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We consider the effects of Weyl geometry on the propagation of electromagnetic wave packets and on
the gravitational spin Hall effect of light. It is usually assumed that in vacuum the electromagnetic waves
propagate along null geodesics, a result which follows from the geometrical optics approximation.
However, this model is valid only in the limit of infinitely high frequencies. At large but finite frequencies,
the ray dynamics is affected by the wave polarization. Therefore, the propagation of the electromagnetic
waves can deviate from null geodesics, and this phenomenon is known as the gravitational spin Hall effect
of light. On the other hand, Maxwell’s equations have the remarkable property of conformal invariance.
This property is a cornerstone of Weyl geometry and the corresponding gravitational theories. As a first step
in our study, we obtain the polarization-dependent ray equations in Weyl geometry, describing the
gravitational spin Hall effect of localized electromagnetic wave packets in the presence of nonmetricity. As
a specific example of the spin Hall effect of light in Weyl geometry, we consider the case of the simplest
conformally invariant action, constructed from the square of the Weyl scalar, and the strength of the Weyl
vector only. The action is linearized in the Weyl scalar by introducing an auxiliary scalar field. In static
spherical symmetry, this theory admits an exact black hole solution, which generalizes the standard
Schwarzschild solution through the presence of two new terms in the metric, having a linear and a quadratic
dependence on the radial coordinate. We numerically study the polarization-dependent propagation of light
rays in this exact Weyl geometric metric, and the effects of the presence of the Weyl vector on the
magnitude of the spin Hall effect are estimated.
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I. INTRODUCTION

Maxwell’s equations have a natural invariance with res-
pect to the group of conformal transformations gμν → ĝμν ¼
Σ2gμν, where the dimensionless conformal factor ΣðxÞ is a
smooth, strictly positive functionof the spacetimecoordinates
xμ [1,2]. The conformal invariance of Maxwell’s equations
has fundamental physical consequences and implies that
because the photon is massless, no specific mass or length
scale is associated with the electromagnetic field [2]. In the
geometrical optics limit of Maxwell’s equations, which is
based on the assumption that the wavelengths of the electro-
magnetic waves are negligible as compared to the radius of
curvature of spacetime, light travels along null geodesics,
which are left invariant by the conformal transformations,
except for a change of parametrization [1].
On the other hand, conformal invariance is the corner-

stone of Weyl geometry [3], which is an important

extension of Riemann geometry. The starting point for
building up Weyl geometry is the replacement of the
metric compatibility condition of Riemann geometry with
a more general condition. Assume that the covariant
derivative of the metric tensor does not vanish identically
but is given by ∇̃αgμν ¼ Qαμν, where Qαμν is called the
nonmetricity tensor. Initially, Weyl adopted for the non-
metricity tensor the particular form Qαμν ¼ ωαgμν, where
ωα is the Weyl vector. For a detailed discussion of Weyl
geometry, as well as of its historical development, see
Ref. [4]. Weyl also introduced important ideas regarding
the necessity of conformal invariance of physical laws,
and he also proposed reformulating Einstein’s gravita-
tional theory as a conformally invariant physical theory.
Conformally invariant theories of gravity, as well as of
elementary particle physics, were recently considered in
Refs. [5–11]. In a general sense, the action that describes
an arbitrary physical system is conformally invariant if
the variation of the action S½gμν;ϕ� with respect to the
group of conformal transformations vanishes, δcS½gμν;ϕ� ¼R
dnxðδL=δϕÞδcϕ ¼ 0 [12].

*marius.oancea@univie.ac.at
†tiberiu.harko@aira.astro.ro

PHYSICAL REVIEW D 109, 064020 (2024)

2470-0010=2024=109(6)=064020(25) 064020-1 © 2024 American Physical Society

https://orcid.org/0000-0002-1242-4041
https://orcid.org/0000-0002-1990-9172
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.064020&domain=pdf&date_stamp=2024-03-08
https://doi.org/10.1103/PhysRevD.109.064020
https://doi.org/10.1103/PhysRevD.109.064020
https://doi.org/10.1103/PhysRevD.109.064020
https://doi.org/10.1103/PhysRevD.109.064020


We can also consider the Weyl rescaling, representing
the simultaneous transformations of the physical fields
and of the metric, given by ĝμνðxÞ ¼ e2σðxÞgμν, and ϕ̂ ¼
e−ΔσðxÞϕðxÞ [12], under which the action transforms as
δσS½gμν;ϕ� ¼

R
dnxσ½2ðδL=δgμνÞgμν − ΔnðδL=δϕÞϕ�. See

Ref. [12] for an in-depth discussion of conformal invari-
ance and Weyl invariance.
An interesting extension of Weyl’s theory was proposed

by Dirac [13,14], which is based on the introduction of a
new geometric quantity, the Dirac gauge function β, which
describes the geometric and physical properties of the
spacetime manifold, together with the symmetric metric
tensor gμν and the geometric Weyl vector ωμ. For physical
and cosmological applications of the Weyl-Dirac theory,
see Refs. [15,16]. The Weyl geometric theory and its
possible physical implications were also investigated in
Refs. [17–19]. In particular, a new scalar field, called a
measure field, was introduced in the theory. The measure
field plays the role of a measure associated with each world
point. If all the physical quantities are measured with a
standard given by the measure field, then it is possible to
formulate all the field equations in a manifestly gauge-
invariant way.
The simplest possible gravitational action with con-

formal symmetry in a purely Riemann geometry, imple-
mented locally, is the conformal gravity model, in which
the Lagrangian density is given by C2

αβγδ [20–25], where
Cαβγδ is the Weyl tensor defined in Riemann geometry.
Conformal Weyl gravity is purely geometric and does not
contain the Weyl gauge field ωμ or a scalar field. In four
dimensions, the theory has the important property of
invariance under local Weyl gauge transformations.
An attractive approach to Weyl’s theory and to its

physical applications was considered in Refs. [26–33] by
adopting a viewpoint from elementary particle physics.
The key idea of this approach is the linearization in the
gravitational action of the Weyl quadratic term R̃2 by intro-
ducing an auxiliary scalar field ϕ0 [26]. Thus, in the
linearized version of Weyl quadratic theory, a spontaneous
symmetry breaking of the Dð1Þ group can be implemented
through a geometric Stueckelberg-type mechanism [27–29].
Consequently, the Weyl gauge field becomes massive, with
the mass term originating from the spin-zero mode of the
geometric R̃2 term in the total gravitational action.
From a technical point of view, the Stueckelberg mecha-

nism is introduced by replacing the scalar field ϕ0

with a constant value, that is, its vacuum expectation
value, ϕ0 → hϕ0i. Once the Weyl vector field has become
massive, it includes the auxiliary scalar field ϕ0, which no
longer appears in the scalar-vector-tensor formulation of
the theory, and we recover the initial tensor-vector theory,
as proposed by Weyl. However, the Einstein-Proca action,
which arises in the broken phase, can be obtained directly
from the Weyl action, by eliminating the auxiliary scalar
field ϕ0 [30–32].

Moreover, the scalar mode also leads to the existence of
the Planck scale and of the cosmological constant. In Weyl
geometric gravity, the Planck scale, all mass scales, and the
cosmological constant, originate from geometry [33]. The
Higgs field, playing a fundamental role in the standard
model of elementary particle physics, is generated by the
Weyl boson fusion in the early Universe.
Black hole solutions in the linearized Weyl geometric

gravity were considered in Ref. [34]. Although generally
the vacuum field equations of Weyl geometric gravity
cannot be solved exactly, an exact solution, corresponding
to a Weyl-type black hole, can be obtained in the particular
case in which the Weyl vector has only a radial component.
This solution represents an extension of the Schwarzschild
line element, with two extra terms appearing in the metric.
The behavior of the galactic rotation curves in the exact

solution of Weyl geometric gravity was considered in
Ref. [35], where it was shown that a dark matter density
profile and an effective geometric mass can also be
introduced. Three particular cases corresponding to some
specific functional forms of the Weyl vector were also
studied. The predictions of the Weyl geometric theoretical
model were compared with a selected sample of galactic
rotation curves, by also introducing an explicit breaking of
the conformal invariance, which allows one to fix the
numerical values of the free parameters of the model. The
obtained results did show that Weyl geometric models can
be considered as viable theoretical alternatives to the dark
matter paradigm.
Another interesting and universal phenomenon in phys-

ics, generally encountered for waves with internal structure
propagating in inhomogeneous media, is the spin-orbit
coupling between the internal (spin) and the external
(average position and momentum) degrees of freedom of
a wave packet [36–38]. The universality of spin-orbit
coupling is a consequence of the conservation of angular
momentum [39]. The spin has an important effect on
dynamics and can generally be seen as particles following
spin-dependent trajectories. For example, this leads to the
spin Hall effect of electrons propagating in condensed
matter systems [36,37,40–43].
Spin-orbit interactions are also present in optics [38,44],

where electromagnetic waves can generally be seen to
propagate in a polarization-dependent way. In this case, the
spin internal degree of freedom is now represented by
the state of polarization of the wave packet. This leads to
the spin Hall effect of light, represented by the polarization-
dependent spatial splitting of light that occurs during
refraction and reflection at an optical interface [45,46].
In this case, linearly polarized light, representing the
superposition of left- and right-circularly polarized com-
ponents, experiences polarization-dependent separation at
the optical interface. The presence of this effect is a direct
consequence of the spin-dependent correction terms that
appear when considering the boundary conditions of a
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wave packet, rather than using the single-ray approxima-
tion [47]. The spin Hall effect of light was proposed in
Ref. [48] by analogy with the standard Hall effect, with the
spin-1 photons playing the role of the spin-1=2 charges and
a refractive index gradient representing the electric poten-
tial gradient. The spin-dependent displacement, which is
perpendicular to the refractive index gradient, was detected
for photons passing through an air-glass interface in
Ref. [45] (see also Ref. [46], where a similar experimental
result was reported), indicating the universality of the spin
Hall effect for wave packets of different nature.
Similar effects are also present for electromagnetic

waves propagating in curved spacetimes. The scattering
of electromagnetic plane waves in gravitational fields has
been considered in Refs. [49–56]. In these works, the main
result is that electromagnetic plane waves are scattered
in a polarization-dependent way by rotating gravita-
tional objects, such as Kerr black holes, and there is no
polarization-dependent effect when considering static
spherically symmetric gravitational objects, such as
Schwarzschild black holes (similar results were also
obtained in Refs. [57–59]). However, in this paper we
are mainly interested in the propagation of localized
electromagnetic wave packets. In this case, the spin Hall
effect of light in the presence of a gravitational field
was investigated in detail in Refs. [60,61] (similar results
were also obtained in Refs. [62,63] and other higher-
order geometrical optics treatments can be found in
Refs. [64–67]). One important difference between localized
wave packets and plane waves is that they behave differ-
ently in static spherically symmetric spacetimes. Although
polarization-dependent scattering is absent for plane waves
in this case, localized wave packets experience a nontrivial
effect, following frequency- and polarization-dependent
trajectories [60]. Similar effects have also been shown to
affect the propagation of other types of fields in curved
spacetime, such as linearized gravitational waves [68–71],
as well as massive and massless Dirac fields [72–74]. More
exotic forms of spin Hall effects in gravitational fields have
also been investigated for massless particles with anyonic
spin [75–78]. For a review of the work done in this
direction, see Refs. [79,80]. From a theoretical point of
view, it is usually assumed in many investigations that in
vacuum electromagnetic waves travel along null geodesics.
This description corresponds to the geometrical optics
approximation of Maxwell’s equations. However, it is
important to note that this approach to wave propagation
is rigorously valid only in the limit of infinitely high
frequencies of light. At high but finite frequencies, dif-
fraction effects can still be neglected, but a spin-orbit
coupling appears, and ray propagation is influenced by the
wave polarization [60]. Therefore, the path of the electro-
magnetic waves can depart from the null geodesics. This is
called the gravitational spin Hall effect of light [60].
A fully covariant Wentzel-Kramers-Brillouin (WKB)

approach for the propagation of electromagnetic wave

packets in arbitrary curved spacetimes was introduced
and developed in Ref. [60]. The ray equations, depending
on the polarization of light, which describe the gravitational
spin Hall effect were obtained, and the role of the curvature
of spacetime was pointed out. The polarization-dependent
ray dynamics in the Schwarzschild spacetime was also
investigated numerically, and the magnitude and impor-
tance of the effect were briefly assessed in an astrophysical
context. It is important to note that the gravitational spin
Hall effect is analogous to the spin Hall effect of light in
inhomogeneous media, an effect whose existence was
confirmed experimentally [45,46].
The main goal of the present manuscript is to extend the

