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In the case of unhindered gravitational collapse of a matter cloud governed by the Lemaître-Tolman-
Bondi (LTB) spacetime, the end-state singularity is either locally visible, globally visible, or completely
hidden. We have a past null singularity in the first two cases while a future spacelike singularity in the last
case. Here, we show an example of a gravitational collapse model whose end state is a future null
singularity (it has a causal property that is unlike the cases involving LTB spacetime). We depict such a
distinct causal structure of the singularity by conformal diagrams.
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I. INTRODUCTION

The contraction of an astronomical body under its own
gravitational influence is called gravitational collapse.
When the mass of the star is above a certain limit, one
obtains an unhindered gravitational collapse that gives rise
to a singularity. In addition to the existence of incomplete
causal curves, we identify the singularity by the blowing up
of divergence of curvature-invariant quantities [1]. In 1939,
Oppenheimer and Snyder studied the gravitational collapse
of a spherically symmetric spatially homogeneous matter
field with zero pressure [2]. Such a collapse ends in a
singularity covered by an event horizon. One could argue
that such a singularity is merely an artifact of spherical
symmetry and that dropping the assumption of spherical
symmetry could resolve the singularity. However, Penrose
and Hawking showed the occurrence of singularities
(identified by the existence of incomplete causal curves)
under generic conditions. Penrose proposed what is now
known as the cosmic censorship conjecture [3]. The weak
version of cosmic censorship states: A spacetime singu-
larity can never be visible to asymptotic observers. In other
words, it cannot be globally visible. The strong version
states: All physically reasonable spacetimes are globally
hyperbolic; i.e., a singularity cannot be even locally naked.
Here, a globally naked singularity is identified by the
existence of past incomplete causal geodesic that is future
complete, while a locally naked singularity is identified by
the existence of past incomplete causal geodesic that is also
future incomplete.

LetM be a spacetime with Lorentzian signatureþ2, and
let O ⊂ M be open. A congruence O is a family of curves
such that, ∀ p∈O, ∃ precisely one curve in this family
that intersects p. The tangents to a congruence yield a
vector field inO. Conversely, every continuous vector field
generates a congruence of curves. O is smooth if the
corresponding vector field is smooth [1,4,5].
Consider a smooth congruence of null geodesics yield-

ing a vector field k∶M → TM. The trace of the null
Weingarten map

W∶Vp → Vp ∶ X̄ ↦ WðX̄Þ ≔ ∇X̄k ≔ ∇Xk

is called the expansion of a null geodesic congruence at a
point p∈O. Here, Vp is the two-dimensional fiber of the
quotient set TH=∼ of the tangent bundle

TH ≔ fZ∈TOjgðZ; kÞ ¼ 0g;

with the equivalence relation ∼ defined as follows:

∀X; Y ∈TO; X ∼ Y ⇔ X − Y ∝ k:

X̄∈Vp denotes the equivalence class of X∈TH for the
above equivalence relation. A trapped surface T ⊂ H is then
defined in terms of congruence as a compact two-
dimensional smooth spacelike submanifold with the prop-
erty that the expansion of both the families of future-directed
null geodesics orthogonal to T is < 0 everywhere. A
marginally trapped surface is then defined in terms of
the trapped surface with a relaxation that now the expansion
of both the families of future-directed null geodesics
orthogonal to T is ≤ 0 ∀ points in T rather than strictly
negative. A marginally outer trapped surface is then defined
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by relaxing further the definition of marginally trapped
surface such that the expansion of only “outgoing” future-
directed null geodesics orthogonal to T is ≤ 0 ∀ points in
T [outgoing family: family of null geodesics orthogonal to
T satisfying gðk; NÞ ≥ 0, where k is normal to null geo-
desics and N is normal to T in S (spacelike hypersurface
containing T) that points outward from T]. A trapped
region is defined as a closed subset C of partial Cauchy
surface S (S ⊂ M: a spacelike hypersurface that intersects
every causal curve γ ⊂ M at most once) that forms a three-
dimensional manifold with a boundary such that its two-
dimensional boundary ∂C is a marginally outer trapped
surface. Finally, the apparent horizon is defined as the
boundary ∂C of the trapped region.
In the case of a dynamical spacetime that admits a

singularity, e.g., gravitational collapse, the spacetime’s
causal property relates to the evolution of the apparent
and the event horizon. As far as dust collapse is concerned,
the introduction of spatial inhomogeneity in the density of
the collapsing cloud influences the evolution of these
horizons such that the end-state singularity becomes locally
or globally naked [6–8].
A spacetime singularity can be classified into five types

based on the following two characteristics: (i) the causal
structure of spacetime (globally hyperbolic or not) admit-
ting the singularity and (ii) the existence of past (future)
complete (incomplete) timelike (null) geodesics [9]. The
classification is as follows.
(1) Past spacelike singularity.—The spacetime is time-

like as well as null geodesically past incomplete and
globally hyperbolic, e.g., Schwarzschild white hole
singularity.

