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In this paper, we focus on massive Einstein-dilaton gravity including the coupling of dilaton scalar field
to massive graviton terms, and then derive static and spherically symmetric solutions of dilatonic black
holes in four dimensional spacetime. We find that the dilatonic black hole could possess two horizons
(event and cosmological), extreme (Nariai) and naked singularity for the suitably fixed parameters.
In addition, we investigate thermodynamic properties of these dilatonic black holes, and check the
corresponding first law of black hole thermodynamics. Extending to the massive Einstein-dilaton gravity in
high dimensions, we further obtain the dilatonic black hole solutions in (d + 1) dimensional spacetime.
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I. INTRODUCTION

Despite many successes agreement with observations,
the Einstein’s general relativity (GR) might be searched for
alternatives due to the cosmological constant problem [1],
and the origin of acceleration of our universe based on the
supernova data [2,3] and cosmic microwave background
(CMB) radiation [4,5]. An alternative theory of GR is
dilaton gravity, coming from the low energy limit of string
theory, in which Einstein’s gravity is recovered along with a
scalar dilaton field by nonminimal coupling to other fields
such as axion and gauge fields [6]. The presence of dilaton
field is necessary and plays an essential role in string theory
if one couples the gravity to other gauge fields. Until now,
many attempts have been made to investigate the dilaton
gravity theory. For instance, Refs. [7-13] discovered that
the dilaton field changes the causal structure of the black
hole and leads to the curvature singularities at finite radii.
The dilaton potential can be regarded as the generalization
of the cosmological constant, and also change the asymp-
totic behavior of the solutions. Combined three Liouville-
type dilaton potentials, the black hole solutions of dilaton
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gravity in the background of (A)dS spaces were inves-
tigated in Refs. [14,15]. In addition, the scalar-tensor type
generalizations of general relativity have been also inves-
tigated by containing various kinds of curvature corrections
to the usual Einstein-Hilbert Lagrangian coupled to the
dilaton scalar field [16-18]. A particular model called the
Einstein-dilaton-Gauss-Bonnet (EdGB) gravity was exten-
sively studied in Refs. [19,20]. It found that the scalar
dilaton is a secondary hair because the dilaton charge is
expressed in terms of the black hole mass. Later, the
black holes in various dimensions [21-23]. rotating black
holes [24,25], wormholes [26], and rapidly rotating neutron
stars [27] were investigated in EdGB gravity.

From the perspective of modern particle physics [28,29],
gravity field can be treated as a unique theory of a spin-2
graviton. Massive gravity is a straight forward and natural
modification by simply giving a mass to the graviton, dating
back to 1939 when Fierz and Pauli [30] constructed a linear
theory of massive gravity, which is always plagued with the
Boulware-Deser ghost in nonlinear level [31,32]. Notice that
the authors of [33] constructed a theory where the Boulware-
Deser ghost was eliminated by introducing higher order
interaction terms into the Lagrangian. Then, the ghost-free
massive theory known as dGRT massive gravity was
discussed in Refs. [34,35]. In dGRT massive gravity, a class
of (charged) black hole solutions [36-38] and their corre-
sponding thermodynamics [39-42] in asymptotically AdS
spacetime were investigated, and the coefficients in the
potential associated with the graviton mass were shown to
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play the same roles as as the charge in thermodynamic phase
space. Other solutions of black holes were also studied in
massive gravity [43-49]. Recently, the so-called Quasi-
dilaton massive gravity has been also investigated in
Refs. [50-54], which are scalar extended dRGT massive
gravity with a shift symmetry. Inspired by these, we would
like to extend the study by considering the nonminimal
coupling of dilaton field to graviton, and derive analytically
solutions of dilatonic black holes in massive dilaton gravity.

The paper is organized as follows. In Sec. II, we will
present the static and spherically symmetric black hole
solutions in four dimensional massive Einstein-dilaton
gravity, and investigate the solution structures of dilatonic
black holes. In Sec. III, we will discuss the thermodynamic
properties of these black holes. Considering the massive
Einstein-dilaton gravity in high dimensional spacetime, we
will derive the (d + 1) dimensional solutions of black hole
in Sec. I'V. Finally, we close the paper with discussions and
conclusions in Sec. V.