investigation of the gravitational spin Hall effect to more
general geometries than the Riemannian one considered
in Refs. [60,61], and to investigate the non-Riemannian
effects induced on the propagation of light by the change of
the geometrical structure of the base spacetime manifold. In
this study we will concentrate on the ray propagation in
conformally invariant Weyl geometry [3,4], which has the
important property that the form of Maxwell’s equations
coincides with their Riemannian counterparts. In the
present investigation, we consider first the polarization-
dependent ray equations in Weyl geometry, obtained by
using the covariant WKB approach from first principles.
These equations describe the gravitational spin Hall effect
of light in the presence of nonmetricity, generated by the
presence of the Weyl vector. We also consider a specific
example of the spin Hall effect of light in Weyl geometry,
by considering a conformally invariant, Weyl-type gravi-
tational model, constructed from the square of the Weyl
scalar and from the strength of the Weyl vector only. This
gravitational action can be reformulated as a scalar-vector-
tensor theory by linearizing it in the Weyl scalar via the
introduction of an auxiliary scalar field. In static spherical
symmetry, and with the Weyl vector assumed to have only a
radial component, this conformally invariant geometric
theory has an exact black hole solution, which generalizes
the standard Schwarzschild solution through the presence
of two new terms in the metric, having a linear and a
quadratic dependence on the radial coordinate. We numeri-
cally study the polarization-dependent propagation of light
rays in this exact Weyl geometric metric, and the effects of
the presence of the Weyl vector on the magnitude of the
spin Hall effect are presented and discussed in detail.
The present paper is organized as follows. We introduce

the basics of Weyl geometry, gravitational action, and the
black hole solution of Weyl geometric gravity in Sec. II.
The conformal invariance of Maxwell’s equations is also
discussed. The propagation of high-frequency electromag-
netic waves in Weyl geometry is discussed in Sec. III,
where the equations of the spin Hall effect for light are
also obtained. We investigate the spin Hall effect in the
background geometry of the exact black hole solution of
Weyl geometric gravity in Sec. V. Finally, we discuss and
conclude our work in Sec. VI. Complete details of the
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computation of the curvature tensor of the Weyl geometry
are presented in Appendix A.

II. FROM WEYL GEOMETRY TO WEYL
GEOMETRIC GRAVITY

In this section, we briefly review the basics of Weyl
geometry, discuss the conformal invariance of Maxwell’s
equations, and, after introducing the action and the field
equations ofWeyl geometric gravity,wepresent a spherically
symmetric solution of the vacuum equations of the theory.

A. Weyl geometry

One of the basic properties of Weyl geometry is the
variation of the length of a vector under parallel transport. If
a vector with initial l ¼ gμνvμvν is parallel transported
between the infinitesimally close points xμ and xμ þ δxμ,
then in Weyl geometry the length of the vector will change
according to

δl ¼ −lαωμδxμ; ð1Þ

whereωμ is the Weyl vector field, and α is a constant, called
the Weyl gauge coupling constant. In the above equation,
the change in length δl is proportional to the initial length l
of the vector. This means that null vectors, for which l ¼ 0,
do not change in length under parallel transport in Weyl
geometry. On the other hand, the lengths of timelike and
spacelike vectors will generally change under parallel
transport in Weyl geometry.
The second important characteristic of Weyl geometry is

the abandonment of the metric compatibility condition
∇αgμν ¼ 0 of Riemann geometry. The nonmetricity Qλμν

can be defined through the covariant derivative of the
metric tensor, which in Weyl geometry takes the form of

∇̃λgμν ¼ −αωλgμν ≡Qλμν; ∇̃λgμν ¼ αωλgμν; ð2Þ

where α denotes the Weyl gauge coupling constant. From
the nonmetricity condition in Eq. (2), we immediately
obtain the connection Γ̃λ

μν of Weyl geometry as

Γ̃λ
μν ¼ Γλ

μν þ
1

2
α½δλμων þ δλνωμ − gμνωλ� ¼ Γλ

μν þ Ψλ
μν; ð3Þ

where Γλ
μν is the standard Levi-Civita connection associated

with the metric gμν:

Γλ
μν ¼

1

2
gλσð∂νgσμ þ ∂μgσν − ∂σgμνÞ: ð4Þ

In the following, we denote the physical and geometric
quantities in Weyl geometry by a tilde. With the help of the
Weyl connection, we define the Weyl covariant derivative
of a vector vμ as

∇̃λvμ ¼ ∂λvμ − Γ̃ν
λμvν ¼ ∇λvμ −Ψν

λμvν; ð5aÞ

∇̃λvμ ¼ ∂λvμ þ Γ̃μ
λνv

ν ¼ ∇λvμ þ Ψμ
λνv

ν; ð5bÞ

where ∇λ denotes the covariant derivative constructed with
the Levi-Civita connection.
Generally, the length of a vector vμ is defined as the

square root of plus/minus (depending on the signature and
the spacelike/timelike vector type) l ¼ gμνvμvν. Under
parallel transport (with respect to the connection Γ̃λ

μν) along
a curve γðτÞ, the length of vμ will change according to the
equation

l̇ ¼ γ̇ν∇̃νl ¼ −lαωμγ̇
μ; ð6Þ

which is equivalent to Eq. (1). This equation can be
integrated, and we obtain

lðτÞ ¼ lð0Þe−α
R

τ

0
ωμγ̇

μðτ0Þdτ0 : ð7Þ

Note that, on the basis of the above result, vectors cannot
change their causal character after finite parallel transport in
Weyl geometry.
By contracting Eq. (3), we obtain

ωμ ¼
1

2α
ðΓ̃λ

λμ − Γλ
λμÞ: ð8Þ

Furthermore, using the relation Γλ
λμ ¼ ∂μ ln

ffiffiffiffiffiffi−gp
, we obtain

Γ̃λ
λμ ¼ ∂μ ln

ffiffiffiffiffiffi
−g

p þ 2αωμ: ð9Þ

In Weyl geometry, the determinant of the metric is a scalar
density of weight 2, satisfying the relations

∇̃μg ¼ ∂μg − 2Γ̃λ
λμg; ð10aÞ

∇̃μ ln
ffiffiffiffiffiffi
−g

p ¼ ∂μ ln
ffiffiffiffiffiffi
−g

p
− Γ̃λ

λμ: ð10bÞ

Another important geometrical and physical quantity, the
field strength W̃μν of the Weyl vector ωμ, is defined as

W̃μν ¼ ∇̃μων − ∇̃νωμ ¼ ∂μων − ∂νωμ: ð11Þ

We can also express the action of covariant derivative
commutators on vectors and covectors as

ð∇̃μ∇̃ν − ∇̃ν∇̃μÞvσ ¼ R̃σ
ρμνvρ; ð12aÞ

ð∇̃μ∇̃ν − ∇̃ν∇̃μÞvσ ¼ −R̃ρ
σμνvρ; ð12bÞ

where the curvature tensor R̃λ
μνσ of Weyl geometry is

defined according to the standard definition:
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R̃λ
μνσ ¼ ∂νΓ̃λ

μσ − ∂σΓ̃λ
μν þ Γ̃λ

ρνΓ̃
ρ
μσ − Γ̃λ

ρσΓ̃
ρ
μν; ð13Þ

If we consider a general symmetric connection of the form
Γ̃λ
μν ¼ Γλ

μν þΨλ
μν, the curvature tensor can be expanded as

R̃λ
μνσ ¼Rλ

μνσþ∇νΨλ
μσ −∇σΨλ

μνþΨλ
ρνΨ

ρ
μσ −Ψλ

ρσΨ
ρ
μν; ð14Þ

where Rλ
μνσ is the curvature tensor of Riemann geometry.

Taking into account that Ψλ
μν is given by Eq. (3), we obtain

R̃λ
μνσ ¼ Rλ

μνσ þ
1

2
α½W̃νσδ

λ
μ þ ðδλσ∇ν − δλν∇σÞωμ

þ ðgμν∇σ − gμσ∇νÞωλ� þ 1

4
α2½ðω2gμν − ωμωνÞδλσ

− ðω2gμσ − ωμωσÞδλν þ ðgμσων − gμνωσÞωλ�; ð15Þ

whereω2 ¼ ωρω
ρ (see Appendix A for the derivation of the

above relations). It follows from straightforward calcula-
tions that the curvature tensor in Weyl geometry satisfies
the following symmetries:

R̃μνρσ ¼ −R̃μνσρ; ð16aÞ

R̃μνρσ ¼ −R̃νμρσ þ αgμνW̃ρσ; ð16bÞ

R̃μνρσ ¼ R̃ρσμν þ
α

2
ðgμνW̃ρσ − gρσW̃μν

þ gνσW̃μρ − gνρW̃μσ þ gμρW̃νσ − gμσW̃νρÞ; ð16cÞ

R̃μν ¼ R̃νμ þ 2αW̃μν: ð16dÞ

Note that the curvature tensor does not satisfy the same
symmetries as in Riemann geometry, unless W̃μν ¼ 0. The
contractions of the Weyl curvature tensor are defined as

R̃μν ¼ R̃λ
μλν; R̃ ¼ gμσR̃μσ: ð17Þ

The Weyl scalar takes the form

R̃ ¼ R − 3α∇μω
μ −

3

2
α2ωμω

μ; ð18Þ

where R is the Ricci scalar defined in Riemann geometry.
Under a conformal transformation with a conformal

factor Σ, the metric tensor, of the Weyl field, and of a
scalar field ϕ transform as

ĝμν ¼ Σ2gμν; ð19aÞ

ω̂μ ¼ ωμ −
2

α
∂μ lnΣ; ð19bÞ

ϕ̂ ¼ Σ−1ϕ: ð19cÞ

B. Conformal invariance of Maxwell’s equations

In Riemann geometry, electromagnetic fields are
described by the potential Aμ and the field strength Fμν,
defined as the antisymmetrized derivative of the potential:

Fμν ¼ ∇μAν −∇νAμ: ð20Þ

Note the formal analogy between the above equation and
Eq. (11), which was used by Weyl [3] to propose a unified
theory of gravitation and electromagnetism. However, in
the present work, we consider W̃μν as a purely geometric
quantity that has no direct physical or geometric relation to
the electromagnetic potential. However, as we shall see, the
presence of a Weyl geometric structure on the spacetime
manifold may have important implications on the behavior
of the electromagnetic fields.
Maxwell’s equations in Riemann geometry can be

derived from the action [2]

SðemÞ ¼
Z �

−
1

4
FμνFμν þ 4πAμjμ

� ffiffiffiffiffiffi
−g

p
d4x; ð21Þ

where jμ is the 4-current. The equations take the covariant
form

∇νFμν ¼ −4πjμ; εαβμν∇βFμν ¼ 0; ð22Þ

where εαβμν is the Levi-Civita tensor. The potential satisfies
the equation

ð∇ν∇μ − δνμ∇σ∇σÞAν ¼ 0: ð23Þ

Since the term Ψλ
μν in the Weyl connection is symmetric, it

immediately follows that the definition of the electromag-
netic field tensor takes the same form in Weyl geometry:

F̃μν ¼ Fμν ¼ ∇̃μAν − ∇̃νAμ ¼ ∇μAν −∇νAμ: ð24Þ

Thus, the relation between the field tensor and the poten-
tials is the same in both Riemann and Weyl geometries. On
the other hand, the contravariant and mixed components of
the electromagnetic field tensor have the transformation
rules,

F̃μν ¼ Σ−4Fμν; F̃ν
μ ¼ Σ−2Fν

μ: ð25Þ

Therefore, the conformally rescaled Maxwell’s equations
take the form

g̃μν∇̃νF̃μσ ¼ −4πj̃σ; εαβμν∇̃βF̃μν ¼ 0; ð26Þ

with the current jσ having the transformation law
j̃σ ¼ Σ−2jσ [2].
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One can also show that the wave equation Eq. (23) is also
conformally invariant [2]. Moreover, the action of the
electromagnetic field is also invariant with respect to the
conformal transformations, and in the Weyl geometry takes
the form

S̃ðemÞ ¼
Z �

−
1

4
F̃μνF̃μν þ 4πÃμj̃μ

� ffiffiffiffiffiffi
−g̃

p
d4x: ð27Þ

In Sec. III, we will also show that the null geodesic
equations are invariant under conformal transformations.
This result follows from the conformal invariance of
Maxwell’s equations, together with the geometrical optics
approximation.

