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The Love numbers of compact objects quantify their tidal deformability against external perturbations. It
is expected that the Love numbers of asymptotically flat black holes (BHs) in general relativity are
identically zero. We show that quite contrary to common expectations, the tidal Love numbers of
asymptotically de Sitter black holes are nonzero.
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I. INTRODUCTION

Gravitational wave (GW) observations have opened up a
new frontier for testing Einstein’s general relativity and any
possible modification to the same [1,2]. Gravitational wave
observations can potentially test general relativity in the
strong field regimes, where we expect to see possible
signatures of new gravitational physics.
One of the captivating implications of Einstein’s gen-

eral theory of relativity (GR) is the existence of configu-
rations with an event horizon, representing a causal
boundary such that any event within the confines of an
event horizon cannot exert causal influence on events
outside it. GW observations serve as a valuable tool for
testing the existence of astrophysical black holes with
event horizons [2–16].
An important observation with regard to the black hole

solutions of general relativity (GR) is that they have zero
tidal deformability [17–30]—the tidal deformability being
quantified through the linear response of the multipole
moments of the compact object to an external tidal field.
The real part of the constant quantifying the linear
response is called the Love number [17–20]. Love num-
bers of compact objects, as measured through the GWs
emitted from binaries, are regarded as a powerful tool to
test for black holes, and thus potential deviations from
Einstein gravity [3,8–12]. The vanishing of static black
hole Love numbers of the Kerr family of black holes in
Einstein gravity is also of significant interest from a purely
theoretical perspective. This is due to its association with
the no-hair theorem and with certain symmetries of the
spacetime, resulting in a ladder structure which can be used
to relate different modes of perturbations on the black hole
background [31–34].

This work establishes that not all black holes in GR have
zero tidal Love numbers. We demonstrate that asymptoti-
cally de Sitter (dS) black holes within Einstein’s gravity
with a massM and cosmological constant Λ have a nonzero
scalar Love number at OðΛM2Þ. This has many significant
consequences, as it demonstrates that even in GR, objects
with horizons can have a nonzero Love number. This is
besides the fact that current observations suggest our
Universe to be de Sitter. As a result, the asymptotically
dS black holes of GR, known as Schwarzchild–de Sitter
(SdS) black holes, may be more observationally relevant
than the asymptotically flat family of black holes.
For computing the Love numbers of SdS black holes,

we will use the worldline effective field theory (EFT)
[22,27,35], originally developed for asymptotically flat
compact objects, adapted for comoving asymptotically de
Sitter compact objects. At the level of the macroscopic
worldline EFT [28,36–39], the characteristic length scales
of the extended bodies are integrated out, allowing us to
treat them as point particles, moving on the background
spacetime. The finite-size effects are accounted for through
the coupling of additional fields on the point-particle
worldline. In the context of the dS worldline EFT, we
will note that the necessary calculations are more trans-
parent in the conformally flat coordinates of the Poincaré
patch. As a result, we will construct the worldline EFT for
extended bodies on a de Sitter background in the con-
formally flat coordinates of the Poincaré patch.
We will use the scattering amplitudes of scalar fields

within the dS worldline EFT framework as measured by a
faraway comoving observer on the de Sitter background to
define Love numbers. We adopt this approach to define
Love numbers, as the conventional approaches [19,20]
cannot be used if the spacetime is not asymptotically flat.
So, our formalism extends the definition based on scattering
coefficients from worldline EFT in flat spacetime [27,40,41]
to describe dS Love numbers.
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Following this, we focus on the microscopic details of
the compact object [22,25,27] to compute the macroscopic
scattering coefficients of the worldline EFT. At the micro-
scopic level, we will solve the scalar field equations
perturbatively on the SdS background, with the ingoing
boundary condition at the black hole horizon.
Since the dS worldline EFT was defined on the con-

formally flat coordinates of the Poincaré patch, we will use
the flat-slicing coordinates [42–44] of the SdS black hole to
match the microscopic picture with the macroscopic world-
line EFT [22,27]. However, since the location of the
horizon is more apparent in the static chart of the SdS
black hole, the scalar field equation will be solved in the
static chart. Following this, we will perform a coordinate
transformation from the static coordinates to the flat-slicing
coordinates within the static patch of the SdS black hole,
allowing for matching with the dS worldline EFT.
Computing the scattering coefficients from the micro-

scopic picture requires a near zone–far zone matching
calculation of the kind discussed in [4,27,45,46]. In this
work, we will perform the calculation with two different
notions of the near zone. The first is an extension of the
conventional notion used for Schwarzchild black holes
[4,27,45], with the consideration of an additional length
scale related to the cosmological constant. The second is a
notion of proximity to the horizon developed through a
perturbative expansion in ðR − RhÞ=Rh, with Rh being the
black hole horizon; this notion of proximity can best be
described as the near-horizon region [46]. In this work, we
have used both these notions of the near zone to illustrate
the intricacies associated with the appropriate notion of a
near zone in Love number computations.
We will start with a brief review of Love numbers in

Sec. II. Following this, we have the two main parts of this
work: Secs. III and IV. In Sec. III, we will extend the notion
of the worldline EFT developed for asymptotically flat
compact objects to the asymptotically nonflat case. Here,
we shall illustrate how the worldline EFT can be used to
define Love numbers for asymptotically nonflat space-
times. Following this, we will specialize to asymptotically
de Sitter compact objects. We will work in the conformally
flat coordinates on the Poincaré patch of the dS spacetime
to simplify the calculations. Finally, we obtain an expres-
sion for the scalar Love numbers as measured by a faraway
comoving observer on a dS background. Here, we shall
make some key observations regarding the response func-
tion for the compact object being time dependent due to the
observer time not being Killing.
In Sec. IV, we use the worldline EFT developed in

Sec. III and the associated notion of Love numbers to
obtain an explicit expression for the SdS black hole Love
numbers up to OðΛM2Þ. This shall proceed through
solving the scalar field equation on a SdS background
perturbatively in ΛM2 with the ingoing boundary condition
at the horizon. Here, we will perform a near zone–far zone

matching calculation to extract the scattering coefficients
for a SdS black hole. Following this, we have a summary
and discussion of the results in Sec. V and the conclusions
in Sec. VI.
Notations and conventions. Throughout the paper, we

have used the mostly positive signature convention. The
greek indexing runs over both spatial and temporal direc-
tions. The roman indexing is restricted to spatial directions.
L ¼ ði1; i2…; ilÞ is a multi-index, and each i runs over the
spatial directions f1; 2; 3g. AL represents a spatial sym-
metric traceless tensor with the spatial multi-index L. For
example, the unit vector nL¼2 ¼ nij ¼ ninj − 1

3
δij. We

have also set the fundamental constants G and c to unity.

II. TIDAL LOVE NUMBERS

Let us consider a mass distribution ρðx⃗Þ in Newtonian
gravity. An external massive body interacts gravitationally
with ρðx⃗Þ such that it induces a change δρðx⃗Þ in mass
distribution, resulting in an additional multipole moment
QL. Then, the gravitational potential sufficiently away from
the center of mass of the mass distribution ρðx⃗Þ will be
given by [20]

UtotðrÞ ¼ UρðrÞ −
X∞
l¼2

ðl − 2Þ!
l!

nLELrl

þ
X∞
l¼2

ð2l − 1Þ!!
l!

nLQL

rlþ1
: ð1Þ

Here we have EL ¼ − 1
ðl−2Þ! ∂LUextðtÞjx⃗¼0, the tidal field

exerted by the external body. Uext is the gravitational
potential exerted by the external body, and Uρ is the
potential sourced by the unperturbed mass distribution ρðx⃗Þ.
We can further note that the change in the mass

distribution δρðx⃗Þ in response to an external field depends
on the properties of the matter and can be quantified
through the associated change in the multipole moment in
response to the external tidal field. In fact, for spherically
symmetric systems, we may write

QLðtÞ ¼ klELðtÞ − τ0νlĖLðtÞ þ � � � : ð2Þ

In the above equation, we refer to kl as the Love number
of the mass distribution, and τ0 is a timescale character-
izing the change in the mass distribution in response to the
time variation of the tidal field. νl represents the loss of
energy due to tidal heating, which is called the tidal
dissipation number. The ellipses represent possible
higher-order dependence on the time variation of EL.
Performing a Fourier transformation on the above equa-
tion, we can see that