(2) Future spacelike singularity.—The spacetime is
timelike and null geodesically future incomplete
and globally hyperbolic, e.g., Schwarzschild black
hole singularity.

(3) Past null singularity.—The spacetime is timelike
as well as null geodesically past incomplete and
not globally hyperbolic, e.g., locally or globally
visible singularities in Lemaître-Tolman-Bondi
(LTB) spacetime.

(4) Future null singularity.—The spacetime is timelike
as well as null geodesically future incomplete and
globally hyperbolic.

(5) Timelike singularity.—The spacetime is timelike
geodesically complete (though not null), but ∃ at
least one incomplete radial null geodesic or incom-
plete nongeodesic timelike curve [4]. Additionally,
the spacetime is not globally hyperbolic.

The authors in [10] consider a collapsing spherical dust
cloud, generate the corresponding conformal diagram, and
categorize the causal structure of the resulting singularity.
The author in [11] has given the complete classification of
future singularities in spacetimes that are solutions of the
Einstein-Maxwell-Klein-Gordon equation.

Here, we show that a future null singularity can be
obtained as an end state of gravitational collapse of a
physically reasonable matter cloud. To achieve this, we
glue the static spacetime first introduced in [12] with the
spatially homogeneous Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime having nonzero pressure. The
gist of [12] is as follows: The general consensus is that, in
the case of static spherically symmetric spacetime admit-
ting a singularity, its shadow is formed due to the presence
of a photon sphere. In the above-mentioned article, the
authors give an example of the spacetime that admits a
singularity but not a photon sphere; however, the singu-
larity has a shadow.
The structure of the paper is as follows. In Sec. II, we

rederive the equations governing the dynamics of the
apparent horizon, the singularity curve, and the event
horizon curve for the gravitational collapse governed by
LTB spacetime with the exterior Schwarzschild metric.
This reviews the well-known formation of future spacelike
singularity and past null singularity due to gravita-
tional collapse in spatially homogeneous and inhomo-
geneous Lemaître-Tolman-Bondi spacetimes, respectively.
In Sec. III, we use the Israel junction condition [13] to glue
the static spacetime first introduced in [12] (that we call the
exterior spacetime) with the spatially homogeneous FLRW
spacetime having nonzero pressure (that we call the interior
spacetime). We show that the singularity in the static
spacetime of [12] is future null (using a conformal
diagram). The union of two spacetimes, hence, models a
dynamical spacetime which ends in a future null singu-
larity. This gluing proves that, just like the formation of past
null and future spacelike singularities, future null singu-
larities can also be obtained in gravitational collapse. In
other words, a static spacetime admitting future null
singularity can be obtained from dynamical spacetime (that
does not admit a timelike Killing vector field), making it
physically more relevant, since all the structures in the
Universe are obtained from dynamical evolution. Finally,
we end the paper with concluding remarks. Throughout the
paper, we take G ¼ c ¼ 1.

II. LEMAÎTRE-TOLMAN-BONDI SPACETIME

Consider the gravitational collapse of a spherically
symmetric inhomogeneous perfect fluid. The components
of the stress-energy tensor in the coordinate basis fdxμ ⊗
∂νj0 ≤ μ; ν ≤ 3g of the comoving coordinates ðt; r; θ;ϕÞ is
given by

Tμ
ν ¼ diagð−ρ; p; p; pÞ; ð1Þ

where ρ ¼ ρðt; rÞ and p ¼ pðt; rÞ are the density and the
isotropic pressure of the collapsing matter cloud, respec-
tively. The corresponding spacetime metric is written as
follows:
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ds2 ¼ −dt2 þ R02dr2 þ R2dΩ2; ð2Þ

where dΩ2 is the line element of the two-sphere, R ¼
Rðt; rÞ, and the superscript prime denotes the partial
derivative of the function with respect to radial coordinate
r. For such spacetime, we have