C. Weyl geometric gravity: Action, field equations,
and black hole solutions

The simplest gravitational Lagrangian density, which is
conformally invariant, can be introduced in Weyl geometry
according to the definition [3,28–32]

LW ¼
�

1

4!ξ2
R̃2 −

1

4
W̃μνW̃μν

� ffiffiffiffiffiffi
−g̃

p
; ð28Þ

where we have denoted by ξ < 1 the parameter of the
perturbative coupling. The Lagrangian LW can be linear-
ized by the replacement R̃2 → 2ϕ2

0R̃ − ϕ4
0, where ϕ0 is an

auxiliary scalar field. It is easy to check that the new
Lagrangian density is mathematically equivalent to the
initial one. This result follows from the use of the solution
ϕ2
0 ¼ R̃ of the equation of motion of ϕ0 in the new LW.

Therefore, we obtain a new Weyl geometric Lagrangian
containing a scalar degree of freedom, expressed as

LW ¼
�

ϕ2
0

12ξ2
R̃ −

ϕ4
0

4!ξ2
−
1

4
W̃μνW̃μν

� ffiffiffiffiffiffi
−g̃

p
: ð29Þ

This Lagrangian represents the simplest gravitational
Lagrangian density containing the Weyl gauge sym-
metry, as well as conformal invariance. As we have already
mentioned, LW has a spontaneous breaking to an Einstein-
Proca Lagrangian of the Weyl gauge field. Substituting into
Eq. (29) the expression of R̃ given in Eq. (18), after
performing a gauge transformation and a redefinition of the
physical and geometric variables, we obtain a Riemann
geometry action, invariant under conformal transformation
and given by [28–30]

S ¼
Z �

ϕ2

12ξ2

�
R − 3α∇μω

μ −
3

2
α2ωμω

μ

�

−
ϕ4

4!ξ2
−
1

4
W̃μνW̃μν

� ffiffiffiffiffiffi
−g

p
d4x; ð30Þ

The field equations of this theory can be obtained by
varying the action (30) with respect to the metric tensor and
are given by [34]

ϕ2

ξ2

�
Rμν −

1

2
Rgμν

�
þ 1

ξ2
ðgμν□ −∇μ∇νÞϕ2

−
3α

2ξ2
ðωρ∇ρϕ

2gμν − ων∇μϕ
2 − ωμ∇νϕ

2Þ

þ 3α2

4ξ2
ϕ2ðωρω

ρgμν − 2ωμωνÞ − 6W̃ρμW̃σνgρσ

þ 3

2
W̃ρσW̃ρσgμν þ

1

4ξ2
ϕ4gμν ¼ 0: ð31Þ

Taking the trace of the above equation, we obtain

ΦRþ 3αωρ∇ρΦ −Φ2 −
3

2
α2Φωρω

ρ − 3□Φ ¼ 0; ð32Þ

where we have introduced the notation Φ≡ ϕ2. By
varying the action (30) with respect to the scalar field ϕ
we find

R − 3α∇ρω
ρ −

3

2
α2ωρω

ρ −Φ ¼ 0: ð33Þ

The above relation represents the equation of motion of the
scalar field ϕ. From Eqs. (32) and (33) we immediately
obtain

□Φ − α∇ρðΦωρÞ ¼ 0: ð34Þ

The equation of motion of the Weyl vector is obtained as

4ξ2∇νW̃μν þ α2Φωμ − α∇μΦ ¼ 0: ð35Þ

Applying∇μ to both sides of the above equation, we obtain
Eq. (34), a result that indicates the consistency of the field
equations of the theory.

D. Black hole solutions

We now introduce a static and spherically symmetric
geometry, with coordinates ðt; r; θ;φÞ. Thus, the line
element can be written as

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2dΩ2; ð36Þ

where dΩ2 ¼ dθ2 þ sin2θdφ2. In the following, a prime
denotes the derivative with respect to the radial coordinate r.
Furthermore, we assume that the Weyl vector depends
only on the radial coordinate r and has only one nonvani-
shing component, so that ωμ is represented as ωμ ¼
ð0;ωrðrÞ; 0; 0Þ. Therefore, the one-form ωμ is closed and
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we have W̃μν ≡ 0. We are in the special case of Weyl
integrable geometry [81]. One can argue that this is the
most physically relevant case of Weyl geometry, since
the second clock effect does not arise [82]. This means that
the ticking rates of clocks set by different timelike observers
do not depend on their histories, and frequencies measured
by different observers with the same 4-velocities do not
depend on the previous states of motion of the observers.
From Eq. (35), we obtain

Φ0 ¼ αΦωr: ð37Þ

The gravitational field equations take the form [34]

− 1þ eλ −
1

4
eλr2Φ −

2rΦ0

Φ
þ 3r2

4

Φ02

Φ2
þ rλ0 þ r2λ0

2

Φ0

Φ

−
r2Φ00

Φ
¼ 0; ð38aÞ

1 − eλ þ 1

4
eλr2Φþ 2rΦ0

Φ
þ 3r2

4

Φ02

Φ2
þ rν0

�
1þ r

2

Φ0

Φ

�
¼ 0;

ð38bÞ

and

2ðν0 − λ0Þ þ ð4− 2rλ0 þ 2rν0ÞΦ
0

Φ

þ r

�
eλΦþ 4

Φ00

Φ
− 3

Φ02

Φ2
− λ0ν0 þ ν02 þ 2ν00

�
¼ 0: ð39Þ

The above system admits an exact solution, given by [34]

e−λ ¼ eν ¼ 1 − δþ δð2 − δÞ
3

r
rs

−
rs
r
þ C3r2; ð40Þ

where δ and C3 are arbitrary integration constants, while
rs ¼ 2M represents the gravitational mass of the compact
object. For the scalar field, we obtain the expression

ΦðrÞ ¼ C1

ðrþ C2rsÞ2
¼ C1

r2s

1

ð rrs þ C2Þ2
; ð41Þ

where C1 and C2 are arbitrary integration constants.
Finally, the radial component of the Weyl covector can
be obtained as

ωr ¼
1

α

Φ0

Φ
¼ −

2

α

1

rs

1
r
rs
þ C2

; ð42Þ

while its contravariant representation is given by

ωr ¼ g11ωr ¼
2

α

1

rs

e−λ
r
rs
þ C2

;

¼ 2

αrs

1 − δþ δð2−δÞ
3

r
rs
− rs

r þ C3r2s
�
r
rs

�
2

r
rs
þ C2

: ð43Þ

Wewant to point out that similar black hole solutions can
be found in conformal gravity [20], and in de Rham-
Gabadadze-Tolley (dRGT) massive gravity theory [83].

III. WKB APPROXIMATION FOR MAXWELL’S
EQUATIONS IN WEYL GEOMETRY

In this section, we investigate the dynamics of the high-
frequency electromagnetic waves in Weyl geometry. We
perform a WKB analysis of Maxwell’s equations, and we
derive the equations of geometrical optics.
We consider Maxwell’s equations for the vector potential

ð∇̃ν∇̃μ − δνμ∇̃σ∇̃σÞAν ¼ 0; ð44Þ

and we fix the gauge by imposing the Lorenz gauge
condition

∇̃μAμ ¼ 0: ð45Þ

To describe the propagation of high-frequency electro-
magnetic waves, we assume that the vector potential admits
a WKB expansion

Aμ ¼ ½A0μ þ ϵA1μ þOðϵ2Þ�eiS=ϵ; ð46Þ

where ϵ is a small expansion parameter related to the
wavelength, S is a real phase function, and Aiμ are complex
amplitudes. We define a wave vector as kμ ¼ ∇μS, and the
wave frequency f measured by a timelike observer with
4-velocity tμ is f ¼ kμtμ=ϵ. The definition of frequency
does not suffer any modifications compared to the
Riemannian case. Although vectors change their length
under parallel transport in Weyl geometry, the vector kμ that
describes wave dynamics at the lowest order in the
geometrical optics approximation is null and geodesic
(as shown below). Therefore, kμ will not be affected by
length changes related to the nonmetricity of Weyl geom-
etry. The observer 4-velocity tμ is not a dynamical quantity
and represents an external choice relative to which we
measure the frequency. Furthermore, note that frequency is
defined with respect to a 4-velocity (unit timelike vector),
and not just any arbitrary timelike vector. Therefore, even if
we decide to build a family of timelike observers by means
of parallel transport, in Weyl geometry, the lengths of the
vectors will generally change, and we would need to
normalize the vectors after parallel transport to be able
to use them in frequency measurements.
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The validity of our high-frequency approximation is
based on the same assumptions as in Riemannian geometry
(see for example Ref. [ [84], Sec. 22.5]): the characteristic
length scale over which the electromagnetic waves vary
significantly (represented by the wavelength ϵ) is consid-
ered to be much smaller than the characteristic length scale
over which the properties of spacetime change signifi-
cantly. For the black hole solutions introduced in Sec. II D,
both the metric and the Weyl vector vary significantly over
the same length scale given by the Schwarzschild radius rs.
OurWKBanalysis follows the same steps as in Ref. [ [79],

Sec. III.2], and consists in inserting the WKB ansatz (46)
into Maxwell’s equations and the Lorenz gauge condition.
Then the resulting equations will be analyzed at each order
in ϵ.
We start by inserting the WKB ansatz into the Lorenz

gauge condition. At the lowest two orders in ϵ, we obtain

Oðϵ−1Þ∶ kμA0μ ¼ 0; ð47aÞ

Oðϵ0Þ∶ ∇̃μA0μ þ ikμA1μ þ αA0μω
μ ¼ 0: ð47bÞ

Note that the lowest-order equation is the same as in
Riemann geometry, while the next-to-leading-order equa-
tion explicitly depends on the Weyl vector field ωμ.
We continue our analysis by inserting the WKB ansatz

into Maxwell’s equations. Making use of Eq. (47a), at
the lowest order in ϵ, we obtain the geometrical optics
dispersion relation

kμkμ ¼ 0: ð48Þ

This is a Hamilton-Jacobi equation for the phase function S,
which can be solved by using the method of characteristics
[ [85], Sec. 46]. For this purpose, we consider canonical
coordinates ðxμ; pμÞ on the cotangent bundle T�M and we
define a Hamiltonian

Hðx; pÞ ¼ 1

2
gαβpαpβ ¼ 0: ð49Þ

The corresponding Hamilton’s equations are

ẋμ ¼ ∂H
∂pμ

¼ pμ; ð50aÞ

ṗμ ¼ −
∂H
∂xμ

¼ Γ̃α
βμpαpβ − αωμH: ð50bÞ

The derivation of Eq. (50b) above follows easily after
expressing ∂μgαβ in terms of Γ̃λ

μν and ωλ. This can be
done using Eq. (2), from which we immediately obtain
∂μgαβ ¼ αωμgαβ − Γ̃α

μρgρβ − Γ̃β
μρgαρ. The right-hand side of

Eq. (50b) is obtained after performing the contractions with
the momentum variable in − 1

2
∂μgαβpαpβ. However, the

momentum is null (H ¼ 0) and we can also use Eq. (3) to
rewrite the above equations as

ẋμ ¼ pμ; ð51aÞ

ṗμ ¼ Γα
βμpαpβ: ð51bÞ

Thus, we recovered the well-known result of geometrical
optics that light rays follow the null geodesic equations of
the background spacetime. Furthermore, the conformal
invariance of null geodesics is reflected by the fact that
the above equations do not depend on the Weyl geometry
connection Γ̃α

βμ, but only on the Levi-Civita connection Γα
βμ.

