the tidal field. v, represents the loss of
energy due to tidal heating, which is called the tidal
dissipation number. The ellipses represent possible
higher-order dependence on the time variation of &;.
Performing a Fourier transformation on the above equa-
tion, we can see that

0r(w) = —Fs(@)€(w), (3)
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where F,(w) is called the tidal response coefficient, its
real part contains information regarding the tidal response,
and the imaginary part quantifies the tidal dissipation [20].

Earlier works have extended the notion of tidal Love
numbers of compact objects to relativistic systems. The
definition relied on the identification of the coefficients
characterizing the growing and decaying parts of the
perturbing field on the background metric at asymptotic
infinity for asymptotically flat spacetimes [17-19]. It has
also been shown that one can define Love numbers,
as observed by a distant free-falling observer in terms
of the scattering coefficients of the perturbation, within the
framework of a worldline EFT for asymptotically flat
spacetimes [27,40,41].

Despite the significant progress made in the field of Love
numbers for asymptotically flat compact objects within
general relativity [21-30] and nonvacuum GR theories of
gravity [3,8-12], there is very little literature on the Love
numbers of asymptotically nonflat compact objects. We
note that a major challenge regarding this concerns the
notion of Love numbers by identifying the response and
source terms at asymptotic infinity as the decaying and
growing parts of the perturbed field, respectively, which
cannot be extended straightforwardly to nonflat spacetimes.
However, the notion of Love numbers within the framework
of a worldline EFT can be extended to nonflat spacetimes,
where the Love numbers can be defined in terms of the
scattering coefficients of the perturbing field as measured by
a distant observer.

In the following section, we shall develop a notion of
Love numbers for comoving compact objects on a de Sitter
background as measured by a comoving observer within the
framework of a worldline EFT on a de Sitter background.
We shall restrict ourselves to the Love number for an
arbitrary scalar field to simplify the computation. Along the
way, we will also list sufficient conditions for nonflat
spacetimes for which a definition of Love numbers similar
to ours is possible. In Sec. IV, we shall use the notion of
Love numbers developed in Sec. III to compute the SdS
scalar Love numbers observed by a distant comoving
observer.

III. WORLDLINE EFFECTIVE FIELD THEORY
FOR DE SITTER

This section will construct a worldline EFT for compact
objects on a nonflat background. We will note certain
features of the background spacetime, which allows for a
definition of scalar Love numbers using worldline EFT.
Then, we will specialize to a comoving compact object on a
de Sitter (dS) spacetime. We will use the worldline EFT to
define the scalar Love numbers for the compact object
through the scattering coefficients of the scalar field as
measured by a comoving observer far away from the
compact object.

A. The setup

We will consider a compact object sufficiently far away
from the observer on a dS background such that the
characteristic length associated with the compact object
1o 1s much smaller than the coordinate separation between
the compact object and the observer. Such a compact object
may be modeled as a point particle moving along its
worldline after integrating out its characteristic length scale
ro. The finite-size effects of the compact object will be
accounted for through the presence of extra field couplings
on the point-particle worldline, within the framework of a
worldline EFT [22,25,27,35-37].

The compact object can interact with the scalar field on
the dS background through finite-size interactions. In
particular, the tidal field £; = V| ¢, generated by the scalar
field, can deform the compact object and give rise to the
multipole moments Q. For such a system, the effective
action will be of the form [22,27,35,36]

Stotal = Spp + S¢ + Sint + S + Stidal- (4)

Here, S, is the point-particle action, S, is the action for the
scalar field, and Sg is the gravitational action, each of
which can be given by

Spp = —M/ dr\/—u,u, (5)
K
Sp= =5 [ x990, (6)

Sg = % d*x\/=g(R = 2A). (7)

We have assumed the mass of the point particle to be M,
which is moving along its worldline with affine parameter
7, K P scales the overall strength of the scalar field, and we
have written the gravitational action with a positive
cosmological constant, as our interest lies in the asymp-
totically de Sitter spacetimes. Among other terms in
Eq. (4), S, is the action describing the internal dynamics
of the finite-size effects of the compact object [37], and
Sidgal 15 the part of the action describing the interaction
between the tidal effect of the scalar field and the multipole
moments of the compact object. In the analysis that
follows, we will not bother about the complicated internal
dynamics of the compact object, which are contained in
Sine [37]; instead, we aim to infer Q from the scattering
coefficients of the scalar field as observed by a distant
observer. Thus, for our purpose, providing an expression
for the action S;4, suffices, which reads
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Stidal _/\/ng“x {—KT/dT\/ _”ﬂ”’l\/l_—g
x 8@ (x# — z¢(7)) i%QL(Z”(T))VLCﬁ - (8)
/="

Here, QF are the multipole moments of the compact object,
V¢ are the scalar tidal fields (£;), u# is the four-velocity
of the object, z#(z) is the worldline of the compact object,
and K is the coupling constant characterizing the inter-
action between the scalar field and the compact object. The
delta function §*) (x* — z#(z)) ensures that the scalar field
only interacts with the compact object, whose location in
the spacetime is given by z#(z), within the framework of
the worldline EFT. In what follows, we will use the
worldline EFT approach to define the Love numbers for
compact objects which are not asymptotically flat.

B. Love numbers from worldline EFT

Our goal in this section is to solve the scalar field
equation on the dS background and identify the two
linearly independent parts of the solution, along with their
constant coefficients. Following this, we will determine the
multipole moment QF in terms of these constant coeffi-
cients, which can be associated with the scattering coef-
ficients observed by a distant observer [27]. Similarly, the
tidal field £; can also be determined in terms of these
constant coefficients, and hence the response function
F,(t) can be determined, whose real part gives the Love
numbers, k.(¢) [19,20,22,27,30]. Note that the response
function can explicitly be a function of time if the
spacetime is not static. Thus, we obtain

0, (1) = =F, (1)L (1),

Note that the tidal field £; should be understood as the
finite part of V¢, while Q; arises from the divergent part
of V; ¢ at the origin, in some appropriate radial coordinate,
evaluated on the worldline of the body [27].

As we are interested in extracting the scalar Love
numbers from the scattering of the scalar field from the
compact object, we will consider the Euler-Lagrange
equation for the scalar field, which gives

O¢ = iTj;, (10)
=0
_Kr (=17 i
Ti*Kq, 2 /de[ N
< O (24(2))6) (% — zﬂ(r»} S

where [1=V,V¥, and K, is the coupling constant char-
acterizing the scalar field action.

In order to find solutions to the above differential
equation, we express the scalar field ¢ as a sum of various
angular modes ¢,, such that

d=> ¢ (12)

Plugging the above decomposition into Eq. (10) will imply
that each ¢, will satisfy the equation Cl¢p, = T}, where 77,
has already been defined in Eq. (11).