ρ ¼ F0

R0R2
ð3Þ

and

p ¼ −
Ḟ

ṘR2
; ð4Þ

where

F ¼ Ṙ2R: ð5Þ

The superscript dot denotes the partial derivative of the
function with respect to time coordinate t. F ¼ Fðt; rÞ is
called the Misner-Sharp mass function. A collapsing
spherical solid ball contained in the initial data is made
of concentric spherical shells, each of which is identified by
a radial coordinate r. In the case of dust, we have p ¼ 0.
Equation (4) then implies that F ¼ FðrÞ. In such scenario,
one can integrate Eq. (5) to obtain

Rðt; rÞ ¼
�
r
3
2 −

3

2

ffiffiffiffiffiffiffiffiffiffi
FðrÞ

p
t

�2
3

: ð6Þ

We define the scaling function aðt; rÞ as the ratio

aðt; rÞ ¼ Rðt; rÞ
r

ð7Þ

and rewrite Eq. (6) to obtain the time curve

tðr; aÞ ¼ 2r3=2

3
ffiffiffiffiffiffiffiffiffiffi
FðrÞp ð1 − a3=2Þ: ð8Þ

Given a spherical shell of fixed radial coordinates, as one
evolves the initial data, the physical radius of this shell
decreases and becomes zero. The corresponding comoving
time tsðrÞ is obtained by substituting Rðts; rÞ ¼ 0 in Eq. (6)
or a ¼ 0 in Eq. (8) as

tsðrÞ ¼
2r

3
2

3
ffiffiffiffiffiffiffiffiffiffi
FðrÞp : ð9Þ

We call this function the singularity curve. As mentioned
in the introduction, the expansion of the outgoing null
geodesic congruence vanishes on the apparent horizon. In
terms of the metric components [refer to Eq. (2)], it is

θ ¼ 2

R

�
1 −

ffiffiffiffi
F
R

r �
: ð10Þ

θ ¼ 0 is equivalent to F ¼ R from the above equation.
Hence, the apparent horizon for such spacetime is the set

A ¼ fa∈ S∶Fja ¼ Rjag; ð11Þ

where S is a partial Cauchy surface [we choose S to be a
constant t time slice; in other words, S should be such that
∂t is the (global) unit normal vector field]. Geometrically,A
is a two-dimensional sphere satisfying

H þ AtrK ¼ 0: ð12Þ

Here, H is the mean curvature of A in ðS; SgÞ, K is the
extrinsic curvature of S in M, and AtrK is the trace of K
overA or, in other words, the trace ofKjTA×TA with respect
to the induced metric Ag on A.
In the case of spherical symmetry, the apparent horizon is

a spherical ball embedded in S whose points have a fixed
radial coordinate. As one evolves the initial data S, A
evolves (the radial coordinate of points in A evolves). This
evolution is obtained from (6) along with equating F ¼ R
to get

tahðrÞ ¼
2

3

�
r3=2ffiffiffiffi
F

p − F

�
: ð13Þ

We call this function the apparent horizon curve. It gives us
the relation between the radial coordinate of points in A
and the comoving time t.
The collapsing perfect fluid spacetime Eq. (2) can be

matched smoothly with the exterior Schwarzschild space-
time so that the union validly solves Einstein’s field
equation. By smooth matching, we mean the satisfaction
of the Darmois-Israel junction conditions [13]. It states that
at the hypersurface (in our case, a timelike hypersurface
identified by r ¼ rc, where rc ∈Rþ) the induced LTB
metric and the induced Schwarzschild metric should be the
same. Second, the extrinsic curvature of this hypersurface
in LTB spacetime and in Schwarzschild spacetime should
be the same.
In the case of static spacetime, the event horizon is also

the apparent horizon. Hence, one can obtain the evolution
of the event horizon by solving the differential equation

dt
dr

¼ R0ðt; rÞ; ð14Þ

with the initial condition that, at the boundary of the
collapsing cloud, it should coincide with the apparent
horizon, i.e., Fja ¼ Rja, where a has radial coordinate
r ¼ rc. The solution to this initial value problem gives us
the event horizon curve and is denoted by tehðrÞ.
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Regarding the formation of at least locally visible
singularity, we have the following statement: Consider
an unhindered gravitational collapse of a spherically
symmetric perfect fluid. The singularity formed as an
end state of such collapse is at least locally naked if and
only if ∃X0 ∈Rþ as a root of VðXÞ, where

