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We provide a covariant framework to study singularity-free Lemaître-Tolman-Bondi spacetimes with
effective corrections motivated by loop quantum gravity. We show that, as in general relativity, physically
reasonable energy distributions lead to a contraction of the dust shells. However, quantum-gravity effects
eventually stop the collapse, the dust smoothly bounces back, and no gravitational singularity is generated.
This model is constructed by deforming the Hamiltonian constraint of general relativity with the condition
that the hypersurface deformation algebra is closed. In addition, under the gauge transformations generated
by the deformed constraints, the structure function of the algebra changes adequately, so that it can be
interpreted as the inverse spatial metric. Therefore, the model is completely covariant in the sense that
gauge transformations in phase space simply correspond to coordinate changes in spacetime. However, in
the construction of the metric, we point out a specific freedom of considering a conformal factor, which we
use to obtain a family of singularity-free spacetimes associated with the modified model.
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I. INTRODUCTION

Lemaître [1] and Tolman [2] considered a spherically
symmetric dust (pressureless perfect fluid) to study the
expansion of the Universe. This model was also later
studied by Bondi [3], and it is usually referred to as the
LTB model. Although originally designed as a cosmo-
logical model in order to provide a generalization of the
homogeneous and spatially isotropic cosmologies, its main
physical results concern the description of the collapse of
spherical configurations of matter. In this respect, one of the
pioneering works was presented by Oppenheimer and
Snyder [4], who considered a collapsing dust cloud with
a homogeneous density, and concluded that all the matter
eventually converges and forms a gravitational singularity.
Indeed, this was a first step toward describing the formation
of black holes. Subsequent studies, relaxing symmetry
restrictions and with more realistic matter, proved their
intuition to be true: The gravitational singularity is dynami-
cally generated. The outcome of these investigations,
synthesized in the singularity theorems [5–8], certifies
the generally accepted incompleteness of general relativity
(GR). Providing a framework able to solve, or at least
alleviate, this flaw is in fact one of the main motivations for
the search of a theory of quantum gravity.
In this context, the main goal of the present work is to

study an effective model that describes the spherical

collapse of a dust cloud with corrections motivated by
loop quantum gravity. Although the full quantum dynamics
of this theory remains an open problem, the homogeneous
symmetry reduction of general relativity has been subject to
a consistent loop quantization [9–11]. Further, the effective
homogeneous models implementing key aspects of the
theory have been shown to greatly agree with the full
quantum dynamics [12–14] and, in particular, they predict
the resolution of the initial cosmological singularity.
The effective approach encodes the so-called holonomy

corrections in the classical Hamiltonian constraint, and thus
modify the dynamics as predicted by general relativity.
However, the generalization of these studies to nonhomo-
geneous spacetimes has not been trivial. In the canonical
setting, the hypersurface deformation algebra encodes the
covariance of the theory. While in homogeneous models
this algebra is trivial because the diffeomorphism constraint
automatically vanishes, this is not the case in more general
scenarios, like under spherical symmetry. In such a case, a
modification of the Hamiltonian constraint leads in general
to the nonclosure of the algebra, which signals a breaking
of the covariance.
In the context of vacuum spherical symmetry, examples

of deformed Hamiltonian constraints with a closed hyper-
surface algebra were presented some time ago (see, for
instance, [15–18]). However, the corresponding structure
function does not transform adequately, and thus there is no
known way to define an associated metric in a covariant
way (even if there were some proposals [19], the geometry
they described turned out to be gauge dependent [20]).
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Recently, in Refs. [21–23], a family of vacuum models was
presented ensuring, not only the closure of the algebra, but
also the correct transformation properties of the structure
functions.Thesemodels are completely covariant andone can
construct the associated geometry, so that gauge transforma-
tions correspond to coordinate transformations, though there
is still some freedom in such construction, as will be detailed
below. A particular case of this family of vacuummodels was
already analyzed in detail in Refs. [20,24], where it was
shown to provide a completely regular and geodesically
complete spacetime. Such spacetime can be understood as a
regularized version of the Schwarzschild black hole, which,
instead of the classical singularity, presents a transition
surface between a black-hole and white-hole region. This
model was also extended to charged spherical black holes in
cosmological backgrounds [25].
For dynamical matter fields, the construction of covariant

effective models with holonomy corrections has been more
challenging [26–34]. In Ref. [35], we presented a deformed
Hamiltonian constraint for spherical gravity coupled to a
scalar matter field with a closed hypersurface deformation
algebra. Furthermore, in Ref. [23] we proposed the minimal-
coupling prescription to the vacuum metric as a systematic
construction of fully covariant models for any matter field,
while in Ref. [36] other proposals to couple matter that
follow the same lines have been presented.
In this paper we will analyze the collapse of a spherical

dust matter field, making use of the model as given in
Ref. [23]. We note that this has also been studied in [37]
with the conclusion of having a singular geometry. Here,

however, we will show that one can indeed covariantly
associate a completely regular family of geometries to
the model.
The rest of the paper is organized as follows. In Sec. II we

present the model in phase space, and solve the equations of
motion by choosing the dust as the internal time variable. In
Sec. III we study the geometry covariantly associated with
themodel and use the freedom to consider a conformal factor
in order to get a family of singularity-free spacetimes.
Section IV summarizes the main results and conclusions
of the study. In Appendix A the family of metrics is
presented in a different chart while in Appendix B
we present an alternative model to describe a nonsingular
dust collapse.