QLðωÞ ¼ −FlðωÞELðωÞ; ð3Þ
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where FlðωÞ is called the tidal response coefficient, its
real part contains information regarding the tidal response,
and the imaginary part quantifies the tidal dissipation [20].
Earlier works have extended the notion of tidal Love

numbers of compact objects to relativistic systems. The
definition relied on the identification of the coefficients
characterizing the growing and decaying parts of the
perturbing field on the background metric at asymptotic
infinity for asymptotically flat spacetimes [17–19]. It has
also been shown that one can define Love numbers,
as observed by a distant free-falling observer in terms
of the scattering coefficients of the perturbation, within the
framework of a worldline EFT for asymptotically flat
spacetimes [27,40,41].
Despite the significant progress made in the field of Love

numbers for asymptotically flat compact objects within
general relativity [21–30] and nonvacuum GR theories of
gravity [3,8–12], there is very little literature on the Love
numbers of asymptotically nonflat compact objects. We
note that a major challenge regarding this concerns the
notion of Love numbers by identifying the response and
source terms at asymptotic infinity as the decaying and
growing parts of the perturbed field, respectively, which
cannot be extended straightforwardly to nonflat spacetimes.
However, the notion of Love numbers within the framework
of a worldline EFT can be extended to nonflat spacetimes,
where the Love numbers can be defined in terms of the
scattering coefficients of the perturbing field as measured by
a distant observer.
In the following section, we shall develop a notion of

Love numbers for comoving compact objects on a de Sitter
background as measured by a comoving observer within the
framework of a worldline EFT on a de Sitter background.
We shall restrict ourselves to the Love number for an
arbitrary scalar field to simplify the computation. Along the
way, we will also list sufficient conditions for nonflat
spacetimes for which a definition of Love numbers similar
to ours is possible. In Sec. IV, we shall use the notion of
Love numbers developed in Sec. III to compute the SdS
scalar Love numbers observed by a distant comoving
observer.

III. WORLDLINE EFFECTIVE FIELD THEORY
FOR DE SITTER

This section will construct a worldline EFT for compact
objects on a nonflat background. We will note certain
features of the background spacetime, which allows for a
definition of scalar Love numbers using worldline EFT.
Then, we will specialize to a comoving compact object on a
de Sitter (dS) spacetime. We will use the worldline EFT to
define the scalar Love numbers for the compact object
through the scattering coefficients of the scalar field as
measured by a comoving observer far away from the
compact object.

A. The setup

We will consider a compact object sufficiently far away
from the observer on a dS background such that the
characteristic length associated with the compact object
r0 is much smaller than the coordinate separation between
the compact object and the observer. Such a compact object
may be modeled as a point particle moving along its
worldline after integrating out its characteristic length scale
r0. The finite-size effects of the compact object will be
accounted for through the presence of extra field couplings
on the point-particle worldline, within the framework of a
worldline EFT [22,25,27,35–37].
The compact object can interact with the scalar field on

the dS background through finite-size interactions. In
particular, the tidal field EL ¼ ∇Lϕ, generated by the scalar
field, can deform the compact object and give rise to the
multipole moments QL. For such a system, the effective
action will be of the form [22,27,35,36]

Stotal ¼ Spp þ Sϕ þ Sint þ SG þ Stidal: ð4Þ

Here, Spp is the point-particle action, Sϕ is the action for the
scalar field, and SG is the gravitational action, each of
which can be given by

Spp ¼ −M
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p
; ð5Þ

Sϕ ¼ −
Kϕ

2

Z
d4x

ffiffiffiffiffiffi
−g

p ∇μϕ∇μϕ; ð6Þ

SG ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ: ð7Þ

We have assumed the mass of the point particle to be M,
which is moving along its worldline with affine parameter
τ; Kϕ scales the overall strength of the scalar field, and we
have written the gravitational action with a positive
cosmological constant, as our interest lies in the asymp-
totically de Sitter spacetimes. Among other terms in
Eq. (4), Sint is the action describing the internal dynamics
of the finite-size effects of the compact object [37], and
Stidal is the part of the action describing the interaction
between the tidal effect of the scalar field and the multipole
moments of the compact object. In the analysis that
follows, we will not bother about the complicated internal
dynamics of the compact object, which are contained in
Sint [37]; instead, we aim to infer QL from the scattering
coefficients of the scalar field as observed by a distant
observer. Thus, for our purpose, providing an expression
for the action Stidal suffices, which reads
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Stidal ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
−KT

Z
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p 1ffiffiffiffiffiffi−gp

× δð4Þðxμ − zμðτÞÞ
X∞
l¼0

1

l!
QLðzμðτÞÞ∇Lϕ

�
: ð8Þ

Here,QL are the multipole moments of the compact object,
∇Lϕ are the scalar tidal fields (EL), uμ is the four-velocity
of the object, zμðτÞ is the worldline of the compact object,
and KT is the coupling constant characterizing the inter-
action between the scalar field and the compact object. The
delta function δð4Þðxμ − zμðτÞÞ ensures that the scalar field
only interacts with the compact object, whose location in
the spacetime is given by zμðτÞ, within the framework of
the worldline EFT. In what follows, we will use the
worldline EFT approach to define the Love numbers for
compact objects which are not asymptotically flat.

B. Love numbers from worldline EFT

Our goal in this section is to solve the scalar field
equation on the dS background and identify the two
linearly independent parts of the solution, along with their
constant coefficients. Following this, we will determine the
multipole moment QL in terms of these constant coeffi-
cients, which can be associated with the scattering coef-
ficients observed by a distant observer [27]. Similarly, the
tidal field EL can also be determined in terms of these
constant coefficients, and hence the response function
FlðtÞ can be determined, whose real part gives the Love
numbers, klðtÞ [19,20,22,27,30]. Note that the response
function can explicitly be a function of time if the
spacetime is not static. Thus, we obtain

QLðtÞ ¼ −FlðtÞELðtÞ; klðtÞ≡ 1

2
Re½FlðtÞ�: ð9Þ

Note that the tidal field EL should be understood as the
finite part of ∇Lϕ, while QL arises from the divergent part
of ∇Lϕ at the origin, in some appropriate radial coordinate,
evaluated on the worldline of the body [27].
As we are interested in extracting the scalar Love

numbers from the scattering of the scalar field from the
compact object, we will consider the Euler-Lagrange
equation for the scalar field, which gives

□ϕ ¼
X∞
l¼0

Tl
ϕ; ð10Þ

Tl
ϕ ¼ KT

Kϕ

ð−1Þl
l!

Z
dτ∇L

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p
ffiffiffiffiffiffi−gp

×QLðzμðτÞÞδð4Þðxμ − zμðτÞÞ
�
; ð11Þ

where □ ¼ ∇μ∇μ, and Kϕ is the coupling constant char-
acterizing the scalar field action.
In order to find solutions to the above differential

equation, we express the scalar field ϕ as a sum of various
angular modes ϕl, such that

ϕ ¼
X∞
l¼0

ϕl: ð12Þ

Plugging the above decomposition into Eq. (10) will imply
that each ϕl will satisfy the equation□ϕl ¼ Tl

ϕ, where T
l
ϕ

has already been defined in Eq. (11).

1. Defining Love numbers using worldline EFT

Upon close examination of Eq. (10), it is apparent that if
ϕ0 is a solution to the l ¼ 0 differential equation, then the
solution to the lth mode may be given by ∇Lϕ0 if
½□;∇L� ¼ 0. This means that if we can write the back-
ground spacetime in a chart, where the above commutation
holds true, we may find ϕl by simply solving for ϕ0.
Further, if the chart has the properties ∇Lϕ ¼ ∂Lϕ and
∇L

ffiffiffiffiffiffi−gp ¼ 0, we can make use of the results in [47–49] and
perform an analysis similar to the flat-space worldline EFT
[27] to get an explicit expression for the Love number in
terms of the scattering coefficients of the scalar field as
observed by a faraway observer. The above observations
imply that for any spacetime that meets the above-specified
conditions within some chart, we can provide a definition
of Love number for compact objects within the framework
of a worldline EFT, which we are going to illustrate for the
specific case of compact objects in asymptotically de Sitter
spacetimes.

2. De Sitter universe in the Poincaré patch

Motivated by the above discussion, we will choose to
work in the Poincaré patch of the de Sitter spacetime
employing the conformal coordinates, where the metric can
be expressed as

dS2 ¼ cðηÞ2½−dη2 þ dx⃗2�; cðηÞ ¼ −
1

Hη
: ð13Þ

Here H ≡ ffiffiffiffiffiffiffiffiffi
Λ=3

p
, where Λ is the positive cosmological

constant associated with the de Sitter universe [50–55].
Working in the Poincaré patch in the conformal coordi-
nates, we can observe that for any scalar Sðη; xiÞ, the
following identies hold:
(1) ½∇L;□�Sðη; xiÞ ¼ 0.
(2) ∇LSðη; xiÞ ¼ ∂LSðη; xiÞ.
(3) ∇L

ffiffiffiffiffiffi−gp ¼ 0.
As a consequence, we can construct the ϕl from ϕ0 as
ϕl ¼ ∇Lϕ0. Further, the above identities also imply that
∇Lϕ0 ¼ ∂Lϕ0, and the source term, Tl

ϕ of Eq. (10), can be
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shown to be proportional to the derivatives of the three-
dimensional delta function.
By considering a family of point particles moving with

the cosmic flow such that their coordinates can be found as
zμðτÞ ¼ ðz0ðτÞ; 0; 0; 0Þ, while satisfying the normalization
condition uμuμ ¼ −1, the source term Tl

ϕ can be further
simplified to

Tl
ϕ ¼ KT

Kϕ

Z
dτ

ð−1Þl
l!