1. Defining Love numbers using worldline EFT

Upon close examination of Eq. (10), it is apparent that if
¢ is a solution to the £ = 0 differential equation, then the
solution to the #th mode may be given by V¢, if
[(,V;] =0. This means that if we can write the back-
ground spacetime in a chart, where the above commutation
holds true, we may find ¢, by simply solving for ¢,,.
Further, if the chart has the properties V;¢ = d;¢ and
vV, v/—9 = 0, we can make use of the results in [47-49] and
perform an analysis similar to the flat-space worldline EFT
[27] to get an explicit expression for the Love number in
terms of the scattering coefficients of the scalar field as
observed by a faraway observer. The above observations
imply that for any spacetime that meets the above-specitfied
conditions within some chart, we can provide a definition
of Love number for compact objects within the framework
of a worldline EFT, which we are going to illustrate for the
specific case of compact objects in asymptotically de Sitter
spacetimes.

2. De Sitter universe in the Poincaré patch

Motivated by the above discussion, we will choose to
work in the Poincaré patch of the de Sitter spacetime
employing the conformal coordinates, where the metric can
be expressed as

1

i =-g,- (1)

ds? = c(n)?[—dn? + dx?],
Here H = \/A/3, where A is the positive cosmological
constant associated with the de Sitter universe [50-55].
Working in the Poincaré patch in the conformal coordi-
nates, we can observe that for any scalar S(n,x'), the
following identies hold:

(D [V, O8(n,x") =0.

(2) VpS(n.x') = 0.S(n, x').

(3) Vo/=g=0.
As a consequence, we can construct the ¢, from ¢, as
¢, = V. Further, the above identities also imply that
Vi¢o = 9;.¢,, and the source term, T(i of Eq. (10), can be

064025-4



ASYMPTOTICALLY DE SITTER BLACK HOLES HAVE NONZERO ...

PHYS. REV. D 109, 064025 (2024)

shown to be proportional to the derivatives of the three-
dimensional delta function.

By considering a family of point particles moving with
the cosmic flow such that their coordinates can be found as
7(r) = (z°(x),0,0,0), while satisfying the normalization
condition wu, = —1, the source term Tg can be further
simplified to

_1\ 3(y!
Tj;:% az ;3 v, [5\/(__9) 0L (4230 — (2))
(1)K oy dr
= ﬁg,%QL(n)dL[a W< G (14

Subsequent computation of the # = 0 mode and, later, the
determination of the higher-# modes, which are performed
by the action of V; on ¢, will require use of properties 1-3
listed above.

3. Obtaining the zero-mode solution

We can find the zero mode ¢, by solving Eq. (10) with
¢ = 0, which reduces the source term to zero. Following
this, and the symmetries of the de Sitter universe in the
Poincaré patch, we consider the ansatz ¢y = w(n, x')/c(n),
with ¢(n) being the scale factor of the de Sitter universe, as
defined in Eq. (13). Substituting the above ansatz into
Eq. (10) with #Z = 0, we obtain the following differential
equation for w(s, x'):

w—""=0. (15)

As we are solving for the £ = 0 mode, there is no angular
dependence in w, and hence we may express w(n, X) as
w(n,x) = v(r)u(n). Since space and time sectors do not
talk to each other, it follows that v(r) must satisfy the
equation V20(r) = —Q?v(r), where Q is a constant and
u(n) satisfies the following differential equation:

0u < 2>
(e -Z)u=o. 16
on? " (16)

The above differential equation can be solved by using a
linear combination of Hankel functions [51], and u(r) takes
the following form:

u(n) = Vi(AH," (@) + BH (@n).  (17)

3
2

From the properties of the Hankel function, it follows that
HY (2)~(1//2)e and HY (2) ~ (1//Z)e™*, for 2] > co.
Furthermore, as in the flat spacetime, here also we impose
the condition that the zero mode should behave as e’ for
n — —oo, which, when coupled with the above properties of
the Hankel function, demands A = 1 and B = 0.

The spatial sector, on the other hand, satisfies the
equation V?v(r) = —Q?v(r), which can also be solved
by Hankel functions, if we expand the Laplacian in the
spherical polar coordinates. Therefore, the zero mode ¢, on
the dS background takes the form

32 nQ .
dotr.n) ="\ [ @) et (@)
VAR EE !

+ Coue H (@) |, (18)

where Cj,/o, are the ingoing and outgoing scatte-
ring coefficients for the scalar field as observed by a
distant comoving observer. The extra factors involving
(\/7Q/2)e*"/? have been introduced to ensure the
appropriate ingoing and outgoing behaviors of the Hankel
function at large r [27]. However, both the Hankel
functions are ill behaved near the origin r = 0, where
the compact object is placed, and hence we would like to
modify the Hankel functions to the Bessel functions, such
that at least one of the solutions is finite at the location of
the compact object.

4. Change of basis

We will next perform a basis change from the Hankel
functions to the Bessel functions for the spatial part of
Eq. (18), to ensure regularity for at least one of the solutions
at the location of the compact object. This is achieved
through the following equations [47]:

Jy(Qr) = = (HY (@r) + H (Qr)), (19)

N =

V@) =2 (H) (@) - 1P @), (20)

1

such that the zero-mode solution, as in Eq. (18), can be
expressed as

P2 i
do(r.n) = 7 V27QH,  (Qn)

x {CmY%(Qr) + Creg./%(Qr)}, (21)

where the arbitrary constants C
in terms of C; and C, as

reg and Cj;; can be expressed

C =i (Cll’l - COU‘)
reg ’

(Cin + Cout)
7 —_—.

C. =—
T 2

(22)
Note that in Eq. (21), the term J%(Qr) is regular at r = 0,
while the other term—namely, Y; (Qr)—is irregular at

r = 0. With this change of basis, we now wish to compute
the multipole moments of the compact object and relate it to
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the tidal field to determine the tidal Love number in terms
of the coefficients Cj, and Ci.

