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We present a four-dimensional generally covariant gauge theory with local degrees of freedom which
leads to the Gauss constraint but lacks both the Hamiltonian and spatial diffeomorphism constraints.
The canonical theory therefore resembles Yang-Mills theory without the Hamiltonian. We describe its
observables, quantization, and some generalizations.
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I. INTRODUCTION

The difficulty of constructing a fully satisfactory theory
of quantum gravity gives rise to the need for simpler
models, which consist of writing down generally covariant
theories that are different from general relativity but simpler
to analyze from a quantum-theoretical perspective. These
include BF theory [1,2], 2þ 1 gravity [3–6], Uð1Þ3 theory
[7,8], the Husain-Kuchar (HK) model [9,10], and many
others with symmetry reductions [11] and matter.
The Hamiltonian version of the HK theory lacks the

Hamiltonian constraint of general relativity, which encodes
the dynamics of general relativity and is the most difficult
object to quantize in any canonical approach to quantum
gravity. As such, the model furnished the hope for clearly
separating the question of dynamics from that of kinemat-
ics, and thus determining which quantum-gravitational
effects are solely kinematical in nature. To this end,
subsequent developments revealed subtle and surprising
results, such as the fact that black-hole entropy calculations
in loop quantum gravity (LQG) can be performed with
generally covariant theories that lack black-hole solutions
entirely [12].
In this paper, we describe an SUð2Þ model that, on the

face of it, is a slight variation of the HKmodel, but turns out
to have significantly different features: the canonical theory
lacks not only the Hamiltonian, but also the diffeomor-
phism constraint; the remaining Gauss constraint arises
with a source term. This leads to new observables in the
classical and quantum theories that resemble “quarks on a
string.” Furthermore, the presence of only the Gauss
constraint gives considerable freedom in constructing

classical solutions, which include metrics corresponding
to almost any three-geometry.
The surprising feature that a generally covariant theory

realizes dynamics only as internal gauge provides a large
class of exactly solvable classical and quantum models
with local degrees of freedom; the canonical theory of the
model we present may be viewed as a Yang-Mills theory
without its Hamiltonian, with nine local degrees of
freedom.
The plan of the paper is as follows. In Sec. II, we

introduce the model and derive its canonical theory, and in
Sec. III, we explain why the model is diffeomorphism
invariant despite having a Gauss law as the only first-class
constraint and hence gauge generator of the theory.
Sections IVand Vare devoted to describing certain classical
observables and solutions, respectively, and Sec. VI dis-
cusses the quantum theory. Finally, Sec. VII describes
possible extensions of the model, such as addition of a
Chern-Simons boundary term.

II. ACTION AND CANONICAL THEORY

Let M be a four-dimensional spacetime, and let ϕiðxÞ
and Ai

αðxÞ be scalars and connection one-forms in the Lie
algebra suð2Þ of SUð2Þ [or any other semisimple [13] Lie
group of dimension 3, e.g. SLð2;RÞ, SOð2; 1Þ, etc.], and let
ϵijk denote the Levi-Civita symbol in suð2Þ (or equiv-
alently, the structure constants of the Lie algebra). The
action of the model we propose is

S½ϕ; A� ¼ 1

2

Z
M
d4xϵ̃αβγδϵijkDαϕ

iDβϕ
jFk

γδ

¼ 1

2

Z
M
d4xTrðDϕ ∧ Dϕ ∧ FÞ; ð1Þ*vhusain@unb.ca
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where D and F denote, respectively, the covariant deriva-
tive and the curvature 2-form corresponding to the
connection A, i.e.

Dαγ
i ¼ ∂αγ

i þ ϵijkA
j
αγk ð2Þ

Fi
αβ ¼ ∂½αAi

β� þ ϵijkA
j
αAk

β; ð3Þ

and ϵ̃αβγδ is the four-dimensional desensitized Levi-Civita
symbol.
This action is manifestly invariant both under spacetime

diffeomorphisms and SUð2Þ transformations. It resembles
the HK action

SHK½e; A� ¼
Z

d4xϵ̃αβγδϵijkeiαe
j
βF

k
γδ ð4Þ

if one replaces Dαϕ
i with SUð2Þ triads eiα. However, as we

see below, the canonical theory of (1) is drastically
different.
Variation of the action with respect to A and ϕ yields the

equations of motion:

δϕ∶ D ∧ ðDϕ ∧ FÞ ¼ 0; ð5Þ

δA∶ D ∧ ðDϕ ∧ DϕÞ þ ϕ × ðDϕ ∧ FÞ ¼ 0; ð6Þ

where “×” denotes an internal cross product using the
structure constants, i.e. ðu × vÞi ¼ ϵijkujvk. Using the
Bianchi identity D½αFβγ� ¼ 0 and D½αDβ�λ ¼ Fαβ × λ for
any section λ of the SUð2Þ bundle associated with the
spacetime, the preceding equations can be recast as

ϵ̃αβγδðFαβ × ϕÞ × Fγδ ¼ 0;

ϵ̃αβγδ½ðFβγ × ϕÞ ×Dδϕþ ϕ × ðDβϕ × FγδÞ� ¼ 0:

Evidently, the first equation is true if and only if F and ϕ are
internally parallel, i.e.

Fαβ × ϕ ¼ 0: ð7Þ

Substituting this equation and its covariant derivative into
the second equation trivially satisfies the latter. Thus, any
connection is a solution to the theory, provided one chooses
a section ϕ parallel to the curvature F in suð2Þ! One might
say that the equations of motion concern only the “internal
space” of the theory; from this perspective, it is not
surprising that the canonical theory, as we shall see below,
only has an internal Gauss constraint.
To perform canonical decomposition of the action (1), we

assume M has the topology R × Σ, where Σ is a compact
three-dimensional, differentiable manifold. Then, choosing
the coordinates xα ¼ ðx0; xaÞ, with x0 ∈R and xa ∈Σ, the
3þ 1 form of the action is

S ¼
Z

d4xϵijkϵ̃0abcfðϕ̇i þ Ai
0ϵ

i
lmAl

aϕ
mÞDaϕ

jFk
bc

þDaϕ
iDbϕ

jðȦk
c þ ϵklmAl

0A
m
c Þg; ð8Þ

where the overdot indicates ∂0. This identifies the momenta
conjugate to ϕi and Ai

a:

Ẽa
i ≔ ϵ̃abcϵijkðDbϕ

jÞðDcϕ
kÞ; ð9Þ

p̃i ≔ ϵ̃abcϵijkðDaϕ
jÞFk

bc; ð10Þ

where ϵ̃abc ≔ ϵ̃0abc. The canonical action is then

S ¼
Z

d4x½Ẽc
kȦ

k
c þ p̃iϕ̇

i þ Ak
0ðDcẼc

k þ ϵkl
iϕlp̃iÞ�: ð11Þ

There are thus two sets of configuration variables, the
suð2Þ-valued connection A and scalar ϕ. Variation with
respect to Ak

0 gives the constraint

G̃k ¼ −ðDcẼc
k þ ϵkl

iϕlp̃iÞ ≈ 0: ð12Þ

This is a Gauss law with a source term; it is readily verified
that the constraint algebra is first class:

fGðλÞ; GðμÞg

¼
�Z

d3xλmDaẼa
mðxÞ;

Z
d3yγnDbẼb

nðyÞ
�

þ
�Z

d3xλmϵml
sϕlp̃sðxÞ;

Z
d3yγnϵijkϕjp̃kðyÞ

�

¼ Gð½λ; μ�Þ: ð13Þ

The Hamiltonian is therefore a linear combination of
first-class constraints

H ¼
Z

d3xλkGkðxÞ; ð14Þ

and it is evident that there is neither a Hamiltonian nor a
spatial diffeomorphism constraint; the reason for their
absence is explored in the next section.
At this stage it is important to check whether any

constraints have been missed. We now show that this is
not the case. Let us first note that there can be no algebraic
relations between ϕi, Ai

a and Eai, since the former two are
independent configuration variables, and the last one is
made from the gauge-covariant derivatives of the first (9);
similarly the momenta Ẽai and p̃i are algebraically inde-
pendent since the latter, from (10), is a function of the
curvature FðAÞ; the possible nontrivial quadratic combi-
nations of the momenta (with Bai ¼ ϵ̃abcFi

ab) are

p̃ip̃i ¼ BajBb
jDaϕ

iDbϕi − BajBb
i Daϕ

iDbϕj; ð15Þ

VIQAR HUSAIN and HASSAN MEHMOOD PHYS. REV. D 109, 064016 (2024)