The geodesic equations can also be derived in a covariant
form by taking the covariant derivative of the geometrical
optics dispersion relation:

0 ¼ ∇̃ν

�
1

2
kμkμ

�
¼ kμ∇̃νkμ ¼ kμ∇̃μkν ¼ kμ∇μkν: ð52Þ

At the next order in ϵ, we obtain a transport equation for
the amplitude A0μ:

kν∇̃νA0μ þ
1

2
A0μ∇̃νkν þ

α

2
kμA0νω

ν ¼ 0: ð53Þ

The last term in the above equation is not present in
Riemann geometry. To analyze the above transport equa-
tion, we expand the complex amplitude A0μ as

A0μ ¼
ffiffi
I

p
aμ; ð54Þ

where I ¼ Ā0
μA0μ is a real intensity, aμ is a unit-complex

polarization vector (āμaμ ¼ 1). Then the transport equa-
tion (53) can be split into transport equations for the field
intensity I and the polarization vector aμ:

∇̃μðIkμÞ ¼ 2αIkμωμ; ð55aÞ

kν∇̃νaμ ¼ −αkðμaνÞων: ð55bÞ

While in Riemann geometry the polarization vector is
parallel transported along kν, we see that this is no longer
the case in Weyl geometry. Since we required the polari-
zation vector to have unit norm, and keeping in mind that
this is not generally conserved by parallel transport in Weyl
geometry, it immediately follows that aμ cannot satisfy a
parallel transport equation. The additional term on the
right-hand side of Eq. (55b) ensures that the norm of aμ is
conserved in Weyl geometry.
It follows from Eq. (47a) that the polarization vector aμ

must be orthogonal to kμ. To further analyze the dynamics
of the polarization vector, it is convenient to introduce
a tetrad fkμ; tμ; mμ; m̄μg adapted to the wave vector kμ.
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Here, tα is a real timelike vector, mα and m̄α are complex
null vectors, and the only nonzero contractions are
tαtα ¼ 1, kαtα ¼ ϵω and mαm̄α ¼ −1. Note that, due to
the orthogonality relation kαmα ¼ 0, the vector mα ¼
mαðx; kμðxÞÞ is effectively a function of both x and
kμðxÞ, similar to the Riemannian case [60]. This additional
dependence can also be viewed as a general consequence
of WKB approximations, where it is always the case
that the amplitude in the WKB ansatz will be defined
on the Lagrangian submanifold ðx; kμðxÞ ¼ ∇μSðxÞÞ ⊂
T�M [86–88]. Using this tetrad, the polarization vector
can be expanded as

aμ ¼ z1mμ þ z2m̄μ þ z3kμ; ð56Þ

where zi are complex scalar functions. The last term in the
above equation represents a residual gauge degree of
freedom not fixed by the Lorenz gauge, and we can ignore
it in the following. The terms proportional to z1 and z2
describe the state of polarization of the electromagnetic
wave, with circular polarization corresponding to z1 ¼ 0
or z2 ¼ 0.
Using Eq. (55b), we can derive a transport equation for the

complex scalars zi. It is convenient to introduce a Jones
vector z ¼ ðz1z2ÞT, which will satisfy the transport equation

ż ¼ kμ∇̃μz ¼ ikμBμσ3z; ð57Þ

where σ3 is the third Pauli matrix and Bμ ¼ Bμðx; kðxÞÞ
represents a Berry connection defined as

Bμ ¼ −i
	
m̄νðx; kðxÞÞ∇̃μ½mνðx; kðxÞÞ� −

α

2
ωμðxÞ



: ð58Þ

Note that compared to the Berry connection obtained in
Riemann geometry [ [79], Eq. (35)], here there is an addi-
tional term proportional to ωμ in the above equation. This
means that theWeyl vector field has a nontrivial contribution
to the polarization dynamics. Furthermore, sincemν and m̄ν

are orthogonal to kμ, they will be functions of both xμ and kμ.
Then the action of the covariant derivative on mν and m̄ν

should be understood as in Ref. [ [60], Eq. (3.37)]:

kμ∇̃μ½mνðx; kðxÞÞ� ¼ kμ
�
∂mν

∂xμ
ðx; kðxÞÞ − Γ̃σ

μνmσðx; kðxÞÞ

þ Γ̃σ
αμkσ

∂mν

∂kα
ðx; kðxÞÞ

�
: ð59Þ

The transport equation (57) can be integrated as

zðτÞ ¼
�
eiγðτÞ 0

0 e−iγðτÞ

�
zð0Þ; ð60Þ

where γ is the Berry phase, defined as

γðτÞ ¼
Z

τ

0

dτ0kμBμ: ð61Þ

The Berry phase encodes the evolution of the polarization
in a circular basis. Note that the state of circular polari-
zation of an electromagnetic wave is conserved.

IV. GOING BEYOND GEOMETRICAL OPTICS
IN WEYL GEOMETRY—THE GRAVITATIONAL

SPIN HALL EFFECT OF LIGHT

In this section, we take into account the spin-orbit
coupling for electromagnetic waves propagating in curved
spacetime, and we derive the ray equations of the gravi-
tational spin Hall effect of light in Weyl geometry. To
provide a better context for this effect, we start with a brief
review of the spin Hall effect of light in optics. Detailed
reviews of the spin Hall effect of light in optics can be
found in Refs. [38,39], and a comparison between the
optical and gravitational cases can be found in Ref. [79].

A. Brief review of the spin Hall effect for light in optics

We briefly review the spin Hall effect for light in optics,
following the presentations given in Refs. [44,46,89,90]
(different approaches can be found in Refs. [91–93]). The
geometrical optics approximation for the propagation
of light is similar to the semiclassical limit of quantum
mechanics [46]. To describe the propagation of light in
some optical medium, the short-wavelength approxi-
mation is based on the assumption that the wavelength λ
of light is much smaller than the characteristic length
scale L of the variation of the medium, such that λ=L ≪ 1.
In this approximation, the propagation of electromagnetic
wave packets is effectively described as the motion of a
point particle. The dynamical propagation of this wave
packet can then be described using the canonical for-
malism on the phase space ðr;pÞ. In the following, we
introduce the dimensionless wave momentum p ¼ ƛk,
where ƛ ¼ λ=2π and k is the average wave vector of the
wave packet. The parameter ƛ plays the same role as
Planck’s constant in the semiclassical approximation of
quantum mechanics [46,89].
Electromagnetic waves do possess an intrinsic

property—the polarization or spin, which determines the
intrinsic angular momentum of light. The two spin eigen-
states of light are given by the left-hand and right-hand
circular polarizations of the photons, which are determined
by the helicity σ ¼ �1. For one photon, the spin angular
momentum is σp=jpj.
In the ƛ → 0 limit of the electromagnetic wave equa-

tions, the internal and external degrees of freedom of light
are decoupled. Therefore, the propagation of lights is
independent of the polarization, and the polarization vector
is parallel transported along the light ray. This is similar
to the geometrical optics description presented in Sec. III.
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To take into account spin-orbit interactions between the
internal and external degrees of freedom, one must go
to the first-order approximation [44,46,89,90]. In this
approximation, the orbital degrees of freedom (average
position and momentum) and the polarization are coupled,
and wave packets generally follow polarization-dependent
trajectories.
The Lagrangian LSOI that describes the spin-orbit inter-

action is given by

LSOI ¼ −ƛσAðpÞ · ṗ; ð62Þ

where AðpÞ is the Berry connection, which has a purely
geometric origin. The Lagrangian that describes the spin
Hall effect of light in an inhomogeneous medium with
refractive index nðrÞ is given by [46,89]

L ¼ L0 þ LSOI ¼ p · ṙþ nðrÞ − p − ƛσAðpÞ · ṗ; ð63Þ

where L0 ¼ p · ṙþ nðrÞ − p is the Lagrangian of the
geometrical optics limit ƛ → 0. The role of the Berry
connection in LSOI can be better understood by intro-
ducing a parametrization of the basis vectors of the ray
coordinate frame of the form t ¼ tðpÞ ¼ p=jpj, v ¼ vðpÞ,
andw ¼ wðpÞ. Then the Berry connection can be written as

Ai ¼ v ·
∂w
∂pi

: ð64Þ

The wave polarization is generally described by a unit
complex vector e ¼ eðpÞ orthogonal to the wave momen-
tum p. The space of all possible directions of t ¼ p=jpj can
be identified with the two-sphere S2. Thus, the polarization
vector eðpÞ is tangent to S2, and its dynamics is described
by the Berry connection as parallel transport over S2. One
can also associate a curvature tensor with the Berry
connection, given by [46,89]

Fij ¼
∂Aj

∂pi
−
∂Ai

∂pj
¼ ∂v

∂pi
·
∂w
∂pj

−
∂v
∂pj

·
∂w
∂pi

: ð65Þ

The Berry curvature tensor is antisymmetric and one can
associate a dual vector F ¼ ∂

∂p ×A, so that Fij ¼ ϵijkFk.
For an electromagnetic wave, the Berry curvature is given
by F ¼ p=jpj3 [46]. Finally, the equations of motion of the
polarized light ray, which describe the Hall spin effect of
light, can be obtained from the Lagrangian (63) as [46]

ṙ ¼ p
jpj þ ƛ0σṗ × F ¼ p

jpj þ ƛσ
ṗ × p
jpj3 ; ð66aÞ

ṗ ¼ ∇n: ð66bÞ

Compared to the geometrical optics limit ƛ → 0, there is an
additional term in the equation for ṙ. This additional term

depends linearly on wavelength and its sign is determined
by the state of circular polarization of the wave packet.
Additionally, note that while the polarization dynamics is
governed by the Berry connection, as was also the case in
Sec. III, the spin Hall equations are defined using the Berry
connection. We will observe the same behavior when
deriving the gravitational spin Hall equations in the next
section.
The above spin Hall equations can already be used to

infer results about the propagation of polarized light in
gravitational fields. It is well known that the propagation of
electromagnetic waves in curved spacetime can be analo-
gously described as electromagnetic waves propagating in
some dielectric medium. This analogy was first mentioned
by Eddington [94] and was later developed by several
authors [49,95–98]. Using this analog framework, the
effect of curved spacetime on the propagation of light
could be encoded by an inhomogeneous refractive index
nðrÞ. In particular, it has been shown in Ref. [80] that the
gravitational spin Hall equations in Schwarzschild space-
time, as first derived in Ref. [62], can be obtained from
Eq. (66) by an appropriate choice of refractive index nðrÞ.
The reverse statement of obtaining Eq. (66) from the
generally covariant form of the gravitational spin Hall
equations has also been shown in Ref. [61] by using
Gordon’s optical metric.

B. The gravitational spin Hall effect
of light in Weyl geometry

In this section, we go beyond the geometrical optics
approximation of Sec. III and we derive the gravitational
spin Hall equations in Weyl geometry. We will follow the
approach given in Ref. [79].
In the geometrical optics treatment presented in Sec. III,

the polarization dynamics is influenced by the geodesic
rays followed by high-frequency electromagnetic waves,
but there is no backreaction from the polarization onto the
rays. In other words, spin-orbit interactions between the
external (position and momentum) and internal (spin or
polarization) degrees of freedom of the electromagnetic
wave are not fully taken into account. This can be solved as
in Ref. [79]. First, we note that for circularly polarized
electromagnetic waves, the WKB field will take the form

Aα ¼
ffiffi
I

p
mαeiðSþϵγÞ=ϵ or Aα ¼

ffiffi
I

p
m̄αeiðS−ϵγÞ=ϵ: ð67Þ

The above fields have a total phase factor S̃ ¼ Sþ ϵsγ,
with s ¼ �1 depending on the state of circular polarization.
While the geometrical optics geodesic ray equations (50)
were derived by solving a Hamilton-Jacobi equation for the
phase function S, higher-order corrections and spin-orbit
interactions can be taken into account by defining an
effective Hamilton-Jacobi equation for the total phase
function S̃ [79]. Using the results from the previous section,
we can write this as
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1

2
ð∇̃μS̃Þð∇̃μS̃Þ − ϵsð∇̃μS̃ÞBμ ¼ Oðϵ2Þ: ð68Þ

As discussed in Refs. [ [84], Box 25.3] [ [99], Sec. II],
solving the Hamilton-Jacobi equation by means of point-
particle ray equations (method of characteristics) is related
to the principle of constructive interference. A localized
wave packet can be constructed by taking a superposition
of WKB plane waves with slightly different wave vectors.
Then, the peak of intensity of this wave packet occurs
where the waves interfere constructively and coincides with
the ray trajectories given by the effective point-particle
description used for solving the Hamilton-Jacobi equation.
Thus, we obtain the polarization-dependent ray equations
describing the gravitational spin Hall effect by applying the
method of characteristics to the above effective Hamilton-
Jacobi equations. In this way, we obtain the effective
Hamiltonian

Hðx; pÞ ¼ 1

2
gαβpαpβ − ϵspμBμðx; pÞ ¼ Oðϵ2Þ: ð69Þ

The gravitational spin Hall equations can be derived by
calculating Hamilton’s equations. However, the above
Hamiltonian is gauge dependent, in the sense that the
Berry connection depends on the choice of complex vectors
mμ and m̄μ. This gauge dependence can be removed by
performing a coordinate transformation of the type intro-
duced in Refs. [60,88]:

xμ ↦ xμ þ iϵsm̄ν ∂mν

∂pμ
; ð70aÞ

pμ ↦ pμ − iϵs

�
m̄ν ∂mν

∂xμ
− m̄νΓ̃σ

μνmσ −
α

2
ωμ

�
: ð70bÞ

After performing this coordinate transformation, the
Hamiltonian reduces to

Hðx; pÞ ¼ 1

2
gαβpαpβ ¼ Oðϵ2Þ; ð71Þ

and the gauge-invariant equations of motion describing the
gravitational spin Hall effect become