5. Relating the multipole moments and tidal fields

In this section, we will first compute the Zth-order
moment of the scalar field ¢, using the simple relation
¢, = d1.¢h, for each independent solution of ¢y. Following
this, we will evaluate [J¢,, where the spatial part of the [
operator is interpreted as a distributional derivative [27,48].
Note that as we are working in the Poincaré patch of the de
Sitter spacetime, which is conformally flat, all the above
computations may proceed in a manner similar to that of the
flat space [27]. This results in the following expression

for ¢,:
de = n¥>v220H " (@n){ CLy0, (72 (@))

—l-Cier\/ZerdL(r"/zY](Qr))}, (23)

1]

where CE are arbitrary constants characterizing the

reg/irr
regular and irregular parts of the solution to the second-
order differential equation in Eq. (10). We can further
simplify Eq. (23) using the following identities [49]:

oualr) = v (57 o)

<1 d> (2B, (2)) = 2B, (2).

zdz

(1 d) (B,(2) = (<1 B, (2). (24)

zdz

where we have g(r) as some arbitrary function of r, with
B,(z) representing the Bessel functions, either J,(z) or
Y,(z). This allows us to simplify Eq. (23) to read [27]

'73/2\/2 Q07 (—1
- 7QQf (—

X 1 [Clegd 1 240(Qr) + CLY 121 p(Qr)]. (25)

) H ()

Having determined ¢,, our next goal is to obtain an
expression for the quadrupole moment QF(n) in terms
of the arbitrary constants Ck, and CL,. For this purpose, we
will substitute Eq. (25) into Eq. (10), and subsequent
comparison with Eq. (14) yields

(=172
H*\/n

The tidal part can be determined using the finite part of
Eq. (9)—i.e., by evaluating ¢, on the worldline of the
compact object, obtained by taking the r — 0 limit of V; ¢
[27,48], resulting in

87K
24 oL X@‘
KT ur dT

0" (n) = H, Q) (26)

—1)/2¢0+1 . Q\ 1427
eutn = vareaen S 2 S e (5)

rG+¢+1) 2
(27)

Using Eq. (13) to lower the spatial indices of the multipole
moment tensor Q in Eq. (26), we obtain

(D

871'[((/ CL @
(H ) f+1)

01n) = oS

(Q ) (28)

So far, we have kept the proper time of the particle
unspecified; however, our computations are done for a
point particle comoving with the Hubble flow, which
means that its proper time will be the cosmological time
t, related to the conformal time through the relation
e = —(1/Hp). Therefore, in terms of the cosmological
time of the comoving observer, the multipole moments can
be expressed as'

1\ 87K,
0u(1) = (-1 12t

x [n(ep2H (@(1))|. (29)

L Ht(20+1)
Ci. xe

Thus, the computation of the response function in terms
of cosmological time follows by taking the ratio of the
multipole moment in Eq. (29) with the tidal field in
Eq. (27), resulting in

1/2 14+2¢
Ff(t) = _ﬁ4ﬂ'— % " r 2043 Iljr pH1(26+1)
Kr 20 \Q 2 ) CL,

=_2F,(1). (30)

Here we have identified the normalized response function
of the object to be F,(t), which reads

- 42 (2\1F2_ [2¢ 43\ CE
2 \Q 2 ) Ch,
(31)

From the microscopic perspective, the ratio Ck / Creg
depends on the nature of the compact object. From the
macroscopic worldline EFT perspective, this ratio can be
associated with the ratio of the ingoing and outgoing
scattering coefficients.

Some comments are in order regarding the multipole
moment and the Love numbers being a function of time.

Hi(2£+1)

Lookmg at the multipole and the tidal field described in
Eqs (26), (27), and (29), we may note that it lacks a factor 2z,
in relation to the flat-space expressions; this is a result of the
convention of the basis expansion used.
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This is a consequence of the background spacetime not
being stationary. As a result, the temporal part of the field
cannot be expressed in the Fourier basis; instead, we have
to use the Hankel basis. A similar time dependence on the
gravitational multipole moments on a de Sitter background
was reported earlier in [54].

To explicitly see the relation of CL /Ck, with the
scattering coefficients, we may go to the Hankel basis
on the spatial sector of (25), using the asymptotic behavior
of the Hankel function [47] to identify the ingoing and
outgoing coefficients [27]. This will allow us to express

CrLeg/m as follows:
L (_l)f | L LiE(CH]) L ,—iE(+1)
Creg = 2 l {Cine 2 + (_]) Coute 2 } P

_1\¢
Cﬁr = % iy [Cilflel%(b“rl) + (_1)f+1c(1;me_i%(f+l):| ’
(32)

where CE are the scattering coefficients of the scalar

in/out
field as observed by a distant comoving observer. Using the
above relations and Eq. (30), we can define the response
function of a comoving compact object on a de Sitter
background on the Poincaré patch in terms of the ingoing
and outgoing scattering coefficients observed by a faraway
comoving observer within the framework of de Sitter
worldline EFT.

Despite this section mostly focusing on using worldline
EFT for asymptotically de Sitter compact objects, a similar
analysis is possible for spacetimes having features dis-
cussed in Sec. III B 1. Our next goal would be to perform a
microscopic calculation to compute CL / Creg for small SdS
black holes in order to get an expression for SdS black hole
scalar Love numbers.

IV. LOVE NUMBERS
OF SCHWARZSCHILD-DE SITTER

In this section, we will compute the scalar Love numbers
for a Schwarzschild—de Sitter (SdS) black hole. The
calculations presented here will be at the microscopic
level, where we will compute Ck /Cf, for a small SdS
black hole. This ratio can further be associated with the
scattering coefficients observed by a distant comoving
observer, through Eq. (32).

The computation involves us exploring the consequences
of the near-horizon physics on the asymptotic behavior of
the scalar fields in the static chart of the SdS black hole,
then performing a coordinate transformation on the static
patch from the static coordinate to the flat-slicing coor-
dinates, and finally matching the asymptotic behavior with
the macroscopic background dS worldline EFT. This
matching will allow us to express the Love numbers for
a SdS black hole as observed by a distant comoving
observer. We will also give a functional definition for

the tidal response coefficient for asymptotically de Sitter
compact objects based on computation in the static
coordinates.

A. Flat-slicing coordinates for SdS and the worldline
EFT on the Poincaré patch of dS

We consider spherically symmetric compact objects,
whose exterior can be written in the form [42-44] (known
as the flat slicing for SdS black holes);

ds® = —g(r.n)dn* + h(r.n)dx>

h(r.n) = a*(n) [1 n zag)rr
a(n) = —1/Hn. -

In the large-r limit, the above metric becomes the dS
spacetime in the Poincaré patch. So, in the same spirit as the
microscopic calculations in the flat spacetime [22,25,27],
we should be matching the scalar field in the large-r limit of
the flat-slicing coordinates of the SdS black hole with the
scalar field on the dS worldline EFT.

The angular part of the scalar field equation in the large-r
limit of a spacetime given by the metric in Eq. (33)
becomes separable in the spherical harmonic basis, Y,
and the solution can be seen to be of the form

¢ = nyiH;" (Qn) V22 Q0! (-1) /2
2
X {ﬂalAéng/Z%(Qr) + ﬂa%iﬁryl/”f(gr)}’ (34)

where we have

A rig/lrr Z ﬂatAreg/lrrYfm 6 ¢) (35)
with ﬂ“%i’g /i eing arbitrary coefficients associated with

the basis expansion for each m. Further, we may choose the
parameter Q to be the same as in Eq. (25).