064016-2



ẼaiẼb
i ¼ 2ϵ̃acdϵ̃befDcϕ

jDdϕ
kDeϕjDfϕk; ð16Þ

ðẼa × ẼbÞi ¼ ϵi
jkẼa

j Ẽ
b
k ¼ 2Ẽa

j ϵ̃
bcdDcϕiDdϕ

j; ð17Þ

ðp̃ × ẼaÞi ¼ ϵi
jkp̃jẼa

k ¼ 2p̃jϵ̃
abcDbϕiDcϕ

j; ð18Þ

inspecting the right-hand sides of these expressions shows
that there can be no quadratic relationships between the
momenta. We thus conclude that there are no “hidden”
secondary constraints in the model. Another way to
establish this via the Dirac procedure for constrained
Hamiltonian systems [14,15] is given in the Appendix.
The theory thus has three ϕi and nine Ai

a local phase-
space configuration degrees of freedom subject to the
SUð2Þ Gauss law. Hence it has a net of nine unconstrained
degrees of freedom per space point [15]; in comparison the
HK model has three, since it has only the connection Ai

a as
the configuration variable, and both the Gauss and diffeo-
morphism constraints.
Like the HK model, the action (1) has a special vector

density

ũα ¼ ϵαβγδϵijkDβϕ
iDγϕ

jDδϕ
k; ð19Þ

which satisfies the “parallel transport” equation
ũαDαϕ

i ¼ 0; a degenerate spacetime metric

gαβ ¼ Dαϕ
iDβϕ

jδij; ð20Þ

in the canonical theory there is a scalar density of weight 1,

ẽ ¼ 1

3!
ϵijkϵ̃

abcDaϕ
iDbϕ

jDcϕ
k; ð21Þ

which may be used to define the inverse triad

eai ¼ 1

ẽ
ϵijkϵ̃abcDbϕ

jDcϕ
k; ð22Þ

which satisfies eaieaj ¼ δij and eaiebi ¼ δab. Thus like the
HK model, Eq. (1) is a theory of three-geometries with an
invertible spatial metric qab ¼ eiaeib.

III. THE CASE OF THE MISSING CONSTRAINTS

The action (1) is manifestly diffeomorphism invariant,
but the canonical theory contains only a Gauss constraint.
Since one expects continuous symmetries of the action to
be generated by the first-class constraints, we have a
puzzle: how do we understand the absence of the diffeo-
morphism and Hamiltonian constraints?
By way of preliminaries, let us recall how this question

is answered in other known diffeomorphism-invariant
theories of connections where the first-class constraints
generate only the usual gauge transformations of the
gauge fields. Examples include BF theory and its

generalizations [1,2], Chern-Simons theory, and 2þ 1
gravity [3]. In these theories F ¼ 0 is an equation of
motion. As a result the Lie derivative of the field variables
with respect to a vector field ζ that generates a diffeo-
morphism is a gauge transformation on shell:

LζAa ¼ ζc∂cAa þ Ac∂aζ
c

¼ DaðζcAcÞ þ ζcFca: ð23Þ

The reflection of this fact in the canonical BF theory arises
through the constraints Gk ¼ DaEak ¼ 0 and Fk

ab ¼ 0 with
the spatial diffeomorphism constraint Ca arising as the
linear combination

Ca ¼ Ak
aGk þ EakFk

ab: ð24Þ

In the HK model, the Gauss and spatial diffeomorphism
constraints are present but the Hamiltonian constraint
vanishes identically. Although the latter cannot be written
as any linear combination of the former constraints, the Lie-
derivative argument sketched above is still available: the
theory contains the vector density ũa ≡ ϵabcdeibe

j
cekdϵ

ijk,
which defines a preferred direction, and satisfies ũaFab ¼ 0
[9]. Using this, one can show, in analogy with the theories
discussed above, that spacetime diffeomorphisms are
equivalent on shell to the transformations generated by
the first-class constraints of the theory, namely the Gauss
law and the spatial diffeomorphism constraint. Indeed,
given a foliation of spacetime into a family of spacelike
hypersurfaces, one can convert ũ into a vector field u, and
then any vector field ζ can be decomposed into a compo-
nent along u and a component along a leaf Σ of the
foliation. Then, up to unimportant multiplicative factors,
one can write

