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We propose a cosmological model in the framework of Poincaré gauge gravity, in which the
cosmological constant, the inflaton, and the dark matter candidate all naturally originate. The cosmological
constant originates in the process of breaking of the Poincaré symmetries down to the Lorentz symmetries.
We select a gauge Lagrangian without any additional matter fields, which can be regarded as a minimum
extension of general relativity with two more massive modes from the Lorentz connection. Numerical
analysis shows that the scalar dominates a slow-rolling inflation and the pseudoscalar behaves as a dark
matter candidate.

DOI: 10.1103/PhysRevD.109.064014

I. INTRODUCTION

Cosmic inflation, dark matter, and late-time acceleration
are three main tensions between modern cosmology based
on Einstein’s general relativity (GR) and observations
[1–4]. In recent decades, a series of models based on the
extension of the standard model of particle physics and/or
the modification of GR have been proposed to address
these tensions. Some of these models have been ruled out
by observational data, while others are still undergoing
further rigorous tests from both theory and observation
[5–8]. So far, the optimal models for inflation, dark matter,
and late-time acceleration in line with observations are
slow-rolling inflation dominated by a single scalar field,
cold dark matter particles, and cosmological constant,
respectively. However, explaining these three phenomena
within a unified theoretical framework that is compatible
with both the standard model and gravitational theory
remains a long-term and challenging task. In the standard
model, Uð1Þ × SUð2Þ × SUð3Þ gauge theories describe the
generations of electromagnetic, weak, and strong inter-
actions, respectively. Spontaneous symmetry breaking
combined with the Higgs mechanism explains the source
of the masses of gauge bosons. From this perspective,
gravity theories by gauging spacetime groups have more
advantages in compatibility with the standard model than
GR. The Poincaré group is the maximum isometric group

in Minkowski spacetime, and also the representation group
of elementary particles. Localization of this group leads us
to the Poincaré gauge theory of gravity (PGG) [9–12].
Because of the fact that the Poincaré group involves the
translations between different points in spacetime (which
leads to the Poincaré group being external), we cannot
simply define gauge transformation as vertical automor-
phism along fiber, as in those gauge theories of internal
groups, but rather introduce automorphisms between fibers
in a nonlinear way [13–16]. Coincidentally, nonlinear
representation is not only an appropriate approach to
describe the gauge theories of spacetime groups, but also
introduces the natural description of spontaneous symmetry
breaking [17–21]. Then, by introducing the appropriate
Higgs mechanisms, the story of gravity will naturally
develop in the same direction as the standard model.
The goal of this paper is to introduce a cosmological

scenario in which the cosmological constant, inflaton,
and (cold) dark matter candidate naturally originate in
the framework of PGG.

II. ORIGINATION OF COSMOLOGICAL
CONSTANT FROM THE BREAKDOWN
OF THE POINCARÉ SYMMETRIES
TO THE LORENTZ SYMMETRIES

From the perspective of gauge field theory, a Poincaré
(P) observer (base) at point x can be expressed by a binary
tuple fe vgx, with e a Lorentz (L) observer and v a base for
measuring “internal coordinates” [20]. By introducing a five
dimensional matrix representation [13,21], a P transforma-
tion on a P observer can be performed in the following way:
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f ẽ ṽ gx ¼ f e v gx
�Λ ξ

0 1

�
; ð1Þ

where Λ is an element of the L group, and ξ∈R4 is an
element of the translational group. A P field of matter
(referred to the definition of a matter field in fiber bundle
terminology—a section in the fiber bundle associated to
principal fiber bundle) is an equivalence class with respect to
P observer given by

Ψ ¼
�
f e v g;

�
ψ y

0 1

���
∼; ð2Þ

where ψ is an L field in a certain representation, and y is the
corresponding internal coordinates measured by v. The
localization of the P symmetries leads to the introduction
of P-gauge field (connection) and the P-covariant derivative,

◊≡
�
D B

0 0

�
; ð3Þ

whereD≡ d þ A is the L-covariant derivative with respect
to the L-connection A. According to the transformation
properties [14,21],B is a connection-like P vector. The action
of ◊ on a P field, i.e. P velocity of a P field is

