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This work outlines a straightforward mechanism for endorsing primary hair into Schwarzschild black
holes, resulting in a unique modification within the framework of a special scalar-tensor theory, the so-
called beyond-Horndeski gravity. The derived solutions are exact, showcase primary hair with a regular
scalar field profile everywhere, and continuously connect with the vacuum geometry. Initially devised
to introduce primary hair in spherically symmetric solutions within general relativity in any dimension,
our investigation explores the conditions under which spherically symmetric black holes in alternative
gravitational theories become amenable to the endowment of primary hair through a similar pattern. As a
preliminary exploration, we embark on the process of endowing primary hair to the Reissner-Nordström
black hole. Subsequently, we extend our analysis to encompass spherically symmetric solutions within
Lovelock and cubic quasitopological gravity theories.
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I. INTRODUCTION

Undoubtedly, the present era constitutes a remarkable
epoch for the exploration of gravitational phenomena.
The affirmation of gravitational waves [1], the first black
hole image achieved by the Event Horizon Telescope
network [2], and the investigation into the precession orbits
of stars revolving around compact massive objects [3]
collectively present an unprecedented opportunity to scru-
tinize gravity on a stage far exceeding the well-established
scales of the Solar System [4]. Consequently, a discernible
dichotomy emerges: Einstein’s theory of general relativity
(GR) assumes an unequivocal primacy, having demonstrated
confirmation in the realm of strong gravity. Simultaneously,
a newfound avenue emerges for the evaluation of alter-
native gravity theories aspiring to enhance GR and provide
solutions to phenomena where the theory proves inad-
equate. In this context, theories incorporating additional
degrees of freedom, particularly scalar fields, emerge as

economical and archetypal modifications of GR. Since their
inception, these models, encapsulated within the frame-
work of scalar-tensor theories of gravity, have undergone
extensive scrutiny, primarily in the realm of cosmology [5],
though their applicability extends far beyond. These models
find their most comprehensive formulation in Horndeski
theory [6], alongside subsequent higher-order modifica-
tions such as beyond-Horndeski theories [7,8] and degen-
erated higher order scalar tensor theories (DHOST) [9–12].
Establishing a robust foundation for the validity of these
alternative models necessitates a meticulous examination
of their spectrum of black hole solutions. This endeavor not
only furnishes a theoretical framework for assessing the
consistency of these models but also anticipates potential
experimental implications.
It is commonly argued that, following gravitational

collapse, a black hole can be adequately described by a
specific set of parameters, namely its mass, electromagnetic
charges, and angular momentum. This perspective implies
that no additional distinctive features of the original matter,
such as baryon or lepton numbers, persist after the black
hole formation. In certain scenarios, this proposition is
substantiated, leading to the formulation of no-hair theo-
rems [13]. Here, the term “hair” is used metaphorically
to encompass all characteristics that would render black
holes nonbald, indicating quantities not subject to a
Gauss law and, consequently, not conserved at infinity.
This definition originates from the numerical construction
of Einstein-Yang-Mills black holes, where a discrete
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parameter, that represents the number of nodes of the gauge
function [14,15], emerges.
Over the decades, numerous endeavors have been

undertaken to construct solutions to introduce various types
of hairs to black hole configurations. Notably, there has
been a particular focus on scalar hair, which involves
configurations where a nontrivial scalar field profile coex-
ists within the spacetime, primarily driven by the assump-
tion of the inherent simplicity of scalar fields [16].
However, the incorporation of scalar fields into black hole
configurations proves to be challenging, with many sol-
utions exhibiting curvature singularities or divergence of
the scalar field profile within the domain of outer commu-
nications. As no-hair theorems constitute theory-dependent
mathematical statements, the scientific community has
continuously subjected them to scrutiny to assess their
validity. Early contributions by Chase [17] and sub-
sequently, by Bekenstein [18] defined conditions under
which minimally coupled scalar fields cannot dress a black
hole spacetime. Similar no-hair theorems were also for-
mulated by Hawking for the Brans-Dicke theory [19], later
generalized in the presence of self-interaction for the scalar
field [20]. In a more contemporary context, modern scalar-
tensor theories, predominantly represented by Horndeski
gravity and its higher-order extensions beyond-Horndeski
and DHOST theories, have faced constraints concerning
the emergence of hairy black hole solutions [21–24].
However, the potency of these theorems is contingent
upon their underlying assumptions, and it is, therefore,
plausible to circumvent them by precisely relaxing some of
their key axioms. A substantial body of literature has
emerged, delving into the construction and investigation of
black holes with scalar hair. This journey began with the
discovery of black holes in the context of conformally
coupled scalar theories [25–40] and has progressed to
encompass more recent configurations found in complex
minimally coupled models [41] and the Horndeski theory
as well as higher-order scalar-tensor theories [42–67].
The diversification of hairy black hole solutions has led

to a nuanced understanding of the scalar hair concept,
culminating in the categorization of two distinct types:
primary and secondary. The latter denotes black hole
spacetimes characterized by a nontrivial scalar field profile,
which, crucially, does not introduce any additional param-
eter to the geometry. Consequently, the backreaction of the
spacetime exhibits no explicit manifestation of the scalar
hair, preventing these solutions from forming a continuous
connection with vacuum black hole spacetimes. In contrast,
primary hair designates black hole spacetimes featuring a
nontrivial scalar field configuration that alters the space-
time backreaction by incorporating an additional parameter.
Consequently, black holes with primary hair can form a
continuous connection with vacuum solutions, that is, with
their bald counterpart geometries. While solutions with
secondary hair constitute the majority of existing exact

solutions documented in the literature, those with primary
hair have predominantly been constructed through numeri-
cal methods [41,68].
In seeking to investigate potential experimental signa-