II. BLACK HOLE IN MASSIVE
EINSTEIN-DILATON GRAVITY

The action for massive gravity with a nonminimal
coupling of dilaton field ¢ in four dimensional spacetime
is given by

I= [ dxy/=g [R =2(Ve)* = V(p)

4
Y e o). 1)
i=1

where ¢ = ¢(r) is the dilaton scalar field, and V() is a
potential for ¢. The last term in the action denotes general
form of nonminimal coupling between the scalar field and
massive graviton with coupling constants f3;. Here my, is the
mass of graviton, and c; are the number of dimensionless
coupling coefficients. Moreover, U/; are symmetric poly-
nomials of the eigenvalues of the 4 x4 matrix K, =
v §"%h,, in which h is a fixed rank-2 symmetric tensor,
satisfying the following recursion relation [34]

U, = [K] = Kﬂllv

U, = [K? - [K?],

Us = K]’ = 3[K][K?] + 2[K°],

Uy = [K]* = 6[K?][K]* + 8[K°][K] + 3[K*] = 6[K"]. (2)

Varying the action with respect to the field variables g,
and ¢, the equations of motion are obtained as

1
G/,w = Rﬂl/ - ERgpw

|
= 20,00,0 =5 [V + 2(Vo) g + m3x.  (3)

e L I
where
¢ = cie= b, (5)
¢y ¢
)(,w:E(Uwﬂy—Kﬂy)+?(U29,w—2u1Kﬂy+2Kﬁy)

¢
+33(u3 G —3U K, +6U K2, —6K3,)

C
+54(u4gﬂy — AU K, + 12U, K2, 24U, K3, +24K%,).

(6)

Now we introduce the static and spherical symmetry
metric ansatz

ds> = —f(r)dt> + f~Y(r)dr* + r*R*(r)dQ*, (7)

in which f(r) and R(r) are functions of r and dQ? =
d6* + sin®> Od¢y? is the line element for two dimensional
spherical subspace with constant curvature.

Since the fiducial metric &, in the action (1) plays
the role of a Lagrange multiplier to eliminate the BD
ghost [36], one can choose an appropriate form to
simplify the calculation. The authors of Ref. [36]
pointed out that distinguished from the dynamical
physical metric g,,, the reference metric h,, is usually
fixed and assumed to be nondynamical in the massive
theory. In this work, we will follow [39,40] by choosing
the fiducial metric to be

h,, = diag(0,0, ¢§, cjsin?6), (8)

where ¢, is a positive parameter and we set ¢, = 1 for
convenience in whole paper.

From the ansatz (8), the interaction potential in Eq. (2)
changes into

2 2
U, =—, Uy = ——,
! Rr 2 R%r?

Z/l3 — Z/{4 - O (9)
Then, x4 in Eq. (6) becomes

cirRe™h? 4 cycle 0
(rR)? ’
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(10)
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and the corresponding components of equation of

motion (3) can be simplified to

G = ! s [rR(rR)' f 4+ 2rR(rR)"f + (rR)"*f — 1]

(rR)
= 3 V(o) ~ 0P+ miph (1)
1
G2 = (o PRORYS + (RY2f = 1]
= —% V() + fo™ + mixs, (12)
1
Gy = Gf = 5 S [(PR)f" + 2(rRY [ +2(rR)"f]
I—%Vwﬂ—f¢”+m&%- (13)

Here the prime ' denotes differentiation with respect to the
radial coordinate r.
Based on Egs. (10)-(12), we obtain

rR)"
VR . (14)

which can be rewritten as the following form

f/l + 4(rR)/f/

2f((rR')? + 2rR(R" 4 3R) + R 4 (rR)%")

d> 2d d 2
—InR+—-—InR —1InR) = —¢ 1
drzn +rdrn +<drn ) ¢ (15)

In order to derive the dilaton field ¢, we assume that R(r)
could be an exponential function of ¢(r), such as

R(r) = e*, (16)

where « is a constant. Then, Eq. (15) becomes a simple
differential equation for ¢

2a¢/(r)

r

ag(r) + (@@ + )¢/ (r)* + =0. (17

In fact, the similar assumption (16) has been extensively
used to look for the charged dilaton black hole solutions
[12,13] in Maxwell-dilaton gravity. By solving the Eq. (17),
the dilaton field can be obtained as

a o
=——In-. 18
[p(r) 1+a2 nr ( )

Here the integration constant 6 is supposedly related to some
rescaling properties of solution.