We can reexpress the above equation in terms of the unit
vectors (n;) using

Y)f’m - II/;an, (36)

where YL —are complex STF tensors. We may now note
that Eq. (34) can be reexpressed as

¢f=n¢ﬁH§”<m>¢znmfnL<—1>f

r V2 (MAL T oo (Qr) +MAL Y ), o(Qr)),  (37)
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such that

4
ﬂatArLeg/ilrr = Z yémﬂatArirg/irr' (38)

m=—¢

From the perspective of the worldline EFT for the SdS
black hole, we should be identifying the coefficient
gL /™AL with C%,/CE,, where it should be understood

ur?
that the ingoing boundary condition imposed at the horizon

of SdS black hole will determine ™AL, /MAL . In what

ur*®
follows, we will explicitly illustrate how to compute these

coefficients.

Exploring the consequences of the near-horizon physics
on AL /MAL requires one to perform a near zone—far
zone matching calculation [4,27,45,46]. But this task is not
straightforward for the SdS black hole in the flat-slicing
coordinate [Eq. (33)]. Noting this, we will perform the near
zone—far zone matching calculation in the static chart in
Sec. IV B and identify the far-zone solution. Following this,
we will perform a chart transformation back to the flat-
slicing coordinate and compute the ratio ™A%, /MAL - as
discussed in Sec. IV C.

B. Matching the near zone with the far zone

As discussed above, we will perform the near zone—far
zone matching calculation in the static chart [4,27,45,46],
where the metric reads

ds®> = —f(R)dT* + f(R)"'dR* + R*dQ,,
f(R)=1-——R’H>. (39)

As the static patch of the SdS black hole is a subset of the
region covered by the flat-slicing coordinates, the static

coordinates and the flat-slicing coordinates can be seen to
be related by [44]

R R 2MN\ —1/2
T—t+H/ ﬁ(l_?> dR,

Since the SdS spacetime in the static gauge has apparent
Killing symmetries associated with 7 and d€,, we may
expand the solution in Fourier and spherical harmonics and
solve the radial part of the differential equation in two
regions, the far and near zones, followed by a matching
calculation in the intermediate region.

1. Far zone

In the far-zone region, the spacetime of the SdS black
hole should approach pure dS. For a SdS black hole, the far-
zone region can be observed to be characterized by
(M/R) < R?H?* and R*H? ~O(1). In this region, the
metric will look like pure de Sitter in the static chart,
and the radial part of the scalar field, ™R (R), can be shown
to obey the following differential equation:

R2(1 _ H2R2)2farR//(R) + 2R(1 _ HZRZ)(l _ 2H2R2)farR/(R)

—U—Hwa(ﬂf+n

R2w?
1 — H?R?

>farR<R) = 0. (41)

One may solve the above differential equation to show the far-zone solution for the radial part of the SdS black hole

frR(R) to be of the form

2

H

H 2

' e |1 i) 1 j 3
BIR(R) = SALR? (1 — H?R?)i ) F {— <£ - @> 5 (f ~2y 3) 30+ =5 HZRZ}

—iw

+ statAiTR—f—l(l _ H2R2) 2H2F1

141y Stat Az
with Areg finr

2. Near zone

Here, we will solve the near-zone scalar field equation and
study the behavior of the radial part of the scalar field in the
near zone. To do this, we need to define the notion of the

PHM+U+M ¢

being constants that characterize the two linearly independent solutions in the far zone of the SdS black hole.

A=Y HRY 42
L } (@2)

near zone carefully. Two possible notions of the near zone
are available in the literature. The first notion is broadly
based on the construction discussed in [4,27,45,46].
The second notion is discussed in earlier works as the
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near-horizon region [46]. We shall solve the near-zone radial
differential equation within these two distinct notions of the
near zone. These two notions are associated with two
different regions of the spacetime. In this work, we have
presented both calculations to explicitly illustrate certain
subtleties present in Love number computations that may be
related to the appropriate choice of the near zone.

In what follows, we shall consider the O(H>M?)
corrections to the scalar field equation under the two
different notions of the near zone.

First notion. The first notion of the near zone would be a
minimal extension of the notion of the near-zone region for

R

Schwarzchild black holes. Here, due to the presence of a
cosmological horizon and the associated length scale 1/H,
for a SdS black hole with black hole horizon radius Ry, we
impose H(R—-R,) <1 along with o(R-R,) <1
[4,27,45,46] in the near-zone region. This notion of the
near zone should be understood as saying that the radial
expanse of this region is much smaller than the length
scales 1/H and 1/w.

Restricting the radial part of the field equation to this
region allows us to replace @R with wR}, and HR with HRy,.
This will result in the following differential equation for the
radial part of the perturbation:

2M 2 M oM
R? <1 - H2Rﬁ> nearR(D"(R) 4+ R (1 - H2R§> <2 - 4H2Rg> nearf2 (1/(R)

2M Riw
(1R +1)——D"
( R h><( ) 12— H’R}

)an(U(R) =0, (43)

where "*R(1(R) is the radial part of the scalar field in the first notion of the near zone. We will next attempt to solve the

above differential equation to obtain "R () (R) for a small SdS black hole.
We shall now quantify the smallness of a SdS black hole through powers of H>M?; for a small SdS black hole, we can

observe that [56]

2M H?

f(R) =1 —7—H2R2 :?(Rc —R)(R—Ry)(R+ R, +R,),
1

2M ” ’ 1 2342
R.Ry(R: + Ry) =T RAR+RR =75 O0SRy<R <.  HM<I
3
R, = M(2 + 8H>M?* + O(H>M?)), HR, = (1 — HM — EH2M2 + 0(H3M3)>. (44)

With the above notion of a small SdS black hole, we shall attempt to solve the scalar field equation [Eq. (43)] in the near-

zone region, perturbatively in H2M?>.