tures associated with black holes harboring extra degrees of
freedom, from an astrophysical perspective, it has been
introduced as an intriguing mechanism for the systematic
numerical construction of black holes with scalar hair. This
process known as “scalarization” represents a pathway by
which a vacuum black hole can develop scalar hair through
a tachyonic instability, revealing the emergence of black
holes with secondary hair at its culmination. The funda-
mental properties defining a black hole with scalar hair
include the presence of black holes exhibiting a consis-
tently regular scalar field configuration. Additionally, their
backreaction is contingent upon the existence of a scalar
charge (a continuous parameter governing the manifestation
of the scalar field profile that, in this case, depends on the
mass parameter of the solution). These black hole solutions
with secondary hair have undergone thorough investigation
in recent years, encompassing not only spherically sym-
metric configurations [69–74] but also extending to sta-
tionary and axially symmetric ones [75–77]. Furthermore,
this exploration has extended to hairs beyond the scalar
variety, including vectorial and tensorial natures [78–84].
Efforts directed towards the construction of exact black

hole solutions featuring primary hair remain limited. This
scarcity primarily stems from the intricate nature of the
theories within which the search for such hair is conducted,
compounded by the challenges posed by the underlying
complexities embedded in no-hair theorems. Furthermore,
scalarizing processes in the presence of a cosmological
constant or within an arbitrary number of dimensions pose
considerable difficulties and represent a direction far less
explored [85,86]. These constraints significantly limit the
applicability of these black holes for exploration, particu-
larly in realms such as black hole thermodynamics or other
semiclassical phenomena within the framework of the
AdS=CFT conjecture [87–91], just to name a few exam-
ples. Consequently, the pursuit of exact black hole sol-
utions with primary hair, or, due to the similarities in the
process, exact scalarized black holes1 becomes an in-
triguing avenue of investigation.
Recently, analytical black hole solutions featuring pri-

mary scalar hair were discovered in [92] within the frame-
work of beyond-Horndeski theories [7] in four dimensions.
Beyond-Horndeski theories represent extensions of the

1The determination of whether these exact black hole solutions
with primary hair exhibit a tachyonic instability is not the primary
focus of this comparison. Instead, we emphasize the significance
of a black hole possessing a regular scalar field configuration
everywhere and well-defined geometry, in this particular case
connecting with the vacuum via the vanishing of the scalar
charge.
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well-known Horndeski theories [6], incorporating higher-
order derivatives while avoiding Ostrogradski ghosts. These
theories have demonstrated considerable promise in the
exploration of compact objects, as evidenced in works such
as [64–66]. This promise extends to the construction of
scalarized black holes or black holes with primary hair.
In particular, the authors of [92] demonstrated the exis-
tence of an extension of the Schwarzschild black hole
within precise beyond-Horndeski models, specifically
when G2 ∼ X2, G4 ∼ X2, and F4 ∼ cte [see the action (1)
below]. Remarkably, the resulting spacetime remains
described by the Schwarzschild metric, augmented by a
term proportional to the scalar hair. Furthermore, it was
revealed that the inclusion of this additional term enables
the elimination of the central singularity through a specific
tuning between the mass and the hair.
In this study, we aim to broaden the findings established

in [92] by extending the class of beyond-Horndeski
theories capable of accommodating similar black hole
solutions endowed with primary scalar hair. Despite the
original theory being defined in four dimensions, our
investigation will encompass the arbitrary dimensional
case. Our focus is on demonstrating that the existence
of hairy solutions and extending the Schwarzschild
black hole paradigm can be guaranteed for a broader
selection of theory functions. Specifically, we will establish
that a two-parametric subclass of actions, characterized
by functions G2 and G4 within the framework of (1),
facilitates the emergence of such scalarized solutions. The
resulting metric solution comprises a superposition of the
Schwarzschild-(A)dS function with an additional compo-
nent proportional to the scalar hair. We will further expand
this pattern by demonstrating that, under specific hypoth-
eses, this two-parametric class of beyond-Horndeski the-
ories can be coupled with other actions of pure gravity
(beyond-GR and potentially involving additional dynami-
cal fields). This coupling allows for the extension of purely
static black hole solutions to static black holes with
primary hair.
This paper is organized as follows: In Sec. II, we

elaborate our approach to endowing vacuum black holes
with primary scalar hair. In essence, we outline the generic
construction of scalarized black holes within the domain of
spherically symmetric solutions. We delve into the explicit
construction of exact scalarized Schwarzschild black holes
within a theory characterized by the form (1). Specifically,
we demonstrate that solutions featuring primary hair and
smoothly connecting to the Schwarzschild-(A)dS solution
may exist for a subset of actions (1) parametrized by G2

and G4. The specific scenario where both coupling func-
tions are proportional is examined in detail. Section III
introduces a set of conditions under which the frame-
work outlined in Sec. II can be extended to encompass
other gravity theories, whether purely geometrical or
involving additional matter fields (distinct from the

beyond-Horndeski scalar field, ϕ). We illustrate how black
holes in alternative theories can be enhanced to exhibit
primary hair of the beyond-Horndeski type, as defined
by (1). To illustrate this, we demonstrate how the Einstein-
Maxwell theory supports black holes with primary hair,
thereby explicitly constructing a scalarized version of the
Reissner-Nordström black hole. Subsequently, we extend
our exploration to the construction of black holes with
primary hair in Lovelock and cubic quasitopological
gravities. Finally, Sec. IV is dedicated to concluding and
proposing several avenues for further exploration and
generalization of the framework presented herein. Given
the generic nature of our approach, we allocate an
Appendix dedicated to the construction of specific black
hole configurations. In particular, we delve into the cases of
GR and the Einstein-Gauss-Bonnet theory.