LζAa ¼ DaðubAbÞ þ ubFba þ LXAa

Lζea ¼ ðubAbÞ × ea þ ubDbea þ LXea; ð25Þ

where X is a vector field along Σ. The first and last terms in
each line are an SUð2Þ rotation and a spatial diffeomor-
phism, respectively, and the middle term vanishes by
ũaFab ¼ 0, which is a consequence of the equations of
motion [9]. Furthermore, one can show that the spatial
projections of the equations of motion yield the Gauss and
spatial diffeomorphism constraints. Thus although the HK
model is not topological with an Fab ¼ 0 equation of
motion, a related understanding of the identically vanishing
Hamiltonian constraint arises there.
We now show that there is an analogous understanding

of the vanishing Hamiltonian and diffeomorphism con-
straints in the canonical theory arising out of the action (1).
That is, we can show that all diffeomorphisms are equiv-
alent on shell to the SUð2Þ gauge transformations generated
by the Gauss law (12). To see how this happens let us recall
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the special vector density ũα (19) orthogonal to Dαϕ; it can
be converted into a vector field using (21). Furthermore, in
the canonical theory, one has access to the three vector
fields eai (22) which have the property that eaiDaϕ

j ¼ δij.
Using this, let us form the spatial vector field

Xai ¼ ϵijkϕ
jeak: ð26Þ

Any vector field vα can be decomposed into a component
along uα ¼ ũα=ẽ and a spatial vector field, which in turn
can be written as a linear combination of the Xai. Thus, it
suffices to calculate the Lie derivative of the field variables
along uα, and along wa ¼ λiXai for some λi. To this end, we
first note that

Luϕ
i ¼ uα∂αϕi ¼ uαDαϕ − ½ðuαAαÞ × ϕ�i
¼ −½ðuαAαÞ × ϕ�i; ð27Þ

where the last equality follows from uαDαϕ ¼ 0—this is
evidently an SUð2Þ gauge transformation with the gauge
parameter uαAi

α. Similarly, for the Lie derivative with
respect to wa, we find

Lwϕ
i ¼ ½ðλ − ðAawaÞÞ × ϕ�i ≡ ðΛ × ϕÞi; ð28Þ

which is also an SUð2Þ gauge transformation with the
parameter Λi. Therefore, by virtue of the special direction
uα, any diffeomorphism of ϕ is equivalent to an SUð2Þ
rotation.
This fact can be used to establish a similar result for Ai

a,
provided the equations of motion hold. To see this, observe
that if the equations of motion hold, then as shown in the
previous section, F × ϕ ¼ 0. Now, under a diffeomorphism
generated by a vector field vα, ϕ changes by an SUð2Þ
rotation. Since F × ϕ ¼ 0, F must rotate by the same
amount as ϕ does (28). Indeed, assuming that ϕ rotates
by Λi,

LvðFαβ × ϕÞ ¼ LvFαβ × ϕþ Fαβ × ðΛ × ϕÞ ¼ 0∶

this equation holds if and only if

LvFαβ ¼ ðΛ × FαβÞ; ð29Þ

i.e. F, too, rotates by Λ. This constrains the transformation
of the connection A: we have, using (23), that

LvFαβ ¼ D½αLvAβ�

¼ ðFαβ × AγvγÞ −D½αðvγFβ�γÞ; ð30Þ

and the last two equations give

D½αðvγFβ�γÞ ¼ Fαβ × ðAγvγ þ ΛÞ: ð31Þ

This in turn implies

vγFαγ ¼ DαðAγvγ þ ΛÞ. ð32Þ

Substituting this into (23) gives

LvAi
α ¼ −DαΛi; ð33Þ

this is the sought after result: the Lie derivative of A is an
SUð2Þ gauge rotation. Therefore, provided the equations of
motion hold, diffeomorphisms are equivalent to the trans-
formations generated by the Gauss constraint. To complete
the analogy with the HKmodel, one can project Eq. (6) into
the spatial surface to obtain the Gauss constraint (12);
[Eq. (5) is a scalar and hence not projectable].
From the perspective of constrained Hamiltonian sys-

tems, the preceding discussion illustrates the fact that all
continuous local symmetries of the action are generated by
the first-class constraints; any transformations that are not
present in the transformations generated by the first-class
constraints should differ from the latter only by equations-
of-motion terms or by trivial symmetries [15]. This is what
happens here.