∇L

�
δ3ðxiÞffiffiffiffiffiffi−gp QLðzμðτÞÞδðη − z0ðτÞÞ

�

¼ ð−1ÞlKT

l!
ffiffiffiffiffiffi−gp

Kϕ
QLðηÞ∂L½δ3ðxiÞ� ×

dτ
dη

: ð14Þ

Subsequent computation of the l ¼ 0 mode and, later, the
determination of the higher-l modes, which are performed
by the action of∇L on ϕ0, will require use of properties 1–3
listed above.

3. Obtaining the zero-mode solution

We can find the zero mode ϕ0 by solving Eq. (10) with
l ¼ 0, which reduces the source term to zero. Following
this, and the symmetries of the de Sitter universe in the
Poincaré patch, we consider the ansatz ϕ0 ¼ wðη; xiÞ=cðηÞ,
with cðηÞ being the scale factor of the de Sitter universe, as
defined in Eq. (13). Substituting the above ansatz into
Eq. (10) with l ¼ 0, we obtain the following differential
equation for wðη; xiÞ:

∂
2w
∂η2

−∇2w −
2w
η2

¼ 0: ð15Þ

As we are solving for the l ¼ 0 mode, there is no angular
dependence in w, and hence we may express wðη;xÞ as
wðη;xÞ ¼ vðrÞuðηÞ. Since space and time sectors do not
talk to each other, it follows that vðrÞ must satisfy the
equation ∇2vðrÞ ¼ −Ω2vðrÞ, where Ω is a constant and
uðηÞ satisfies the following differential equation:

∂
2u
∂η2

þ
�
Ω2 −

2

η2

�
u ¼ 0: ð16Þ

The above differential equation can be solved by using a
linear combination of Hankel functions [51], and uðηÞ takes
the following form:

uðηÞ ¼ ffiffiffi
η

p ðAHð1Þ
3
2

ðΩηÞ þ BHð2Þ
3
2

ðΩηÞÞ: ð17Þ

From the properties of the Hankel function, it follows that

Hð1Þ
α ðzÞ∼ð1= ffiffiffi

z
p Þeiz andHð2Þ

α ðzÞ∼ð1= ffiffiffi
z

p Þe−iz, for jzj→∞.
Furthermore, as in the flat spacetime, here also we impose
the condition that the zero mode should behave as eiωη for
η → −∞, which, when coupled with the above properties of
the Hankel function, demands A ¼ 1 and B ¼ 0.

The spatial sector, on the other hand, satisfies the
equation ∇2vðrÞ ¼ −Ω2vðrÞ, which can also be solved
by Hankel functions, if we expand the Laplacian in the
spherical polar coordinates. Therefore, the zero mode ϕ0 on
the dS background takes the form

ϕ0ðr; ηÞ ¼
η3=2ffiffiffi
r

p
ffiffiffiffiffiffiffi
πΩ
2

r
Hð1Þ

3
2

ðΩηÞ
n
Cinei

π
2Hð1Þ

1
2

ðΩrÞ

þ Coute−i
π
2Hð2Þ

1
2

ðΩrÞ
o
; ð18Þ

where Cin=out are the ingoing and outgoing scatte-
ring coefficients for the scalar field as observed by a
distant comoving observer. The extra factors involving
ð ffiffiffiffiffiffiffiffiffiffiffi

πΩ=2
p Þe�iπ=2 have been introduced to ensure the
appropriate ingoing and outgoing behaviors of the Hankel
function at large r [27]. However, both the Hankel
functions are ill behaved near the origin r ¼ 0, where
the compact object is placed, and hence we would like to
modify the Hankel functions to the Bessel functions, such
that at least one of the solutions is finite at the location of
the compact object.

4. Change of basis

We will next perform a basis change from the Hankel
functions to the Bessel functions for the spatial part of
Eq. (18), to ensure regularity for at least one of the solutions
at the location of the compact object. This is achieved
through the following equations [47]:

JpðΩrÞ ¼
1

2
ðHð1Þ

p ðΩrÞ þHð2Þ
p ðΩrÞÞ; ð19Þ

YpðΩrÞ ¼
1

2i
ðHð1Þ

p ðΩrÞ −Hð2Þ
p ðΩrÞÞ; ð20Þ

such that the zero-mode solution, as in Eq. (18), can be
expressed as

ϕ0ðr; ηÞ ¼
η3=2ffiffiffi
r

p ffiffiffiffiffiffiffiffiffi
2πΩ

p
Hð1Þ

3
2

ðΩηÞ

×
n
CirrY1

2
ðΩrÞ þ CregJ1

2
ðΩrÞ

o
; ð21Þ

where the arbitrary constants Creg and Cirr can be expressed
in terms of C1 and C2 as

Creg ¼ i
ðCin − CoutÞ

2
; Cirr ¼ −

ðCin þ CoutÞ
2

: ð22Þ

Note that in Eq. (21), the term J1
2
ðΩrÞ is regular at r ¼ 0,

while the other term—namely, Y1
2
ðΩrÞ—is irregular at

r ¼ 0. With this change of basis, we now wish to compute
the multipole moments of the compact object and relate it to
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the tidal field to determine the tidal Love number in terms
of the coefficients Cirr and Creg.

5. Relating the multipole moments and tidal fields

In this section, we will first compute the lth-order
moment of the scalar field ϕl using the simple relation
ϕl ¼ ∂Lϕ0 for each independent solution of ϕ0. Following
this, we will evaluate □ϕl, where the spatial part of the □
operator is interpreted as a distributional derivative [27,48].
Note that as we are working in the Poincaré patch of the de
Sitter spacetime, which is conformally flat, all the above
computations may proceed in a manner similar to that of the
flat space [27]. This results in the following expression
for ϕl:

ϕl ¼ η3=2
ffiffiffiffiffiffiffiffiffi
2πΩ

p
Hð1Þ

3
2

ðΩηÞ
n
CL
reg∂Lðr−1=2J1

2
ðΩrÞÞ

þCL
irr

ffiffiffiffiffiffiffiffiffi
2πΩ

p
∂Lðr−1=2Y1

2
ðΩrÞÞ

o
; ð23Þ

where CL
reg=irr are arbitrary constants characterizing the

regular and irregular parts of the solution to the second-
order differential equation in Eq. (10). We can further
simplify Eq. (23) using the following identities [49]:

∂LgðrÞ ¼ nLrl
�
1

r
∂

∂r

�
l
gðrÞ;�

1

z
d
dz

�
k
ðzνBνðzÞÞ ¼ zν−kBν−kðzÞ;�

1

z
d
dz

�
k
ðz−νBνðzÞÞ ¼ ð−1Þkz−ν−kBνþkðzÞ; ð24Þ

where we have gðrÞ as some arbitrary function of r, with
BνðzÞ representing the Bessel functions, either JνðzÞ or
YνðzÞ. This allows us to simplify Eq. (23) to read [27]

ϕl ¼ η3=2ffiffiffi
r

p ffiffiffiffiffiffiffiffiffi
2πΩ

p
Ωlð−1ÞlHð1Þ

3
2

ðΩηÞ

× nL½CL
regJ1=2þlðΩrÞ þ CL

irrY1=2þlðΩrÞ�: ð25Þ

Having determined ϕl, our next goal is to obtain an
expression for the quadrupole moment QLðηÞ in terms
of the arbitrary constants CL

reg and CL
irr. For this purpose, we

will substitute Eq. (25) into Eq. (10), and subsequent
comparison with Eq. (14) yields

QLðηÞ ¼ ð−1Þll!
H2 ffiffiffi

η
p Hð1Þ

3
2

ðΩηÞ 8πKϕ

KT
CL
irr ×

dη
dτ

: ð26Þ

The tidal part can be determined using the finite part of
Eq. (9)—i.e., by evaluating ϕl on the worldline of the
compact object, obtained by taking the r → 0 limit of ∇Lϕ
[27,48], resulting in

ELðηÞ ¼
ffiffiffi
π

p
η3=2Hð1Þ

3
2

ðΩηÞ ð−1Þ
l2lþ1l!