II. SCALARIZING THE SCHWARZSCHILD
BLACK HOLE

The primary objective of this work is to introduce pri-
mary hair onto initially bald black hole solutions, beginning
within the framework of general relativity (GR) and sub-
sequently, extending to other geometric theories of gravity.
Despite the extensive literature on the construction of black
holes with hair, these solutions typically manifest secon-
dary hair, exemplified by stealth black holes or standard
black holes lacking a continuous limit with the vacuum
(bald) geometry. Various techniques have been employed
to construct these solutions, ranging from scalar fields that
do not share the same symmetries as the geometry to the
utilization of disformal transformations. A prevalent char-
acteristic of most solutions is their emergence within
theories that feature shift symmetry. This allows the scalar
field equation to be formulated as a current conservation
law, facilitating the integration of field equations. Another
commonly adopted strategy involves stipulating a constant
kinetic term for the scalar field. This considerably sim-
plifies the contribution of the scalar sector within a given
scalar-tensor theory, reducing the problem to finding stealth
black holes by adjusting the Lagrangian functions. Such
solutions are attainable when the scalar field profile
exhibits a linear time dependence, a characteristic that,
due to the shift invariant nature of the models, does not
compromise the stationary nature of the solutions. More
challenging is the discovery of solutions with a nonconstant
kinetic term, representing black holes with novel back-
reactions. In the subsequent sections, we will assimilate
various elements from the existing literature and combine
them in a manner that facilitates the systematic construction
of exact black hole solutions with primary hair. This
approach is applicable to a sufficiently general class of
theories encapsulated within beyond-Horndeski gravity
and generically contain a nontrivial kinetic term for the
scalar field.
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A. Beyond-Horndeski theory and the scalarization
scheme

As our initial aim is to scalarize the Schwarzschild
black hole and its higher dimensional extension, the
Schwarzschild-Tangherlini black hole, we consider the
action of quadratic beyond-Horndeski gravity [7] elevated
to an arbitrary dimension, d,

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
G2ðXÞ þ G4ðXÞR

þ �G4;X þ 2XF4ðXÞ
��ð□ϕÞ2 − ϕμνϕ

μνÞ
þ 2F4ðXÞ

�
□ϕϕμϕμνϕ

ν − ϕμϕ
μνϕνρϕ

ρ
��
: ð1Þ

For simplicity, we have defined ϕμ ¼ ∂μϕ and
ϕμν ¼ ∇μ∇νϕ, where the coupling functions G2, G4, and
F4 depend solely on the kinetic term X ¼ − 1

2
ϕμϕ

μ. Here,
G4;X stands for the derivative of G4 with respect to X, i.e.,

G4;X ¼ dG4ðXÞ
dX , and ϵμνρσ stands for the Levi-Civita tensor.

Notice that GR is naturally included by a proper choice of
the theory function G4. Action (1) is invariant under a
constant shift of the scalar field ϕ → ϕþ cst, a heritage
from the Galileon origin of the model [93], and is parity
invariant ϕ → −ϕ as it is quadratic in the derivatives of the
scalar field.
Focusing on spherical symmetry, we consider a

d-dimensional spacetime configuration of the form,

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−2;κ;

ϕðt; rÞ ¼ qtþ ψðrÞ; ð2Þ

where the (d − 2)-dimensional base manifold has constant
curvature κ ¼ 0;�1 representing a spherical, hyperbolic,
or flat topology, respectively. Here, q is a constant of
integration that will also appear in the black hole metric
function [92], which will give the constant q the character
of primary hair. In addition, it plays a crucial role in the
regularity of the scalar field profile. As already mentioned,
the action (1) enjoys invariance under a constant translation
of the scalar field, and as a consequence, the scalar field
equation of motion converts into a conservation law for the
scalar Noether current,

J μ ¼ 1ffiffiffiffiffiffi−gp δS
δð∂μϕÞ

; ∇μJ μ ¼ 0:

This property has played a major role in the construction of
black hole solutions in Horndeski gravity and its higher
order generalizations. Its regularity at the would-be black
hole horizon along with a few other assumptions regarding
the asymptotic behavior of the would-be solutions and
the analyticity of the theory’s Lagrangian constitute the

cornerstone of no-hair theorems and therefore, almost by
transitivity, has paved the road to understand how these
theory dependent statements can be circumvented to obtain
interesting geometries featuring nontrivial hair.
Along the lines of [94], it is possible to show that for a

configuration of the form (2), the independent field equa-
tions to be solved reduce to the metric variation equations
ϵtt ¼ 0 and ϵrr ¼ 0 and vanish the radial Noether current
J r ¼ 0. As a matter of fact, the nondiagonal Einstein
equation ϵtr ¼ 0, sourced by the linear time dependence of
the scalar profile, turns out to be proportional to the scalar
current J r, and thus, no flux for the scalar field takes place.
As a consequence, the field equations of our theory take the
convenient form,

J r ≔ r2h2G̃2;X þ ðd − 2Þðd − 3Þ
�
κh2 −

q2fh
2X

�
G̃4X

þ ðd − 2Þq2h2
�
f
h

�0
rF4 − ðd − 2Þ

�
ðd − 3Þfh2

þ fhh0r −
ðd − 3Þq2fh

2X

�
ZX ð3Þ

ϵrr ≔ h3
	
−
ðd − 2Þfh0

h
rZ − r2ða0 þ G̃2Þ

− ðd − 2Þðd − 3Þκða1 þ G̃4Þ − ðd − 2Þðd − 3ÞfZ

þ ðd − 2Þðd − 3Þq2f
2Xh

�
Z þ a1 þ G̃4

�
−
2ðd − 2Þq2f

h
rF4X0



− ðq2 − 2hXÞJ r ð4Þ

ϵtt ≔ −ϵrr − 2ðq2 − hXÞJ r þ 2r2X0ZX

�
h
f

�
− r2Z

�
h
f

�0
:

ð5Þ

Please note that for convenience, we have rescaled the
equations in the following way:

ϵtt → 2r2ϵtt; ϵrr → 2r2h3ϵrr; J r → −
r2h3

fψ 0 J
r:

Further, we have voluntarily rewritten the coupling func-
tions G2 and G4 as

G2ðXÞ ¼ a0 þ G̃2ðXÞ; G4ðXÞ ¼ a1 þ G̃4ðXÞ;
G̃4;X ≠ 0; ð6Þ

and hence, the constant a0 represents an eventual bare
cosmological constant, while a1 corresponds to the stan-
dard Einstein-Hilbert term in the action. In addition, it turns
out to be advantageous to define the auxiliary function,
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ZðXÞ ≔ 4X2F4 þ 2XG̃4;X − ða1 þ G̃4Þ: ð7Þ