The perturbative solution for a small SdS black hole will be of the form

nearR(l)(R) — nearRsh(R) 4 4H2M2h(R> 4 O([_]%M%) (45)

Here, "™*R5"(R) is the leading-order ingoing Schwarzchild solution [27], and h(R) is the correction to it at O(H*M?).
After perturbatively expanding Eq. (43) in H>M? and performing a variable redefinition of f = 1 — 28, we can observe
the leading-order correction in the near zone, using the function A(f) to satisfy the following differential equation (dots

representing derivatives with the variable f):

s o (PCM?(1-F) 6+ 1)> -
1= f)h+ (1= f)h - - - h=T(f),
FU =i+ 1= P (2 = 0%
T(]?) — }(1 1_ ]‘) (2}(1 _ J?)2near7'é/sh + (1 _ J?Z)nearr]'zsh _ (8M20)2 4 f(z/ﬂ 4 1))nearRsh)’
nearRh(F) = AfPMO(1 = )L F 1+ £ + 4iMo. £ + 1,1 + 4iMo. f]. (46)

We can now solve Eq. (46) using the method of variation of parameters. This allows us to obtain a formal solution for &

using the two linearly independent solutions to the homogenous part of Eq. (46) and the specific source term T'(f).
For the dominant mode of the scalar perturbations having £ = 0, the formal solution for Eq. (46), obtained using the

method of variation of parameters (h,_y(f)), can be explicitly expressed as
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heo(F) = FM2(1 = )

22Mw + i),F\[1,4iMo — 1;4iMw; f] — 4Mw - 3i  2Mw,F|[2,4iMo — 1;4iMo; f]

l(j{‘{;} +#Met 4 2 log(1 - Mo — i) —2log(f)(2Mw — i)>

2(1 - f)f(4Mw + i)

(1-F)fdMw + i)

2(1-1)

Looking at the above equation, it might seem like it is
divergent at R = 2M, but this is not an issue; as discussed
earlier, using Eq. (44), the small SdS black hole horizon R,
is shifted outside 2M.

Second notion. We shall construct the second notion of
the near zone, appropriately refered to as the near-horizon
region [46], by first writing the radial differential equation
in the form

i [A dﬁﬁf)} 4 (R'a? — (£ + 1)R(R) =0,
A = R*f(R). (48)

Now, upon defining the variable z = (R — R},)/ R}, we have

R
A = H’R}(R. — Ry)(R. +2Ry)z(1 + z) (1 R _th Z)
C

Ry,
1+—-17). 4
X( +Rc+2RhZ) (49)

We shall now note that we can get closer to or farther away
from the horizon of the SdS black hole by dictating how
small or large the variable z is. Here, we shall define the
second notion of the near zone as the region where we have
small z, such that O(z®) and higher powers of z may be
ignored in the expression for A. This results in

A = H’R(R. — Ry)(R. + 2Ry)z(1 + az),

Ry, Ry,
—1- : 50
¢ R.—R,  R.+2R (50)

In addition to this, similarly to the case of Schwarzchild
black holes, we also demand (R — Ry,) < 1. So, we can
write the radial differential equation in the near zone in
terms of the variable z as

(47)

z2(1+ ocz)a’iZ {z(l + az)d%[“earR@)(z)]]

n o’R2
H*(R. — Ry)*(R. + 2Ry )?
(¢ +1)z(1 + az)

HA(R. - Ry)(R. + 2Rh)>nearR<2) (z)=0. (51)

where "R (2) is the radial part of the scalar field in the
second notion of the near zone. Next, we will restrict the
scenario to a small SdS black hole, with smallness
quantified through powers of H>M?. Upon keeping only
terms up to O(H>*M?) and O(Mw), Eq. (44) can be used to
write Eq. (51) in terms of the variable y = az as

RS [y<1+y>diy[neafn<@ 01| + b2 — (e 1)

x (1424H>M?)y(1 +y))"*R2) (y) =0. (52)

The ingoing solution to the above differential equation
can be seen to have the form

neaIR(Z) (y) _ (1 +y)2iMwy—2iMa)
LF\[-2,¢ + 1,1 —4iMw, —y)
24£(¢ + 1)

Ot

H>M?. (53)

3. Matching of near zone with far zone

Having obtained the near-zone and far-zone solutions,
our next task would be to perform a matching calculation of
the near zone with the far zone [4,27,45,46]. We will
perform this for the two notions of the near zone mentioned
above, for which the solutions were derived in Sec. IV B 2.

At this stage, we emphasize a key assumption regarding
our calculation. In Sec. IV B2, we maintained the
O(H*M?) terms for the near-zone field equations. But
in the far-zone region of Sec. IV B 1, we ignored all the
O(H*M?) terms respecting the assumptions of the world-
line EFT constructed in Sec. III. However, we justify this
analysis, as the near-zone region contains information
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regarding the behavior of the compact object, and thus
Love numbers [3,18,26].

First, we can note that the far-zone region has an extra
length scale 1/H in addition to 1/w, so, to go to the
matching region from the far zone, we need to take the
limits HR <« 1 and wR <« 1 [4,27] of Eq. (42). This will
result in

farpy statAégRK + StatA{;rR_f_l . (54)
|

Second, we can note that going to the matching region from
the near zone would require going further away from the
horizon of the black hole; thus, for a small SdS black hole,
we should take the (M/R) <1 limit on the near-zone
solution [4,27].

Matching with the first notion. If we take the (M/R) < 1
limit on the solution obtained in the region specified
by the first notion of the near zone as in Eq. (45), we
will get

nearR(l) — <

[(=2¢ - HI(1 + 4iMa) N (20 (¢+)
4H2M2 irr =
F(—AT@iMo—-2) “ )\ R

r(2¢ + DI(1 + 4iMw)
<F(f + D + 1 +4iMw)

where ¢;® and ¢I' are corrections that should arise at
leading order in H>M? for a small SdS black hole upon
evaluating the solution for Eq. (46). Comparing Eq. (54)
with Eq. (55) and identifying the powers of R in the
matching region, we may write

statA £

irr (1) _ 21 (11 +4H2M2Ci;r)
statAf |( ) = (2M) -

reg (72 + 4H2M2cr;g) ’
r(-2¢ - 1)[(1 + 4iMw)
()T (4iMw — )
(2 + 1)I(1 + 4iMw)
(£ + 1D+ 1+ 4iMw)

71 =

V2 = (56)

ramaeee) (B (55)
¢ )\em

For the dominant Z = 0 mode of a small SdS black hole,
we are able to compute ¢, and ¢l using Eqs. (45), (46)
and (47):

where ¢ and c;® have been computed under the

assumption of a small SdS black hole—that is, we can
only keep terms proportional to H>M? and M; all higher-
order terms have been ignored while going to the matching
region from the near zone.

Matching with the second notion. Now, instead of using
Eq. (45) obtained from the first notion of the near zone, if

we take the M /R < 1 limit on the near-zone solution in the region specified by the second notion of the near zone, given by

Eq. (53), we will get

neargp(2) _ L= 2i)l(20 + 1)
(7 + D)1+ 7 —2iw

L T = 2i)(=1 - 27) (1 _ H2M2<

I(-2)[(-Z - 2iw)

where 7 is given by Eq. (53).