◊

�
ψ y

0 1

�
¼

�
Dψ θ

0 0

�
; ð4Þ

where θ≡Dyþ B is the so-called canonical one-form,
which is an L vector according to the transformation proper-
ties. The P-gauge strength can be obtained by twice actions
of ◊:

◊ ∧ ◊≡
�
R S

0 0

�
; ð5Þ

where R is curvature, and S is a gauge strengthlike P vector.
Furthermore, the action of (5) on a P field reads

◊ ∧ ◊

�
ψ y

0 1

�
¼

�
Rψ T

0 0

�
; ð6Þ

where T ≡ Ryþ S is torsion—an L vector.
In order to construct the Lagrangian of a P field,

including the kinetic energy term and the interaction with
P-gauge field, a common approach is

LM ¼ ◊

�
ψ y

0 1

�
·◊

�
ψ y

0 1

�
: ð7Þ

However, because P algebra is not semisimple, it is
impossible to define such an inner product “·” [21], so
the expression in (7) is invalid. However, there exists a

Killing-Cartan metric, i.e. the so-called Minkowski metric
η in L algebra, so that the inner product between L vectors
can be defined. It so happens that the two componentsDψ
and θ in the rhs of P velocity (4) are quantities with L
representation. Therefore, the Lagrangian in (7) can be
modified to

LM ¼ ηðDψ ;DψÞ þ ηðθ; θÞ: ð8Þ

The first term in the rhs of (8) is the kinetic energy term of L
field, including the interaction with L-gauge field. While
the second term can be rewritten in [17,21] (release all
hidden indices),

ηðθ; θÞ ¼ gμνeμaeνbηab ¼ 4; ð9Þ

with eμa ¼ ∂μ
⌟ θa referred to the tetrad or vielbein field.

This means that in the process of breaking the P symmetries
down to the L symmetries, a constant term naturally
originates in the Lagrangian of matter.
On the other hand, the Lagrangian four-form of the

P-gauge field would be

LG ¼
�
R S

0 0

�
∧�

�
R S

0 0

�
: ð10Þ

But due to the same reason as above, expression (10) is
invalid. By means of L-metric η, it can be modified in

LG ¼ R ∧� Rþ T ∧� T ð11Þ

according to (6), which is the general form of the Yang-
Mills (YM) type gauge Lagrangian for “Poincaré” gauge
gravity that we are familiar with. Obviously, both R and T
are L tensors, thus (11) is the expression after the breaking
of the P symmetries down to the L symmetries.
To summarize this section, in the framework of PGG, the

action including the matter field and the gauge field should
take the following form:

s ¼ sM þ sG ¼
Z

dx4eðDμψDμψ þ λÞ

þ
Z

dx4e

�
1

2κ
ðRþ T2Þ þ R2

�
; ð12Þ

with e≡ detðeμaÞ and λ a constant plugging (9) in and
κ ∼m−2

Pl the coupling constant of gravity. In the gauge
action, in addition to the quadratic terms of the field
strengthes, we also consider the linear curvature term,
namely the Einstein-Hilbert (EH) term. For simplicity, we
only consider the parity-conserving terms.
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III. A MINIMUM MODEL

Generally speaking, the quadratic terms in the gauge
Lagrangian can be decomposed into several inequivalent
and irreducible pieces [22], and the system may contain
ghosts and tachyons. According to [23–30], the most gen-
eral ghost- and tachyon-free YM type Lagrangian of PGG
contains up to eight kinds of possiblemodes in terms of the
SOð3Þ spin-parity decomposition: two massless and six
massive. However, except for one massless spin-0þ mode
and twomassive spin-0� modes, none of them are of concern
to us in the following cosmological context. Fortunately,
those modes can be suppressed by selecting appropriate
combinations of Lagrangian parameters. As a result,
we selected a minimum ghost- and tachyon-free parity-
conserving EH-YM type Lagrangian based on [31,32] as
follows:

LG ¼ b0Rþ b0
3
TμνρðTμνρ þ Tρνμ − gμρTνÞ

þ 2A1

3
TμTμ þ A2

12
Tμνρð2Tρνμ − TμνρÞ

þ B1

9

�
RμνRνμ −

1

4
RμνρσRρσμν

�

þ B2

9
Rμνρσ

�
Rμρνσ −

1

4
Rμνρσ −

1

4
Rρσμν

�
; ð13Þ

where b0, A1, A2 are parameters in the unit of quadratic
Planck mass, i.e. m2

Pl, and B1, B2 are dimensionless. All
parameters are nonzero positive. The combination of terms
in (13) not only guarantees that there are no ghosts and
tachyons, but also no extra modes, such as spin-1�, spin-2−,
and massive spin-2þ, up to the linear perturbed order. It
should be emphasized that this Lagrangian still keeps a
massless spin-2þ mode with the same propagator as the

conversant gravitational waves in GR. Therefore, the
Lagrangian (13) can be regarded as a minimum extension
of GR within the framework of PGG from the perspective of
“particles.” See Fig. 1 for amore intuitive display. For studies
of the similar Lagrangian and their cosmological applications
in various scenarios, please see [33–35].

IV. COSMIC DYNAMICS

Under the spatially homogeneous and isotropic reduc-
tion, spacetime possesses six global symmetries: three
spatial translations and three rotations. Besides, symmetries
referred to the temporal direction are local. Six global
Killing fields, additionally trivial assumption of spatial
topology, lead to that the tetrad field residues one degree of
freedom (d.o.f.),

e00̂ ¼ 1; eiĵ ¼ aðtÞδij; ð14Þ
i.e. the scale factor aðtÞ, where t is the cosmic time
corresponding to the zeroth component, and i, j, k ¼ 1,
2, 3 are spatial indices. The hatted indices are decomposed
from the Latin alphabet. Meanwhile, the L-connection
residues two d.o.f.s [36,37]:

Ai
ĵ 0̂ ¼ aðtÞϕhðtÞδij; Ai

ĵ k̂ ¼ −aðtÞϕfðtÞϵijk; ð15Þ

i.e. a scalar field ϕhðtÞ and a pseudoscalar field ϕfðtÞ,
corresponding to the spin-0þ and the spin-0− modes in
Fig. 1, respectively. Ansatz (14) and (15) define the so-
called Friedmann-Lemaître-Robertson-Walker (FLRW)
background. On the FLRW background, the gauge action
consisting of the minimum Lagrangian (13) reduces to

s0G ¼
Z

dtdx3a3L0
G ð16Þ

L0
G ¼ −6b0ðϕ̇h þHϕh − ϕ2

h þ ϕ2
fÞ − 6A1ðϕh þHÞ2

− 6A2ϕ
2
f þ B1

�
ðϕ̇h þHϕhÞ2

−
4

3
ðϕ̇h þHϕhÞðϕ2

h − ϕ2
fÞ

−
4

3
ðϕ̇f þHϕfÞϕhϕf þ ðϕ2

h − ϕ2
fÞ2

�

þ B2ðϕ̇f þHϕf − 2ϕhϕfÞ2; ð17Þ

where the dot denotes the derivative with respect to t, and
H ≡ ȧ=a is the Hubble rate. It can be read from (17) that
the Proca masses for ϕh and ϕf occur in the forms 1

2
m2

hϕ
2
h,

1
2
m2

fϕ
2
f with

mh ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðA1 − b0Þ

p
; mf ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðA2 þ b0Þ

p
ð18Þ

as their masses, respectively.

FIG. 1. Particle spectrum of PGG in the general case (left panel)
and in our minimum case (right panel). “?” indicates that the
mode may exist, depending on the Lagrangian parameters.
“Killed” means the mode has been suppressed. There are three
modes remaining on the FLRW background in the minimum
case, where two of them are massive.
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The cosmic dynamic equations corresponding to
Lagrangian (13) take the form of the ϕ-sourced and
A1-rescaled Friedmann equations

H2 ¼ 1

3A1

ρϕ; ð19Þ

2Ḣ þ 3H2 ¼ −
1

A1

pϕ; ð20Þ

and two Klein-Gordon (KG) equations of ϕh and ϕf:

ϕ̈h þ 3Hϕ̇h −
m2

h

4A1

ϕhðϕ̇h þHϕhÞ þ 2
B1 þB2

B1

ϕfðϕ̇f þHϕfÞ þ
1

2A1

ϕh

�
m2

h

2
ϕ2
h þ

m2
f

2
ϕ2
f

�
þ 1

2B1

∂Vϕ

∂ϕh
þ m2

h

2B1

H ¼ 0; ð21Þ

ϕ̈f þ 3Hϕ̇f −
m2

h

4A1

ϕfðϕ̇h þHϕhÞ − 2
B1 þ B2

B2

ϕfðϕ̇h þHϕhÞ þ
1

2A1

ϕf

�
m2

h

2
ϕ2
h þ

m2
f

2
ϕ2
f

�
þ 1

2B2

∂Vϕ

∂ϕf
¼ 0: ð22Þ

The energy density, the pressure, and the potential of ϕs
is given by

ρϕ ¼ B1

2
ðϕ̇h þHϕhÞ2 þ

B2

2
ðϕ̇f þHϕfÞ2 þ

1

2
Vϕ; ð23Þ

pϕ ¼ 1

3

�
ρϕ þ

m2
h

2
ðϕ̇h þHϕh − ϕ2

hÞ −
m2

f

2
ϕ2
f

�
; ð24Þ

Vϕ ¼ m2
h

2
ϕ2
h þ

m2
f

2
ϕ2
f − B1ðϕ2

h − ϕ2
fÞ2 − 4B2ϕ

2
hϕ

2
f: ð25Þ

In addition, it can be checked that the energy density (23)
and the pressure (24) satisfy the following conserva-
tion law:

˙ρϕ ¼ −3Hðρϕ þ pϕÞ: ð26Þ

We do the calculations with the help of XACT [38] and
integrate our calculations in a Wolfram package PGC [39],
which is available on Github.
It is worth mentioning that although we did not add

additional material terms to the Lagrangian (13), the
material composition constructed by ϕh and ϕf appears
on the right side of the Friedmann equations. From the
potential (25) and equations of motion (21) and (22), it can
be seen that there is interaction and momentum exchange
between the two fields, with the intensity related to the
values of B1, B2. Both fields are up to quartic order in the
potential. Because of B1 being positive, the quartic coef-
ficients are negative. It means that the potential has an
inverted Mexican-hat shape, which causes the system to
suffer from vacuum instability problem. Fortunately, the
fourth terms in (21) and (22) contribute ϕ3

h and ϕ3
f terms

(i.e. external forces) to the KG equations, respectively, and
correspond to two additional quartic terms to the potential.
Therefore, if the coefficients of the additional quartic terms
are greater than the original absolute values, then the

system would be stable, which leads to the following
constraint conditions on parameters:

m2
h > 8A1; m2

f > 8A1

B1

B2

: ð27Þ

V. INFLATON AND DARK MATTER CANDIDATE

To understand the system intuitively, we tend to do
numerical analysis by choosing appropriate values of
parameters and initial conditions. The modern hot big
bang theory and the power spectrum of cosmic microwave
background (CMB) radiation observation have provided
some requirements on models of the very early universe:
(1) the energy density of inflaton should be on −12

orders of magnitude during inflation in terms of
Planck mass (m4

Pl),
(2) the energy density ratio of dark matter is diluted

to the order of −20 at the end of inflation and
approaches 1 after reheating,

(3) the e-folds during inflation are about 60, and the
reheating process goes through about 20 e-folds.

There are totally five parameters in our system.We fixB1 and
B2 because they can be rescaled from the action (16). We
believe that the initial kinetic energy of the universe is on the
Planck scale, so it is reasonable to set the initial values of the
fields to 0 and the initial velocities to 1, in terms of Planck
mass, see (23). Now we only have three mass-related
parameter values to choose in (18). To meet the previous
requirements, we choose the following parameter values:

A1 ¼ 5.0 × 10−7m2
Pl; b0 ¼ 1.5 × 10−8m2

Pl;

A2 ¼ 5.0 × 10−6m2
Pl; B1 ¼ B2 ¼ 1; ð28Þ

and initial conditions at Planck time t0 ¼ 1m−1
Pl ,

ϕhðt0Þ ¼ ϕfðt0Þ ¼ 0mPl; ϕ̇hðt0Þ ¼ ϕ̇fðt0Þ ¼ 1m2
Pl; ð29Þ
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then, the corresponding visualizations are shown in Fig. 2.
In fact, these three parameter values can fluctuate within
certain ranges, and the above choice is a set that we believe
meets the requirements quite well. The accurate constraints
should be obtained by comparing the primordial power
spectrum with the actual observation from CMB radiation,
which is our subsequent work.
According to the numerical analysis, the interaction

between ϕh and ϕf is significantly small, so we can ignore
the interaction terms in potential (25) and separate the total
energy density ρϕ (23) into two parts: ρh and ρf, and plot
them in Fig. 2(a). It is obvious that the whole evolution
process can be divided into four periods:

(i) preinflation, 1m−1
Pl ∼ 100m−1

Pl ,

(ii) slow-rolling inflation, ∼100m−1
Pl ∼ 105m−1

Pl ,

(iii) reheating, ∼105m−1
Pl ∼ 106m−1

Pl ,

(iv) equilibrium, > 106m−1
Pl ,

where ϕh dominates the slow-rolling inflationary period,
and spontaneously decays to the reheating period. During
inflation, ρh is about −12 orders of magnitude, which meets
requirement (1). Meanwhile, ρf is sharply diluted by more
than 20 orders of magnitude, then due to the interaction
between ϕf and ϕh in the KG equations, ϕh decays partly to
ϕf, causing ρf to rebound until it exceeds ρh in the equi-
libriumperiod. The ratio ofρf toρϕ in Fig. 2(b) shows clearly
that the requirement (2) is also met. The equation of state
defined as w≡ p=ρ is an important quantity that character-
izes the properties of cosmic components. w < −1=3 is a

necessary condition for causing an accelerating expansion of
the universe and w ¼ 0 marks pressureless nonrelativistic
matter. We plot wh and wf in Fig. 2(c). It shows that wh is
approximately −1 during inflation, indicating that ϕh is
indeed an inflaton.wf oscillates rapidly between�1=3with a
period significantly shorter than the dynamical scale we
concerned, i.e. its average value is about 0. So far, although
we are not yet clear about the specific properties of dark
matter particles, to become a candidate, some general
limitations need to be met. For example, they must be stable
enough on the cosmic timescale so that they can still exist
today. In addition, they cannot have strong or electromagnetic
interaction. It has been known that an alternative cold dark
matter candidate is a coherently oscillating scalar field, the
archetypal example being axion dark matter. Such coherent
scalar fields are therefore a well developed alternative to the
weakly interacting massive particle paradigm [40,41]. wf

shows that ϕf behaves like pressureless axion matter, and is
indistinguishable from traditional cold darkmatter candidates
on the background level. We plot e-folds N ≡ R

Hdt in
Fig. 2(d) which meets requirement (3).
At the end of the Sec. IV, we have pointed out the

relationship between the shape of potential and the stability
of the system, as well as the restrictions on parameters. To
visually show the stability, we draw the evolution phase
diagram of the fields in the effective potential, namely,
the potential compensated by the additional terms from
KG equations, see Fig. 3. From the shape of the effective
potential, the system is stable.

VI. CONCLUSION AND DISCUSSION

In this paper, we introduce a cosmological model in the
framework of PGG, in which cosmological constant,
inflaton, and dark matter candidate all naturally originate.
First, according to previous studies, in the process of
breaking of the P symmetries down to the L symmetries,
the cosmological constant originates in the Lagrangian of
matter. Then we select a ghost- and tachyon-free parity-
conserving EH-YM type gauge Lagrangian, which is a
minimum extension of GR with two additional massive

On set

Pre inflation

Inflation

Reheating

Equilibrium

FIG. 3. Evolution phase diagram of ϕh and ϕf in the effective
potential. The evolution trajectory is divided into four stages.

FIG. 2. (a) Evolution of ρh (red solid) and ρf (blue dash). The
gray dot dashed line marks 10−12. (b) Ratio of ρf to ρϕ (black
solid). The upper gray dot dashed line marks 1 and the lower
marks 10−20. (c) Evolution of wh (red solid) and wf (blue dash).
The two gray dot dashed lines mark �1=3. (d) Evolution of
e-folds N.
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modes. By considering the cosmological reduction, the
tetrad field residues the scale factor a, and the L connection
residues a scalar field ϕh and a pseudoscalar field ϕf. The
cosmic dynamic is given by the ϕs-sourced and A1-rescaled
Friedmann equations. Numerical analysis shows that ϕh
dominates a slow-rolling inflation and ϕf behaves as a dark
matter candidate.
From the perspective of GR cosmology, ϕh and ϕf

defined in (15) are related to the vector and axial vector
components of torsion tensor, respectively,