II. THE EFFECTIVE MODEL

We have two pairs of conjugate variables for the geo-
metric degrees of freedom, fKxðx1Þ; Exðx2Þg ¼ δðx1; x2Þ ¼
fKφðx1Þ; Eφðx2Þg, and an additional one for the dust
component, fϕðx1Þ; Pϕðx2Þg ¼ δðx1; x2Þ. As commented
above, the model we will consider is constructed by
minimally coupling the dust field to the vacuum metric
presented in Refs. [20,24]. As explained in Ref. [23], this
leads to the total HamiltonianHT ¼ R ðNHþ NxDÞdx, that
describes the dynamics, where the two constraints

D ¼ −KxEx0 þ K0
φEφ þ ϕ0Pϕ; ð1aÞ

and
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satisfy the canonical hypersurface deformation algebra,

fD½s1�; D½s2�g ¼ D½s1s02 − s01s2�; ð2aÞ

fD½s1�; H½s2�g ¼ H½s1s02�; ð2bÞ

fH½s1�; H½s2�g ¼ D½Fðs1s02 − s01s2Þ�; ð2cÞ

with the structure function

F ≔
cos2ðλKφÞ
1þ λ2

�
1þ

�
λEx0

2Eφ

�
2
�

Ex

Eφ2 ð3Þ

being non-negative since Ex ≥ 0. The prime stands for the
derivativewith respect to x, andwe havedefined the smeared
form of the constraintsD½s� ≔ R

sDdx andH½s� ≔ R
sHdx.

The real constant λ ≠ 0 is the polymerization parameter of
the corrections motivated by loop quantum gravity, and GR
is recovered in the limit λ → 0.
In the following, we will solve the six Hamiltonian

equations of motion, q̇ ¼ fq;H½N� þD½Nx�g for q ¼ Kx;
Kφ;ϕ; Ex; Eφ; Pϕ, with the dot being the time derivative,
along with the two constraint equations D ¼ 0 and H ¼ 0.
As the first gauge choice, we impose the dust field to be the
time variable,

ϕ ¼ t; ð4Þ

and the conservation of this condition fixes the lapse

N ¼ 1: ð5Þ
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We then solve the diffeomorphism constraint equation,
D ¼ 0, for Kx ¼ K0

φEφ=ðEx0Þ, which is valid provided Ex0

is nonidentically vanishing. At this point it is convenient to
define the functions

r ≔
ffiffiffiffiffiffi
Ex

p
; ð6aÞ

m ≔
ffiffiffiffiffiffi
Ex

p

2

�
1þ sin2ðλKφÞ

λ2
−
�
Ex0

2Eφ

�
2

cos2ðλKφÞ
�
; ð6bÞ

κ ≔
�
Ex0

2Eφ

�
2

− 1; ð6cÞ

which will greatly simplify the equations. Note that these
are just definitions, which imply κ ≥ −1 and r ≥ 0, but no
gauge fixing is involved until we choose the specific form
of some of these functions.
Since ϕ is the time variable, we solve H ¼ 0 for its

conjugate variable Pϕ, which provides, in this gauge, a
notion of conserved energy

Pϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − ƛ

p m0ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

p ; ð7Þ

with ƛ ≔ λ2=ð1þ λ2Þ∈ ð0; 1Þ being a bounded constant
that, as it will be shown below, measures the strength of the
quantum corrections at the geometric level. Note that the
limit ƛ → 0 stands for GR. Furthermore, in terms of these
variables, the structure function (3) takes the simple form,

F ¼ ð1þ κÞ
ðr0Þ2

�
1 −

2ƛm
r

�
; ð8Þ

which, as explained in Ref. [20], is directly related to
the inverse of the radial component of the metric. In fact,
the most general line element covariantly associated with the
Hamiltonian (1) is given below in Eq. (15), with N ¼ 1 for
this particular gauge. Since, as commented above, F cannot
take negative values, the dynamical functions are restricted
by κ ≥ −1, which was implicit in the change of variables
above, and by r ≥ 2ƛm. The saturation of these inequalities
corresponds to the vanishing of F. More precisely, the root
ð1þ κÞ=ðr02Þ ¼ 0 corresponds to Ex=ðEφÞ2 ¼ 0, while
r ¼ 2ƛm implies cosðλKφÞ ¼ 0. Interestingly, the latter does
not exist in GR, and it corresponds to a symmetry-reflection
point of the Hamiltonian constraint.
The remaining three equations of motion read