From these independent equations, one can easily
visualize the emergence of hairy (scalarized) extensions
of the Schwarzschild black hole. Indeed, considering the
homogeneous static case f ¼ h in (2), the compatibility of
the last Eq. (5) guides us towards two options, imposing
either Z or X to be constant; here, we will consider the
first possibility, Z ¼ cst. The case of constant X, as it is
known, naturally leads to the construction of stealth black
hole solutions. Hence, for Z ¼ cst ¼ Z0, the radial current
equation J r ¼ 0 given by (3) reduces to the simple
expression,

r2G̃2;X þ ðd − 2Þðd − 3Þ
�
κ −

q2

2X

�
G̃4;X ¼ 0; ð8Þ

which later will provide the specific radial dependence
(at least implicitly) of the kinetic term X ¼ XðrÞ. Next,
choosing the constant function Z to be Z ¼ −a1, the
remaining independent equation ϵrr ¼ 0 factorizes in the
very suitable form,

− a0r2 þ a1ðd − 2Þ�rh0 þ ðd − 3Þh − κðd − 3Þ�
− 2ðd − 2Þq2rF4X0 − r2G̃2

− ðd − 2Þðd − 3Þ
�
κ −

q2

2X

�
G̃4 ¼ 0: ð9Þ

From here, the following observations are in order: (i) the
terms proportional to a0 and a1 will vanish identically for
a Schwarzschild (A)dS metric function h, (ii) the term
involving X0 represents a sort of nonhomogeneity, and
(iii) the last two terms of the Eq. (9) are a “kind” of first
integral with respect to X of the Eq. (8). In fact, using
Eq. (8), Eq. (9) can be written as

− a0r2 þ a1ðd − 2Þ�rh0 þ ðd − 3Þh − κðd − 3Þ�
− 2ðd − 2Þq2rF4X0 þ G̃4;Xðd − 2Þðd − 3Þ

×

�
κ −

q2

2X

��
G̃2

G̃2;X
−

G̃4

G̃4;X

�
¼ 0; ð10Þ

an expression that can therefore be satisfied for a metric
function h whose homogeneous part is given by the
Schwarzschild-(A)dS metric function and whose non-
homogeneity is represented by the terms proportional to
F4 and G̃4;X, and where X is defined implicitly by (8).
Unifying all these results, we conclude that the subclass of
actions (1) parametrized in terms of G̃2 and G̃4 with

F4ðXÞ ¼
−2XG̃4;XðXÞ þ G̃4ðXÞ

4X2
; ð11Þ

that is,

SfG̃4ðXÞg½g;ϕ� ¼
Z

ddx
ffiffiffiffiffiffi
−g

p 	
a0 þ a1Rþ G̃2ðXÞ

þ G̃4ðXÞRþ G̃4ðXÞ
2X

�ð□ϕÞ2 − ϕμνϕ
μν
�

þ
�
−2XG̃4;XðXÞ þ G̃4ðXÞ

2X2

�

×
�
□ϕϕμϕμνϕ

ν − ϕμϕ
μνϕνρϕ

ρ
�
 ð12Þ

will admit hairy black hole solutions with primary hair for
the ansatz (2), with f ¼ h, for a scalar field of the form,

ϕðt; rÞ ¼ qt�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

fðrÞ2 −
2XðrÞ
fðrÞ

s
dr: ð13Þ

The metric solution f ¼ h will be the superposition of
the Schwarzschild-(A)dS metric function and a nonhomo-
geneous part, mostly controlled by the primary hair
parameter, q,

fðrÞ ¼ a0r2

a1ðd − 1Þðd − 2Þ þ κ −
2M
rd−3

þ 1

a1rd−3

Z
Hrd−4dr;

ð14Þ

where

H ¼ 2q2rF4X0 − G̃4;Xðd − 3Þ
�
κ −

q2

2X

��
G̃2

G̃2;X
−

G̃4

G̃4;X

�
:

ð15Þ

Notice that since X ∝ q2, the absence of the hair in this
expression will be consistent only for G̃2 ∝ G̃4 ∝

ffiffiffiffi
X

p
[so

that F4 and the last bracket in (15) vanish], reducing the
solution to the black hole stealth already found in [92].2

It is also interesting to note that the standard falloff
M=rd−3 can be understood via the Kerr-Schild approach
developed in [67]. For the sake of clarity and compactness,
here we reproduce briefly the arguments as originally
presented for the general case [67]. We start with a seed
configuration of the form,

ds20 ¼ −h0ðrÞdt2 þ
dr2

f0ðrÞ
þ r2dΩ2

d−2;κ; X ¼ X0ðrÞ;

ð16Þ

2The other possibility will be to chose G̃4 ¼ cst, but this is in
contradiction with our construction; see Eq. (6).
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a solution of the field Eqs. (3)–(5), where h0 and f0 are
mass-independent functions. Operating with a Kerr-Schild
transformation ds2 ¼ ds20 þMaðrÞl ⊗ l, where the null
geodesic vector field is l ¼ dt − dr=ð ffiffiffiffiffiffiffiffiffiffi

h0f0
p Þ, and requir-

ing invariance of the standard kinetic term under the
transformation, proves to be equivalent to mapping the
original seed functions according to h0ðrÞ → hðrÞ ¼
h0ðrÞ −MaðrÞ and f0ðrÞ→ fðrÞ¼ f0ðrÞðh0ðrÞ−MaðrÞÞ=
h0ðrÞ. It is then easy to see that, since X is invariant, these
transformations will map the Eqs. (3) and (4) to

J r

h2
→

J r

h2
þMðd − 2Þ f0

h0
½ra0 þ aðd − 3Þ�ZX;

ϵrr
h3

→
ϵrr
h3

þMðd − 2Þ f0
h0

½ra0 þ aðd − 3Þ�Z:

Hence, one can conclude that a Kerr-Schild transformation
leaving invariant the kinetic term will be a symmetry of the
independent equations, provided the Kerr-Schild function
aðrÞ satisfies the equation ra0ðrÞ þ aðrÞðd − 3Þ ¼ 0, that
is aðrÞ ∼ r3−d.