Γð1
2
þ lþ 1ÞC

L
reg

�
Ω
2

�
1þ2l

:

ð27Þ

Using Eq. (13) to lower the spatial indices of the multipole
moment tensor QL in Eq. (26), we obtain

QLðηÞ ¼
ð−1Þll!
ðHηÞ2ðlþ1Þ η

3=2Hð1Þ
3
2

ðΩηÞ 8πKϕ

KT
CL
irr ×

dη
dτ

: ð28Þ

So far, we have kept the proper time of the particle
unspecified; however, our computations are done for a
point particle comoving with the Hubble flow, which
means that its proper time will be the cosmological time
t, related to the conformal time through the relation
eHt ¼ −ð1=HηÞ. Therefore, in terms of the cosmological
time of the comoving observer, the multipole moments can
be expressed as1

QLðtÞ ¼ ð−1Þll! 8πKϕ

KT
CL
irr × eHtð2lþ1Þ

×
h
ηðtÞ3=2Hð1Þ

3
2

ðΩηðtÞÞ
i
: ð29Þ

Thus, the computation of the response function in terms
of cosmological time follows by taking the ratio of the
multipole moment in Eq. (29) with the tidal field in
Eq. (27), resulting in

FlðtÞ ¼ −
Kϕ

KT

4π1=2

2l

�
2

Ω

�
1þ2l

Γ
�
2lþ 3

2

�
CL
irr

CL
reg

eHtð2lþ1Þ

≡ Kϕ

KT
F̃lðtÞ: ð30Þ

Here we have identified the normalized response function
of the object to be F̃lðtÞ, which reads

F̃lðtÞ ¼ −
4π1=2

2l

�
2

Ω

�
1þ2l

Γ
�
2lþ 3

2

�
CL
irr

CL
reg

× eHtð2lþ1Þ:

ð31Þ

From the microscopic perspective, the ratio CL
irr=C

L
reg

depends on the nature of the compact object. From the
macroscopic worldline EFT perspective, this ratio can be
associated with the ratio of the ingoing and outgoing
scattering coefficients.
Some comments are in order regarding the multipole

moment and the Love numbers being a function of time.

1Looking at the multipole and the tidal field described in
Eqs. (26), (27), and (29), we may note that it lacks a factor

ffiffiffiffiffi
2π

p
,

in relation to the flat-space expressions; this is a result of the
convention of the basis expansion used.
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This is a consequence of the background spacetime not
being stationary. As a result, the temporal part of the field
cannot be expressed in the Fourier basis; instead, we have
to use the Hankel basis. A similar time dependence on the
gravitational multipole moments on a de Sitter background
was reported earlier in [54].
To explicitly see the relation of CL

irr=C
L
reg with the

scattering coefficients, we may go to the Hankel basis
on the spatial sector of (25), using the asymptotic behavior
of the Hankel function [47] to identify the ingoing and
outgoing coefficients [27]. This will allow us to express
CL
reg=irr as follows:

CL
reg ¼

ð−1Þl
2

il
h
CL
ine

iπ
2
ðlþ1Þ þ ð−1ÞlCL

oute−i
π
2
ðlþ1Þ

i
;

CL
irr ¼

ð−1Þl
2

ilþ1
h
CL
ine

iπ
4
ðlþ1Þ þ ð−1Þlþ1CL

oute−i
π
4
ðlþ1Þ

i
;

ð32Þ

where CL
in=out are the scattering coefficients of the scalar

field as observed by a distant comoving observer. Using the
above relations and Eq. (30), we can define the response
function of a comoving compact object on a de Sitter
background on the Poincaré patch in terms of the ingoing
and outgoing scattering coefficients observed by a faraway
comoving observer within the framework of de Sitter
worldline EFT.
Despite this section mostly focusing on using worldline

EFT for asymptotically de Sitter compact objects, a similar
analysis is possible for spacetimes having features dis-
cussed in Sec. III B 1. Our next goal would be to perform a
microscopic calculation to compute CL

irr=C
L
reg for small SdS

black holes in order to get an expression for SdS black hole
scalar Love numbers.

IV. LOVE NUMBERS
OF SCHWARZSCHILD–DE SITTER

In this section, we will compute the scalar Love numbers
for a Schwarzschild–de Sitter (SdS) black hole. The
calculations presented here will be at the microscopic
level, where we will compute CL

irr=C
L
reg for a small SdS

black hole. This ratio can further be associated with the
scattering coefficients observed by a distant comoving
observer, through Eq. (32).
The computation involves us exploring the consequences

of the near-horizon physics on the asymptotic behavior of
the scalar fields in the static chart of the SdS black hole,
then performing a coordinate transformation on the static
patch from the static coordinate to the flat-slicing coor-
dinates, and finally matching the asymptotic behavior with
the macroscopic background dS worldline EFT. This
matching will allow us to express the Love numbers for
a SdS black hole as observed by a distant comoving
observer. We will also give a functional definition for

the tidal response coefficient for asymptotically de Sitter
compact objects based on computation in the static
coordinates.

A. Flat-slicing coordinates for SdS and the worldline
EFT on the Poincaré patch of dS

We consider spherically symmetric compact objects,
whose exterior can be written in the form [42–44] (known
as the flat slicing for SdS black holes);

ds2 ¼ −gðr; ηÞdη2 þ hðr; ηÞdx⃗2;

gðr; ηÞ ¼ a2ðηÞ
�
1 −

M
2aðηÞr

�
2
�
1þ M

2aðηÞr
�
−2
;

hðr; ηÞ ¼ a2ðηÞ
�
1þ M

2aðηÞr
�
4

;

aðηÞ ¼ −1=Hη: ð33Þ

In the large-r limit, the above metric becomes the dS
spacetime in the Poincaré patch. So, in the same spirit as the
microscopic calculations in the flat spacetime [22,25,27],
we should be matching the scalar field in the large-r limit of
the flat-slicing coordinates of the SdS black hole with the
scalar field on the dS worldline EFT.
The angular part of the scalar field equation in the large-r

limit of a spacetime given by the metric in Eq. (33)
becomes separable in the spherical harmonic basis, Ylm,
and the solution can be seen to be of the form

ϕl ¼ η
ffiffiffi
η

p
Hð1Þ

3
2

ðΩηÞ
ffiffiffiffiffiffiffiffiffi
2πΩ

p
Ωlð−1Þlr−1=2

×
n
flatAl

regJ1=2þlðΩrÞ þ flatAl
irrY1=2þlðΩrÞ

o
; ð34Þ

where we have

flatAl
reg=irr ¼

Xl
m¼−l

flatAlm
reg=irrYlmðθ;ϕÞ; ð35Þ

with flatAlm
reg=irr being arbitrary coefficients associated with

the basis expansion for eachm. Further, we may choose the
parameter Ω to be the same as in Eq. (25).
We can reexpress the above equation in terms of the unit

vectors (nL) using

Ylm ¼ YL
lmnL; ð36Þ

where YL
lm are complex STF tensors. We may now note

that Eq. (34) can be reexpressed as

ϕl ¼ η
ffiffiffi
η

p
Hð1Þ

3
2

ðΩηÞ
ffiffiffiffiffiffiffiffiffi
2πΩ

p
ΩlnLð−1Þl

× r−1=2ðflatAL
regJ1=2þlðΩrÞþ flatAL

irrY1=2þlðΩrÞÞ; ð37Þ
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such that

flatAL
reg=irr ¼

Xl
m¼−l

YL
lm

flatAlm
reg=irr: ð38Þ

From the perspective of the worldline EFT for the SdS
black hole, we should be identifying the coefficient
flatAL

reg=flatAL
irr with CL

reg=CL
irr, where it should be understood

that the ingoing boundary condition imposed at the horizon
of SdS black hole will determine flatAL

reg=flatAL
irr. In what

follows, we will explicitly illustrate how to compute these
coefficients.
Exploring the consequences of the near-horizon physics

on flatAL
reg=flatAL

irr requires one to perform a near zone–far
zone matching calculation [4,27,45,46]. But this task is not
straightforward for the SdS black hole in the flat-slicing
coordinate [Eq. (33)]. Noting this, we will perform the near
zone–far zone matching calculation in the static chart in
Sec. IV B and identify the far-zone solution. Following this,
we will perform a chart transformation back to the flat-
slicing coordinate and compute the ratio flatAL

reg=flatAL
irr as

discussed in Sec. IV C.

B. Matching the near zone with the far zone

As discussed above, we will perform the near zone–far
zone matching calculation in the static chart [4,27,45,46],
where the metric reads

ds2 ¼ −fðRÞdT2 þ fðRÞ−1dR2 þ R2dΩ2;

fðRÞ ¼ 1 −
2M
R

− R2H2: ð39Þ

As the static patch of the SdS black hole is a subset of the
region covered by the flat-slicing coordinates, the static
coordinates and the flat-slicing coordinates can be seen to
be related by [44]

R ¼ aðtÞr
�
1þ M

2aðtÞr
�
2

;

T ¼ tþH
Z

R R
fðRÞ

�
1 −

2M
R

�
−1=2

dR;

aðtÞ ¼ eHt; −
1

Hη
¼ eHt: ð40Þ

Since the SdS spacetime in the static gauge has apparent
Killing symmetries associated with T and dΩ2, we may
expand the solution in Fourier and spherical harmonics and
solve the radial part of the differential equation in two
regions, the far and near zones, followed by a matching
calculation in the intermediate region.