ṙ ¼ Nxr0 − ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ƛm
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 2m

r

r
; ð9aÞ

ṁ ¼ Nxm0; ð9bÞ

κ̇ ¼ Nxκ0; ð9cÞ

where ϵ ≔ −sgnðλ sinð2λKφÞÞ and we have assumed, with-
out loss of generality, λKφ ∈ ½0; πÞ. Note that (9a) implies
r ≥ 2ƛm and κ ≥ −2m=r. The saturation of these inequal-
ities r ¼ 2ƛm and r ¼ −2m=κ corresponds to the points
cosðλKφÞ ¼ 0 and sinðλKφÞ ¼ 0, respectively, where ϵ
changes sign.
Since the diffeomorphism constraint has already been

solved for Kx, (9) is a system of three equations for four
variables Nx, r,m, and κ. Therefore, we still have the gauge
freedom to choose one function. More precisely, the gauge
would be completely fixed by choosing the specific form of
one among the functions r,m, κ (or a combination between
them), in such a way that its conservation provides the shift
Nx. In the following, we will solve the equations of motion
in a particular gauge, which will allow us to obtain an
analytic solution for rðt; xÞ.
Let us require the mass function to be independent of the

time, m ¼ mðxÞ, with m0ðxÞ not being exactly vanishing
(because a constant m restricts us to the vacuum case).
From (9b) one then gets Nx ¼ 0, which also imposes
κ ¼ κðxÞ as a solution to (9c). In this way, the only
remaining equation reads

ṙ ¼ −ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ƛm
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 2m

r

r
; ð10Þ

with two arbitrary functions m ¼ mðxÞ and κ ¼ κðxÞ,
which parametrize each solution. In this gauge, the sign
ϵ completely determines the sign of ṙ and, thus, whether we
are in a collapsing (ϵ ¼ 1) or expanding (ϵ ¼ −1) scenario.
In addition, r ¼ 2ƛm and r ¼ −2m=κ will define turning
points of the trajectory r ¼ rðt; xÞ as a function of t, as long
as the right-hand side of these expressions is positive
because, as commented above, r ≥ 0.
More precisely, in this gauge the coordinate x labels the

different layers of the dust and, for physically realistic
scenarios, we expect mðxÞ to be strictly positive (indeed,
monotonically increasing) except at the origin, that is, we
set mð0Þ ¼ 0 and mðx ≠ 0Þ > 0. Taking into account the
sign of the second derivative, rminðxÞ ≔ 2ƛmðxÞ will be a
minimum of the radius r for the layer x ≠ 0,

̈rjr¼2ƛm ¼ ð1þ ƛκÞ
4mƛ2

> 0;

while rmaxðxÞ ≔ −2m=κ will define a maximum,

̈rjr¼−2m=κ ¼ −
κ2

4m
ð1þ ƛκÞ < 0;

provided κðxÞ is strictly negative there.
As a result, if they are initially collapsing ðϵ ¼ −1Þ, all

the layers with x ≠ 0 will bounce at r ¼ rminðxÞ. In this
scenario, the maximum rmaxðxÞ will be finite only if κðxÞ
is negative, which defines the bounded case. If κðxÞ is
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non-negative (the so-called unbounded case for κ > 0
and marginally bounded for κ ¼ 0), the layer x will reach
r → ∞ with velocity

ffiffiffiffiffiffiffiffiffi
κðxÞp

. For x ¼ 0, where mð0Þ ¼ 0,
one will obtain a bounce at r ¼ 0, though the function r
will in general not be differentiable there. Let us see this in
more detail by solving the evolution equation (10).
Taking into account that only a derivative with respect to

t appears in (10), and that it is separable, it is straight-
forward to reduce the equation to an integral. This can be
explicitly computed to obtain the following implicit sol-
ution for r ¼ rðt; xÞ, with the integration function
t0 ¼ t0ðxÞ:

t − t0 ¼ −ϵ
r
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ƛm
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r

þ κ

r

þ ϵ
2m

κ3=2
ð1 − ƛκÞartanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðr − 2ƛmÞ
2mþ κr

r
; ð11aÞ

for the unbounded case κ > 0,

t − t0 ¼ −ϵ

ffiffiffiffiffiffiffi
2r3

9m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −
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r

r �
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�
; ð11bÞ

for the marginally bounded case κ ¼ 0, and

t − t0 ¼ þϵ
r
jκj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ƛm
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r

− jκj
r

− ϵ
2m

jκj3=2 ð1þ ƛjκjÞ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jκjðr − 2ƛmÞ
2m − jκjr

s
; ð11cÞ

for the bounded case κ < 0.
As can be checked explicitly from above, if mðxÞ > 0,

rðt; xÞ is an everywhere analytic function of t, and has a
minimum at t ¼ t0. For the shell x ¼ 0 with mðxÞ ¼ 0, we
find that κðxÞ cannot be negative, and r ¼ ffiffiffi