ẋμ ¼ pμ þ 1

pσtσ
Sμνpρ∇̃ρtν; ð72aÞ

ẋν∇̃νpμ ¼ −
1

2
R̃ρσμνpνSρσ: ð72bÞ

In the above equations, xμðτÞ represents the worldline
followed by the energy centroid of the electromagnetic
wave packet, pμðτÞ represents the average momentum of
the wave packet, and tμ is a timelike vector field used to
define the energy centroid of the wave packet. We can think

of tμ as representing the 4-velocities of a family of timelike
observers that describe the centroid and the dynamics of the
wave packet (see Ref. [61] for a detailed discussion of the
role of the observer in the gravitational spin Hall equa-
tions). The spin tensor Sμν encodes the state of polarization
and the angular momentum carried by the wave packet and
is defined as

Sμν ¼ 2iϵsm̄½μmν� ¼ ϵs
εμνρσpρtσ
pβtβ

: ð73Þ

The gravitational spin Hall equations of motion appear to
have the same form as in Riemann geometry. However, the
effect of Weyl geometry is hidden in the curvature term
from Eq. (72b), since the symmetry properties of the
curvature tensor are not the same in Riemann and Weyl
geometry when W̃μν ≠ 0 [see Eq. (16)]. Therefore, we must
be careful when swapping the indices of the curvature
tensor in Eq. (72b), as terms proportional to W̃μν can arise.
A better comparison between the gravitational spin Hall

effect in Weyl and Riemann geometry can be achieved by
expanding the Weyl covariant derivative and the Weyl
curvature tensor in the spin Hall equations. We obtain

ẋμ ¼ pμ þ 1

p · t
Sμνpρ

�
∇ρtν −

α

2
tρων

�
; ð74aÞ

ẋν∇νpμ ¼ −
1

2
RρσμνpνSρσ −

α

2p · t
pνSρσðgμσtνpγ∇γωρ

− gμσωνpγ∇γtρ − gμνωρpγ∇γtσÞ: ð74bÞ

In the above form of the spin Hall equations, we can clearly
see the effect of the Weyl geometry, given by the terms that
contain the Weyl vector field ωμ.
In the case of Riemann geometry, the spin Hall equations

derived in Ref. [60] have been shown to be a special case of
the Mathisson-Papapetrou equations [61]. This has the
advantage that several known results for the Mathisson-
Papapetrou equations, such as conservation laws, can also
be applied in the context of the spin Hall equations.
Furthermore, while the physical interpretation of the
quantities xμðτÞ and pμðτÞ described by the spin Hall
equations might not emerge in a transparent way from
the WKB derivation, the connection with the Mathisson-
Papapetrou equations clarifies this issue. In this context,
these quantities are directly related to the stress-energy
tensor of localized electromagnetic wave packets, and xμðτÞ
represents the trajectory followed by the wave packet
energy centroid, defined relative to a family of observers
with 4-velocity tα [61].
The same arguments also extend to the present case of

Weyl geometry. A general derivation of the Mathisson-
Papapetrou equations in Weyl geometry has been given in
Ref. [100]. Starting from [ [100], Eqs. (106)–(107)], when
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we consider vanishing torsion (Tabc ¼ 0) and as matter
fields the minimally coupled electromagnetic field (in
the notation of [100], this implies F ¼ 1, hab ¼ 0, and
qabc ¼ 0; note also the sign difference due to different
curvature conventions), we obtain

ẋμ∇μPα ¼ −
1

2
RαβγλẋβSγλ; ð75aÞ

ẋμ∇μSαβ ¼ Pαẋβ − Pβẋα; ð75bÞ

where Pμ ¼ pμ þ α
2
ωνSνμ.

Following the same steps and using the same assump-
tions as in Ref. [ [61], Sec. III. A], it is straightforward to
show that the spin Hall equations in the form given in
Eq. (74) are a special case of the above generalization of
the Mathisson-Papapetrou equations (up to error terms of
order ϵ2). The necessary assumptions are as follows [ [61],
Sec. III.A]:
(1) Theworldline parameter τ is chosen such that ẋμtμ ¼

Pμtμ for all time.
(2) The momentum pα is at least initially null.
(3) The angular momentum satisfies Sαβpβ ¼ 0 at least

initially, and Sαβtβ ¼ 0 for all time.
(4) The magnitude of the angular momentum is at least

initially given by SαβSαβ ¼ 2ðsϵÞ2.
In particular, Eq. (74a) can be obtained by imposing the

spin supplementary condition Sαβtβ ¼ 0, differentiating it
and using Eq. (75b), together with the choice of the
worldline parameter τ mentioned above in condition 1.
Equation (75a) can be rewritten in the form (74b) by
rearranging the terms. Finally, imposing the conditions 3
and 4 ensures that the spin tensor takes the form given in
Eq. (73). This spin tensor will satisfy Eq. (75b). Thus,
exactly as in the Riemannian case, the spin Hall equations
in Weyl geometry are a particular case of the Mathisson-
Papapetrou equations. Furthermore, this equivalence can
also be viewed as an independent derivation of the spin Hall
equations: since electromagnetic wave packets can be
viewed as localized objects with conserved stress-energy
tensor, their bulk motion can generally be described by the
Mathisson-Papapetrou equations. The role of the observer
vector field tα, as well as the interpretation of xμðτÞ as the
worldline followed by the wave packet’s energy centroid
relative to tα, is also clear when viewed from the perspec-
tive of the Mathisson-Papapetrou equations, as was dis-
cussed in Ref. [61].
When using the spin Hall equations, different families of

timelike observers can be used to describe the dynamics of
the same wave packet. In general, different observers will
associate different energy centroids, average momenta, and
spin tensors for the same wave packet. When changing
observers, the relation between these quantities associated
with the wave packet by different observers is best under-
stood by examining the Mathisson-Papapetrou form of the

equations. In this context, a change of observer is asso-
ciated with a change of spin supplementary condition.
Given two timelike vector fields tα and Tα, we obtain

two different sets of spin Hall equations by starting with
the Mathisson-Papapetrou equations (75) and imposing
two different spin supplementary conditions: Sαβtβ ¼ 0 or
S̄αβTβ ¼ 0. Then, each observer will associate different
energy centroids, average momenta, and spin tensors for
the samewave packet. The observer tα will describe thewave
packet using the set of quantities fxμ;Pα; Sαβg, while the
observerTαwill describe thewave packet by a different set of
quantities fx̄ᾱ; P̄ᾱ; S̄ᾱ β̄g (bars on the indices indicate that
the object is generally defined at a different spacetime point
than the corresponding object without bars on the indices).
Then, as shown in Appendix B, up to error terms of order ϵ2,
these two sets of quantities are generally related by

x̄μ̄ ¼ expxμðξμÞ þOðϵ2Þ; ð76aÞ

P̄ᾱ ¼ gᾱαPα þOðϵ2Þ; ð76bÞ

S̄ᾱ β̄ ¼ gᾱαgβ̄βðSαβ þ Pαξβ − PβξαÞ þOðϵ2Þ; ð76cÞ

where exp is the exponential map on the tangent bundle and
gᾱα is the bitensor which parallel propagates vectors from xα

to x̄ᾱ along thegeodesic segmentwhich connects thosepoints
(both exp and gᾱα are defined with respect to the Levi-Civita
connection Γλ

μν; see Ref. [101] for more details on these
bitensors) and the shift vector ξμ is defined as

ξμ ¼ SμνTν

PσTσ : ð77Þ

This transformation law takes the same form as in
Riemannian geometry [61], and all properties related to
changes of observer in the spin Hall equations are described
by the shift vector ξμ. In particular, all the results obtained in
[ [61], Sec. IV] for theRiemannian case also apply now to the
present case of spin Hall equations in Weyl geometry.
The magnitude of the shift vector ξμ can be used to

understand the displacement between energy centroids
assigned by different observers to the same wave packet.
Based on Ref. [ [61], Sec. IV], for most cases, the
magnitude of ξμ is limited to one wavelength. However,
there exist fine-tuned situations where tα and Tα are related
by particular boosts, for which the magnitude of ξμ is
unbounded. This apparent paradox can be resolved by
recalling that the momentum of the polarized electromag-
netic wave packets that we describe by the spin Hall
equations is not exactly null. This is only approximately
true up to error terms of order ϵ2: pαpα ¼ PαPα ¼ Oðϵ2Þ.
As shown in Ref. [61], the momentum will always be
timelike when going one order higher in the WKB
expansion, and different centroids associated to timelike
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objects are always going to be related by bounded
displacements.
Furthermore, note that ξμ is always zero in the spacetime

regions where tα ∝ Tα. This means that energy centroids
depend only locally on the family of timelike observers
used to define it. In particular, if tα and Tα coincide in the
neighborhoods of a source and a receiver, any difference
between tα and Tα in the region between the source and
receiver is irrelevant. The energy centroids associated at the
source and the receiver will always coincide. Thus,
physical meaning can be assigned to tα or Tα only in
the neighborhoods of the source and receiver, where it can
be identified with the 4-velocities of these objects. This is
illustrated in [ [61], Fig. 1].

V. SPIN HALL EFFECT FOR WEYL GEOMETRIC
BLACK HOLES

In this section, we present some numerical examples of
gravitational spin Hall trajectories near black holes in Weyl
geometry. We consider the family of black hole solutions
introduced in Sec. II D.
The gravitational spin Hall equations (72) can be

rewritten in a more concrete form by considering the
general metric given in Eq. (36) with νðrÞ ¼ −λðrÞ, a
Weyl vector of the form ωμ ¼ ðωtðrÞ;ωrðrÞ; 0; 0Þ and a
choice of timelike vector field tμ ¼ ðe−νðrÞ=2; 0; 0; 0Þ. From
a physical point of view, this particular choice of tμ can be
understood as having a point source of radiation at xs and
with 4-velocity tμðxsÞ that emits electromagnetic wave
packets. Then, an emitted wave packet is described by a
family of timelike observers with 4-velocity tμ, and the
resulting trajectory from solving the spin Hall equations
represents the energy centroid that this family of observers
assigns for the given wave packet. A different family of
observers would assign a different trajectory, since the

energy centroid of a wave packet is observer dependent by
definition. When changing tμ, the spin Hall equations will
describe a different physical system, where the source has a
different 4-velocity and the emitted wave packet is assigned
with a different energy centroid relative to another family of
timelike observers. We provide an example of the observer
dependence of spin Hall trajectories around Weyl-geo-
metric black holes in Appendix B.
We denote the coordinate components of the worldline

and the momentum by xμðτÞ ¼ ðtðτÞ; rðτÞ; θðτÞ;ϕðτÞÞ
and pμðτÞ ¼ ðptðτÞ; prðτÞ; pθðτÞ; pϕðτÞÞ, where τ is an
affine parameter. Furthermore, note that we can use the
Hamiltonian constraint given in Eq. (71) to fix one of the
components of pμ and eliminate one of the eight spin Hall
equations. Solving Eq. (71) for pt we obtain

pt ¼ −
e
ν
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ þ p2

θsin
2θ þ eνr2p2

rsin2θ
q

r sin θ
; ð78Þ

where the sign of pt is fixed so that pμ is future directed.
The gravitational spin Hall equations become

ṫ ¼ −e−νpt; ð79aÞ

ṙ ¼ eνpr; ð79bÞ

θ̇ ¼ pθ

r2
þ ϵs

αωr þ ν0

2r2pt sin θ
pϕ; ð79cÞ

ϕ̇ ¼ pϕ

r2sin2θ
− ϵs

αωr þ ν0

2r2pt sin θ
pθ; ð79dÞ

ṗr ¼ −ν0eνp2
r −

ðrν0 − 2Þðp2
ϕ þ p2

θsin
2θÞ

2r3sin2θ
; ð79eÞ

FIG. 1. Equatorial view (left) and top view (right) of light rays around a Schwarzschild black hole in Weyl geometry
(C2 ¼ C3 ¼ δ ¼ 0). Gravitational spin Hall light rays of opposite circular polarization (s ¼ �1, red and blue lines) and a null
geodesic (s ¼ 0, green trajectory) are emitted with the same initial conditions from a source (orange sphere) at r ¼ 8rs. For comparison,
we also display the corresponding gravitational spin Hall rays in Riemann geometry (dashed lines). The individual components of the
trajectory and their momenta are shown in Fig. 2.