1. Far zone

In the far-zone region, the spacetime of the SdS black
hole should approach pure dS. For a SdS black hole, the far-
zone region can be observed to be characterized by
ðM=RÞ ≪ R2H2 and R2H2 ∼Oð1Þ. In this region, the
metric will look like pure de Sitter in the static chart,
and the radial part of the scalar field, farRðRÞ, can be shown
to obey the following differential equation:

R2ð1 −H2R2Þ2farR00ðRÞ þ 2Rð1 −H2R2Þð1 − 2H2R2ÞfarR0ðRÞ

− ð1 −H2R2Þ
�
lðlþ 1Þ − R2ω2

1 −H2R2

�
farRðRÞ ¼ 0: ð41Þ

One may solve the above differential equation to show the far-zone solution for the radial part of the SdS black hole
farRðRÞ to be of the form

farRðRÞ ¼ statAl
regRlð1 −H2R2Þ−iω2H

2F1

�
1

2

�
l −

iω
H

�
;
1

2

�
l −

iω
H

þ 3

�
;lþ 3

2
;H2R2

�

þ statAl
irrR

−l−1ð1 −H2R2Þ−iω2H
2F1

�
−
Hðlþ 1Þ þ iω

2H
; 1 −

l
2
−

iω
2H

;
1

2
− l;H2R2

�
; ð42Þ

with statAl
reg=irr being constants that characterize the two linearly independent solutions in the far zone of the SdS black hole.

2. Near zone

Here, wewill solve the near-zone scalar field equation and
study the behavior of the radial part of the scalar field in the
near zone. To do this, we need to define the notion of the

near zone carefully. Two possible notions of the near zone
are available in the literature. The first notion is broadly
based on the construction discussed in [4,27,45,46].
The second notion is discussed in earlier works as the
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near-horizon region [46]. We shall solve the near-zone radial
differential equation within these two distinct notions of the
near zone. These two notions are associated with two
different regions of the spacetime. In this work, we have
presented both calculations to explicitly illustrate certain
subtleties present in Love number computations that may be
related to the appropriate choice of the near zone.
In what follows, we shall consider the OðH2M2Þ

corrections to the scalar field equation under the two
different notions of the near zone.
First notion. The first notion of the near zone would be a

minimal extension of the notion of the near-zone region for

Schwarzchild black holes. Here, due to the presence of a
cosmological horizon and the associated length scale 1=H,
for a SdS black hole with black hole horizon radius Rh, we
impose HðR − RhÞ ≪ 1 along with ωðR − RhÞ ≪ 1
[4,27,45,46] in the near-zone region. This notion of the
near zone should be understood as saying that the radial
expanse of this region is much smaller than the length
scales 1=H and 1=ω.
Restricting the radial part of the field equation to this

region allows us to replace ωRwithωRh andHRwithHRh.
This will result in the following differential equation for the
radial part of the perturbation:

R2

�
1 −

2M
R

−H2R2
h

�
2
nearRð1Þ00ðRÞ þ R

�
1 −

2M
R

−H2R2
h

��
2 −

2M
R

− 4H2R2
h

�
nearRð1Þ0ðRÞ

−
�
1 −

2M
R

−H2R2
h

��
lðlþ 1Þ − R2

hω
2

1 − 2M
R −H2R2

h

�
nearRð1ÞðRÞ ¼ 0; ð43Þ

where nearRð1ÞðRÞ is the radial part of the scalar field in the first notion of the near zone. We will next attempt to solve the
above differential equation to obtain nearRð1ÞðRÞ for a small SdS black hole.
We shall now quantify the smallness of a SdS black hole through powers of H2M2; for a small SdS black hole, we can

observe that [56]

fðRÞ ¼ 1 −
2M
R

−H2R2 ¼ H2

R
ðRc − RÞðR − RhÞðRþ Rh þ RcÞ;

RcRhðRc þ RhÞ ¼
2M
H2

; R2
h þ R2

c þ RhRc ¼
1

H2
; 0 ≤ Rh ≤ Rc ≤

1

H
; H2M2 ≪ 1;

Rh ¼ Mð2þ 8H2M2 þOðH3M3ÞÞ; HRc ¼
�
1 −HM −

3

2
H2M2 þOðH3M3Þ

�
: ð44Þ

With the above notion of a small SdS black hole, we shall attempt to solve the scalar field equation [Eq. (43)] in the near-
zone region, perturbatively in H2M2.
The perturbative solution for a small SdS black hole will be of the form

nearRð1ÞðRÞ ¼ nearRshðRÞ þ 4H2M2hðRÞ þOðH3M3Þ: ð45Þ

Here, nearRshðRÞ is the leading-order ingoing Schwarzchild solution [27], and hðRÞ is the correction to it at OðH2M2Þ.
After perturbatively expanding Eq. (43) in H2M2 and performing a variable redefinition of f̃ ¼ 1 − 2M

R , we can observe
the leading-order correction in the near zone, using the function hðfÞ to satisfy the following differential equation (dots
representing derivatives with the variable f̃):

f̃ð1 − f̃Þḧþ ð1 − f̃Þḣþ
�
ω2ð2MÞ2ð1 − f̃Þ

f̃
−
lðlþ 1Þ
ð1 − f̃Þ

�
h ¼ Tðf̃Þ;

Tðf̃Þ ¼ 1

f̃ð1 − f̃Þ ð2f̃ð1 − f̃Þ2nearR̈sh þ ð1 − f̃2ÞnearṘsh − ð8M2ω2 þ lðlþ 1ÞÞnearRshÞ;
nearRshðf̃Þ ¼ Af̃2iMωð1 − f̃Þlþ1

2F1½1þ lþ 4iMω;lþ 1; 1þ 4iMω; f̃�: ð46Þ

We can now solve Eq. (46) using the method of variation of parameters. This allows us to obtain a formal solution for h
using the two linearly independent solutions to the homogenous part of Eq. (46) and the specific source term Tðf̃Þ.
For the dominant mode of the scalar perturbations having l ¼ 0, the formal solution for Eq. (46), obtained using the

method of variation of parameters ðhl¼0ðf̃ÞÞ, can be explicitly expressed as
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hl¼0ðf̃Þ ¼ f̃2iMωð1 − f̃Þ

8>><
>>:
2ð2Mωþ iÞ2F1½1; 4iMω − 1; 4iMω; f̃� − 4Mω − 3i

2ð1 − f̃Þf̃ð4Mωþ iÞ −
2Mω2F1½2; 4iMω − 1; 4iMω; f̃�

ð1 − f̃Þf̃ð4Mωþ iÞ

−
i

�
4Mω
f̃−1 þ 4Mωþi

f̃
þ 2 logð1 − f̃Þð2Mω − iÞ − 2 logðf̃Þð2Mω − iÞ

�
2ð1 − f̃Þ

9>>=
>>;: ð47Þ

Looking at the above equation, it might seem like it is
divergent at R ¼ 2M, but this is not an issue; as discussed
earlier, using Eq. (44), the small SdS black hole horizon Rh
is shifted outside 2M.
Second notion. We shall construct the second notion of

the near zone, appropriately refered to as the near-horizon
region [46], by first writing the radial differential equation
in the form

Δ
d
dR

�
Δ
dRðRÞ
dR

�
þ ðR4ω2 − lðlþ 1ÞÞRðRÞ ¼ 0;

Δ ¼ R2fðRÞ: ð48Þ

Now, upon defining the variable z ¼ ðR − RhÞ=Rh, we have

Δ ¼ H2R2
hðRc − RhÞðRc þ 2RhÞzð1þ zÞ

�
1 −

Rh

Rc − Rh
z

�

×
�
1þ Rh

Rc þ 2Rh
z
�
: ð49Þ

We shall now note that we can get closer to or farther away
from the horizon of the SdS black hole by dictating how
small or large the variable z is. Here, we shall define the
second notion of the near zone as the region where we have
small z, such that Oðz3Þ and higher powers of z may be
ignored in the expression for Δ. This results in

Δ ¼ H2R2
hðRc − RhÞðRc þ 2RhÞzð1þ αzÞ;