VðXÞ ¼ X −
1

α

 
X þ

ffiffiffiffiffiffiffiffiffiffiffiffi
F0ð0Þ
X

r
ðχ1ð0Þ þ 2rχ2ð0Þ

þ 3r2χ3ð0ÞÞr5−3α2

! 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
F0ð0Þ
X

r
r
3−α
2

!
: ð15Þ

Here,

α∈
�
2n
3
þ 1; n∈N

�
; χiðvÞ ¼

1

i!
∂
itðr; vÞ
∂ri

����
r¼0

;

Fðr; vÞ ¼
X∞
i¼0

FiðvÞriþ3; ð16Þ

and t ¼ tðr; vÞ is the time curve [14].
To depict examples of past null singularities, we consider

two different Misner-Sharp mass functions Fa and Fb
given by

FaðrÞ ¼ F0r3 þ F3r6; F0 > 0; F3 < 0 ð17Þ

and

FbðrÞ ¼ F0r3 þ F2r5; F0 > 0; F2 < 0; ð18Þ

respectively. Corresponding VðXÞ [Eq. (15)] for such mass
functions are obtained as

VaðXÞ ¼ 2X2 þ
ffiffiffiffiffiffi
F0

p
X3=2 − 3

ffiffiffiffiffiffi
F0

p
χ3ð0Þ

ffiffiffiffi
X

p

þ 3F0χ3ð0Þ; ð19Þ

where

χ3ð0Þ ¼ −
1

2

Z
1

0

F3=a

ðF0=aÞ3=2
da; ð20Þ

and

VbðXÞ ¼ 4X2 − 6
ffiffiffiffiffiffi
F0

p
χ2ð0Þ

ffiffiffiffi
X

p
; ð21Þ

where

χ2ð0Þ ¼ −
1

2

Z
1

0

F2=a

ðF0=aÞ3=2
da: ð22Þ

Setting F0 ¼ 1, Eq. (19) has positive real roots if and only
if F3 < ∼ − 25.967, in which case the singularity is visible.

Similarly, Eq. (21) has a positive real root if and only if
F2 < 0, in which case the singularity is visible.
For the singularity to be globally visible, apart from the

above-mentioned criteria, the following equality should be
satisfied:

tehð0Þ ¼ tsð0Þ: ð23Þ

It can be seen numerically that, in the former example
[Eq. (17)], Eq. (23) is always satisfied if Eq. (19) has a
positive real root. Hence, the visible singularity is globally
visible. In the latter example, if Eq. (21) has a positive real
root, then the singularity is either locally visible or
globally visible depending on the choice of the coeffi-
cients F0 and F2.
Figures 1 and 2 depict the spacetime diagrams consisting

of the evolution of the apparent horizon and the event
horizon in the case for which the LTB collapse leads to a
locally hidden singularity, a locally visible singularity, and
a globally visible singularity, respectively. We now proceed
to depict the formation of future null singularity as an end
state of gravitational collapse.

III. FUTURE NULL SINGULARITY
ADMITTING SPACETIME

Consider the gravitational collapse of a spherically
symmetric spatially homogeneous perfect fluid. The com-
ponents of the stress-energy tensor in the coordinate basis
fdxμ ⊗ ∂νj0 ≤ μ; ν ≤ 3g of the comoving coordinates
ðt; r; θ;ϕÞ are given by

Tμ
ν ¼ diagð−ρ; p; p; pÞ; ð24Þ

� 6 � 4 � 2 0 2 4 6

0

2

4

6

8

R

t

FIG. 1. The gravitational collapse of spatially homogeneous
dust governed by the LTB spacetime. The solid yellow, blue, and
black curves represent the event horizon, the boundary of the
collapsing cloud, and the apparent horizon, respectively.
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where ρ ¼ ρðtÞ and p ¼ pðtÞ are the spatially homo-
geneous density and the isotropic pressure of the collapsing
matter cloud, respectively. The corresponding spacetime
metric is written just as Eq. (2). In the case of dust, the
Misner-Sharp mass function is conserved inside a shell
of radial coordinate r, and the exterior metric is the
Schwarzschild spacetime. Hence, for the exterior spacetime
to be nonvacuum, we choose the Misner-Sharp mass
function such that it is not conserved inside a shell of
the fixed radial coordinate. Hence, it is a function of both t
and r coordinates. The scaling function a is a function of
only the t coordinate in the case of spatially homogeneous
collapse.
Unlike the collapsing dust LTB spacetime, the collapsing

nonzero pressured FLRW spacetime is matched with the
exterior spherically symmetric asymptotically flat nonvac-
uum spacetime discussed in [12] instead of Schwarzschild
spacetime. This exterior spacetime metric is given in
Schwarzschild coordinates by