Taking the trace of the gravitational field equation (3),
one can get

rR (rR)?

+2V(9) T R?

4
myy yi=0.  (19)
i=1

Considering the Gg component of gravitational field equation (13) together with the assumption (16) and the solution of

dilaton field (18), Eq. (19) can be simplified as

rov. m}
4a 0q0

/! +(l—az)f
a>+1 (> +1)%r

+— (ﬁzczco
ad

1-a? z/xz

w+ﬂq%&(ﬁ%)>=0 (20)

On the other hand, we further consider the scalar field equation and substitute the metric ansatz (7) and scalar field (18)
including Egs. (10) and (16) into Eq. (4). Then, the scalar field equation becomes

1-a?

ea?
+

@0 i)
a?+1 (®+1)°r 2

2
+ cicomye

2,2

~(@+2p)p | ) (21)

According to Eqgs. (20) and (21), we obtain a first order differential equation for dilaton field potential

2
daee 4m(2)

V()
7 T e

op

—2aV(p) +

(crdta+ e

o) 4 eola+ fr)e ) =0 (22)

The solution to the differential equation (22) can be written as the generalized form of the Liouville scalar potential

2]/06250(/’ _|_ 2}/1 ezflfp + 2y2e2§2(/1’
V((p) = 2 20 2
2h0pe? + 246717 4 2),e72?

a#1

o (23)
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where the last two terms are associating with coupling between the dilaton field and graviton, and the parameters are
determined as following

L= o’ - 2ac;mi(a+ py) - acymi(a+ f)
"7 (@ -1)& ' 50202 + 20, - 1)’ T (4 ap,— 1)
1 1 1
5025, 51:—ﬂ1+£, 52:—ﬂ2+aa & =1/2=p, HL=1-p
2 :_3 2 :2(ﬁ1 + Deymg 1 = (B2 + Deamg (24)
0T ! 2p8+6 : Brd”
Then, the black hole solution f(r) from Eq. (21) can be written as
. 02 a2 7(1((1;2/}1) 2(12+22/1'1(1+1
a1 (P+1)5 @+1pa+1 (@®+1)2cym2s o+l ¥+l
—mres = P - (a2+2/lfla0+2)(2a2+2/31a—1>
=2a(fy+a) 2a(at+ps)
() =R (@s1pems P g A : (25)
T (@ +2Ba+) (@ pra-1) a#
2 5 4c mz(s_/i'_%rﬂﬁ% 2c,m25 P21 2t o
—m+% (log(%) +2) - P i 9=

where m is an integration constant related to the mass of the black hole as it will be shown below. Therefore, there exist two
branch solutions for the dilatonic black holes in the massive Einstein-dilaton gravity.
Notice that, in the absence of the dilaton field (@ = 0), the solution f(r) in massive gravity reduces to

1

fry=1 —E—i—iclmgr—f—czm%, (26)
r

which was presented in Ref. [39]. Here we have set ¢, = 1. Obviously, the solution f(r) in Eq. (26) does not describe an

asymptotically flat spacetimes unless m(, = 0. For the dilatonic black hole solution f(r) in the dilaton massive gravity, the

dominant term of metric function f(r) approaches

2 2d ala+2p)) 202 42p k]
(@+1)5 +1r@ 41 (@P+1)2eymds o+l p a4
a?—1 (®+2B1a+2) (222 +2p,a—1)
. =2a(fr+a) 2a(a+py)
hmf(r) = (+1)2cymds @1 @+l 41 (27)
e (> +2Bra+1) (P +pra=1) a
1543
deym2s 3 e, m2s P ot
% (log() +2) - =3 . L a=1
6 r 48 +3 F+ps

at the infinity. For example, taking a = 0.6, #; = 0.5 and 3, = 0.3, we have

lim f(r) = 2.1257952%2 — 1.9527 ¢y mr! 7998 4 2 3377 1c,mGr0 794118, (28)

r—o0

where we set 0 = 1 for simplify. Clearly, the metric function is also not asymptotically flat but asymptotic infinity in
general.
For spacetime singularities, we calculate the Ricci and Kretschmann scalars

_4f'(rR) fQ((rR))? +4rR(R)") | 2

R=""r (7R)? T oR?