B. Schwarzschild-like hairy black holes

A very appealing model that allows for explicit analytic
expressions is the one characterized by G̃2 ¼ λG̃4, with λ
being a constant. As a matter of fact, in this case, the
explicit form of the kinetic term is directly identifiable from
Eq. (8), yielding

XðrÞ ¼ ðd − 2Þðd − 3Þq2
2½λr2 þ κðd − 2Þðd − 3Þ� : ð17Þ

In addition, the nonhomogenous contribution of the metric
H drastically simplifies, and it is simply given by the
beyond-Horndeski function F4, which from (11) is shown
to be determined in terms of G̃4 only. In consequence, the
subclass of actions (12) parametrized in terms of G̃4, with
G̃2ðXÞ ¼ λG̃4ðXÞ, admits a hairy black hole solution with a
scalar field,

ϕ¼ qt�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

fðrÞ2
�
1−

ðd−2Þðd−3ÞfðrÞ
λr2þ κðd−2Þðd−3Þ

�s
dr; ð18Þ

where the metric reads

fðrÞ ¼ a0r2

a1ðd − 1Þðd − 2Þ þ κ −
2M
rd−3

þ 2q2

a1rd−3

Z
rd−3X0

	
−2XG̃4;X þ G̃4

4X2



dr: ð19Þ

A few comments are in order regarding this hairy black
hole solution as defined by Eqs. (17)–(19). Firstly, one
can recognize that the metric solution is a superposition

of the Schwarzschild-(A)dS metric together with a
piece proportional to the scalar hair, q. In other words,
the scalar hair solution continuously connects to the
Schwarzschild-Tangherlini-(A)dS solution, providing a
scalarized version of the Schwarzschild-(A)dS black hole
in any dimension. Secondly, the integral piece of the metric
solution (19) is, of course, a defined modulo which is an
integration constant, but since this integral is multiplied by
a factor r3−d, this “extra” constant can be absorbed into a
redefinition of the mass parameterM. Finally, it is desirable
that the metric function behaves asymptotically as the
Schwarzschild-(A)dS metric, that is

fðrÞ ∼ a0r2

a1ðd − 1Þðd − 2Þ þ κ −
2M
rd−3

þO

�
1

rd−3

�
; ð20Þ

namely, neither the (A)dS term, nor the mass falloff are
affected by the inhomogeneous contribution in the metric
function. Taking into consideration (17) and its derivative,
this requirement translates into the condition,

��G̃4 − 2XG̃4;X

�� ∼ 1

rα
; α > 2: ð21Þ

A constraint that particularly affects the use of a G̃4

function is linear in X, [92]. It is interesting to remark
that to have a finite kinetic term everywhere (17), one can
simply choose the sign of the coupling λ to be equal to that
of the base manifold curvature, sgnðλÞ ¼ sgnðκÞ. More-
over, for a flat base manifold κ ¼ 0, the kinetic term will
express a divergence at the origin r ¼ 0, however, hidden
behind the would-be event horizon.

III. SCALARIZING THEORIES BEYOND-GR:
EINSTEIN-MAXWELL, LOVELOCK,
AND CUBIC QUASITOPOLOGICAL

Having established the scheme behind the scalarization
of the Schwarzschild-(A)dS black hole, we extend our
result to other gravity theories, in particular the cases of
Einstein-Maxwell theory, Lovelock gravity, and the so-
called cubic quasitopological gravity. To proceed, we start
by complementing the two-parametric action (12) with an
action depending on the same metric g and a collection of
matter fields, denoted by ψm, that is different from the
original beyond-Horndeski scalar ϕ, yielding3

3In the eventual case in which the sector defined by L̃m already
involves the Einstein-Hilbert piece (respectively, the cosmologi-
cal constant), we will then consider the action (12) with a1 ¼ 0
(respectively with a0 ¼ 0) in order to avoid a repetition of these
terms.
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S½g;ϕ;ψm� ¼
Z

ddx
ffiffiffiffiffiffi
−g

p 	
a0 þ a1Rþ G̃2ðXÞ þ G̃4ðXÞR

þ G̃4ðXÞ
2X

�ð□ϕÞ2 − ϕμνϕ
μν
�

þ
�
−2XG̃4;XðXÞ þ G̃4ðXÞ

2X2

�

×
�
□ϕϕμϕμνϕ

ν − ϕμϕ
μνϕνρϕ

ρ
�


þ
Z

ddx
ffiffiffiffiffiffi
−g

p
L̃mðg;ψmÞ: ð22Þ

Denoting the field equations coming from the variation
of L̃m with the metric as ϵ̃μν, we consider the following
hypotheses:

(i) The field equations of the Lagrangian L̃m admit a
homogeneous static metric solution with purely
radial fields of the form,

ds2 ¼ −f̃ðrÞdt2 þ dr2

f̃ðrÞ þ r2dΩ2
d−2;κ;

ψm ¼ ψmðrÞ: ð23Þ

(ii) The field equations ϵ̃tt and ϵ̃rr are a proportional
modulo of the field equations associated to the
equations defining the other fields, ψmðrÞ.

It is easy now to prove that the full action (22) will admit a
hairy solution of the form,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−2;κ;

ϕðt; rÞ ¼ qt�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

fðrÞ2 −
2XðrÞ
fðrÞ

s
dr;

ψm ¼ ψmðrÞ; ð24Þ

with X defined implicitly by (8), and where the metric
function f will satisfy the following nonhomogeneous
differential equation:

ϵ̃rr
�
r; f; f0; f00;…;ψm;ψ 0

m;ψ 00
m � � �� − a0r2

þ a1ðd − 2Þ�rf0 þ ðd − 3Þf − κðd − 3Þ�
¼ 2ðd − 2Þq2rF4X0 − G4;Xðd − 2Þðd − 3Þ

×

�
κ −

q2

2X

��
G̃2

G̃2;X
−

G̃4

G̃4;X

�
: ð25Þ

In what follows, we will provide three representative
examples in addition to a simple counterexample that
allows for a deeper understanding of the hypotheses.