({24, 20
)

20 +1 2M
24£(¢ + 1) log () M\ £+
—16¢ -1 i
20+ 1 or=16) )\ %) - (58)

Following this, we may identify the powers of R in the matching region by comparing Egs. (54) and (58) to obtain an
equation analogous to Eq. (56), but based on the second notion of the near zone. The ratio of the coefficients can be seen to be

WAL o @M)PIT(Z + D=1 =20)0(¢ + 1 - 4io)

stat A &
Areg

T(2¢ + )T (=£)[(=¢ + 4iMw)

W = y(—£ — 4iMw) + y (£ — 4iMw + 1) + (=€) +y(£ + 1) = 2y (26 + 1) = 2p(=2¢ — 1) — 2log <i>

w(x) = T'(x) /().

(1 + H*M? (16 + 32/ +

246(¢ + 1)WY
20 + 1 ’

oM
(59)
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An interesting observation regarding the above equation
is that identifying the powers of R when working with the
second notion of the near zone will result in S%AZ /$@AZ, | ()
having a log(R/2M) term in it. Some earlier works have
also noted log terms, as in Eq. (58), appearing in alternate
theories of gravity [9,12]. Such log terms in the case of
Schwarzchild black holes are interpreted as a consequence
of classical RG flow [22,25,29].

One may criticize the identification of the powers of R in
Eq. (54) in the matching region with the same in Eq. (58)
due to the log terms. However, we have performed this, as
some earlier works suggest that such terms arise in the
expression of Love numbers [9,57]. In the next section,
when we explicitly express the Love number, we will note
that upon working with the second notion of the near zone,
we will necessarily have such log(R/2M) terms for SdS
black hole Love numbers when ¢ # 0.

We would like to mention that the above analysis has
been performed in the static chart of a SdS black hole.
However, the dS worldline EFT and the definition of Love
numbers employ the flat-slicing coordinates as in Sec. IV
A. The next step is to go to the flat-slicing coordinates in
order to identify the scalar field in the asymptotic region of
the metric Eq. (33) with the EFT scalar field of Sec. III
described in the Poincaré patch of pure de Sitter.

C. Going to flat slicing and the worldline EFT on dS

After performing a matching calculation for the SdS
black hole from the near zone to the far zone in the static
chart, our next goal would be to go to the flat-slicing
coordinate of the SdS black holes, as discussed in Sec. IV
A, where we can perform the matching of the coefficients in
the far zone of the black hole with the coefficients of the dS
worldline EFT as in Sec. III.

To go to the flat-slicing coordinates from the static
coordinates, we may employ Eq. (40), where 7 is the
cosmological time. Observe that the coordinate transforma-
tion in Eq. (40) is greatly simplified when (M/R) <« 1. So,
we first plug in the expression for the static coordinates from
Eq. (40) into the region where (M/R) < 1 in Eq. (42).
Then, we find a region on the manifold in terms of the

coordinates (r,7) where the ratios ™Af /MAL  and

SatA? /SMAL, can be related by comparison with Eq. (34).

Once we find a relation between the ratios in one region
of the static patch, this relation should hold everywhere in
the static patch, as these ratios are constants specifying the
solution and should be the same throughout the static patch.
Using the above discussed procedure, coordinate invari-
ance will result in the following relation between
ﬂatAf /ﬂatAég and Sta%{rr/StatAég:

ur

flatg £ x (%) i statg £
I — — . (60)
flatq? 2043\ (2441 statg
reg (23 2eL

3 3 reg

Observe that spherical symmetry implies that ﬂ"“%r’i’g i

of Eq. (35) will be independent of m, and Eq. (38) will
result in

flatq L flatq &
Airr Airr

flataL — flatg’? -
Areg Areg

(61)

As discussed in Sec. IVA, the matching of the micro-
scopic description with the macroscopic dS worldline EFT
requires AL /MAL = CL /CL,. This means that for a
comoving SdS black hole, the normalized tidal response
of Eq. (30), S#F%, can be expressed in terms of
statAZ /statAég as

1T

SdSFw _ _4”1/2 2 2 (26 43\ Cf Hi(2£+1)
Fy = v I ;- Xe
2 Q 2 Cre
_ % statp &
z Al x eH120+1) (62)

22 (25’;1) WAL

even though, in the context of this paper, Eq. (62) is for a
SdS black hole. The arguments above are valid for all
spherically symmetric comoving compact objects on a de
Sitter background whose exterior spacetime is described
by Eq. (33). As a result, the above expression can be used
for any such spherically symmetric compact object, where
we will have to compute S™A7 /A%, separately for each
such compact object depending on the appropriate boun-
dary conditions on their surface [3,18].

We will now note that the near zone—far zone matching
calculation in Sec. IVB has resulted in two different
expressions for S®AZ /WAZ - which are SWAZ /A7 (D
and S@AZ /WAL |2)] depending on the use of the first or
the second notion of the near zone, respectively. Next, we
will explicitly write down the expression for the scalar Love
numbers for SdS black holes as computed using these two
distinct notions of the near zone.

D. SdS Love numbers

Here, we shall explicitly write down the expression for
SdS Love numbers. We will first use the definition of Love
numbers developed using the dS worldline EFT and
Eq. (62); this is the Love number of the SdS black hole
as measured by a distant comoving observer. Following
this, we will also comment on a functional notion of Love
numbers in the static coordinates of a SdS black hole.

1. Love numbers for a comoving observer

Using the microscopic computation of a scalar field in a
SdS background as discussed above, we are able to identify
the Love numbers of a SdS black hole as observed by a
comoving observer through Eq. (62) using a worldline EFT
framework. Further, in Sec. III within the framework of a
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worldline EFT, we had argued that the expression Eq. (30)
can be understood as a well-defined notion of tidal Love
numbers for comoving compact objects in terms of scatter-
ing coefficients, as measured by a distant comoving
observer on a de Sitter background. Here, we shall
explicitly express the SdS Love number up to O(H>M?).