α ¼ 1 −
Rh

Rc − Rh
þ Rh

Rc þ 2Rh
: ð50Þ

In addition to this, similarly to the case of Schwarzchild
black holes, we also demand ωðR − RhÞ ≪ 1. So, we can
write the radial differential equation in the near zone in
terms of the variable z as

zð1þ αzÞ d
dz

�
zð1þ αzÞ d

dz
½nearRð2ÞðzÞ�

�

þ
�

ω2R2
h

H4ðRc − RhÞ2ðRc þ 2RhÞ2

−
lðlþ 1Þzð1þ αzÞ

H2ðRc − RhÞðRc þ 2RhÞ
�

nearRð2ÞðzÞ ¼ 0; ð51Þ

where nearRð2Þ is the radial part of the scalar field in the
second notion of the near zone. Next, we will restrict the
scenario to a small SdS black hole, with smallness
quantified through powers of H2M2. Upon keeping only
terms up toOðH2M2Þ andOðMωÞ, Eq. (44) can be used to
write Eq. (51) in terms of the variable y ¼ αz as

yð1þyÞ d
dy

�
yð1þyÞ d

dy
½nearRð2ÞðyÞ�

�
þð4ω2M2−lðlþ1Þ

× ð1þ24H2M2Þyð1þyÞÞnearRð2ÞðyÞ¼0: ð52Þ

The ingoing solution to the above differential equation
can be seen to have the form

nearRð2ÞðyÞ ¼ ð1þ yÞ2iMωy−2iMω

2F1½−l̃; l̃þ 1; 1 − 4iMω;−y�

l̃ ¼ lþ 24lðlþ 1Þ
2lþ 1

H2M2: ð53Þ

3. Matching of near zone with far zone

Having obtained the near-zone and far-zone solutions,
our next task would be to perform a matching calculation of
the near zone with the far zone [4,27,45,46]. We will
perform this for the two notions of the near zone mentioned
above, for which the solutions were derived in Sec. IV B 2.
At this stage, we emphasize a key assumption regarding

our calculation. In Sec. IV B 2, we maintained the
OðH2M2Þ terms for the near-zone field equations. But
in the far-zone region of Sec. IV B 1, we ignored all the
OðH2M2Þ terms respecting the assumptions of the world-
line EFT constructed in Sec. III. However, we justify this
analysis, as the near-zone region contains information
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regarding the behavior of the compact object, and thus
Love numbers [3,18,26].
First, we can note that the far-zone region has an extra

length scale 1=H in addition to 1=ω, so, to go to the
matching region from the far zone, we need to take the
limits HR ≪ 1 and ωR ≪ 1 [4,27] of Eq. (42). This will
result in

farR ¼ statAl
regRl þ statAl

irrR
−l−1: ð54Þ

Second, we can note that going to the matching region from
the near zone would require going further away from the
horizon of the black hole; thus, for a small SdS black hole,
we should take the ðM=RÞ ≪ 1 limit on the near-zone
solution [4,27].
Matching with the first notion. If we take the ðM=RÞ ≪ 1

limit on the solution obtained in the region specified
by the first notion of the near zone as in Eq. (45), we
will get

nearRð1Þ ¼
�
Γð−2l − 1ÞΓð1þ 4iMωÞ

Γð−lÞΓð4iMω − lÞ þ 4H2M2cirrl

��
2M
R

�ðlþ1Þ

þ
�

Γð2lþ 1ÞΓð1þ 4iMωÞ
Γðlþ 1ÞΓðlþ 1þ 4iMωÞ þ 4H2M2cregl

��
R
2M

�
l
; ð55Þ

where cregl and cirrl are corrections that should arise at
leading order in H2M2 for a small SdS black hole upon
evaluating the solution for Eq. (46). Comparing Eq. (54)
with Eq. (55) and identifying the powers of R in the
matching region, we may write

statAl
irr

statAl
reg

jð1Þ ¼ ð2MÞ2lþ1
ðγ1 þ 4H2M2cirrl Þ
ðγ2 þ 4H2M2cregl Þ ;

γ1 ¼
Γð−2l − 1ÞΓð1þ 4iMωÞ

Γð−lÞΓð4iMω − lÞ ;

γ2 ¼
Γð2lþ 1ÞΓð1þ 4iMωÞ

Γðlþ 1ÞΓðlþ 1þ 4iMωÞ : ð56Þ

For the dominant l ¼ 0 mode of a small SdS black hole,
we are able to compute creg0 and cirr0 using Eqs. (45), (46)
and (47):

cirr0 ¼ −
1

2
; creg0 ¼ −

1

2
þ i
4Mω

; ð57Þ

where cirr0 and creg0 have been computed under the
assumption of a small SdS black hole—that is, we can
only keep terms proportional to H2M2 and Mω; all higher-
order terms have been ignored while going to the matching
region from the near zone.
Matching with the second notion. Now, instead of using

Eq. (45) obtained from the first notion of the near zone, if

we take theM=R ≪ 1 limit on the near-zone solution in the region specified by the second notion of the near zone, given by
Eq. (53), we will get

nearRð2Þ ¼ Γð1 − 2iωÞΓð2elþ 1Þ
Γðelþ 1ÞΓð1þ el − 2iωÞ

�
1 −H2M2

�
16l −

24lðlþ 1Þ logð R
2MÞ

2lþ 1

���
R
2M

�
l

þ Γð1 − 2iωÞΓð−1 − 2elÞ
Γð−elÞΓð−el − 2iωÞ

�
1 −H2M2

�
24lðlþ 1Þ logð R

2MÞ
2lþ 1

− 16l − 16

���
2M
R

�
lþ1

; ð58Þ

where el is given by Eq. (53).
Following this, we may identify the powers of R in the matching region by comparing Eqs. (54) and (58) to obtain an

equation analogous to Eq. (56), but based on the second notion of the near zone. The ratio of the coefficients can be seen to be

statAl
irr

statAl
reg

jð2Þ ¼ ð2MÞ2lþ1Γðlþ 1ÞΓð−1 − 2lÞΓðlþ 1 − 4iωÞ
Γð2lþ 1ÞΓð−lÞΓð−lþ 4iMωÞ

�
1þH2M2

�
16þ 32lþ 24lðlþ 1ÞΨ

2lþ 1

��
;

Ψ ¼ ψð−l − 4iMωÞ þ ψðl − 4iMωþ 1Þ þ ψð−lÞ þ ψðlþ 1Þ − 2ψð2lþ 1Þ − 2ψð−2l − 1Þ − 2 log

�
R
2M

�
;

ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ: ð59Þ
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An interesting observation regarding the above equation
is that identifying the powers of R when working with the
second notion of the near zonewill result in statAl

irr=
statAl

regjð2Þ
having a logðR=2MÞ term in it. Some earlier works have
also noted log terms, as in Eq. (58), appearing in alternate
theories of gravity [9,12]. Such log terms in the case of
Schwarzchild black holes are interpreted as a consequence
of classical RG flow [22,25,29].
One may criticize the identification of the powers of R in

Eq. (54) in the matching region with the same in Eq. (58)
due to the log terms. However, we have performed this, as
some earlier works suggest that such terms arise in the
expression of Love numbers [9,57]. In the next section,
when we explicitly express the Love number, we will note
that upon working with the second notion of the near zone,
we will necessarily have such logðR=2MÞ terms for SdS
black hole Love numbers when l ≠ 0.
We would like to mention that the above analysis has

been performed in the static chart of a SdS black hole.
However, the dS worldline EFT and the definition of Love
numbers employ the flat-slicing coordinates as in Sec. IV
A. The next step is to go to the flat-slicing coordinates in
order to identify the scalar field in the asymptotic region of
the metric Eq. (33) with the EFT scalar field of Sec. III
described in the Poincaré patch of pure de Sitter.

C. Going to flat slicing and the worldline EFT on dS

After performing a matching calculation for the SdS
black hole from the near zone to the far zone in the static
chart, our next goal would be to go to the flat-slicing
coordinate of the SdS black holes, as discussed in Sec. IV
A, where we can perform the matching of the coefficients in
the far zone of the black hole with the coefficients of the dS
worldline EFT as in Sec. III.
To go to the flat-slicing coordinates from the static

coordinates, we may employ Eq. (40), where t is the
cosmological time. Observe that the coordinate transforma-
tion in Eq. (40) is greatly simplified when ðM=RÞ ≪ 1. So,
we first plug in the expression for the static coordinates from
Eq. (40) into the region where ðM=RÞ ≪ 1 in Eq. (42).
Then, we find a region on the manifold in terms of the
coordinates ðr; tÞ where the ratios flatAl

irr=
flatAl

reg and
statAl

irr=
statAl

reg can be related by comparison with Eq. (34).
Once we find a relation between the ratios in one region

of the static patch, this relation should hold everywhere in
the static patch, as these ratios are constants specifying the
solution and should be the same throughout the static patch.
Using the above discussed procedure, coordinate invari-
ance will result in the following relation between
flatAl

irr=
flatAl

reg and statAl
irr=

statAl
reg:

flatAl
irr

flatAl
reg

¼ −
π

Γ
�
2lþ3
2

�
Γ
�
2lþ1
2

�
�
Ω
2

�
2lþ1statAl

irr

statAl
reg

: ð60Þ

Observe that spherical symmetry implies that flatAlm
reg=irr

of Eq. (35) will be independent of m, and Eq. (38) will
result in

flatAL
irr

flatAL
reg

¼
flatAl

irr
flatAl

reg
: ð61Þ

As discussed in Sec. IVA, the matching of the micro-
scopic description with the macroscopic dS worldline EFT
requires flatAL

irr=
flatAL

reg ¼ CL
irr=C

L
reg. This means that for a

comoving SdS black hole, the normalized tidal response
of Eq. (30), SdSF̃ω

l , can be expressed in terms of
statAl

irr=
statAl

reg as

SdSF̃ω
l ¼ −

4π1=2

2l

�
2

Ω

�
1þ2l

Γ
�
2lþ 3

2

�
CL
irr

CL
reg

× eHtð2lþ1Þ

¼ −π3
2

2l−2Γ
�
2lþ1
2

� statAl
irr

statAl
reg

× eHtð2lþ1Þ; ð62Þ

even though, in the context of this paper, Eq. (62) is for a
SdS black hole. The arguments above are valid for all
spherically symmetric comoving compact objects on a de
Sitter background whose exterior spacetime is described
by Eq. (33). As a result, the above expression can be used
for any such spherically symmetric compact object, where
we will have to compute statAl

irr=
statAl

reg separately for each
such compact object depending on the appropriate boun-
dary conditions on their surface [3,18].
We will now note that the near zone–far zone matching

calculation in Sec. IV B has resulted in two different
expressions for statAl

irr=
statAl

reg, which are statAl
irr=

statAl
regjð1Þ

and statAl
irr=

statAl
regjð2Þ, depending on the use of the first or

the second notion of the near zone, respectively. Next, we
will explicitly write down the expression for the scalar Love
numbers for SdS black holes as computed using these two
distinct notions of the near zone.