κ
p jt − t0j,

which is continuous for all t and has also a minimum at
t ¼ t0. However, it is not differentiable there, unless we
also fix the boundary condition κð0Þ ¼ 0. This condition
means that the “central” shell x ¼ 0 remains still at a
constant radius.
Once we choose an initial value for ϵ, let us say, for

instance, ϵ ¼ 1 at a given time t so that we are in the
contracting branch, the above solution is valid for t ≤ t0. At
t ¼ t0, which corresponds to r ¼ rminðxÞ ¼ 2ƛmðxÞ, we
reach the minimum of the trajectory. From that point on, we
enter the expanding branch, where ϵ ¼ −1. One can indeed
check this by computing K̇φ at cosðλKφÞ ¼ 0, to see that it
is not zero there, and thus ϵ ¼ −sgnðλ sinð2λKφÞÞ must
change sign at t ¼ t0.
Only in the bounded case, with κ < 0, there is a finite

maximum rmaxðxÞ ¼ 2m=jκj for the trajectories rðt; xÞ.
This means that the shell x follows a periodic dynamics,
oscillating between its corresponding rmin and rmax, with

period T ¼ 2πð1þ ƛjκjÞm=jκj3=2. The sign of ϵ changes at
both rmin and rmax, as they correspond to cosðλKφÞ ¼ 0 and
sinðλKφÞ ¼ 0, respectively.
In summary, the solution (11) describes a function

r ¼ rðt; xÞ with a local minimum at r ¼ 2ƛm for m > 0.
In such a case, r is everywhere analytic as a function of t.
This extends to mð0Þ ¼ 0, which corresponds to the value
of the mass function at the origin, provided the boundary
condition κð0Þ ¼ 0 is enforced.
In the following section, we will present the geometric

description of the system and show that one can endow the
model with a regular geometry.

III. THE GEOMETRIC DESCRIPTION

In spherical symmetry, the spacetime manifold M is a
warped product between a two-dimensional Lorentzian
manifold M2 and the two-sphere S2. The function x,
constant on the orbits of the spherical symmetry group,
defines a radial direction outside the fixed points of the
group. Choosing adapted coordinates, the spacetime metric
is diagonal by blocks,

ds2 ¼ gABdyAdyB þ R2dσ2; ð12Þ

with dσ2 the metric of the unit two-sphere. We will use
t ≔ y0 and x ≔ y1. The area-radius function R ¼ Rðt; xÞ
encodes the area of the two-spheres, and we assume that
M2 is foliated by the spacelike level surfaces of the time
function t.

A. The construction of the metric

To endow the model with a metric of the form (12), one
needs to ensure that gauge transformations on phase space
correspond to coordinate changes in the spacetime mani-
fold. As explained in Ref. [20], the metric

ds2 ¼ −N2dt2 þ 1

F
ðdxþ NxdtÞ2 þ r2dσ2; ð13Þ

where F is the structure constant (3) fulfills such require-
ment, and provides a covariant geometric representation
of the model. The main reason is that, under the gauge
transformations generated by the first-class constraints (1),
1=F transforms in the sameway as a spatial metric under an
infinitesimal coordinate transformation. That is, F, as given
in (3), obeys the relation

ξt∂t

�
1

F

�
þ ξx∂x

�
1

F

�
þ 2

F
ðNx

∂xξ
t þ ∂xξ

xÞ

¼
�
1

F
;H½ξtN� þD½ξtNx þ ξx�

�
ð14Þ

for any parameters ξt and ξx, when the equations of motion
are satisfied.
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In principle, if we had the complete form of the hyper-
surface deformation algebra (without any symmetry reduc-
tion), one could read the whole inverse spatial metric qij

from the bracket (2c). However, the vanishing of the
angular components of the diffeomorphism constraint in
spherical symmetry prevents us from determining the
metric in S2. Therefore, to write down (13), we have
assumed that the area of the spheres of the spherical
symmetry is the same as in GR and thus we have chosen
R ≔ r ¼ ffiffiffiffiffiffi

Ex
p

. Nonetheless, one could choose any other
scalar field multiplying the S2 metric.
As we will show below, the metric (13) turns out to have

a diverging curvature at the turning point rmin ¼ 2ƛm for
the dynamics described in the previous section. Therefore,
at this point, we recall another freedom in the construction
of the geometry associated with the model, which will
allow us to resolve such divergences. Indeed, as explained
in Refs. [19,20] the sector of the metric corresponding to
M2 can be multiplied by a conformal factor,

ds̃2 ¼ Ω−2
�
−N2dt2 þ 1

F
ðdxþ NxdtÞ2

�
þ r2dσ2; ð15Þ

and still obey the covariance conditions as long as Ω is a
spacetime scalar field. The main reason is that multiplying
the different objects by a scalar does not change their
transformation properties. In particular, if F obeys relation
(14), so willΩ2F for any scalarΩ. Note that no structure on
the phase space (neither the constraints, nor the equations
of motion) depend on the scalar Ω. This is a freedom that
appears when endowing the model with a geometric
description, which is also present in canonical GR. That
is, given the GR hypersurface deformation algebra in
spherical symmetry, from there one would be able to infer
the metric in the two-dimensional Lorentzian sector, only
up to a conformal factor. The freedom to choose this
conformal factor is not usually considered, and it is
completely fixed if one demands that the metric satisfies
the Einstein equations. However, since, contrary to GR, we
lack the fundamental field equations, we have no clear
indication to choose one among the infinite family of
conformal metrics. We thus rely on singularity resolution to
find the suitable conformal factor for the Lorentzian M2

sector.