WEYL GEOMETRIC EFFECTS ON THE PROPAGATION OF … PHYS. REV. D 109, 064020 (2024)

064020-13



ṗθ ¼
p2
ϕ cot θ

r2sin2θ
þ ϵs

eνpr½αr2ω0
r þ rν0ðαrωr þ 2Þ − 2� þ 2pr þ pθ cot θðαωr þ ν0Þ
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p2

rsin2θ þ e−νðrÞðp2
ϕ þ p2

θsin
2θÞ

q pϕ; ð79fÞ

ṗϕ ¼ ϵseν
prpθ½αr2eνω0

r þ reνðαrωr þ 2Þν0 − 2eν þ 2� þ cot θðp2
ϕcsc

2θ þ p2
θÞðαωr þ ν0Þ

2r2pt csc θ
: ð79gÞ

Note that, in this particular case, the gravitational spin Hall
equations do not depend on the time component ω0ðrÞ
of the Weyl vector. We will numerically integrate the
above equations using WOLFRAM Mathematica [102],
with a straightforward extension of the code presented in
Ref. [103]. For some of the numerical examples presented
below, we use unrealistically large values of ϵ (up to ϵ ¼ 5
in units of M ¼ 1). This is done solely for the purpose of
visualization, as otherwise the effect would be very small
and would be hardly visible on some of the figures. It
should be kept in mind that in physically relevant situations
one should only consider ϵ < 1, as the WKB expansion
used to derive the spin Hall equations is not valid otherwise.
As a first example, we consider the black hole solution

given in Eqs. (36) and (40) with C2 ¼ C3 ¼ δ ¼ 0. In
this case, the metric reduces to that of a Schwarzschild
black hole. However, even in this case, the Weyl vector will
be nonzero. Since this choice of metric represents a black
hole solution in both Riemannian and Weyl geometry, it
allows us to have a clear comparison between the two and to
see how Weyl geometry will affect the propagation of light.
We have shown in the previous section that null geo-

desics do not depend on the Weyl vector, and take the same

form as in Riemann geometry. However, this is no longer
the case for polarized light rays. It can be clearly seen in
Eq. (74) that the gravitational spin Hall equations have a
nontrivial dependence on the Weyl vector [note that
Eq. (74) is independent of the Weyl gauge coupling
constant α]. Thus, in general, we expect that the gravita-
tional spin Hall effect will be different in Weyl and
Riemann geometry.
To illustrate this difference, consider the numerical exam-

ple in Fig. 1. Here, we consider a source of light close to a
Schwarzschild black hole, at r ¼ 8rs, and we emit polarized
light rays and geodesics with the same initial conditions. The
green trajectory represents a null geodesic, which is the same
in both Weyl and Riemann geometry. The red and blue
trajectories represent finite-frequency light rays of opposite
circular polarization, described by the spin Hall equations.
The solid lines represent the gravitational spin Hall rays
in Weyl geometry, while the dashed lines represent the
gravitational spin Hall trajectories in Riemann geometry.
The individual coordinate components of the worldlines, as
well as the momenta, are shown in Fig. 2.
Thus, we can clearly see that the gravitational spin Hall

effect is different in Weyl and Riemann geometry. In this

FIG. 2. Plots for the individual components of the trajectories ðrðτÞ; θðτÞ;ϕðτÞÞ and the momenta ðprðτÞ; pθðτÞ; pϕðτÞÞ for the
configuration given in Fig. 1. Green lines represent geodesic motion, solid lines represent spin Hall trajectories of opposite circular
polarization in Weyl geometry, and dashed lines represent spin Hall trajectories of opposite circular polarization in Riemann geometry.
Red or green lines appear to be missing in certain plots due to perfect overlap.
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particular case (C2 ¼ C3 ¼ δ ¼ 0), the polarized light rays
experience a stronger deflection toward the Weyl geometry
black hole than the corresponding rays in Riemann geom-
etry. This difference gradually fades away as we increase
the value of C2, and in the limit C2 → ∞ we obtain ωμ → 0

and the gravitational spin Hall rays of Weyl geometry
converge to those of Riemann geometry.
Using a similar setup, we also considered the frequency

dependence of the gravitational spin Hall effect in Weyl
geometry. This is illustrated in Fig. 3, where rays of
different frequencies, encoded by the colors of the rainbow,
are emitted from a source at r ¼ 8rs, close to a black hole
with C2 ¼ C3 ¼ δ ¼ 0. There are two copies of the rain-
bow present in Fig. 3, corresponding to the two states of

opposite circular polarization (s ¼ �1) and separated by a
null geodesic trajectory (violet color, corresponding to a
wavelength zero).
The individual coordinate components of the worldlines

and the momenta are shown in Fig. 4. As expected, light
rays with small wavelengths, represented by blue colors, do
not deviate too much from the null geodesic trajectory,
whereas light rays with large wavelengths, represented by
colors close to red, experience a strong deviation.
Another example is shown in Fig. 5, wherewe considered

a more general black hole with C2 ¼ 0, C3 ¼ 5 × 10−4, and
δ ¼ 10−2. In this case, the general properties of the gravi-
tational spin Hall effect of light remain mostly unchanged,
with the exception of the overall magnitude of the deflection,

FIG. 4. Plots for the individual components of the trajectories ðrðτÞ; θðτÞ;ϕðτÞÞ and the momenta ðprðτÞ; pθðτÞ; pϕðτÞÞ for the
configuration given in Fig. 3. Different wavelengths ϵ are encoded in the colors of the rainbow. Lines of certain colors appear to be
missing on certain plots because of overlap.

FIG. 3. Frequency dependence of the gravitational spin Hall effect of light in Weyl geometry. Equatorial view (left) and top view
(right) of light rays of different frequencies (encoded by the colors of the rainbow) and opposite circular polarization, emitted by a source
at r ¼ 8rs and traveling around a Schwarzschild black hole in Weyl geometry (C2 ¼ C3 ¼ δ ¼ 0).
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which is now larger and is very sensitive to the values of the
parametersC3 and δ. The individual coordinate components
of the worldlines and the momenta are shown in Fig. 6.

VI. DISCUSSIONS AND FINAL REMARKS

Weyl geometry is an interesting and natural extension of
Riemannian geometry. Even though Weyl’s original goal of
formulating a successful unified theory of gravitation and
electromagnetism was not fulfilled, the purely geometric
framework introduced in this geometry has found many
applications in physics and even engineering. For example,
the mechanics of solids with distributed point defects can
be formulated using Weyl geometry, the geometric object
relevant to this distribution being the nonmetricity [104].

The base manifold of a solid with distributed point
defects, for a stress-free body, is a flat Weyl manifold,
that is, a manifold with an affine connection that has a
nonmetricity with a vanishing traceless part [104].
Moreover, a large number of metric anomalies (intrinsic
interstitials, vacancies, point stacking faults) arising from a
distribution of point defects, as well as thermal deforma-
tions, biological growth, etc., are geometric in nature and
can be analyzed using Weyl geometry [105].
In the present work, we have considered another aspect

of Weyl geometry, namely, its effect on the propagation of
electromagnetic waves in vacuum, in the presence of a
gravitational field. More precisely, we have investigated the
frequency-dependent propagation of light, which is the

FIG. 5. Frequency dependence of the gravitational spin Hall effect of light in Weyl geometry. Equatorial view (left) and top view
(right) of light rays of different frequencies (encoded by the colors of the rainbow) and opposite circular polarization, emitted by a source
at r ¼ 8rs and traveling around a black hole in Weyl geometry with parameters C2 ¼ 0, C3 ¼ 5 × 10−4, δ ¼ 10−2.

FIG. 6. Plots for the individual components of the trajectories ðrðτÞ; θðτÞ;ϕðτÞÞ and the momenta ðprðτÞ; pθðτÞ; pϕðτÞÞ for the
configuration given in Fig. 5. Different wavelengths ϵ are encoded in the colors of the rainbow. Lines of certain colors appear to be
missing on certain plots because of overlap.
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result of the spin-orbit coupling between the external and
internal degrees of freedom of electromagnetic waves, and
which is described physically with the help of the Berry
phase [38,44,47]. Spin-orbit coupling leads to the spin Hall
effect for light, whose observational detection has opened
new perspectives in the study of semiconductor spintronics/
valleytronics, in high-energy physics, and in condensed
matter physics [106]. It is also important to note that the
spin Hall effect for light has a topological nature in the spin-
orbit interaction similar to that of the standard spin Hall
effect in electronic systems. The theory of the spin Hall
effect of light was generalized to the case of Riemannian
geometry in [60], where the polarization-dependent ray
equations describing the gravitational spin Hall effect of
light were obtained. A numerical analysis of the polariza-
tion-dependent ray propagation in Schwarzschild geometry
was also presented, and the magnitude of the effect was
estimated. It is important to mention that the gravitational
spin Hall effect for light is analogous to the spin Hall effect
of light in inhomogeneous media, which has been observed
experimentally.
A particular and very interesting example of the gravi-

tational spin Hall effect is represented by the deflection of
light by a black hole that has the mass of the Sun and a
gravitational (Schwarzschild) radius of the order of 3 km,
rs ≈ 3 km. For a circularly polarized light ray coming from
a distant source, passing very near the surface of the Sun
and then reaching Earth, it turns out that the distance of
separation between the rays of opposite circular polariza-
tion would depend on the wavelength. For a wavelength of
the order λ ≈ 10−9 m, the separation distance of the order
d ≈ 10−15 m. For λ ≈ 1 m, the separation distance is d ≈
10−6 m [60]. This ray separation in standard Riemann
geometry is very small, 10−6 times smaller than the
wavelength of light. However, it is important to note that
the rays are scattered by a finite angle, and after the
reintersection point their separation increases linearly with
the distance. On the other hand, much more massive
compact objects, such as neutron stars or supermassive
black holes, could generate a much stronger Riemannian
gravitational spin Hall effect of light [60].
It is interesting to point out that in Riemann geometry

[61], as well as in Weyl geometry, the gravitational spin
Hall equations are a special case of the Mathisson-
Papapetrou equations Eq. (75) describing the motion of
spinning bodies. To obtain an evolution equation for the
worldline, one must impose the Corinaldesi-Papapetrou
spin supplementary condition Sαβtβ ¼ 0, where tβ is a
timelike vector field and can be interpreted as a choice of
family of observers relative to which energy centroids of
wave packets are defined.
The study of the spin Hall effect for light in Weyl

geometry is very much simplified by the conformal
invariance of Maxwell’s equations. This leads to the
important result that in both Riemann and Weyl geometry

the electromagnetic field equations take the same form, and
thus one can efficiently use again the covariant WKB
approximation to study the propagation of light in arbitrary
Weyl geometries. However, the polarization-dependent ray
equations (74) describing the gravitational spin Hall effect
of light in Weyl geometry contain the curvature tensor of
the Weyl manifold, which introduces a new degree of
freedom for the description of motion, the Weyl vector ωμ,
and its covariant derivatives, respectively.
As an astrophysical application of the general formalism,

we have considered the frequency-dependent motion of
light in a black hole-type solution of the gravitational field
equations in the simplest version of Weyl geometric gravity
[34], in which the Weyl vector has only one nonzero
component ω1. In this case the Weyl-type field equations
do have an exact static spherically symmetric solution,
which generalizes the Schwarzschild-de Sitter solutions of
general relativity by introducing a new radial distance
dependent linear term in the metric. This solution was used
in Ref. [35] to propose an alternative geometric description
of the galactic rotation curves and of the galactic properties
that are usually attributed to the existence of dark matter.
Within the framework of this model, an effective geometric
mass term can be introduced, with an associated density
profile. A comparison with a small selected sample of
galactic rotation curves was also made by also considering
an explicit breaking of the conformal invariance at galactic
scales. The parameters of the black hole solution were fixed
from the comparison with the observational data as γ ¼
2=C2 ≈ 10−28 m−1 and C1 ≈ 104. For the integration con-
stant C3, it was assumed that it has values of the same order
of magnitude as the cosmological constant. Hence, the
preliminary investigations of [35] indicated that the Weyl
geometric theory may represent a viable theoretical explan-
ation for the galactic dynamics without invoking the
existence of the mysterious dark matter.
In the exact solution of Weyl geometric gravity C1, C2,

and C3 represent integration constants, similar to the
gravitational radius (or mass) in the Schwarzschild solu-
tion. Hence, their numerical values depend on the astro-
physical system considered and may also depend on the
mass of the compact object. We have studied numerically
the spin Hall effect of light for this Weyl geometric type
black hole solution, and investigated the motion of light
in this metric, by also performing a detailed comparison
with the similar effects in the Schwarzschild geometry.
The numerical results indicate a strong effect of Weyl
geometry on the polarized light dynamics and a significant
increase in its magnitude compared to Riemann geometry.
This effect is expected to increase with the distance from
the source, and thus astrophysical observations of the spin
Hall effect of light, as well as the possible detection of the
deviations from the Schwarzschild/Kerr geometries may
provide convincing evidence for the presence of the Weyl
geometry in the Universe. Therefore, these results on the
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spin Hall effect of light lead to the possibility of directly
constraining the Weyl geometric gravity theory by using
astrophysical and astronomical observations of the motion
of light emitted near compact objects. In the present work,
we have introduced some basic tools necessary for a
detailed comparison of the predictions of the spin Hall
effect of light in the Weyl geometric gravity theory with the
results of astrophysical observations.
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APPENDIX A: THE CURVATURE TENSOR
IN WEYL GEOMETRY