D. SdS Love numbers

Here, we shall explicitly write down the expression for
SdS Love numbers. We will first use the definition of Love
numbers developed using the dS worldline EFT and
Eq. (62); this is the Love number of the SdS black hole
as measured by a distant comoving observer. Following
this, we will also comment on a functional notion of Love
numbers in the static coordinates of a SdS black hole.

1. Love numbers for a comoving observer

Using the microscopic computation of a scalar field in a
SdS background as discussed above, we are able to identify
the Love numbers of a SdS black hole as observed by a
comoving observer through Eq. (62) using a worldline EFT
framework. Further, in Sec. III within the framework of a
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worldline EFT, we had argued that the expression Eq. (30)
can be understood as a well-defined notion of tidal Love
numbers for comoving compact objects in terms of scatter-
ing coefficients, as measured by a distant comoving
observer on a de Sitter background. Here, we shall
explicitly express the SdS Love number up to OðH2M2Þ.
To get the explicit form of the Love number, we shall

plug the value for statAl
irr=

statAl
reg into Eq. (62). However, the

use of two different notions of the near zone has resulted
in two different expressions for statAl

irr=
statAl

reg, which
are statAl

irr=
statAl

regjð1Þ and statAl
irr=

statAl
regjð2Þ, respectively. The

associated response coefficients SdSF̃ωð1Þ
l and SdSF̃ωð2Þ

l are
also different. Observe that

SdSF̃ωð1Þ
l ¼ −π3

2

2l−2Γ
�
2lþ1
2

� statAl
irr

statAl
reg

				ð1Þ × eHtð2lþ1Þ: ð63Þ

Now, expanding statAl
irr=

statAl
regjð1Þ from Eq. (56) and keep-

ing terms up to OðH2M2Þ for a small SdS black hole will
result in

SdSF̃ωð1Þ
l ¼ ðschF̃ω

l þ 4H2M2Lωð1Þ
l Þ × eHtð2lþ1Þ; ð64Þ

where schF̃ω
l is the normalized response coefficient of a

Schwarzschild black hole as defined in Eq. (30), and Lωð1Þ
l

is the expected correction, which arises at OðH2M2Þ. For
the dominant mode of the scalar perturbations (l ¼ 0), we

can explicitly evaluate Lωð1Þ
0 using Eqs. (56) and (57) to be

Lωð1Þ
0 ¼ 8Mπ: ð65Þ

This means that for a small SdS black hole, the normalized
Love number, as observed by a comoving observer for the
dominant mode of a scalar perturbation under the first
notion of the near zone, looks like

k̃ωð1Þ0 ¼ Re
h
F̃ωð1Þ
0

i
¼ 32πH2M3eHt: ð66Þ

Similarly, if we adopt the second notion of the near zone
from Eq. (62), we have

SdSF̃ωð2Þ
l ¼ −π3

2

2l−2Γð2lþ1
2
Þ
statAl

irr
statAl

reg

				ð2Þ × eHtð2lþ1Þ: ð67Þ

If we go ahead and plug in the expression for
statAl

irr=
statAl

regjð2Þ within the second notion of the near zone
from Eq. (59), we will get

SdSF̃ωð2Þ
l ¼ schF̃ω

l

�
1þH2M2

�
16þ 32lþ 24lðlþ 1ÞΨ

2lþ 1

��
× eHtð2lþ1Þ: ð68Þ

Further, the normalized Love number will be

k̃ωð2Þl ¼Re½F̃ωð2Þ
0 �

¼−
24lðlþ1Þ
2lþ1

H2M2Im½schF̃ω
l �Im½Ψ�eHtð2lþ1Þ; ð69Þ

where Ψ has the form given in Eq. (59) and is not always
real; however, it should be noted that the two expressions
for the SdS Love number cannot be simultaneously correct;
only one of the two is correct. The reason for getting two
different expressions is the use of two different notions of
the near zone.
The first notion of the near zone is the simplest and

most straightforward definition of a near zone, as it is a
straightforward extension of the one used in the
Schwarzchild case [4,27,45,46], but with an additional
length scale 1=H. However, we do not find any reason
to completely discard the second notion either, as it also
quantifies a region of the background metric at a certain
degree of proximity to the black hole horizon. The disagree-
ment between the two different computations may indicate
certain intricacies regarding the computation of Love
numbers for compact objects. However, both computations,
with either the first or second notion of the near zone,
indicate a nonzero value for the scalar SdS Love numbers.

2. Love numbers in static coordinates

Looking at the far-zone limit of the near-zone solution in
the static chart from Sec. IV B, it might seem that taking the
M=R ≪ 1 limit on the near-zone solution and taking the
ratios of the coefficients of the growing and the decaying
terms is sufficient to define the response coefficient of the
compact object based on an analogy with the asymptoti-
cally flat case [17–19]; however, one should tread with
caution when it comes to this definition. This is because the
definition of Love numbers in the asymptotically flat case is
motivated through the analogy with the Newtonian notion,
where the response of the compact object is quantified by
the coefficient of R−l−1, while the presence of the source is
signified through the coefficient of Rl. Such an analogy
may not be possible if the spacetime is not asymptoti-
cally flat.
However, looking at Eq. (62), it is clear that the Love

number for a spherically symmetric compact object as
observed by a distant comoving observer (in terms of
ingoing and outgoing scattering coefficients) is specified
entirely through the ratio statAl

irr=
statAl

reg. This suggests that
one may very well use statAl

irr=
statAl

reg as a functional
definition of the response coefficient for asymptotically
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de Sitter spacetimes in the static coordinates. So, we define
a functional notion of response coefficient for a spherically

symmetric comoving compact object, F̃ωðsÞ
l , as the ratio

F̃ωðsÞ
l ¼

statAl
irr

statAl
reg

: ð70Þ

Using the above notion of response coefficients for a
comoving compact object, in terms of the static coordi-
nates on a SdS background, one can use Eq. (56) or
Eq. (59) depending on the first or the second notion of the
near zone to observe a nonzero Love number for the SdS
black holes.

V. SUMMARY AND DISCUSSION

The tidal response of a body against an external tidal
field ELðx0Þ is quantified using the tidal response function
Flðx0Þ, which is defined through the relationship

QLðx0Þ ¼ −Flðx0ÞELðx0Þ; ð71Þ
where QLðx0Þ is the induced multipole moment of the
body. The real part of the tidal response function constitutes
the Love number of the body, klðx0Þ ¼ Re½Flðx0Þ�. In
general, we expect the tidal response and the multipole
moment to be functions of the coordinate time (x0) if the
vector field associated with the time is not Killing. This is
relevant to our construction, where we consider asymp-
totically de Sitter compact objects.
Since the idea of tidal Love numbers is not straightfor-

ward if the spacetime is not asymptotically flat, we
constructed a worldline effective field theory (EFT) for
compact objects on a nonflat background in order to define
Love numbers for asymptotically nonflat scenarios. Within
the framework of the worldline EFT, we define the black
hole Love numbers in terms of the scattering coefficients
associated with the perturbing fields, as measured by the
distant observer.
Subsequently, we focused on compact objects on a de

Sitter background where the body interacts with a back-
ground scalar field by coupling with its multipole moments
as described in Eqs. (4) and (8). Working in the Poincaré
patch for the dS spacetime, we express its response
function as

FlðtÞ ¼ KϕF̃lðtÞ; ð72Þ
where Kϕ is the scalar-field coupling constant and t is the
cosmological time. F̃lðtÞ is the normalized response
function, and it may be expressed as