= "), (29)

v (S URYURY SRV A7(RYR 4PV 20RRCR)R) | 4
R R = (= GRR ) *R (R Py T
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Note that both of Ricci and Kretschmann scalars are not
singular at the horizons, therefore these points are just
singularity of coordinate as it should be for a black hole.
Considering the leading terms of asymptotical behaviors of
metric at the origin, we obtain

243 _(l2 +5

LmR ~ mr <+, ImRAPPR -~ mr @1,
r—0 Hepo

r—0 (31)
where Ricci and Kretschmann scalars are divergence at
origin r = 0, finite for r > 0, which suggests the origin
r=0 is an essential and physical singularity in the
spacetime.

In order to comprehend the behavior of the metric
function deeply, we would like to give graphical depend-
ence of the function f(r) both for a # 1 and a =1,
and we set my =06 =m =1 for simplify in following
discussions.

A.a#1

For a # 1, Figs. 1 and 2 depict the plots of f(r) versus r,
indicating the presence of black hole horizons. Figure 1(a)
shows that when ¢; > 0 and ¢, > 0, there is only one black

{c2=2;1=0.4;52=0.3;0=0.45;}
f(r)
50

40 - c1-2

cl->1

30 —— ¢1->-0.5

—— ¢1->-1.85

20 —— ¢c1--5

(@)

FIG. 1.

1=-2;c2=2;$1=0.4;2=0.3;
- {c1=-2,c2=2;41=0.4;2=0.3} -

— a-0.36 041

— a-045 02}

{c1=-2;c2=2;a=0.4;82=0.3;}

hole horizon, and f(r) approaches to +oo if r — oo.
However, when ¢; < 0, there are two horizons: an event
horizon and a cosmological horizon, and f(r) approaches
to —oco as r — 0. As ¢, decreases to a certain value, an
extremal black hole known as the Nariai black hole is
formed, exhibiting a coincidence of the event and cosmo-
logical horizons. A naked singularity may also appear with
the decreasing of c;. Similarly, Fig. 1(b) shows that when
¢y < 0and ¢; < 0, there is only one black hole horizon, but
when ¢, > 0, there are two horizons: an event horizon and
a cosmological horizon. It is worth noting that as shown in
Eq. (26) for black hole solution in massive gravity, the
parameter ¢, does not affect the asymptotic behavior of the
solution f(r). However, with the nonminimal coupling to
the dilaton field, ¢, plays an important role in the behavior
of solution f(r) because the term of ¢, can become the
dominant term with suitable parameters «a, f;, and f, from
Eq. (27). The influences of the parameters «, 1, and 3, are
also respectively depicted in Fig. 2.

B.a=1

When a = 1, there is still the presence of one black hole
horizon with or without a cosmological horizon for

{c1=-1.5;81=1;62=2.5;a=0.45;}

f(r)
60

50 — c25-2

c2->-1
40 — 21
— c2-2.2

30
— 257

(b)

The function f(r) versus r for different values of ¢; and ¢, in case a # 1.

{c1=-2;c2=2;a=0.4;81=0.5;}

— R-0.7
208
— B-0.9

(@)

FIG. 2. The function f(r) versus r for different values of a, 5, and f3, in the case a # 1.

o7 05 06 7 o8 "
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© {c2=0.1;81=0.4;32=0.8;} {c1=10;81=0.4;42=0.8;}
r
25
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FIG. 3. The function f(r) versus r for different values of ¢; and ¢, in case a = 1.
1=10:c2=1:32=0.8: {c1=10;c2=1;51=0.4;}
- {c1=10;c2=1;32=0.8;} )
0.2
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02 -0.1
= -0.2
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-04
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(b)
FIG. 4. The function f(r) versus r for different values of #; and f, in case @ = 1.
different asymptotical behaviors, as shown in Fig. 3. The III. THERMODYNAMICS OF DILATONIC
influences of other parameters ; and f,, are separately BLACK HOLES

demonstrated in Figs. 4. Similarly to the case when o # 1, it
is possible to have an extremal black hole, known as the
Nariai black hole, by selecting appropriate parameter
values. Additionally, changing one of the parameters can
lead to the appearance of a naked singularity.