B. Curvature scalars

In such spherically symmetric spacetimes (12), all the
information regarding the spacetime curvature is encoded
in the norm vAvA of the vector vA ≔ ∇AR, the trace of its
gradient ∇AvA, and the Ricci scalar ð2ÞR of the Lorentzian
metric g in M2. More precisely, there are only two
independent spacetime curvature scalars:

ð4ÞR ¼ ð2ÞRþ 2

R2
ð1 − vAvAÞ −

4

R
∇AvA; ð16aÞ

U ¼ −
1

6

�
ð2ÞRþ 2

R2
ð1 − vAvAÞ þ

2

R
∇AvA

�
; ð16bÞ

with the former being the four-dimensional Ricci scalar,
and the latter providing all nonvanishing components of the
Weyl tensor.
Now, given two conformal metrics g̃ ¼ Ω−2g in M2, we

have that ṽAṽA ¼ Ω2vAvA, ∇̃AṽA ¼ Ω2∇AvA, and
ð2ÞR̃ ¼

Ω2ðð2ÞRþ∇A∇A logΩÞ. Therefore, we see that a suffi-
ciently rapidly vanishing Ω flattens the metric in M2.
When translated to the four-dimensional spacetime,

ð4ÞR̃ ¼ Ω2ðð4ÞRþ∇A∇A logΩÞ þ
2

R2
ð1 − Ω2Þ; ð17aÞ

Ũ ¼ Ω2

�
U −

1

6
∇A∇A logΩ

�
−

1

3R2
ð1 −Ω2Þ; ð17bÞ

and we can exploit this conformal freedom to remove
curvature divergences without changing the dynamics on
phase space.
In fact, as already commented above, using (13) along

with the solutions (5), (8), and (9), one can check that the
curvature is divergent at the surfaces r ¼ 2ƛm. More
precisely, as r → 2ƛm, we find vAvA ∼ β, ∇AvA ∼ β1=2,
and ð2ÞR ∼ β−1, where the scalar

β ¼ 1 −
2ƛm
r

ð18Þ

is the “deformation” of the structure function with respect to
GR. That is, β ≔ F=ðFjλ→0Þ. This result might come as a bit
of a surprise since, as explained above, in the phase space
all trajectories present a smooth and continuous bounce at
r ¼ 2ƛm. However, choosing a different conformal factor,
let us say Ω2 ¼ βn, with n ≥ 1, is enough to get finite
spacetime curvature scalars at the hypersurfaces r ¼ 2ƛm.
Note that, since β trivially reduces to one as ƛ → 0, with this
choice we still recover GR in that limit. In addition, we
would like to point out that the case n ¼ 1 is special because
it is the only one in which ð2ÞR̃ does not vanish there.

C. The effective geometry

In the following, we will use the metric (15), with the
conformal factor Ω2 ¼ βn, and the solutions for the phase-
space variables (5), (8), and (9) found in Sec. II for a
particular gauge. In this gauge, the metric (15) reads1

1As a particular example of the covariance of the model, in
Appendix Awe provide the solution of the equations of motion in
a different gauge, construct the corresponding line element, and
show that it is related to this line element by a specific coordinate
transformation.
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ds̃2 ¼ −
�
1 −

2ƛmðxÞ
rðt; xÞ

�
−n
dt2 þ

�
1 −

2ƛmðxÞ
rðt; xÞ

�
−ðnþ1Þ

×
ðr0ðt; xÞÞ2
1þ κðxÞ dx2 þ rðt; xÞ2dσ2; ð19Þ

with n ≥ 1, m ¼ mðxÞ, κ ¼ κðxÞ, and rðt; xÞ implicitly
given by (11). This describes a regular spacetime for
x > 0. In particular, at the minimum of the trajectories
r ¼ 2ƛm, the Ricci scalar is ð4ÞR ¼ ð1þ ƛκÞ=ð2ƛ3m2Þδ1nþ
2=ð2ƛmÞ2. However, the situation of the layer x ¼ 0, where
mðxÞ ¼ 0, is a bit different. If the function rðt; 0Þ is positive
there, the curvature vanishes. If rðt; 0Þ ¼ 0, the leading
contribution as r → 0 to the Ricci scalar ð4ÞR goes asm=r3,
which does not generically provide a convergent curvature.
Indeed, we need that m decays at least as r3. More
precisely, if we have r ≈ aðtÞx and m ≈ ρ0x3 in a neighbor-
hood of x ¼ 0, we find that ð4ÞR¼6ρ0ð1þƛð2þκÞÞ=aðtÞ3
at x ¼ 0.
We can physically motivate such decay by introducing

the Hawking mass MH, which measures the amount of
energy contained within a sphere of constant coordinates t
and x. This notion is tightly related to the norm of vA (see
below), and it reads MH ≔ ð1 − vAvAÞr=2, which leads to

MH ¼ r
2

�
1 −

�
1 −

2m
r

��
1 −

2ƛm
r

�
nþ1

�
: ð20Þ

Since MH ¼ ƛm at r ¼ 2ƛm, the function m inherits the
physical meaning of mass at those hypersurfaces.
Therefore, the homogeneous-density case MH ¼ 1