F̃lðtÞ ¼ −
4π1=2

2l

�
2

Ω

�
1þ2l

Γ
�
2lþ 3

2

�
CL
irr

CL
reg

× eHtð2lþ1Þ;

ð73Þ

where we have H ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
, and CL

irr and C
L
reg are constants

characterizing the compact object. From the perspective of
the worldline EFT, these are constants which can be
associated with the amplitudes of the ingoing and outgoing
modes ðCL

in; C
L
outÞ of the perturbation as observed by a

distant comoving observer. The relation between ðCL
irr; C

L
regÞ

and ðCL
in; C

L
outÞ can be obtained by setting the relation

between Bessel functions and Hankel functions to be
Eq. (32).
While defining Love numbers for asymptotically dS

spacetimes from a worldline EFT, we also noted certain
features of a possibly non-dS background spacetime for
which a similar approach could be used to define Love
numbers. We also comment that the definition of Love
numbers within the framework of a worldline EFT in terms
of the scattering coefficients is observer dependent, as the
scattering coefficients are themselves dependent on the
observer. This is, however, not true if we are restricting
the scenario to distant free-falling observers in the context
of asymptotically flat spacetimes.
In asymptotically flat spacetimes, we may use a

Newtonian analogy and define Love numbers using the
asymptotic fall of the perturbations. But, for asymptotically
nonflat cases, this notion is ambiguous, and we need to use
the worldline EFT to define Love numbers. The worldline
EFT setup for compact objects on a de Sitter background
allows for a well-defined notion of Love numbers for
asymptotically de Sitter compact objects in terms of the
scattering coefficients of the perturbation, as observed by a
distant observer. This can be thought of as an extension of
the notion of Love numbers developed for asymptotically
flat spacetimes within worldline EFT [27,40,41].
From Eq. (73), we can note that the response function is

not independent of coordinate time, unlike in flat space.
One can attribute this to the fact that this Love number
expression is valid for a comoving observer whose time is
not Killing.
After developing a worldline EFT for comoving compact

objects on the Poincaré patch of the de Sitter spacetime and
using it to express the scalar Love number in terms of the
ratio CL

irr=C
L
reg, we focused on a small SdS black hole of

mass M, where an expansion in H2M2 quantifies the
smallness. We computed the Love numbers of a small
SdS black hole as measured by a distant comoving
observer.
The computation of SdS black holes involved a near

zone–far zone matching calculation in the static chart of the
SdS black hole. Following this, we went from the static
chart to the flat-slicing coordinates, where the metric reads
Eq. (33). This allows for a matching with the worldline EFT,
where we identified the ratioCL

irr=C
L
reg ¼ flatAL

reg=flatAL
irr, with

flatAL
reg=irr being constants characterizing the scalar field in

the flat-slicing coordinates.
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While computing the SdS Love numbers, we used two
different notions of the near zone, the first being the natural
extension of the near zone for Schwarzchild black holes
[4,27,45,46], with the additional cosmological length scale
of 1=H, and the second being a notion of the near zone
quantified through how far we go from the horizon in
powers of ðR − RhÞ=Rh, which is actually a notion of the
near-horizon region [46]. We have used the two different
notions of the near zone to quantify proximity to the
horizon to illustrate the intricacies in the Love number
computation associated with the correct choice of the
near zone.
For a small SdS black hole, the normalized response

function, under the first notion of the near zone, can be
expressed as SdSF̃ωð1Þ

l , which reads

SdSF̃ωð1Þ
l ¼ ðschF̃ω

l þ 4H2M2Lωð1Þ
l Þ × eHtð2lþ1Þ; ð74Þ

With schF̃ω
l being the normalized response function for a

Schwarzchild black hole. We have explicitly evaluated the

expected correction Lωð1Þ
l for the dominant mode of the

scalar perturbation (l ¼ 0) and observed that the response
function is

SdSF̃ωð1Þ
0 ¼ fschF̃ω

0 þ 32πH2M3g × eHt; ð75Þ

resulting in the leading-order normalized Love number

under the first notion of the near zone, k̃ωð1Þ0 ¼ Re½F̃ωð1Þ
0 �,

being

k̃ωð1Þ0 ðtÞ ¼ 32πH2M3 × eHt; ð76Þ

which is nonzero, unlike the asymptotically flat black holes
of Einstein gravity [22,26–30].
Instead, if we use the second notion of the near zone,

we get

SdSF̃ωð2Þ
l ¼ schF̃ω

l

�
1þH2M2

�
16þ 32lþ 24lðlþ 1ÞΨ

2lþ 1

��
× eHtð2lþ1Þ; ð77Þ

where Ψ is given by Eq. (59), which clearly contains
a log ðR=2MÞ term. Such log terms were reported in
earlier works when alternate theories of gravity were
considered [9,12], and in the case of Schwarzchild black
holes are interpreted as a consequence of classical RG
flow [22,25,29].
Further, we can express the SdS normalized Love number

when employing the second notion of the near zone,

k̃ωð2Þ0 ¼ Re½F̃ωð2Þ
0 �, as

k̃ωð2Þl ¼−
24lðlþ 1Þ
2lþ 1

H2M2Im½schF̃ω
l �Im½Ψ�eHtð2lþ1Þ: ð78Þ

One can clearly see that the Love number derived within the
second notion of the near zone is distinct from the one
derived from the first notion; this may be associated with an
appropriate choice of the near zone being essential for
computing the Love number of a compact object.
We would also like to point out that a functional notion

of Love numbers in the static coordinates for an asymp-
totically de Sitter compact object is

F̃ωðsÞ
l ¼

statAl
irr

statAl
reg

; ð79Þ

with statAl
reg=irr being coefficients characterizing the scalar

field in the static chart. We legitimize the validity of
Eq. (79) as a measure of the tidal response of the compact
object, as this ratio completely specifies the response
coefficient measured by the comoving observer within
the worldline EFT framework. These ratios were computed
for the SdS black hole with the first and the second notions
of the near zone and are given by in Eqs. (56) and (59),
respectively.
An interesting observation regarding the computation of

the black hole Love number presented here is the use of an
ingoing boundary condition at the black hole horizon;
imposing an ingoing condition necessarily requires the
perturbation frequency to be nonzero. However, one can go
to the static limit of the Love number by taking the ω → 0
limit. One may also obtain the static Love numbers by
initially setting ω ¼ 0 and solving the differential equation.
Earlier works have demonstrated that these two types of
calculations may result in different results, owing to the
distinct branches of solution for the hypergeometric differ-
ential equation [8,11].
Despite the calculations given in this work being for four

dimensions, the calculations may be extended to account
for higher dimensions using the machinery developed in
[27], replicating the calculations in Sec. III on the Poincaré
patch of the higher dimensional dS spacetime, and working
with a higher-dimensional SdS black hole instead of the
four-dimensional one used in Sec. IV.

VI. CONCLUSION

In this paper, we used a worldline effective field theory
framework for asymptotically de Sitter compact objects to
define scalar Love numbers for comoving compact objects
on a de Sitter background. The Love numbers can be
defined using the scattering coefficients of the scalar field
as observed by a faraway comoving observer. As the
comoving time is not Killing, we obtain a time-dependent
expression for the Love numbers of these compact objects
as measured by a comoving observer. Along the way, we
also note the possibility of defining the Love number in a
certain category of spacetimes in terms of scattering
coefficients.
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We computed the OðΛM2Þ Love number for scalar
perturbations of a Schwarzchild–de Sitter black hole having
mass M and cosmological constant Λ. In computing the
Love numbers, we worked with two notions of the near
zone; the first notion is an extension of the near-zone notion
from Schwarzchild black holes with an additional length
scale introduced by the cosmological constant; the second
notion is based on a quantification of the radial proximity to
the black hole horizon ðRhÞ in powers of ðR − RhÞ=Rh. We
note that the expressions for the Love number depend on
the notion of near zone used, highlighting an ambiguity
regarding the correct notion of the near zone. However,
both of the notions of the near zone resulted in a nonzero
value for the SdS Love numbers at OðΛM2Þ.
The nonzero value of the Schwarzchild–de Sitter black

hole scalar Love number shows that, even within the
framework of Einstein gravity, objects with a horizon
can have nonzero Love numbers. This has significant
observational consequences, as Love numbers are
often considered to be a probe for the existence of
horizons [3,8–12].
However, it should be noted that ΛM2 is negligible for

astrophysical black holes, and looking for an observational
consequence of an interaction of these two disparate length
scales is incomplete without accounting for the matter and
other effects on the measured Love number [55]. However,

we argue that the calculations presented here may be more
significant than the Love number computation for asymp-
totically flat black holes from an observational perspective.
It would be interesting to extend our formalism to

account for black hole spin and to other nonflat back-
grounds, particularly asymptotically anti–de Sitter (AdS)
compact objects, and understand the tidal response of
Schwarzschild/Kerr-AdS black holes. Further, it would
be of interest to understand the tidal response of asymp-
totically nonflat black holes to metric perturbations.
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