In this appendix, we present the full details of the
computation of the curvature tensor in Weyl geometry.
Using the decomposition of the Weyl connection given in
Eq. (3), we can write

R̃λ
μνσ ¼ ∂νΓλ

μσ − ∂σΓλ
μν þ ∂νΨλ

μσ − ∂σΨλ
μν

þ ðΓλ
ρν þΨλ

ρνÞðΓρ
μσ þ Ψρ

μσÞ
− ðΓλ

ρσ þ Ψλ
ρσÞðΓρ

μν þ Ψρ
μνÞ;

¼ Rλ
μνσ þ ∂νΨλ

μσ − ∂σΨλ
μν þ Γλ

ρνΨ
ρ
μσ þ Γρ

μσΨλ
ρν

− Γλ
ρσΨ

ρ
μν − Γρ

μνΨλ
ρσ þΨλ

ρνΨ
ρ
μσ −Ψλ

ρσΨ
ρ
μν: ðA1Þ

We have the following relations:

∂νΨλ
μσ ¼

α

2
ðδλμ∂νωσ þ δλσ∂νωμ−ωλ

∂νgμσ − gμσ∂νωλÞ; ðA2aÞ

∂σΨλ
μν ¼

α

2
ðδλμ∂σωνþ δλν∂σωμ−ωλ

∂σgμν − gμν∂σωλÞ; ðA2bÞ

Using the above equations, we can write

∂νΨλ
μσ − ∂σΨλ

μν ¼
α

2
½W̃νσδ

λ
μ þ δλσ∂νωμ − δλν∂σωμ − ωλð∂νgμσ

− ∂σgμνÞ − gμσ∂νωλ þ gμν∂σωλ�: ðA3Þ

Next, we obtain

Γλ
ρνΨ

ρ
μσ ¼ α

2
ðΓλ

μνωσ þ Γλ
σνωμ − Γλ

ρνgμσωρÞ; ðA4aÞ

Γρ
μσΨλ

ρν ¼
α

2
ðΓλ

μσων þ Γρ
μσδλνωρ − Γνμσω

λÞ; ðA4bÞ

Γλ
ρσΨ

ρ
μν ¼ α

2
ðΓλ

μσων þ Γλ
νσωμ − Γλ

ρσgμνωρÞ; ðA4cÞ

Γρ
μνΨλ

ρσ ¼
α

2
ðΓλ

μνωσ þ Γρ
μνδλσωρ − Γσμνω

λÞ: ðA4dÞ

Therefore, we find

Γλ
ρνΨ

ρ
μσ þ Γρ

μσΨλ
ρν − Γλ

ρσΨ
ρ
μν − Γρ

μνΨλ
ρσ

¼ α

2
ðΓρ

μσδλνωρ − Γρ
μνδλσωρ þ Γλ

ρσgμνωρ − Γλ
ρνgμσωρ

þ Γσμνω
λ − Γνμσω

λÞ: ðA5Þ

Then

∂νΨλ
μσ − ∂σΓλ

μν þΓλ
ρνΨ

ρ
μσ þΨλ

ρνΓ
ρ
μσ − Γλ

ρσΨ
ρ
μν − Γρ

μνΨλ
ρσ

¼ α

2
ðW̃νσδ

λ
μ þ δλσ∂νωμ − δλν∂σωμ −ωλ

∂νgμσ þωλ
∂σgμν

− gμσ∂νωλ þ gμν∂σωλ − Γλ
ρνgμσωρ þΓλ

ρσgμνωρ þ Γρ
μσδλνωρ

− Γρ
μνδλσωρ þ Γσ;μνω

λ − Γν;μσω
λÞ: ðA6Þ

With the use of the relation

Γσμν − Γνμσ ¼ ∂νgσμ − ∂σgμν; ðA7Þ

we simplify the above equation, thus obtaining

∂νΨλ
μσ − ∂σΓλ

μν þ Γλ
ρνΨ

ρ
μσ þ Ψλ

ρνΓ
ρ
μσ − Γλ

ρσΨ
ρ
μν − Γρ

μνΨλ
ρσ

¼ α

2
ðW̃νσδ

λ
μ þ δλσ∇νωμ − δλν∇σωμ þ gμν∇σω

λ − gμσ∇νω
λÞ:

ðA8Þ

The term Ψλ
ρνΨ

ρ
μσ −Ψλ

ρσΨ
ρ
μν can be represented in the form

Ψλ
ρνΨ

ρ
μσ − Ψλ

ρσΨ
ρ
μν ¼ α2

4
½ðgμνωρω

ρ − ωνωμÞδλσ
− ðgμσωρω

ρ − ωμωσÞδλν
þ ðgμσων − gμνωσÞωλ�: ðA9Þ

Finally, we obtain the curvature tensor in the Weyl
conformal geometry as

R̃λ
μνσ ¼ Rλ

μνσ þ
α

2
½W̃νσδ

λ
μ þ ðδλσ∇ν − δλν∇σÞωμ

þ ðgμν∇σ − gμσ∇νÞωλ� þ α2

4
½ðω2gμν

− ωμωνÞδλσ − ðω2gμσ − ωμωσÞδλν
þ ðgμσων − gμνωσÞωλ�; ðA10Þ

where we used the notation ω2 ¼ ωρω
ρ.

APPENDIX B: THE OBSERVER DEPENDENCE
OF THE SPIN HALL TRAJECTORIES

IN WEYL GEOMETRY

In this appendix, we show how the spin Hall trajectories
depend on the choice of observer. The approach here
closely follows the discussion in Ref. [61], where the
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observer dependence of the spin Hall equations in
Riemannian geometry was presented. We start by intro-
ducing the general transformation law between energy
centroids, average momenta, and spin tensors associated
with the same wave packet by different observers. Then,
we present an explicit example by analyzing the spin Hall
equations for different families of observers.

1. Change of observer for the spin Hall equations

Similarly to Riemannian geometry, changes of
observer for the spin Hall equations are best understood
by examining the change of spin supplementary con-
dition for the Mathisson-Papapetrou form of the equa-
tions [61]. Given two timelike vector fields tα and Tα,
representing two different families of observers that
can describe the dynamics of electromagnetic wave
packets, the corresponding spin Hall equations can be
obtained by starting with the Mathisson-Papapetrou
equations (75) and imposing different spin supplemen-
tary conditions: Sαβtβ ¼ 0 or S̄αβTβ ¼ 0. Then, each
family of observers will generally provide a different
description for the same electromagnetic wave packet by
assigning different energy centroids, average momenta,
and spin tensors:

tα∶ fxμ;Pα; Sαβg; ðB1aÞ

Tα∶fx̄ᾱ; P̄ᾱ; S̄ᾱ β̄g: ðB1bÞ

We use bars on the indices to emphasize that these
objects might be defined at different spacetime points
than the objects without bars on the indices (similar to
the notation used in Refs. [61,107]). In the Riemannian
case it has been shown that, under arbitrary changes
of timelike observers, the two sets of quantities
fxμ;Pα; Sαβg and fx̄μ̄; P̄ᾱ; S̄ᾱ β̄g are related by the trans-
formation [61]

x̄μ̄ ¼ expxμðξμÞ þOðϵ2Þ; ðB2aÞ

P̄ᾱ ¼ gᾱαPα þOðϵ2Þ; ðB2bÞ

S̄ᾱ β̄ ¼ gᾱαgβ̄βðSαβ þ Pαξβ − PβξαÞ þOðϵ2Þ; ðB2cÞ

where exp is the exponential map on the tangent bundle
and gᾱα is the bitensor which parallel propagates vectors
from xα to x̄ᾱ along the geodesic segment which
connects those points (both exp and gᾱα are defined
with respect to the Levi-Civita connection Γλ

μν; see
Ref. [101] for more details on bitensors), and the shift
vector ξμ is defined as

ξμ ¼ SμνTν

PσTσ : ðB3Þ

Note that ξμTμ ¼ ξμtμ ¼ 0. Also, ξμ ¼ 0 for
Tμ ¼ fðxÞtμ, where fðxÞ is any real, smooth, and non-
zero scalar function.
We show now by direct calculations that, using the

Mathisson-Papapetrou form of the spin Hall equations in
Weyl geometry, changes of observers are also governed by
the same transformation laws defined above. Consider
first a timelike vector field tα. The corresponding spin
Hall equations can be derived by imposing the spin
supplementary condition Sαβtβ ¼ 0 for the Mathisson-
Papapetrou equations (75), as well as choosing a worldline
parameter such that ẋμtμ ¼ Pμtμ. We obtain

ẋμ ¼ Pμ þ 1

P · t
Sμνẋσ∇σtν; ðB4aÞ

ẋμ∇μPα ¼ −
1

2
RαβγλẋβSγλ; ðB4bÞ

ẋμ∇μSαβ ¼ Pαẋβ − Pβẋα: ðB4cÞ

Also, in this case the spin tensor is defined as

Sαβ ¼ ϵs
εαβρσpρtσ

p · t
¼ ϵs

εαβρσP · t
P · t

þOðϵ2Þ; ðB5Þ

and satisfies Eq. (B4c).
On the other hand, if we start with a different timelike

vector field Tα by imposing the spin supplementary
condition S̄ᾱ β̄T β̄ ¼ 0 and a choice of the worldline param-
eter such that ˙̄xμ̄T μ̄ ¼ P̄μ̄T μ̄, then we obtain

˙̄xμ̄ ¼ P̄μ̄ þ 1

P̄ · T
S̄μ̄ ν̄ ˙̄xσ̄∇σ̄T ν̄; ðB6aÞ

˙̄xμ̄∇μ̄P̄ᾱ ¼ −
1

2
Rᾱ β̄ γ̄ λ̄

˙̄xβ̄S̄γ̄ λ̄; ðB6bÞ

˙̄xμ̄∇μ̄S̄ᾱ β̄ ¼ P̄ᾱ ˙̄xβ̄ − P̄ β̄ ˙̄xᾱ: ðB6cÞ

In this case, the spin tensor satisfying Eq. (B6c) is

S̄ᾱ β̄ ¼ ϵs
εᾱ β̄ ρ̄ σ̄p̄ρ̄T σ̄

p̄ · T
¼ ϵs

εᾱ β̄ ρ̄ σ̄P̄ ρ̄T σ̄

P̄ · T
þOðϵ2Þ: ðB7Þ

In the following, we show that, up to error terms of
order ϵ2, Eqs. (B4) and (B6) are consistent with the
transformations given in Eqs. (B2) and (B3). We start with
the transformation law (B2a) for energy centroids. Based
on [ [107], Eq. 3.5], the derivative of Eq. (B2a) can be
expanded as

˙̄xμ̄ ¼ gμ̄μ½ẋμ þ ẋν∇νξ
μ þOðξ2Þ�: ðB8Þ

Note that OðξÞ ¼ OðSÞ ¼ OðϵÞ, so in the above equation
we are ignoring terms of order ϵ2. The covariant derivative
of the shift vector ξμ along the worldline xν is
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ẋν∇νξ
μ ¼ ẋ · T

P · T
Pμ þ 1

P · T
Sμνẋσ∇σTν

− ẋμ −
Pνẋσ∇σTν

P · T
ξμ þOðϵ2Þ: ðB9Þ

Using the expression above, we obtain

˙̄xμ̄ ¼ gμ̄μ

�
ẋ · T
P · T

Pμ þ 1

P · T
Sμνẋσ∇σTν

þ Pνẋσ∇σTν

P · T
ξμ þOðϵ2Þ

�
: ðB10Þ

The first term on the right-hand side of the above equation
can be rewritten as

ẋ · T
P · T

Pμ ¼ ð ˙̄xν − ẋσ∇σξ
νÞTν

P · T
Pμ

¼
�
1 −

Tνẋσ∇σξ
ν

P · T

�
Pμ: ðB11Þ

Furthermore, using Eq. (B2c) we can also express the spin
tensor as Sμν ¼ S̄μν − Pμξν þ Pνξμ þOðϵ2Þ. Using these
expressions, Eq. (B10) becomes

˙̄xμ̄ ¼ gμ̄μ

�
Pμ þ 1

P · T
S̄μνẋσ∇σTν

− 2
Pμ

P · T
ẋσ∇σðξνTνÞ þOðϵ2Þ

�

¼ gμ̄μ

�
Pμ þ 1

P · T
S̄μνẋσ∇σTν þOðϵ2Þ

�

¼ P̄μ þ 1

P · T
S̄μ̄νẋσ∇σTν þOðϵ2Þ: ðB12Þ

Up to error terms of order ϵ2, the above equation is the same
as Eq. (B6a) if we note the following. First, P · T ¼
PμTμ ¼ P̄μ̄T μ̄ since the scalar product is invariant if both
vectors are parallel transported with respect to the Levi-
Civita connection. Second, since ˙̄xσ ¼ ẋσ þOðϵÞ by
Eq. (B8), we can replace ẋσ with ˙̄xσ in the second term
on the right-hand side. Finally, using [ [101], Eq. (6.11)] or
[ [107], Eq. (3.8)] we have ∇σgνν̄ ¼ OðξÞ ¼ OðϵÞ and we
can write

S̄μ̄ν ˙̄xσ∇σTν ¼ S̄μ̄ν ˙̄xσgσ σ̄gσ̄ σ∇σðgνν̄T ν̄Þ
¼ S̄μ̄νgνν̄ ˙̄xσ̄∇σ̄T ν̄ þOðϵ2Þ
¼ S̄μ̄ ν̄ ˙̄xσ̄∇σ̄T ν̄ þOðϵ2Þ: ðB13Þ

Thus, up to error terms of order ϵ2, Eqs. (B4) and (B6a) are
consistent under the transformation given in Eq. (B2a).
Next,we examine the transformation law for themomenta.