6
ρðtÞr3

implies the above decaying conditions. In such a case, the
geometry is everywhere regular.
To close the section, let us specify the dust energy

density, defined as (7) divided by the determinant of the
spatial metric, i.e.,

E ≔
ffiffiffiffiffiffiffiffiffi
Ω2F

p

r2
Pϕ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − ƛ

p m0

r2r0

�
1 −

2ƛm
r

�nþ1
2

; ð21Þ

which vanishes at r ¼ 2ƛm because, as one can read
from (6b), r0 ¼ 2ƛm0 when r ¼ 2ƛm.
Outside the surface of the star, i.e., when m0 ¼ 0 so

that (21) vanishes, we see that the Ricci scalar ð4ÞR
decreases as 1=r4 when r → ∞ for any n ≥ 1.

D. The structure of the spacetime

Note that, even if from a dynamical perspective our
gauge was perfectly valid at r ¼ 2ƛm, the metric in this
chart, as given by (19), degenerates at those surfaces. This
is however just a coordinate singularity, and a chart
covering them should exist. We have been unable to
explicitly construct such a chart, though we can deduce
the structure of the spacetime by constructing scalar
quantities as follows.
Since vAdxA ¼ ṙdtþ r0dx, all the components of its

metrically conjugate vector, vA ¼ gABvB, vanish at
r ¼ 2ƛm. To be more precise, we can project it along
the unit normal to the leaves of constant time, nAdxA, and
its orthogonal direction,

nAvA ¼ −ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 2m

r

r �
1 −

2ƛm
r

�nþ1
2

; ð22aÞ

ϵABnAvB ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

p �
1 −

2ƛm
r

�nþ1
2

: ð22bÞ

It is clear that these components are vanishing at r ¼ 2ƛm,
which shows that the hypersurfaces defined as r ¼ 2ƛm are
minimal. Besides, if n > 1, ð2ÞR is also zero there, and thus
they are flat.
In addition, these surfaces are spacelike, since in a

neighborhood of r ¼ 2ƛm, the norm of its gradient,

∇Aðr − 2ƛmÞ∇Aðr − 2ƛmÞ ¼
�
1 −

2ƛm
r

�
nþ1

��
1 −

2m
r

�
þ 4ƛm0

ðr0Þ2 ðƛm
0 − r0Þð1þ κÞ

�
;

is negative, because, from (6b), we find r0 ¼ 2ƛm0 when
r ¼ 2ƛm. The norm of the vector vA,

vAvA ¼
�
1 −

2m
r

��
1 −

2ƛm
r

�
nþ1

; ð23Þ

vanishes at r ¼ 2m in addition to r ¼ 2ƛm. The former
defines the apparent horizon, where the vector becomes
lightlike, while the latter corresponds to the commented

minimal surfaces, where the vector vanishes and the bounce
of the dust shells takes place. Going back to (22a), we see
that vA points to the future (past) when ϵ ¼ 1 (ϵ ¼ −1), that
is, in the contracting (expanding) phase. Since vAvA < 0

for 2ƛm < r < 2m, this region is trapped to the future
(past), whereas the regions r > 2m are nontrapped. Note, in
particular, that, since ƛ < 1, the bounce always takes place
in the trapped region inside the horizon and there is no mass
threshold to form the horizon.
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In addition, the surface r ¼ 2ƛm is a symmetry surface
of the complete spacetime, because it corresponds to the
symmetry surface cosðλKφÞ ¼ 0 of the Hamiltonian (1).
Taking all this information into account, in Fig. 1 we
present the qualitative conformal diagram for the family of
metrics (19). This diagram can be obtained from its
classical counterpart, just by replacing the singularity
surface by the now smooth minimal spacelike surface
r ¼ 2ƛm, and extending the spacetime further away than
this surface by reflection symmetry.

IV. CONCLUDING REMARKS

We have analyzed a model that describes the collapse of
a spherical dust cloud with corrections motivated by loop
quantum gravity. This model is constructed by introducing
certain corrections in the Hamiltonian constraint of general
relativity, while requesting the closure of the hypersurface
deformation algebra and a proper transformation of the
structure functions under gauge changes. This allows us to
preserve the covariance of the theory and to construct an
associated geometry in a gauge-invariant way, i.e., so that
each gauge choice in the phase space simply corresponds to
a choice of coordinates in spacetime.

Fixing the dust as the internal time variable, we have
shown that, given a positive mass function, the solution to
the equations of motion generically leads to a minimum
value of the radius for each dust shell. Contrary to the
dynamics described by Einstein equations, where initially
collapsing shells end up reaching r ¼ 0 and producing a
singularity, in this model all the shells bounce back at their
corresponding positive minimum.
Then, we have proceeded to analyze the associated

geometry of the model. However, it turns out that the
metric (13) presents a curvature divergence at the bouncing
point, even if dynamical trajectories in phase space are
completely smooth and continuous there. This metric was
the one considered in previous analysis of vacuum models
[20,24,25], and was indeed used in Ref. [23] to construct
the matter Hamiltonian of the present model by following a
minimal-coupling prescription. Nonetheless, this is not the
only geometry one can associate with the effective model,
and there is, in particular, the freedom to introduce a
conformal factor, as long as it is a spacetime scalar.
Therefore, motivated by the fact that the dynamics is

completely smooth in phase space, we have introduced the
metric (15), and found out the necessary conditions for the
scale factor Ω, so that it defines an everywhere smooth