IV. OBSERVABLES

Let us recall that an observable is a dynamical function
(al) fðϕ; A; Ẽ; p̃Þ that has vanishing Poisson brackets with
the constraints. We can define a spatial metric by

qab ¼ κijDaϕ
iDbϕ

j; ð34Þ

where κij is the Cartan-Killing metric for SUð2Þ. It is
readily verified that this is an observable:

fDaϕ
iðxÞ; GðλÞg ¼ ϵimnλ

mDaϕ
n; ð35Þ

hence, fqab; GðλÞg ¼ 0. Since the metric is gauge invari-
ant, so are all the classical observables that depend on it.
Hence, for instance, the area and volume functionals are
observables in this model, just as in LQG [16].
Other obvious examples of observables are SUð2Þ-

valued loop variables, which are defined using traces of
holonomies around curves in Σ and insertions of configu-
ration and momentum variables along the curves. That is,
given a smooth curve γ∶½a; b� → Σ, we define the Wilson
line from a to b:

U½γ�ða; bÞ ≔ P exp

�Z
b

a
dxaAi

aτi

�
; ð36Þ

where P stands for path ordering and τi are the generators
of suð2Þ. If a ¼ b, we get the so-calledWilson loops. Since
these are matrices in SUð2Þ, and hence transform under
SUð2Þ via conjugation [i.e. g ·U½γ� ¼ g−1ðaÞU½γ�gðbÞ], the
cyclic invariance of the trace operation entails that
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T0½γ� ≔ TrðU½γ�ða; aÞÞ ð37Þ

is an observable. Similarly, the rest of the familiar T
variables, defined via insertions of the momentum Ẽa

i
along Wilson lines, are also observables, e.g.

Ta1���an ½γ�ðx1;…; xnÞ
¼ Tr½U½γ�ða; x1ÞẼa1ðx1Þ
×U½γ�ðx1; x2ÞẼa2ðx2Þ � � � ẼanU½γ�ðxn; aÞ�;

where Ẽa ¼ Ẽa
i τ

i and x1;…; xn are fixed points on the
curve γ.
However, unlike in LQG, these are not the only loop

observables, since we now have the additional suð2Þ-
valued configuration and momentum variables, namely ϕi

and p̃i, that may be inserted along Wilson lines as well.
There are numerous such possibilities, ranging from simple
end-of-the-curve insertions such as

Tr½ϕðxÞU½γ�ðx; yÞϕðyÞ� ð38Þ

to mixed and middle-of-the-curve insertions such as

Tr½ϕðx1ÞU½γ�ðx1; x2ÞẼðx2ÞU½γ�ðx2; x3Þ
×p̃ðx3ÞU½γ�ðx3; x4Þϕðx4Þ�: ð39Þ

The former are essentially flux tubes analogous to those
found in Yang-Mills theory, except that the nonzero
Hamiltonian of the latter can cause these tubes to break
to form more such tubes, whereas our model has unbroken
tubes floating around in spacetime.

V. CLASSICAL SOLUTIONS

Since the Hamiltonian constraint, which generates
orthogonal transformations of three-dimensional hyper-
surfaces, vanishes in both the HK model and the model
here, both are essentially theories of three-geometry that
arise from four-dimensional actions. For the HK model,
constraint-free initial data specified on a three-dimensional
hypersurface are solutions of the Gauss and spatial diffeo-
morphism constraints. Since the Hamiltonian constraint
vanishes, these data do not evolve. Therefore they are
solutions for a three-geometry. This means that constraint-
free data for Einstein gravity are a subset of the data for the
HK model.
In the model at hand the Gauss constraint contains a

source term. Two peculiar features of the model conspire to
yield a large class of interesting three-geometries as
solutions of the model. First, the three-metric (34) depends
solely on the configuration variables ϕ and A. Since these
variables are independent, one can set their conjugate
momenta p̃i and Eai to zero to trivially solve the Gauss
constraint, which fortunately is the only constraint to solve.