A. Black holes with primary hair
in Einstein-Maxwell theory

The simplest case for a theory of the form L̃m satisfying
the hypotheses (i) and (ii) is the one of Einstein-Maxwell
theory. Indeed, as we know, there exists a simple spheri-
cally symmetric solution, the Reissner-Nordström black
hole, which is actually found from a set of field equations
satisfying that ϵ̃tt ∼ ϵ̃rr. Solving (25) and the corresponding
Maxwell equations, we obtain

fðrÞ ¼ a0r2

a1ðd − 1Þðd − 2Þ þ κ −
2M
rd−3

þ 2Q2

ðd − 2Þðd − 3Þr2ðd−3Þ

þ 1

a1rd−3

Z
rd−4

	
2q2rF4X0 − G̃4;Xðd − 3Þ

×

�
κ −

q2

2X

��
G̃2

G̃2;X
−

G̃4

G̃4;X

�

dr; ð26Þ

A0ðrÞ ¼
Q

ðd − 3Þrd−3 ; ð27Þ

where, again, it is evident how the primary hair is added on
top of the bald initial solution. It is interesting to remark
that, in this case, as well as in the subsequent cases, stealth
black holes are simply found by considering G̃2 ∝
G̃4 ∝

ffiffiffiffi
X

p
. As noticed in (15) for such a choice of the

theory functions, the nonhomogeneous source always
vanishes. In this particular subsection, this black hole
corresponds to a charged stealth solution defined on top
of the Reissner-Nordström metric.

B. Black holes with primary hair in Lovelock gravity

Another appealing example in which the hypothesis (i)
and (ii) are fulfilled, is the one of Lovelock gravity [95].
The Lovelock theory represents the natural higher dimen-
sional generalization of Einstein’s theory; therefore, it is to
be expected that condition (ii) will indeed hold. In addition,
it is known that in an arbitrary dimension, and for the
complete series representing the whole tower of curvature
invariants, up to order ½ðd − 2Þ=2�, a spherically symmetric
solution always exists, at least implicitly given by the so-
called Wheeler polynomial, of which its most representa-
tive explicit case is given by the Boulware-Deser black
hole [96], the spherically symmetric solution of the
Einstein-Gauss-Bonnet system.
In consequence, considering the Lagrangian of Lovelock

gravity of order k (in which the zero and first order terms
represent the cosmological constant and Einstein-Hilbert
contributions),
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L̃mðgÞ ¼
X½d−12 �

k¼0

ak
ð2kÞ!
2k

δμ1½α1δ
ν1
β1
� � � δμkαkδνkβk�

Yk
r¼1

Rαrβr
μrνr ; ð28Þ

the metric function describing the hairy generalization of
the general Lovelock black hole is implicitly given by a
root of the following generalized Wheeler polynomial:

X½d−12 �

k¼0

akðd − 1Þ!
ðd − 2k − 1Þ!

�
κ − fðrÞ

r2

�
k

¼ 2M
rd−1

−
1

rd−1

Z
rd−4

	
2q2rF4X0

− G̃4;Xðd − 3Þ
�
κ −

q2

2X

��
G̃2

G̃2;X
−

G̃4

G̃4;X

�

dr: ð29Þ

From the polynomial (29), explicit cases are easily obtain-
able, up to the solution of the corresponding algebraic
equation. Therefore, solutions like the Boulware-Deser
black hole with primary hair or hairy generalizations with
even higher corrections in the curvature, such as the cases
in which a degenerate vacuum arises, can be straight-
forwardly studied. In addition, charged solutions follow
with ease.

C. Black holes with primary hair in cubic
quasitopological gravity

Let us now shift our focus to an alternative yet intriguing
higher curvature order gravity, namely, cubic quasitopolog-
ical gravity. These theories, originally constructed in [97],
represent a class of higher curvature order gravity theories
that, when assuming spherical symmetry, result in second-
order field equations. Notably, they deviate from the general
case of Lovelock theories, particularly in any odd dimension.
Extensively investigated in the literature [98–105], quasito-
pological gravities provide a compelling framework for
our exploration. In this context, we embark on a comple-
mentary approach by augmenting the cubic quasitopo-
logical Lagrangian with action (22) for the case of d ¼ 5.
This extension aims to introduce primary hair to the

already identified black holes within this quasitopological
model [97],

L̃mðgÞ ¼ a2Gþ a3

�
−
7

6
Rμν

λρRλσ
ντRρτ

μσ − Rλρ
μνRνσ

λρRμ
σ

−
1

2
Rλρ

μνRμ
λRν

ρ þ
1

3
Rμ

νRν
λRλ

μ

−
1

2
RRμ

νRν
μ þ

1

12
R3

�
; ð30Þ

where G ¼ R2 − 4RμνRμν þ RμνλρRμνλρ is the Gauss-Bonnet
density. In [97], this cubic theory was shown to have second
order traced field equations, and admit black hole solutions
that fit our hypotheses. It is then easy to see that for the
coupled system, the metric function solution, f, will satisfy
the following nonhomogeneous cubic equation:

a3
3

½κ − fðrÞ�3
r2

þ a2½2fðrÞð2κ − fðrÞÞ�

þ a1r2ðfðrÞ − κÞ − a0r4

12

¼ −2M þ
Z

r

	
2q2rF4X0 − G̃4;Xðd − 3Þ

�
κ −

q2

2X

�

×

�
G̃2

G̃2;X
−

G̃4

G̃4;X

�

dr; ð31Þ

and, hence, convert the black hole solution of [97] to a hairy
solution of the full theory. A similar construction can also be
achieved in any odd dimension d ¼ 2p − 1, by considering
the general Lagrangian [97],

Lp ¼ 1

2p

�
1

d − 2pþ 1

�
δ
μ1ν1…μpνp
λ1ρ1…λpρp

�
Cλ1ρ1
μ1ν1…C

λpρp
μpνp

− Rλ1ρ1
μ1ν1…R

λpρp
μpνp



− γpC

μ1ν1
μpνpC

μ1ν1
μ2ν2…C

μp−1νp−1
μpνp ; ð32Þ

where

γp ¼ ðd − 4Þ!
ðd − 2pþ 1Þ!