To get the explicit form of the Love number, we shall
plug the value for #'A7 /*%'AZ into Eq. (62). However, the
use of two different notions of the near zone has resulted
in two different expressions for @AY /S9AZ | which

reg»
statAZ /statAZ |(1 stat A £ /statq &
are SYAL /SVAL, (1) and Al /" Afeg

SdSFf;(l) and SdSFC;(Z)

(), respectively. The

associated response coefficients are
also different. Observe that
3 statgAZ | (1
sasgo(l) _ . Al |V x HICCH) - (63)
‘ -2 <2fz+1) SAAL

Now, expanding @47 /%A% |(1) from Eq. (56) and keep-
ing terms up to O(H>M?) for a small SdS black hole will
result in

SdSF?(l) _ (schir(; +4H2M2L?(1)) x Hi2e+1), (64)

where SMF 9 is the normalized response coefficient of a

Schwarzschild black hole as defined in Eq. (30), and L(:Z(l)
is the expected correction, which arises at O(H>*M?). For
the dominant mode of the scalar perturbations (£ = 0), we

can explicitly evaluate Lsm using Egs. (56) and (57) to be
LoV = 8Max. (65)

This means that for a small SdS black hole, the normalized
Love number, as observed by a comoving observer for the
dominant mode of a scalar perturbation under the first
notion of the near zone, looks like

k" = Re| Py

= 32zH>*M3 e, (66)

Similarly, if we adopt the second notion of the near zone
from Eq. (62), we have

3 stat A £
sdsgo(2) _ - Al
¢ 2f—2r(2t’2+1) statg £

reg

)
x eH126+1) (67)

If we go ahead and plug in the expression for
saiq? / S"“%égﬁz) within the second notion of the near zone
from Eq. (59), we will get

2041

X th(Zerl)‘ (68)

= = 24¢(¢ + 1Y
SdSFf(z):schF;) |:1+H2M2<16+32f—|— ( + ) >:|

Further, the normalized Love number will be

K =RelF(”)
24¢6(¢+1 -
— 2;_:1 )HZMZIm[SChF?]Im[‘P]th(MH), (69)
where ¥ has the form given in Eq. (59) and is not always
real; however, it should be noted that the two expressions
for the SdS Love number cannot be simultaneously correct;
only one of the two is correct. The reason for getting two
different expressions is the use of two different notions of
the near zone.

The first notion of the near zone is the simplest and
most straightforward definition of a near zone, as it is a
straightforward extension of the one used in the
Schwarzchild case [4,27,45,46], but with an additional
length scale 1/H. However, we do not find any reason
to completely discard the second notion either, as it also
quantifies a region of the background metric at a certain
degree of proximity to the black hole horizon. The disagree-
ment between the two different computations may indicate
certain intricacies regarding the computation of Love
numbers for compact objects. However, both computations,
with either the first or second notion of the near zone,
indicate a nonzero value for the scalar SdS Love numbers.

2. Love numbers in static coordinates

Looking at the far-zone limit of the near-zone solution in
the static chart from Sec. IV B, it might seem that taking the
M/R < 1 limit on the near-zone solution and taking the
ratios of the coefficients of the growing and the decaying
terms is sufficient to define the response coefficient of the
compact object based on an analogy with the asymptoti-
cally flat case [17-19]; however, one should tread with
caution when it comes to this definition. This is because the
definition of Love numbers in the asymptotically flat case is
motivated through the analogy with the Newtonian notion,
where the response of the compact object is quantified by
the coefficient of R=~!, while the presence of the source is
signified through the coefficient of R”. Such an analogy
may not be possible if the spacetime is not asymptoti-
cally flat.

However, looking at Eq. (62), it is clear that the Love
number for a spherically symmetric compact object as
observed by a distant comoving observer (in terms of
ingoing and outgoing scattering coefficients) is specified
entirely through the ratio A% /*"Af . This suggests that
one may very well use SWA7 /WAL as a functional
definition of the response coefficient for asymptotically
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de Sitter spacetimes in the static coordinates. So, we define

a functional notion of response coefficient for a spherically

(s)

symmetric comoving compact object, ', as the ratio

stat Af

7(s) irr
[l " (70)
¢ stthrf;g

Using the above notion of response coefficients for a
comoving compact object, in terms of the static coordi-
nates on a SdS background, one can use Eq. (56) or
Eq. (59) depending on the first or the second notion of the
near zone to observe a nonzero Love number for the SdS
black holes.

V. SUMMARY AND DISCUSSION

The tidal response of a body against an external tidal
field £, (x°) is quantified using the tidal response function
F,(x%), which is defined through the relationship

Q1 (x%) = —F(x*)€,(x°), (71)

where Q; (x%) is the induced multipole moment of the
body. The real part of the tidal response function constitutes
the Love number of the body, k,(x") = Re[F,(x")]. In
general, we expect the tidal response and the multipole
moment to be functions of the coordinate time (x°) if the
vector field associated with the time is not Killing. This is
relevant to our construction, where we consider asymp-
totically de Sitter compact objects.

Since the idea of tidal Love numbers is not straightfor-
ward if the spacetime is not asymptotically flat, we
constructed a worldline effective field theory (EFT) for
compact objects on a nonflat background in order to define
Love numbers for asymptotically nonflat scenarios. Within
the framework of the worldline EFT, we define the black
hole Love numbers in terms of the scattering coefficients
associated with the perturbing fields, as measured by the
distant observer.

Subsequently, we focused on compact objects on a de
Sitter background where the body interacts with a back-
ground scalar field by coupling with its multipole moments
as described in Egs. (4) and (8). Working in the Poincaré
patch for the dS spacetime, we express its response
function as

Fo(t) = KyF (1), (72)

where K is the scalar-field coupling constant and 7 is the

cosmological time. F,(t) is the normalized response
function, and it may be expressed as

L 4712 2\ 1427 (27 + 3\ CE
Fi =5 () (R e

(73)

where we have H = \/A/3, and C%, and Ck, are constants
characterizing the compact object. From the perspective of
the worldline EFT, these are constants which can be
associated with the amplitudes of the ingoing and outgoing
modes (CL,CL,) of the perturbation as observed by a
distant comoving observer. The relation between (Ck,, Ck,)
and (CE,CL,) can be obtained by setting the relation
between Bessel functions and Hankel functions to be
Eq. (32).

While defining Love numbers for asymptotically dS
spacetimes from a worldline EFT, we also noted certain
features of a possibly non-dS background spacetime for
which a similar approach could be used to define Love
numbers. We also comment that the definition of Love
numbers within the framework of a worldline EFT in terms
of the scattering coefficients is observer dependent, as the
scattering coefficients are themselves dependent on the
observer. This is, however, not true if we are restricting
the scenario to distant free-falling observers in the context
of asymptotically flat spacetimes.

In asymptotically flat spacetimes, we may use a
Newtonian analogy and define Love numbers using the
asymptotic fall of the perturbations. But, for asymptotically
nonflat cases, this notion is ambiguous, and we need to use
the worldline EFT to define Love numbers. The worldline
EFT setup for compact objects on a de Sitter background
allows for a well-defined notion of Love numbers for
asymptotically de Sitter compact objects in terms of the
scattering coefficients of the perturbation, as observed by a
distant observer. This can be thought of as an extension of
the notion of Love numbers developed for asymptotically
flat spacetimes within worldline EFT [27,40,41].