FIG. 1. Outline of the conformal diagram of the spacetimes under consideration [the metric (19) with positivemðxÞ for all x > 0]. On
the left κ ≥ 0, and κ < 0 on the right. In the latter, the star oscillates periodically between a minimum and a maximum radius. In both
cases, the green line represents the surface of the star (drawn by hand, in particular in the bounded case, where we depict it as a vertical
line), and the region on its right describes a singularity-free vacuum solution similar to the geometry analyzed in [20]. The red lines
correspond to the apparent horizons r ¼ 2m, with their interior shaded in red. The purple horizontal line is the regular minimal spacelike
transition surface r ¼ 2ƛm, which divides this interior into a trapped (below) and antitrapped (above) regions. The dashed yellow line is
the null cone that defines the event horizon.
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geometry. In this way, we have ended up with the family of
metrics (19), with n ≥ 1. Given a mass function positive
everywhere except at the origin, where it vanishes but
scales as r3, these metrics describe smooth geometries
covariantly associated with the model. In Fig. 1 we have
qualitatively constructed their conformal diagram.
In summary, one would consider (19) with n ≥ 1 as the

physical metric, while the dust field is minimally coupled to
the metric (13), which corresponds to n ¼ 0 in (19). In
principle, minimal coupling does not need to be more
fundamental than any other coupling. However, in
Appendix B, we also show that it is indeed possible to
obtain a similar model, where the dust field is minimally
coupled to the physical smooth metric.
The main difference between the present model and

other effective descriptions of the dust collapse in the
context of loop quantum gravity (see, for instance,
Refs. [29,31], where scale-dependent holonomies (μ-
scheme) are considered) lies in the emphasis of the
covariance of the theory by ensuring that the polymerized
constraint (1) satisfies the hypersurface deformation alge-
bra (2). While this is a key feature to consistently explore
the modified geometries, the resulting Hamiltonian (1) is
more complicated than what one would expect from the
usual holonomy corrections, even if our polymerization
parameter is constant (μ0-scheme). Concerning the physical
implications, the typical curvature corrections to the GR
potential outside the star differ and, while the asymptotic
decay of the Ricci scalar goes as 1=r6 in the models
analyzed in Refs. [29,31], in the present framework it scales
as 1=r4. Furthermore, in our model the bounce of the dust
shells always happens in the trapped region inside the
apparent horizon, and thus there is neither a mass threshold
to form such horizon as in Ref. [31], nor an interior Cauchy
horizon before the bounce as in Ref. [29]. These key
features are robust and they do not rely on the specific
initial density profile.
Finally, we note that general relativity is recovered in the

limit where the parameter ƛ, which measures the strength of
the quantum-gravity corrections, tends to zero (or, equiv-
alently, λ → 0). All the presented metrics, along with the
equations of motion (9), reproduce the classical LTB results
in that limit, including the gravitational singularity as
r → 0. In this sense, general relativity can be considered
as a singular limit of the model.
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APPENDIX A: AN ALTERNATIVE
GAUGE/CHART

In this appendix we provide the metric (19) in an
alternative chart in order to explicitly illustrate the covari-
ance of the model. We will solve the equations of motion
for another gauge, construct the corresponding line
element, and then show that they can be related to the
line element (19) by a coordinate transformation.
We now set r ¼ x in (9). Then, Nx ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ƛm=r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 2m=r

p
, which determines the evolution ofmðt; xÞ and

κðt; xÞ through (9b) and (9c), respectively. Plugging this
into the metric (15) leads to the line element

ds̃2 ¼ 1

1þ κ

�
1 −

2ƛm
r

�
−n
�
−
�
1 −

2m
r

�
dt2

þ 2ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κrþ 2m
r − 2ƛm

r
dtdrþ

�
1 −

2ƛm
r

�
−1
dr2

�
þ r2dσ2:

ðA1Þ

Besides, it is straightforward to see that the change
of coordinates dr ¼ r0dxþ ṙdt, with ṙ given by (10),
renders (19) into (A1). Therefore, this shows that these
two different gauge choices lead to different charts of the
same metric.
Furthermore, this chart provides an interesting charac-

terization of the function mðt; xÞ, since the time-time
component of the Einstein tensor, which can be interpreted
as certain energy density, yields

ρ ≔ −G0
0 ¼ 2

r2
∂MH

∂r
; ðA2Þ

with MH the Hawking mass (20).