Ti0
j ¼ ðϕh þHÞδij; Tij

k ¼ −2aϕfϵijk: ð30Þ

These propagating components of torsion can be regarded
as the geometric “substances” on the background. “Torsion
cannot propagate” is a misunderstanding brought to us by
Einstein-Cartan theory, which is the minimum extension of
GR in Riemann-Cartan spacetime with respect to the EH
action [42]. Based on our previous analysis, it can be seen
that the missing torsion in most modern theories of gravity
plays an important role in the very early universe and the
formation of large-scale structures. From the perspective of
gauge theory, ϕh and ϕf are just “gauge bosons of gravity.”
They are similar to the two polarizations of photons, the
difference being that photons have no extra d.o.f. in the
direction of propagation, so photons are massless [43],

while in the direction of cosmic evolution, scale factor a
plays the role of a Goldstone d.o.f., which “gives” the two
gravity bosons masses.
In the subsequent work, we will continue: (1) to obtain

the primordial power spectrum of the model through
perturbation, so that to constrain the parameters by com-
paring with observation of CMB radiation; (2) to consider
the interactions with standard model particles. More gen-
eral cosmology based on gauge theories of gravity beyond
the P group will also be studied in the future.
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[38] José M. Martín-García et al., XACT: Efficient tensor com-

puter algebra for the Wolfram language, http://www.xact.es/.

[39] PGC: Symbolic computing package for Poincare Gauge
Cosmology, PGC version 1.2.1, https://github.com/
zhanghc0537/Poincare-Gauge-Cosmology. PGC121 is
version 1.2.1 of PGC. One can find the field equations
in file PGC121_TEST_0.NB, and the FLRW cosmological
equations in file PGC121_FLRW-FIELD-EQUATIONS.NB, and
numerical analysis in file PGC121_NUMERICAL-INFLA-
TION.NB. PGC122 is another version which includes the spin
projection operator formalism and the calculation of the
saturated propagator. Please feel free to download and install
our package if you want to check the calculations. The
README file will indicate how to use it.

[40] T. Matos and L. A. Urena-Lopez, Phys. Rev. D 63, 063506
(2001).

[41] A. R. Liddle and L. A. Ureña-López, Phys. Rev. Lett. 97,
161301 (2006).

[42] Y. N. Obukhov and V. Korotky, Classical Quantum Gravity
4, 1633 (1987).

[43] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

COSMOLOGICAL CONSTANT, INFLATON, AND DARK MATTER … PHYS. REV. D 109, 064014 (2024)

064014-7

https://doi.org/10.1088/1475-7516/2019/09/050
https://doi.org/10.1088/1475-7516/2019/09/050
https://doi.org/10.1088/1475-7516/2020/10/003
https://doi.org/10.1088/1475-7516/2020/10/003
https://doi.org/10.1142/S021827189900033X
https://doi.org/10.1142/S0218271802001998
https://doi.org/10.1142/S0218271802001998
https://doi.org/10.1142/S0217732307025303
https://doi.org/10.1142/S0217732307025303
https://doi.org/10.1103/PhysRevD.78.023522
https://doi.org/10.1103/PhysRevD.78.023522
https://doi.org/10.1103/PhysRevD.83.024001
https://doi.org/10.1103/PhysRevD.83.024001
https://doi.org/10.1088/0264-9381/25/24/245016
https://doi.org/10.1088/0264-9381/25/24/245016
http://www.xact.es/
http://www.xact.es/
http://www.xact.es/
https://github.com/zhanghc0537/Poincare-Gauge-Cosmology
https://github.com/zhanghc0537/Poincare-Gauge-Cosmology
https://github.com/zhanghc0537/Poincare-Gauge-Cosmology
https://doi.org/10.1103/PhysRevD.63.063506
https://doi.org/10.1103/PhysRevD.63.063506
https://doi.org/10.1103/PhysRevLett.97.161301
https://doi.org/10.1103/PhysRevLett.97.161301
https://doi.org/10.1088/0264-9381/4/6/021
https://doi.org/10.1088/0264-9381/4/6/021
https://doi.org/10.1103/PhysRevLett.13.508