Now we plan to investigate the thermodynamics of
theses dilatonic black holes in massive Einstein-dilaton
gravity. According to the definition of ADM mass [55] and
definition of horizon f(r,) = 0, the mass of dilatonic black
hole is given by

242
S+ m
2(1 +a?)
alaapy) 42ap 12 2apy, P2t
rh (@P+1)coe m2s a1 r, @+ (@®+1)cicrmls a2+1rh o+l a1
_ 2(1-a?) 2(a*+2ap,+2) (2% +2ap,—1) 2(a*+ap,—1)(a>+2ap,+1) ° (32)

2 05\ 20 (5\-p
cocymiri ()2 cteomiry, (2)7P2

3ra(10g(2) +2) =~ — a=1

2 y 4p,(p1+2)+3 2(p5+p2)

The ADM mass as a function of black hole radius are plotted in Figs. 5 and 6 for both cases of a # 1, and @ = 1. In each case,
there exists a maximum mass M, and there are two black holes with the same mass, distinguished by their size (a smaller
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{a=0.4;c2=2;1=0.2;2=0.4}

{c1=-2;c2=2;$1=0.2;32=0.4}

{c1=-2;c2=2;1=0.2;52=0.4}

M M M
15
2k — c15-3 4+ — c2-1 — a-0.3
c1-2 22 or a-04
it — et of — 23 /_\ — as05
05 y
1 2 3 2 G 7" 2 4 G 5 r,, i 2 3 el
sk
1 2}
1.0F
2 -4}F
1564
(a) (b) (c)
M {c1=-2,c2=2;a=0.3;52=0.4} {c1=-2;c2=2;a=0.3;81=0.4}
1.0 M
— Bi>03 1or — B04
0sh B1-0.6 B2-0.8
— B1~0.9 05f — G122
2‘5 3‘0 I L L L L Lor,
3 ! 05 1.0 15 2 25 3. 35
_o5F -05
1.0F
1.0-
(d) (e)
FIG. 5. The mass M of black hole versus r;, in the case a # 1.

one and a larger one). The ADM mass is always positive, and
therefore there is also a maximum radius r,,, at which the
mass vanishes. It can be observed that for a # 1, the
maximum mass M, increases with ¢; and ¢, but decreases
with a [see Figs. 5(a)-5(c)]. Conversely, M, decreases
with ¢; and ¢, when a # 1 [see Figs. 6(a) and 6(b)]. The
remaining figures demonstrate the effects of the coupling of
dilaton field. The maximum mass always decreases with f;
for both cases of a, as shown in Figs. 5(d) and 6(c),
suggesting that the coupling of dilaton field to the first
|

kK 1of(r)

T2z 4z or

r=ry

_ a2+l

coclmgé 2+

terms of the graviton could always reduced the maximum
mass of black holes. However, for 3,, M, increases when
a # 1 but decreases when a = 1 [see Figs. 5(e) and 6(d)].

To develop thermodynamics of dilatonic black hole, we
need to calculate the Hawking temperature of the black
hole geometrically associated with the black hole horizon.
In terms of the surface gravity x corresponding to the null
killing vector ()¢ at the horizon, the temperature can be
written as

4rr),

242 220:2
) a2+lr‘Z +1 +
a’—1

ala+26)) 2‘12+22aﬁ1+1 2a(a+py) 2H(;+ﬂ2>
a®+1 2. 2 2 41
cieomid @+l
b 092 h . a ;é 1
2a(a+p)-1

ala+p,)—-1
) (33)