½pðp − 2ÞDðd − 3Þ þ pðpþ 1Þðd − 3Þ þ ðd − 2pÞðd − 2p − 1Þ�
½ðd − 3Þp−1ðd − 2Þp−1 þ 2p−1 − 2ð3 −DÞp−1� ; ð33Þ

and where Cμνλρ denotes the Weyl tensor. As before, we set a0 and a1 to zero in (22). Then, the metric solution fðrÞ satisfies
the following polynomial equation, similar to the pure Lovelock case:

Xp
k¼0

ð−1Þk
�
p

k

�
ak

�
κ − fðrÞ

r2

�
k
¼ 2M

rd−1
−

1

rd−1

Z
rd−4

	
2q2rF4X0 − G̃4;Xðd − 3Þ

�
κ −

q2

2X

��
G̃2

G̃2;X
−

G̃4

G̃4;X

�

dr: ð34Þ

Note that the dimensional factor of the term coming from Lp has a slightly different form than those of the Lovelock terms.
As we have already mentioned, in odd dimensions, these theories do not coincide. Hence, we have absorbed all factors into
their corresponding coupling constants and rescaled them to obtain a more convenient form. This form allows for another
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simplification when the rescaled coupling constants are
such that

ā0 ¼
āpp−1
āp−1p

; ā1 ¼
āp−1p−1

āp−2p
;

ā2 ¼
āp−2p−1

āp−3p
;…; āp−2 ¼

ā2p−1
āp

: ð35Þ

In this case, the polynomial equation of order p reads

fr2āp−1 − āp½κ − fðrÞ�gp
r2pᾱp−1p

¼ 2M
rd−1

−
1

rd−1

Z
rd−4

	
2q2rF4X0

− G̃4;Xðd − 3Þ
�
κ −

q2

2X

�

×

�
G̃2

G̃2;X
−

G̃4

G̃4;X

�

dr: ð36Þ

D. A counterexample with the vacuum conformal
gravity solution

To appreciate our working hypotheses, we shall provide
a counterexample, the case of conformal gravity [106].
There exists an elementary example of a static solution in
the homogeneous form (23) for which the field equations
ϵ̃tt and ϵ̃tt are not proportional. Consider the action (22) in
d ¼ 4 with a0 ¼ a1 ¼ 0 and

L̃mðgÞ ¼ CλμνκCλμνκ;

where, as before, Cλμνκ is the Weyl tensor. Indeed, one can
see that in this case, the hypothesis (ii) is broken since

ϵ̃tt
f2ðrÞ þ ϵ̃rr ¼ −

8

3

f‴ðrÞ
r

−
2

3
f0000ðrÞ:

Note that, in the vacuum case, the metric solution [106] is
such that the right-hand side vanishes identically, and
hence, there is no consequence of ϵ̃tt not being proportional
to ϵ̃tt. However, in general, in our construction, the non-
homogeneity acquired from the primary hair will not be
such that the right-hand side of the previous equation
vanishes.

IV. FURTHER COMMENTS

In this work, we have explored a scalar-tensor theory
within the so-called beyond-Horndeski gravity, a theory
that accommodates higher-order terms while preserving the
propagation of healthy degrees of freedom [7]. We have
deliberately confined our investigation to a scalar theory
invariant under a constant shift of the scalar field. In this
particular scenario, the presence of a conserved Noether

current proves to be an important tool in the search for
analytical solutions. Remarkably, the action (1) has dem-
onstrated noteworthy potential in the construction of exact
black hole solutions, as evidenced by the recent work
of [92]. The solutions presented in this reference have been
found for specific coupling functions G2, G4, and F4, and
correspond to black holes characterized by primary scalar
hair. Notably, these scalarized black holes maintain a
continuous connection with the Schwarzschild solution.
In this investigation, we have extended the framework

of [92] in two key directions. Firstly, we considered its
arbitrary dimensional extension, and secondly, we explored
the circumstances under which the beyond-Horndeski
model, as considered herein, can be coupled to gravity
theories beyond-GR to yield hairy black holes with primary
hair. Concerning the former, we have identified the most
comprehensive class of actions (1) that facilitates the
emergence of black holes with primary scalar hair that are
continuously connecting to the Schwarzschild-Tangherlini-
(A)dS solution. In relation to the latter point, we have
precisely identified the possible alternative gravitational
theories (with possibly extra dynamical fields different
from the scalar field) that can be coupled with our beyond-
Horndeski model to generate scalarized black holes.
Subsequently, we have demonstrated how the Reissner-
Nordström black hole of Einstein-Maxwell, as well as the
static black hole configurations within general Lovelock
and cubic quasitopological gravities, can be promoted to
configurations featuring primary hair. As in [92], the hair of
our solutions is given by the integration constant q. This
constant, which accompanies the linear time dependence of
the scalar field, ensures the regularity of the scalar field
throughout the spacetime. It is essential to note that,
although all our solutions exhibit a continuous limit with
their bald counterparts, they do not necessarily represent a
linear superposition.
In the broader context of scalar-tensor theories, such as

Horndeski, beyond-Horndeski, or DHOST theories [9–11],
it is known that certain specific sectors exhibit black
hole solutions that are distinctly disconnected from the
Schwarzschild solution. In light of this observation, it
would be appealing to categorize all these scalar-tensor
theories according to whether or not they support solutions
that are continuously connecting to vacuum solutions of
general relativity. To pursue this task, insights coming from
the Kerr-Schild framework developed in [67] could be
useful. In this reference, shift-invariant DHOST theories
invariant under a Kerr-Schild transformation that preserves
the invariance of the kinetic term were identified (with
a scalar field possibly linear in the time coordinate).
Particularly, those theories featuring a standard falloff mass
term in their static black hole solutions emerge as potential
candidates for accommodating hairy black holes that are
continuously connected with the Schwarzschild solution.
Proceeding along this path, we recognize that Kerr’s
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solution can be obtained through a Kerr-Schild trans-
formation employing a null, geodesic, and shear-free
congruence. The seed metric, representing the solution
with zero mass, corresponds to the flat metric expressed in
ellipsoidal coordinates. However, in our scenario, due to
the inclusion of the scalar field, particularly the parameter
q, the metric solution with zero mass deviates from a flat
metric. This departure signifies a substantial alteration from
Kerr’s metric. Thus, it becomes intriguing to delve into the
properties of the null, geodesic, and shear-free congruences
of this hairy seed configuration, encompassing the scalar
field and metric solutions with M ¼ 0. Once these char-
acteristics are established, we can initiate a Kerr-Schild
transformation from the seed configuration to generate
rotating versions of our solution, thereby discerning the
potential astrophysical ramifications of these hairy solu-
tions. Since the seed configuration diverges from Kerr’s
metric, the resulting metric will not resemble Kerr’s,
presenting an opportunity for leveraging this metric in
current and future gravity experiments.
Finally, the availability of exact black hole spacetimes