ds2 ¼ −
dt2�

1þ M
r

	
2
þ
�
1þM

r

�
2

dr2 þ r2dΩ2; ð25Þ

where M is a positive constant.
In Eddington-Finkelstein coordinates, it is expressed as

ds2 ¼ −
�
1 −

2DðRÞ
R

�
dν2 − 2dνdRþR2dΩ2; ð26Þ

where

DðRÞ ¼ MRðM þ 2RÞ
2ðM þRÞ2 : ð27Þ

Here, R is the radial coordinate of the exterior spacetime,
and ν is the retarded null coordinate. In the coordinate basis
fdxμ ⊗ ∂νj0 ≤ μ; ν ≤ 3g of the Schwarzschild coordinates,
the stress-energy tensor corresponding to Eq. (26) is
given by

T ¼ diagfϵ;−ϵ;P;Pg; ð28Þ

where ϵ > 0. In the orthonormal basis feðiÞ ⊗ eðjÞj0 ≤
i; j ≤ 3g, where

eðiÞ ¼
∂iffiffiffiffiffi
gii

p ; ð29Þ

it is

T ¼ diagfϵ;−ϵ;P;Pg: ð30Þ

(Here, gii is the iith component of the metric tensor in the
coordinate basis dxi ⊗ dxj of the Schwarzschild coordi-
nates.) The stress-energy tensor of generalized Vaidya
spacetime in the above-mentioned orthonormal basis is
written as

T ¼

0
BBBB@

ϵ̄
2
þ ϵ ϵ̄

2
0 0

ϵ̄
2

ϵ̄
2
− ϵ 0 0

0 0 P 0

0 0 0 P

1
CCCCA: ð31Þ

� 0.05 0.00 0.05

0.6

0.7

0.8

0.9

1.0

1.1

R

t

(a)

� 0.04 � 0.02 0.00 0.02 0.04

0.6

0.7

0.8

0.9

1.0

1.1

R

t

(b)

FIG. 2. The gravitational collapse of spatially inhomogeneous dust governed by the LTB spacetime. The solid yellow, blue, and
black curves represent the event horizon, the boundary of the collapsing cloud, and the apparent horizon, respectively:
(a) FðrÞ ¼ F0r3 þ F3r5. The singularity is locally visible (F0 ¼ 1 and F2 ¼ −2). (b) FðrÞ ¼ F0r3 þ F3r6. The singularity is globally
visible (F0 ¼ 1 and F3 ¼ −26).
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Hence, the exterior spacetime with metric Eq. (25) is
a special case of generalized Vaidya spacetime with
ϵ̄ ¼ 0 [15].
Now, we briefly discuss the Israel junction condition we

employ to match the interior and exterior spacetime: The
collapsing perfect fluid spacetime Eq. (2) [that we call here
as (M1, g1)] can be matched “smoothly” with the exterior
Schwarzschild spacetime [that we call here as (M2, g2)] at
the timelike hypersurface Σ (identified by the collapsing
shell of largest comoving radius) embedded in both M1

and M2. The new spacetime is then a valid solution of
Einstein’s field equations. By “smooth”matching, we mean
the following: The oriented boundaries ∂M1 and ∂M2,
respectively, should be such that ∂M1 is diffeomorphic to
∂M2, i.e., ∂M1 ≅ ∂M2 ≅ Σ. A new spacetime ðM; gÞ is
then constructed such thatM is a disjoint union ofM1 and
M2. ∂M1 and ∂M2 are embedded in M1 and M2,
respectively, and their points are identified such that certain
conditions (that we call Israel’s conditions) are satisfied
[13,16]. Let Σg1 denote the metric induced on Σ ↪ M1 and
Σg2 denote the metric induced on Σ ↪ M2. Let

K1∶ TΣ × TΣ → C∞ðΣÞ∶ ðX; YÞ ↦ g1ð∇Xν; YÞ

and

K2∶ TΣ × TΣ → C∞ðΣÞ∶ ðX; YÞ ↦ g2ð∇Xν; YÞ

be the extrinsic curvatures of Σ ↪ M1 and Σ ↪ M2,
respectively (here, ν∈TM is the global unit normal vector
field of Σ). The Israel junction conditions are as follows:
(i) Σg1 ≡ Σg2 and (ii) K1 ≡ K2.
Matching these first and second fundamental forms for

the interior and exterior metric on the matching surface Σ
identified by the radial coordinate r ¼ rc gives the follow-
ing four equations [17]:

R ¼ Rðt; rcÞ ¼ rcaðtÞ; ð32Þ
�
dν
dt

�
Σ
¼ 1þ Ṙ


1 − Fðt;rcÞ
R

� ; ð33Þ

Fðt; rcÞ ¼ 2DðRÞ; ð34Þ

and

DðRÞ;R ¼ Fðt; rcÞ
2R

þRR̈: ð35Þ

Equations (32) and (33) are obtained from matching the
first fundamental forms, while Eqs. (34) and (35) are
obtained from matching the second fundamental forms
at Σ [18]. From Eqs. (5), (27), (32), and (34) and the fact
that ȧ < 0, we obtain

ȧ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM þ 2rcaÞ

p
rcðM þ rcaÞ

: ð36Þ

Solving this with the initial condition aðt ¼ 0Þ ¼ 1 and the
constraint ȧ < 0 ∀ t∈ ½0; tsÞ gives us

aðtÞ ¼ 1

2rc

�
−3M þ M2

ψðtÞ13 þ ψðtÞ13
�
; ð37Þ

where

ψðtÞ ¼ 9M3 þ 24M2rc þ 4r3c − 12rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM þ 2rcÞ

p
t − 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3ðM þ 2rcÞ

q
tþ 18Mðr2c þ t2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M6 þ ðM3 þ 2ð2M þ rcÞ2ðM þ 2rcÞ − 12ð2M þ rcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM þ 2rcÞ

p
tþ 18Mt2Þ2

q
:

� 6 � 4 � 2 0 2 4 6

0

2

4

6

8

10

12

14

R

t

FIG. 3. The gravitational collapse of spatially homogeneous
perfect fluid governed by the FLRW spacetime glued to an
asymptotically flat nonvacuum spacetime [Eq. (25)]. The solid
blue curve represents the boundary of the collapsing cloud. The
event horizon and the apparent horizon are absent.
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Equations (27), (34), and (35) give

R̈ ¼ −
MR

ðM þRÞ3 ; ð38Þ

which is again satisfied by aðtÞ in Eq. (37).
We now have an example of the gravitational collapse

[interior spatially homogeneous perfect fluid spacetime (2)
with the scaling function given by Eq. (37), matched
smoothly with the exterior specific example of generalized
Vaidya spacetime (26)] that gives rise to a future null
singularity. Such singularity is obtained at comoving time

ts ¼
1

3
ðð2M þ rcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2rc

p
− 2M3=2Þ; ð39Þ

that is achieved by substituting aðt ¼ tsÞ ¼ 0 in Eq. (37).
For the scaling function given by Eq. (37), we can obtain the
explicit expression of Fðt; rÞ using Eq. (5). We can then see
that ∄ðt; rÞ∈ ð0; tsÞ × ð0; rcÞ satisfying F ¼ R. This implies
the absence of the apparent horizon and, hence, the event
horizon. Figure 3 depicts the spacetime diagram of spatially
homogeneous collapse giving rise to a future null singularity.
Figure 4 depicts the conformal diagram of four spacetimes
with different causal structures [existence of future spacelike
singularity, past null singularity (i) locally visible and
(ii) globally visible, and, finally, future null singularity].

IV. CONCLUDING REMARK

In the collapsing spatially homogeneous LTB space-
time, the end state is a future spacelike singularity. In the
collapsing spatially inhomogeneous LTB spacetime, the

FIG. 4. Conformal diagram of four different causal structures of the singularities formed due to gravitational collapse (depicted by the
brown dashed curve). (a) Schwarzschild singularity formed due to spatially homogeneous gravitationally collapsing dust glued to
exterior Schwarzschild spacetime, (b) locally naked singularity formed due to spatially inhomogeneous gravitationally collapsing dust
glued to exterior Schwarzschild spacetime, (c) globally naked singularity formed due to spatially inhomogeneous gravitationally
collapsing dust glued to exterior Schwarzschild spacetime, and (d) future null singularity formed due to spatially homogeneous
gravitationally collapsing perfect fluid glued to exterior asymptotically flat nonvacuum spacetime (25).
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end state is a past null singularity. Here, we showed that
the gravitational collapse can also lead to the formation
of future null singularity as an end state. An interior
collapsing FLRW spacetime with a time-dependent

Misner-Sharp mass function [Fðt; rÞ ¼ aȧ2r3, where
aðtÞ is as shown in Eq. (37)] glued to an exterior
asymptotically flat nonvacuum spacetime first discussed
in [12] gives rise to such singularities.
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