X i
log(%)ﬂ cocimiry (%)2 # Céczmé(%)_ﬂz
278 2202, 1 1)6 27625

The Temperature of black hole as a function of the radius is
plotted in Figs. 7 and 8 for different cases: @ # 1 and a = 1.
For both cases, there is a minimum positive temperature
T nin of the black hole, which illustrates there exist two
black holes with the same temperature, distinguished by
their size (a smaller one and a larger one). Moreover, the
minimum temperature (7',;,) decreases with c¢; and f; [see
Figs. 7(a), 7(d), 8(a), and 8(c)]. This suggests that the first

s a=1

|
term of the graviton, including the effect of coupling
to the dilaton field, always reduces the minimum temper-
ature of the black holes. Figure 8(b) demonstrate that
the minimum temperature increases with ¢, when a # 1
but decreases with ¢, when @ = 1. For a # 1 [as shown in
Figs. 7(c)], the minimum temperature increases with a,
indicating that the dilaton field could always enlarge the
minimum temperature. In addition, also for both cases, the
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— 2-1.5
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(d)

FIG. 6. The mass M of black hole versus r;, in the case a = 1.

minimum temperature decreases with f; but increases
with f,, illustrating that the coupling of dilaton field to
the first term of graviton could always reduce the
minimum temperature of black hole but the second term
of graviton could always enlarge that of black hole [as
shown in Figs. 7(d), 7(e), 8(c), and 8(d)].

The entropy of dilatonic black hole is given by

202 -2
S = zr2R(ry)? = méa iy . (34)
References [37—41] have pointed out that the graviton mass
does not significantly affect the form of the entropy, and
contributes only as a correction for the horizon radius. In
fact, the entropy of these black holes in massive Einstein-
dilaton gravity can be also derived from traditional metric
ansatz of dilatonic black holes, as shown in the Appendix.
Then, we find that the thermodynamic quantities satisfy the
first law of black hole thermodynamics

dM = Tds. (35)

In addition, another important aspect of black hole
thermodynamics involves analyzing the thermal stability
of black hole solutions. To assess the thermal stability, we
compute the heat capacity

os _.08/or,

=T =Tor/or,

(36)

which leads to

402 22 241
—872(a241)"1Ts2+1 7 azﬂr‘f“
ala=2f1) 2af;+1 2afy 2app a# 1
13 xzﬁ'oclnyg(a+2/il)ﬁ 41, a®+l ‘ c%azmé(r12+2a/32—])ﬁ_flz+1rf12+1
C= ! 202 +2ap -1 !

a2+a[)'2—1
5
B1+Pr+3 3/2
471.2T6/I+/2+2rh/ 1
—_ T s a=
+1 L oty 1
coclmgﬁ”ﬁlr{j] +2c§czm35ﬂ1+2rh st g

(37)

From Eq. (36), the nonmonotonic nature of the temper-
ature allows us to conclude that the heat capacity exhibits

064013-8



BLACK HOLES IN MASSIVE EINSTEIN-DILATON GRAVITY PHYS. REV. D 109, 064013 (2024)

c1=-2;c2=2;$1=2;2=0.2

a=0.7; c2=2; p1=2; f2=0.2 a=0.7;c1=-2;$1=2;82=0.2

T
3.0 3.0

25 25F

2.0H

20

— ¢c1--8 — c2-1
cl1->-4 c2-3
05 05
— c1->-1 —— c2-5 — a-0.8
0 1 2 3 PR 1 2 3 4 5™ 1 2 3 a 5
(a) (b) (c)
c1=-2;c2=2;a=0.7;b2=0.2 c1=-2;62=2;a=0.7;b1=2
T T
150
14F 14}
13f \
12}
12f
1.1
10k
10F — B115 — B2-0.1
B1-2 $2-50.2
o9t — plo25 08 — 2503

L L L Lo,
1.5 2.0 25 3.0

(e)

L L L
15 20 25

(d)