Second, since the model is valid for arbitrary (semisimple)
gauge groups of dimension 3, which include those with
Cartan-Killing metrics of mixed signature [e.g. SOð2; 1Þ],
one can even construct solutions of 2þ 1 gravity. Thus, by
appropriately fixing the form of ϕ and A, while setting p̃
and Ẽ to zero, it is possible to construct almost any three-
metric, including all those resulting from projecting sol-
utions of the 3þ 1 Einstein equations on three-dimensional
hypersurfaces, as well as all the solutions of 2þ 1 gravity.
To illustrate these remarks, we explicitly construct the
spatial Schwarzschild metric and the Banados-Teitelboim-
Zanelli (BTZ) black-hole metric [17].

A. 3d Schwarzschild metric

For SUð2Þ, p̃ ¼ Ẽ ¼ 0, use spherical coordinates
ðr; θ;φÞ on Σ, and set

A ¼ r
PðrÞ τ1dθ þ

�
cos θτ3 −

r
PðrÞ sin θτ2

�
dφ; ð40Þ

ϕ ¼ PðrÞτ3; fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R=r

p
; ð41Þ

PðrÞ ¼ R
2

�
ln

���� fðrÞ þ 1

fðrÞ − 1

����þ 2fðrÞ
ðfðrÞ þ 1ÞðfðrÞ − 1Þ

	
; ð42Þ

where τi are the Pauli matrices. Then (34) gives the
Schwarzschild three-metric

ds2 ¼ f−2ðrÞdr2 þ r2dΩ2: ð43Þ

B. BTZ black hole

For the gauge group SOð2; 1Þ the Cartan-Killing metric
can be written as diagð−1; 1; 1Þ. Pick cylindrical coordi-
nates ðr;φ; zÞ on Σ. Then the BTZ metric can be obtained
as follows. Let

A ¼ ½PðrÞτ1 þQðrÞτ2�dφþ ½RðrÞτ2 þ SðrÞτ3�dz;
ϕ ¼ TðrÞτ3; ð44Þ

N2ðrÞ ¼ −M þ r2

l2
þ J2

4r2
; NφðrÞ ¼ −

J
2r2

; ð45Þ

where the last two functions are used to define the BTZ
metric. Substituting these into (34) yields the equations

T 0ðrÞ2 ¼ N−2ðrÞ; ð46Þ

T2ðrÞðP2ðrÞ −Q2ðrÞÞ ¼ r2; ð47Þ

R2ðrÞT2ðrÞ ¼ N2ðrÞ; ð48Þ

RðrÞQðrÞT2ðrÞ ¼ r2NφðrÞ; ð49Þ
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which can be solved for the functions P,Q, R, T to obtain A
and ϕ: the first equation gives

TðrÞ ¼ l
2
ln
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðrÞ þ 1

q
þ hðrÞ

���;
hðrÞ ¼ 2r2 −Ml2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2l2 −M2l4
p ; ð50Þ

and the other three are algebraic.
These examples show that almost any desired 3-metric

may be constructed by solving for A and ϕ.

VI. QUANTUM THEORY

Since there are now two types of configuration variable,
the connection A and the ϕ variables, the connection
representation is better termed the A − ϕ representation.
Physical states are gauge-invariant functionals of ϕ and
A—for instance, the loop variables defined above but
depending solely on A and ϕ, e.g.

Ψðϕ; AÞ ¼ Trðϕðx1ÞU½γ�ðx1; x2Þϕðx2Þ
×U½γ�ðx2; x3Þϕðx3ÞÞ: ð51Þ

The inner product on these states is well defined, with there
being now an additional integration over the ϕ:

hΨ1jΨ2i ¼
Z

dμðϕÞ
Z

dμðAÞΨ�
1ðϕ; AÞΨ2ðϕ; AÞ; ð52Þ

where μðAÞ is a measure on the space of connections
(modulo gauge transformations), such as the Ashtekar-
Lewandowski measure, and μðϕÞ is some suitable measure
on the space of the ϕ fields (say, a Gaussian measure).