with primary hair opens avenues for several analyses that
can be done analytically. Notably, it becomes pertinent to
conduct in-depth investigations into the thermodynamic
properties of these spacetimes, compute the corresponding
black hole charges, establish methodologies for regulariz-
ing a given theory action [107], and substantiate the validity
of the first law. Then several applications of these solutions
can be performed along the lines of the AdS=CFT con-
jecture or black hole chemistry [108]. Additionally, a
comprehensive analysis of the causal structure, geodesics,
and algebraic classification promises a more nuanced
understanding of the interplay between vacuum and hairy
black holes with primary hair. We anticipate presenting
findings on these aspects in the near future.
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APPENDIX: CONCRETE EXAMPLES

For the sake of concreteness, we will give some explicit
cases. We start by considering (12)

G̃2ðXÞ ¼ −
λðd − 3Þðd − 2Þ

2n − 1
Xn; ðA1Þ

G̃4ðXÞ ¼ −
λ

2n − 1
Xn; ðA2Þ

F4ðXÞ ¼
1

4
λXn−2; ðA3Þ

where evidently G̃2 ∝ G̃4. Recall that the case n ¼ 1
2

deserves particular attention as already noticed in [92]
(see below). Further, for convenience, we have fixed the
constants a0 ¼ 0 and a1 ¼ 1. This provides a kinetic term
X of the form,

X ¼ q2

2ðκ þ r2Þ ; ðA4Þ

and the solution of the metric function for the case of GR
then reads

fðrÞ ¼ κ −
2M
rd−3

−
2λ

rd−3

Z
rd−2Xndr

¼ κ −
2M
rd−3

þ λq2

2ðn − 1Þ

×

	
Xn−1 −

ðd − 3Þ
rd−3

Z
rd−4Xn−1dr



ðA5Þ

¼ κ −
2M
rd−3

−
21−nλκ−nq2n

d − 1
r22F1

×

�
d − 1

2
; n;

dþ 1

2
;−

r2

κ

�
; ðA6Þ

where 2F1 is the Gaussian hypergeometric function. In
particular, with n being an integer, this takes an even more
simple form; for example, for n ¼ 3 and in four dimen-
sions, we obtain

fðrÞ ¼ κ −
2M
r

−
λq6

32κ

	 ðr2 − κÞ
ðr2 þ κÞ2 þ

1

rκ1=2
arctan

�
rffiffiffi
κ

p
�


:

ðA7Þ

We can even extend this to include the Gauss-Bonnet term
in the action in the same line as we did in the general
Lovelock case. This yields a general form of the metric
function,
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f ¼ κ þ r2

2αðd − 4Þðd − 3Þ

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αMðd − 4Þðd − 3Þ

rd−1
þ 8λαðd − 4Þðd − 3Þ

rd−1

Z
rd−2Xndr

s !
; ðA8Þ

where α is the coupling constant of the Gauss-Bonnet term.
When carefully taking the limit α → 0 (in the case of the
lower sign in front of the square root), this reduces to the
Schwarzschild-like case from before. For example, let us
give the specific form of the metric function in five
dimensions for n ¼ 3,

f ¼ κ þ r2

4α

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16α

r4

	
M − λ

q6ðκ þ 2r2Þ
32ðκ þ r2Þ2


s !
:

ðA9Þ

To conclude, as already mentioned for G̃4ðXÞ ∝
ffiffiffiffi
X

p
,

the coupling function F4, as defined by (11), vanishes
identically, and consequently, the nonhomogeneity

disappears. Hence, in the case of Einstein-Gauss-Bonnet
gravity and for

G̃2ðXÞ ¼ −λðd − 3Þðd − 2Þ
ffiffiffiffi
X

p
; G̃4ðXÞ ¼ −λ

ffiffiffiffi
X

p
;

ðA10Þ

we end up with a stealth defined on the Boulware-Deser
black hole solution similar to the one found in [59]

fðrÞ ¼ κ þ r2

2αðd − 3Þðd − 4Þ

×

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αMðd − 3Þðd − 4Þ

rd−1

r !
: ðA11Þ

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), Astrophys. J. Lett. 875, L1 (2019).

[3] R. Abuter et al. (GRAVITY Collaboration), Astron. As-
trophys. 636, L5 (2020).

[4] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[5] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.

Rep. 513, 1 (2012).
[6] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[7] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys.

Rev. Lett. 114, 211101 (2015).
[8] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi,

J. Cosmol. Astropart. Phys. 02 (2015) 018.
[9] D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 02

(2016) 034.
[10] D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 07

(2016) 016.
[11] M. Crisostomi, K. Koyama, and G. Tasinato, J. Cosmol.

Astropart. Phys. 04 (2016) 044.
[12] J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K.

Noui, and G. Tasinato, J. High Energy Phys. 12 (2016) 100.
[13] R. Ruffini and J. A. Wheeler, Phys. Today 24, No. 1, 30

(1971).
[14] M. S. Volkov and D. V. Gal’tsov, JETP Lett. 50, 346

(1989).
[15] P. Bizon, Acta Phys. Pol. B 25, 877 (1994).
[16] C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24,

1542014 (2015).
[17] J. E. Chase, Commun. Math. Phys. 19, 276 (1970).

[18] J. D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972).
[19] S. W. Hawking, Commun. Math. Phys. 25, 167 (1972).
[20] T. P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103

(2012).
[21] L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104

(2013).
[22] A. Maselli, H. O. Silva, M. Minamitsuji, and E. Berti,

Phys. Rev. D 92, 104049 (2015).
[23] E. Babichev, C. Charmousis, and A. Lehébel, Classical
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