APPENDIX B: MINIMAL COUPLING OF THE
DUST FIELD TO THE PHYSICAL METRIC

As commented in the main text, we can understand the
above dust matter model as being minimally coupled to a
fiducial conformal metric. That is, the physical smooth
metric is (19) with n ≥ 1, while the dust is minimally
coupled to the metric (13), which corresponds to n ¼ 0
in (19). However, in this appendix we will show that
it is indeed possible to construct an alternative model such
that the dust is minimally coupled to the physical smooth
metric.
Let us define the vacuum Hamiltonian as

HðgravÞ
T ¼

Z
ðNxDg þ NHgÞdx; ðB1Þ
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with Dg and Hg being the reduction to vacuum of (1a)
and (1b), respectively, that is, the ones obtained by setting
Pϕ ¼ 0 in those expressions. Now, minimally coupling the
dust to the metric (15) gives the matter contribution

HðdustÞ
T ¼

Z
ðNxϕ0PϕþNΩ−1Pϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þFΩ2ðϕ0Þ2

q
Þdx ðB2Þ

to the total Hamiltonian HT ¼ HðgravÞ
T þHðdustÞ

T . Note how
the conformal factor Ω enters the dust Hamiltonian con-
straint, meaning that the equations of motion of the
different variables will change with respect to the model
studied in the main text. In order to remain as close as
possible to our previous results, we will setΩ2 ¼ βn, with β
given in (18), in the following.
Using again the definitions (6) and setting the dust as

time, ϕ ¼ t, leads now to the lapse N ¼ Ω, and to the
following set of equations,

ṙ ¼ Nxr0 − ϵ

�
1 −

2ƛm
r

�ðnþ1Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 2m

r

r
; ðB3aÞ

ṁ ¼ Nxm0; ðB3bÞ

κ̇ ¼ Nxκ0 − ϵƛnð1þ κÞ 2m
r2

�
1 −

2ƛm
r

�ðn−1Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 2m

r

r
;

ðB3cÞ

with ϵ ≔ −sgnðλ sinð2λKφÞÞ. Interestingly, the coupling
Ω2 ¼ βn does not alter explicitly the equation of the
mass (B3b) and it coincides with (9b). However, the
other two equations are more involved in this case and it
turns out more difficult to obtain analytic solutions. For
instance, if one tries to fix the same gauge as above by
requesting m ¼ mðxÞ, then Nx ¼ 0, which leads to κ̇ ≠ 0
and thus one still needs to solve the two nonlinear coupled
equations (B3a)–(B3c) with Nx ¼ 0. Instead, if one sets
κ ¼ κðxÞ, the conservation of such gauge condition pro-
vides a complicated form for the shift Nx.
In addition, it is interesting to note that the marginally

bound case, defined as κ ¼ 0, is only consistent for the
trivial solution m ¼ 0 or if n ¼ 0, which is the scenario

studied in the main text. As a result, the “marginally bound”
scenario does not exist in this model.
In fact, despite the difficulty of finding a general solution

for the system, we have been able to obtain a particular
solution that resembles the “marginal” case. More pre-
cisely, for n ¼ 1, the explicit choice κ ¼ −2ƛm=r is a
solution to (B3c) for any choice of m and r, and it reduces
to κ ¼ 0 in the GR limit ƛ → 0. Further, if we work in the
diagonal gauge by imposing m ¼ mðxÞ, which implies
Nx ¼ 0, then (B3a) can be integrated explicitly:

t ¼ t0ðxÞ −
ϵƛffiffiffiffiffiffiffiffiffiffiffi
1 − ƛ

p
�
2m

ffiffiffi
ƛ

p
log

� ffiffiffi
r

p
−

ffiffiffiffiffiffiffiffiffi
2ƛm

p
ffiffiffi
r

p þ ffiffiffiffiffiffiffiffiffi
2ƛm

p
�

þ
ffiffiffiffiffiffiffiffiffi
2mr

p �
2þ r

3ƛm

��
: ðB4Þ

Interestingly, for this particular solution, it takes an infinite
amount of dust proper time to reach the surfaces r ¼ 2ƛm.
The metric in this chart is just

ds2 ¼ −dt2 þ
�
1 −

2ƛm
r

�
−3
ðr0Þ2dx2 þ r2dσ2; ðB5Þ

with m ¼ mðxÞ, and r ¼ rðt; xÞ as given in (B4). As in the
previous case, it can be checked that all the relevant
curvature scalars are finite at r ¼ 2ƛm, although the metric
is significantly different from (19) with n ¼ 1.
As in the previous appendix, we make a second gauge

choice r ¼ x. Then, we have Nx ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − ƛ

p ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
ð1 − 2ƛm=rÞ, because κ ¼ −2ƛm=r and n ¼ 1. The only
dynamical equation left is (B3b), which is now determined
by the above expression for the shift. The metric reads,

ds2 ¼ −
r − 2m
r − 2ƛm

dt2 þ 2ϵ
ffiffiffiffiffiffiffiffiffiffiffi
1 − ƛ

p ffiffiffiffiffiffiffi
2m
r

r �
1 −

2ƛm
r

�
−2
dtdr

þ
�
1 −

2ƛm
r

�
−3
dr2 þ r2dσ2; ðB6Þ

and just aswith the previousmodel, this can be related to (B5)
through the coordinate transformation dr ¼ ṙdtþ r0dx,
with ṙ ¼ −ϵ

ffiffiffiffiffiffiffiffiffiffiffi
1 − ƛ

p ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p ð1 − 2ƛm=rÞ.
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