A. Spin-network states

As in LQG, quantum states in the model can be realized
as spin networks, with one addition. As usual, SUð2Þ
representations label the edges of embedded graphs,
corresponding to holonomies of the connection along
those edges, i.e. functionals of the form ΨðAÞ, and these
representations are sewn by intertwiners associated with the
vertices of the graph. However, here we can also have
physical functionals that involve insertions of ϕ at the end
ofWilson lines. In a spin network, such states correspond to
the ϕ variables sitting at selected vertices of the underlying
graph, along with the intertwiners. Thus in general, a
typical spin-network state corresponding to a graph Γ is

jΓ; j1;…; jn; I1;…; In;ϕ1;…;ϕki; k ≤ n; ð53Þ

with the obvious inner product. Such states are physical
states of the theory, and the area and volume operators of
LQG are diagonal physical observables. The quantum
tetrahedra are physical states of the theory, and as there

is no spatial diffeomorphism constraint, each graph repre-
senting a tetrahedron is a distinct physical state, unlike in
the HK model.

VII. DISCUSSION

Our main observation is the theory defined by (1), and
its unusual canonical version with missing Hamiltonian
and diffeomorphism constraints—it is a theory of three-
geometries with local degrees of freedom that is exactly
solvable classically and quantum mechanically.
A natural extension of the model arises by adding a

Chern-Simons boundary term

S ¼ 1

2

Z
M
d4xTrðDϕ ∧ Dϕ ∧ FÞ

þ γ

Z
∂M

d3x

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð54Þ

Varying the action now yields

δS ¼ −
Z
M
d4x½D ∧ ðDϕ ∧ FÞ�iδϕi þ γ

Z
∂M

d3xp̃iδϕ
i

−
Z
M
d4x½D ∧ ðDϕ ∧ DϕÞ þ ðϕ × ðDϕ ∧ FÞÞ�αkδAk

α

þ
Z
∂M

d3x½γϵ̃abcFiab þ Ẽc
k�δAk

c:

Thus, if we insist that the variations in ϕ and A on the
boundary ∂M can be nonzero, the conjugate momenta must
be constrained on the boundary to ensure a well-defined
variational principle:

Ẽc
kj∂M ¼ −γϵ̃abcFiab; p̃ij∂M ¼ 0: ð55Þ

The first of these is a condition on conjugate momenta that
also arises with a topological bulk theory [18], and in the
context of black-hole entropy in LQG for an inner
boundary [12,19], where quantization of this condition
in the spin-network basis with the area operator provides an
area-entropy relation. A similar calculation is possible in
the present theory.
Other possiblevariants of the action include the additionof

a bulk topological term
R
d4xTrðF ∧ FÞ, more than one

connection [20], as well as boundaries with multiple com-
ponents for identifying corner observables; see, e.g. [21].
As the model and its variants are generally covariant

theories with local degrees of freedom, they provide a
useful testing ground for other quantization methods, such
as those involving spinfoams [22,23] and group-field
theory (GFT) [24]. For the former, it is possible to write
the action as a BF theory with a “simplicity” constraint term
ΛðB −Dϕ ∧ DϕÞ; for the latter, the fact that our model has
no constraints other than the Gauss law makes it a natural
candidate to define directly on a group manifold, in
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particular for exploring the question of the manifestation of
the Hamiltonian and diffeomorphism constraints in GFT
models.
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APPENDIX: DIRAC ANALYSIS

For completeness we present the Dirac analysis [14,15]
of the action (1). This ensures consistency with the analysis
of Sec. II. The definitions of the momenta (9) and (10) have
no explicit dependence on the time derivatives of Ai

a and ϕi
and so cannot be inverted to express the velocities as

functions of the momenta and configuration variables. We
thus have the following primary constraints:

Ẽ0
i ¼

∂L
∂Ȧi

0

≈ 0; ðA1Þ

ψ̃ i ≔ p̃i − ϵ̃abcϵijkDaϕ
jFk

bc ≈ 0; ðA2Þ

χ̃ai ≔ Ẽa
i − ϵ̃abcϵijkDbϕ

jDcϕ
k ≈ 0: ðA3Þ

Since Eq. (11) is in the form
R
d3xðpq̇ −HÞ, the total

Hamiltonian à la Dirac is

HT ¼
Z

d3xðAk
0G̃k þ λiẼ0

i þ μiψ̃ i þ ρiaχ̃
a
i Þ; ðA4Þ

where λi; μi; ρia are arbitrary functions of spacetime
coordinates.
To ensure preservation of these primary constraints under

evolution with HT , we first note the following algebra:

�
Ẽ0ðxÞ;

Z
d3yA0ðyÞ · G̃

�
¼ −G̃ðxÞ; ðA5Þ

�
ψ̃ðxÞ;

Z
d3yA0ðyÞ · G̃ðyÞ

�
¼ −A0ðxÞ × ψ̃ðxÞ; ðA6Þ

�
χ̃aðxÞ;

Z
d3yA0ðyÞ · G̃ðyÞ

�
¼ −A0ðxÞ × χ̃aðxÞ; ðA7Þ

�
ψ̃ðxÞ;

Z
d3yμðyÞ · ψ̃ðyÞ

�
¼ μðxÞ ×DaB̃aðxÞ; ðA8Þ

�
ψ̃ðxÞ;

Z
d3yρaðyÞ · χ̃aðyÞ

�
¼ ðϕðxÞ × ρaðxÞÞ × B̃aðxÞ; ðA9Þ

�
χ̃aðxÞ;

Z
d3yμðyÞ · ψ̃ðyÞ

�
¼ ðμðxÞ × B̃aðxÞÞ × ϕðxÞ þ μðxÞ × ðB̃aðxÞ × ϕðxÞÞ; ðA10Þ

�
χ̃aðxÞ;

Z
d3yρbðyÞ · χ̃bðyÞ

�
¼ 2ϵ̃abc½ϕðxÞ × ðρbðxÞ ×DcϕðxÞÞ� þ 2ϵ̃abc½DcϕðxÞ × ðρbðxÞ × ϕðxÞÞ�; ðA11Þ

where as before B̃ai ¼ ϵ̃abcFi
bc. The first three equations are all weakly zero, while the fourth one is identically zero owing

to the Bianchi identity; hence we obtain

fẼ0ðxÞ; HTg ¼ −G̃ðxÞ ≈ 0; ðA12Þ

fψ̃ðxÞ; HTg ≈ ðϕ × ρaÞ × B̃a ≈ 0; ðA13Þ

fχ̃aðxÞ; HTg ≈ ½ðμ × B̃aÞ × ϕ� þ ½μ × ðB̃a × ϕÞ� þ 2ϵ̃abc½ϕ × ðρb ×DcϕÞ� þ 2ϵ̃abc½Dcϕ × ðρb × ϕÞ� ≈ 0: ðA14Þ
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Equation (A12) is a secondary constraint as its right-
hand side does not involve a Lagrange multiplier; the other
two Eqs. (A13) and (A14) are not secondary constraints,
but merely consistency conditions on the Lagrange multi-
pliers μi and ρil (in line with Dirac’s method [14,15]). Thus
the last two conditions, when set to zero, fix μi and ρil as
functions of the phase-space variables. Finally, by virtue of
(A5)–(A7), fGiðxÞ; HTg ≈ 0. Therefore, the constraint
analysis ends, and we conclude that we have four con-
straints in total: the three primary constraints (A1)–(A3)
and one secondary constraint (A12).
Next, we classify the four constraints into first class or

second class. It is immediate that (A1) and the Gauss law are
first class, whereas (A2) and (A3) are second class. These
second-class constraints are solved strongly, which is

equivalent to defining the phase-space variables p̃i and Ẽa
i

evident in (A2) and (A3). Lastly, the innocuous primary
constraint (A1) can be ignored, for its sole purpose is to
provide a full canonical gauge generator that correctly rotates
the full spacetime field Aα rather than just its spatial
counterpartAa [25]. Hencewe get a canonical theory defined
by the momenta (9) and (10) subject to evolution under the
Gauss law, as obtained in Sec. II. It is worth emphasizing
that the heuristic considerations in Sec. II pertaining to the
absence of any nontrivial algebraic relations among the
momenta p̃i and Ẽa

i and the configurationvariablesϕ
i andAi

a
are systematically reflected in the absence of any secondary
second-class constraints in Dirac’s procedure: the nontrivial
relations (A13) and (A14) are not secondary constraints, but
rather consistency conditions on the Lagrange multipliers.
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