From Eq. (73), we can note that the response function is
not independent of coordinate time, unlike in flat space.
One can attribute this to the fact that this Love number
expression is valid for a comoving observer whose time is
not Killing.

After developing a worldline EFT for comoving compact
objects on the Poincaré patch of the de Sitter spacetime and
using it to express the scalar Love number in terms of the
ratio Ck./Ck,, we focused on a small SdS black hole of
mass M, where an expansion in H>M? quantifies the
smallness. We computed the Love numbers of a small
SdS black hole as measured by a distant comoving
observer.

The computation of SdS black holes involved a near
zone—far zone matching calculation in the static chart of the
SdS black hole. Following this, we went from the static
chart to the flat-slicing coordinates, where the metric reads
Eq. (33). This allows for a matching with the worldline EFT,
where we identified the ratio C%, /Ck, = ™AL, /MAL | with
ﬂatAL )

reg/irr
the flat-slicing coordinates.

being constants characterizing the scalar field in
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While computing the SdS Love numbers, we used two
different notions of the near zone, the first being the natural
extension of the near zone for Schwarzchild black holes
[4,27,45,46], with the additional cosmological length scale
of 1/H, and the second being a notion of the near zone
quantified through how far we go from the horizon in
powers of (R — Ry,)/Ry,, which is actually a notion of the
near-horizon region [46]. We have used the two different
notions of the near zone to quantify proximity to the
horizon to illustrate the intricacies in the Love number
computation associated with the correct choice of the
near zone.

For a small SdS black hole, the normalized response
function, under the first notion of the near zone, can be
expressed as SF ?(l), which reads

SdSFC;(l) _ (schirc; +4H2M2L';(l)) x eHI20+), (74)

With Shfr % being the normalized response function for a
Schwarzchild black hole. We have explicitly evaluated the

expected correction L?m for the dominant mode of the

scalar perturbation (¢ = 0) and observed that the response
function is

saspell) — (sehfo L 307H2M3) x e, (75)

resulting in the leading-order normalized Love number

under the first notion of the near zone, IES’(I) = Re[F, 8’(1)],
being

kW (1) = 320H2M3 x et", (76)

which is nonzero, unlike the asymptotically flat black holes
of Einstein gravity [22,26-30].
Instead, if we use the second notion of the near zone,
we get
SdSFw(z) _ schF(v 1 —|—H2M2 16 +32f+24f(f+ l)lP
‘ ‘ 20+ 1

X th(2f+1)’ (77)

where ¥ is given by Eq. (59), which clearly contains
a log (R/2M) term. Such log terms were reported in
earlier works when alternate theories of gravity were
considered [9,12], and in the case of Schwarzchild black
holes are interpreted as a consequence of classical RG
flow [22,25,29].

Further, we can express the SdS normalized Love number
when employing the second notion of the near zone,

IES’<2) = Re[F, 8'(2>], as

]}w(g) _ _24?,”(/4- 1)

¢ =TT H>M?Im[*" F2]Tm[P]e"" 7+ (78)

One can clearly see that the Love number derived within the
second notion of the near zone is distinct from the one
derived from the first notion; this may be associated with an
appropriate choice of the near zone being essential for
computing the Love number of a compact object.

We would also like to point out that a functional notion
of Love numbers in the static coordinates for an asymp-
totically de Sitter compact object is

statA £
rols) _ A
F [ statg (79)
reg
with S‘mAr’;g /i eing coefficients characterizing the scalar

field in the static chart. We legitimize the validity of
Eq. (79) as a measure of the tidal response of the compact
object, as this ratio completely specifies the response
coefficient measured by the comoving observer within
the worldline EFT framework. These ratios were computed
for the SdS black hole with the first and the second notions
of the near zone and are given by in Egs. (56) and (59),
respectively.

An interesting observation regarding the computation of
the black hole Love number presented here is the use of an
ingoing boundary condition at the black hole horizon;
imposing an ingoing condition necessarily requires the
perturbation frequency to be nonzero. However, one can go
to the static limit of the Love number by taking the @ — 0
limit. One may also obtain the static Love numbers by
initially setting @ = 0 and solving the differential equation.
Earlier works have demonstrated that these two types of
calculations may result in different results, owing to the
distinct branches of solution for the hypergeometric differ-
ential equation [8,11].

Despite the calculations given in this work being for four
dimensions, the calculations may be extended to account
for higher dimensions using the machinery developed in
[27], replicating the calculations in Sec. III on the Poincaré
patch of the higher dimensional dS spacetime, and working
with a higher-dimensional SdS black hole instead of the
four-dimensional one used in Sec. IV.

VI. CONCLUSION

In this paper, we used a worldline effective field theory
framework for asymptotically de Sitter compact objects to
define scalar Love numbers for comoving compact objects
on a de Sitter background. The Love numbers can be
defined using the scattering coefficients of the scalar field
as observed by a faraway comoving observer. As the
comoving time is not Killing, we obtain a time-dependent
expression for the Love numbers of these compact objects
as measured by a comoving observer. Along the way, we
also note the possibility of defining the Love number in a
certain category of spacetimes in terms of scattering
coefficients.
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We computed the O(AM?) Love number for scalar
perturbations of a Schwarzchild—de Sitter black hole having
mass M and cosmological constant A. In computing the
Love numbers, we worked with two notions of the near
zone; the first notion is an extension of the near-zone notion
from Schwarzchild black holes with an additional length
scale introduced by the cosmological constant; the second
notion is based on a quantification of the radial proximity to
the black hole horizon (R},) in powers of (R — Ry,)/R;,. We
note that the expressions for the Love number depend on
the notion of near zone used, highlighting an ambiguity
regarding the correct notion of the near zone. However,
both of the notions of the near zone resulted in a nonzero
value for the SdS Love numbers at O(AM?).

The nonzero value of the Schwarzchild—de Sitter black
hole scalar Love number shows that, even within the
framework of Einstein gravity, objects with a horizon
can have nonzero Love numbers. This has significant
observational consequences, as Love numbers are
often considered to be a probe for the existence of
horizons [3,8-12].

However, it should be noted that AM? is negligible for
astrophysical black holes, and looking for an observational
consequence of an interaction of these two disparate length
scales is incomplete without accounting for the matter and
other effects on the measured Love number [55]. However,

we argue that the calculations presented here may be more
significant than the Love number computation for asymp-
totically flat black holes from an observational perspective.
It would be interesting to extend our formalism to
account for black hole spin and to other nonflat back-
grounds, particularly asymptotically anti—de Sitter (AdS)
compact objects, and understand the tidal response of
Schwarzschild/Kerr-AdS black holes. Further, it would
be of interest to understand the tidal response of asymp-
totically nonflat black holes to metric perturbations.
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