Expanding the covariant derivative of Eq. (B2b) as in [ [107],
Eq. (3.7)], we obtain

˙̄xμ̄∇μ̄P̄ᾱ ¼ gᾱα½ẋμ∇μPα − Rα
β
γλPβẋγξλ þOðϵ2Þ�: ðB14Þ

Since ẋμ ¼ Pμ þOðϵÞ and ˙̄xσ ¼ ẋσ þOðϵÞ, we can rewrite
the above expression as

˙̄xμ̄∇μ̄P̄ᾱ ¼ gᾱα½ẋμ∇μPα − RαβγλẋβP½γξλ� þOðϵ2Þ�

¼ gᾱα
�
−
1

2
RαβγλẋβS̄γλ þOðϵ2Þ

�

¼ −
1

2
Rᾱ β̄ γ̄ λ̄

˙̄xβ̄S̄γ̄ λ̄ þOðϵ2Þ: ðB15Þ

Thus, up to error terms of order ϵ2, Eqs. (B4b) and (B6b) are
consistent with the transformation law in Eq. (B2b).
Finally, we examine the transformation law for the spin

tensors. Expanding the covariant derivative of Eq. (B2c),
we obtain

˙̄xμ̄∇μ̄S̄ᾱ β̄ ¼ gᾱαgβ̄βẋσ∇σðSαβ þ Pαξβ − PβξαÞ þOðϵ2Þ:
ðB16Þ

Note that the terms that involve covariant derivatives of
bitensors do not appear in the above expression because
they are of order ϵ2. Using Eqs. (B4c), (B9), and (B8), we
obtain

˙̄xμ̄∇μ̄S̄ᾱ β̄ ¼ gᾱαgβ̄β½Pαðẋβ þ ẋσ∇σξ
βÞ

− Pβðẋα þ ẋσ∇σξ
αÞ� þOðϵ2Þ

¼ P̄ᾱ ˙̄xβ̄ − P̄ β̄ ˙̄xᾱ þOðϵ2Þ: ðB17Þ

Thus, up to error terms of order ϵ2, Eqs. (B4c) and (B6c) are
consistent with the transformation law in Eq. (B2c).

2. Examples of different observers

For the black hole spacetimes introduced in Sec. II D
[setting νðrÞ ¼ −λðrÞ], we can define an orthonormal
tetrad

e0 ¼ e−νðrÞ=2∂t; ðB18aÞ

e1 ¼ eνðrÞ=2∂r; ðB18bÞ

e2 ¼
1

r
∂θ; ðB18cÞ

e3 ¼
1

r sin θ
∂ϕ; ðB18dÞ

where e0 is a unit timelike vector and ei are unit spacelike
vectors.
In Sec. V, we consider the spin Hall effect of light in the

black hole spacetimes introduced in Sec. II D. As discussed
in the main text, the spin Hall trajectories represent the
dynamics of energy centroids of electromagnetic wave
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packets, relative to a family of timelike observers with
4-velocity tμ. For the examples presented in Sec. V, our
choice is tμ ¼ ðe0Þμ ¼ e−νðrÞ=2∂t. This represents a family
of static observers in the considered black hole spacetimes,
and the physical system described in Figs. 1, 3, and 5 is that
of a static source of light that emits circularly polarized
wave packets. Then, the resulting spin Hall trajectories
describe the dynamics of the energy centroids of these wave
packets, as seen by a family of static timelike observers
with 4-velocities tμ.
However, one can consider a different choice of a

timelike vector field in the spin Hall equations, correspond-
ing to the description of a different physical scenario. One
simple example could be to consider a timelike vector field
t̃μ related to tμ ¼ ðe0Þμ by a radial boost:

t̃ ¼ e0 þ ve1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ðB19Þ

where the boost velocity v ¼ vðrÞ satisfies v2 < 1. Another
possibility could be to consider a family of free-falling
observers moving on radial geodesics. These will be repre-
sented by a timelike vector field satisfying the geodesic
equation

Tμ∇̃μTα ¼ 0: ðB20Þ

To solve this equation, we can parametrize Tα as

T ¼ fðrÞ½e0 þ gðrÞe1�; ðB21Þ

where fðrÞ and gðrÞ are two scalar functions to be
determined by solving the above geodesic equation.
Note that for T to be a timelike vector, we must impose
fðrÞ ≠ 0 and g2ðrÞ < 1. Inserting Eq. (B21) into Eq. (B20),
we obtain

f0ðrÞ ¼ −
�
ν0ðrÞ
2

þ αωrðrÞ
�
fðrÞ; ðB22aÞ

g0ðrÞ ¼ −
�
ν0ðrÞ
2

þ α

2
ωrðrÞ

�
1 − g2ðrÞ

gðrÞ : ðB22bÞ

Note that usingEq. (42)wehaveωr ¼ 1
α
Φ0
Φ ¼ 1

α ðlnΦÞ0. Then,
the solutions to the above differential equations are

fðrÞ ¼ n1
ΦðrÞeνðrÞ=2 ; ðB23aÞ

gðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − en2ΦðrÞeνðrÞ

q
; ðB23bÞ

where νðrÞ is defined in Eq. (40),ΦðrÞ is defined in Eq. (41)
(here with C1 ¼ 1), and n1;2 are integration constants.

To illustrate how the spin Hall trajectories change
under a change of observer, we consider the explicit
example of a Schwarzschild black hole in Weyl geometry
(C2 ¼ C3 ¼ δ ¼ 0), and the timelike vector fields tμ, t̃μ,
and Tμ introduced above. For this spacetime, the vectors
take the form

t ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − rs

r

p ∂t; ðB24aÞ

t̃ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þð1 − rs

r Þ
q ∂t þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rs

r

1 − v2

s
∂r; ðB24bÞ

T ¼ n1r3

r − rs
∂t þ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − en2rðr − rsÞ

q
∂r: ðB24cÞ

As a first example, we start by comparing spin Hall
trajectories corresponding to the observers tμ and t̃μ with
vðrÞ ¼ −

ffiffiffiffiffiffiffiffiffi
rs=r

p
. These two different choices of observers

will be used in the spin Hall equations Eq. (74). Then, we
consider a source of light very far away from the black hole.
We take rsource ¼ 104rs, such that tμðr ¼ rsourceÞ ≈ t̃μðr ¼
rsourceÞ (this ensures that the relativistic Hall effect
[108,109] is negligible on the initial wave packet prescribed
at the source for the two observers). The resulting spin Hall
trajectories, which describe the dynamics of the energy
centroids relative to tμ and t̃μ, are shown in Fig. 7. We can
see that the spin Hall trajectories relative to t̃μ are slightly
different from the trajectories relative to tμ. This difference
is more pronounced near the black hole, where the dif-
ference between tμ and t̃μ is more significant. As the
light rays move away from the black hole, there is no
significant difference between the two sets of trajectories.
Thus, we see that the observer-dependent effects on the
trajectories are small and fade out as the light rays move
away from the black hole, whereas gravity produces a finite
scattering angle, and the separation between rays of
opposite circular polarization continues to grow away from
the black hole.
As a second example, we will consider spin Hall

trajectories relative to the radially free-falling observer
Tμ. However, in this case, it is not easy to compare the
different trajectories corresponding to tμ and Tμ. The reason
behind this difficulty arises because when making such a
comparison, we would like to have tμðxsourceÞ ∝ TμðxsourceÞ.
This condition is required to ensure that, at the location of
the source of radiation, using the same initial conditions for
both sets of spin Hall equations (those relative to tμ and
those relative to Tμ) corresponds to initially prescribing the
same electromagnetic wave packet. Otherwise, prescribing
the same initial centroid at xsource relative to both tμ and Tμ,
we could end up describing the dynamics of different wave
packets. In the previous example, this problem was solved
by placing the source very far from the black hole, where
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tμðxsourceÞ ≈ t̃μðxsourceÞ. If we now insist on comparing
spin Hall trajectories with respect to tμ and Tμ, then we
would need to fix the integration constants n1;2 such that
tμðxsourceÞ ∝ TμðxsourceÞ. This can be achieved by setting

en2 ¼ r3source
rsource − rs

: ðB25Þ

In this case, TðxsourceÞ ∝ tðxsourceÞ ∝ ∂t. However, depend-
ing on the value of the integration constant n2, the vector
field Tμ will be undefined when r4 − en2rðr − rsÞ < 0.
Thus, Tμ will be undefined when rs < rsource <

3rs
2
and

rsource < r <
rsource
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsource þ 3rs
rsource − rs

s
− 1

!
; ðB26Þ

or when rsource >
3rs
2
and

rsource
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsource þ 3rs
rsource − rs

s
− 1

!
< r < rsource: ðB27Þ

Thus, if we insist on setting the integration constant n2 so
that at some spacetime point TðxsourceÞ ∝ tðxsourceÞ ∝ ∂t,
then the vector field Tμ will be undefined in certain regions
of spacetime. As a consequence, such an ill-defined vector
field cannot be used in the spin Hall equations. On the other
hand, if the integration constant n2 is small enough such
that r4 − en2rðr − rsÞ > 0 for all r > rs, then the vector
field Tμ is well defined and there is no problem to use it in
the spin Hall equations.
As an alternative, we can compare the spin Hall

trajectories corresponding to the observers t̃μ and Tμ.

FIG. 8. Equatorial view (left) and top view (right) of spin Hall trajectories around a Schwarzschild black hole in Weyl geometry
(C2 ¼ C3 ¼ δ ¼ 0), as seen by two families of observers with 4-velocities proportional to t̃μ (solid lines) and Tμ (dashed lines). These
vector fields are defined in Eq. (B24), with en2 ¼ 2 and v given in Eq. (B28). All rays are emitted with the same initial conditions from a
source far away from the black hole, at r ¼ 102rs, and the constants n2 and v are chosen such that at the point of emission we
have t̃μ ∝ Tμ.

FIG. 7. Equatorial view (left) and top view (right) of spin Hall trajectories around a Schwarzschild black hole in Weyl geometry
(C2 ¼ C3 ¼ δ ¼ 0), as seen by two families of observers with 4-velocities tμ (solid lines) and t̃μ (dashed lines). These vector fields are
defined in Eq. (B24), with vðrÞ ¼ −

ffiffiffiffiffiffiffiffiffi
rs=r

p
. All rays are emitted with the same initial conditions from a source very far away from the

black hole, at r ¼ 104rs, so that at the point of emission we have tμ ∝ t̃μ.
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These two different choices of observers will be used in the
spin Hall equations Eq. (74). In this case, we can fix n2
small enough so that Tμ is well defined for all r > rs, and
then we can also pick vðrÞ so that t̃μðxsourceÞ ∝ TμðxsourceÞ.
To illustrate a concrete example, we choose en2 ¼ 2. In this
case, Tμ is well defined for all r > rs. If we place a source
of light at rsource ¼ 102rs, then we can have t̃μðxsourceÞ ∝
TμðxsourceÞ if we choose the boost velocity

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − en2

rsource − rs
r3source

r
: ðB28Þ

An example of the spin Hall trajectories corresponding
to these two families of observers is presented in Fig. 8. As
can be seen from this figure, there is very little difference
between the two sets of trajectories.
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