L
0.0 0.5

FIG. 7. The temperature 7 versus r;, for a # 1. The extreme points of each T — r curves (rq;, Trmin) are, respectively, (a) (0.555418,
1.07929), (0.737029, 1.01689), (1.29893, 0.90413) for ¢; = —8,—4,—1 (b) (0.858517, 0.633958), (1.08183, 1.27758), (1.25738,
1.90305) for ¢, = 1, 3, 5 (c) (0.989441, 0.687425), (0.978303, 0.958608), (0.833922, 1.73715) for @ = 0.6, 0.7, 0.8 (d) (0.948498,
0.986909), (0.978303, 0.958608), (0.992489, 0.941541) for ; = 1.5,2,2.5 (e) (1.05142, 0.856112), (0.978303, 0.958608), (0.852074,
1.10364) for p, = 0.1, 0.2, 0.3.
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(d)
FIG. 8. The temperature 7T versus r;, for « = 1. The extreme points of each 7' — r curves (r.;, Tmin) are, respectively, (a) (2.68273,
0.0700174), (2.97447, 0.0448315), (3.32688, 0.0152299) for ¢, = 0.2, 0.3, 0.4 (b) (1.08101, 0.221862), (1.61782, 0.153979),

(2.97447, 0.0448315) for ¢, = —1,-0.5,-0.2 (c) (2.68804, 0.0523771), (2.88079, 0.047834), (3.24997, 0.0355224) for 3, = 0.6, 0.9,
1.2 (d) (3.63175, 0.0239511), (2.97447, 0.0448315), (2.24071, 0.0730591) for p, = 1.8, 2, 2.5.

discontinuities as illustrated in Figs. 9 and 10 for both
cases. Figures 9 and 10 show that black holes with
relatively large horizon radii (r;, > r.;) are stable
thermodynamic systems, while a domain of instability

ala=2p)) a*+2ap|+2
a(a®+1)cycimi(a+2p,)5 @+l oy a4l
4(a®+2ap,+2) (20° +2ap,—1)
2ap) @P+2apy+1
(a2+1)cgczm5(lx2+2aﬂz—l)6 ily o2+l

_|_

E R

exists for smaller radii below the? point of discgntinuity + NP +afr-) (@2t T) , aFl

(r, < rp). In other words, the figures clearly illustrate L g »

the stable and unstable regions based on the disconti- cocrm3or A2 | ceamis 22 4 a=1
4,16 26,42 2 .

nuities observed in the heat capacity as a function of
the horizon radius.

To get more information about the phase transition, We find that these discontinuities, which correspond to the

we can examine the free energy. The Gibbs free energy is
G =M — TS reads as

minima of temperature in the heat capacity curves, indi-
cate the occurrence of Hawking-Page phase transitions.
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FIG. 9. The heat capacity C versus r;, for a # 16.
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FIG. 10. The heat capacity C versus r;, for a = 16.

Hawking-Page phase transitions were also recently found
in dilatonic black holes that are neither asymptotically flat
nor AdS as in Ref. [56]. As shown in Figs. 11 and 12, the
upper and lower branches correspond to small and large
black holes, respectively. A positive Gibbs free energy
indicates that the system is in a radiation phase, whereas a
Hawking-Page phase transition occurs at the intersection
point of the lower branch with G = 0. The temperature at
this point is known as the Hawking-Page temperature, 7'yp.
The fact that large black holes always have a lower Gibbs
free energy compared to small black holes confirms the
above arguments regarding their thermal stability. The
effects of parameter variations can also be seen from
Figs. 11 and 12. Increasing c¢; or f; lowers Tpyp.
Similarly, lowering a or p, lowers the Hawking-Page
temperature Typ. However, Typ increases with ¢, when
a # 1 but decreases with ¢, when a = 1.

IV. BLACK HOLE SOLUTIONS
IN (@ +1)-DIMENSIONAL SPACETIME

In this section, we would like to extend to the massive
Einstein-dilaton gravity in high dimensional spacetime.
The action is given as

1

I =
167

/ x| R = 2 (T - Vi)

4

D e

e >} (39)

where the last term denotes the general form of the
coupling between the scalar field and massive graviton,
the U; are symmetric polynomials of the eigenvalues of the
(d+1)x (d+1) matrix Ky = \/¢"*h,,, and satisfy the
relation in Eq. (2).

064013-10



BLACK HOLES IN MASSIVE EINSTEIN-DILATON GRAVITY

PHYS. REV. D 109, 064013 (2024)

a=0.7; c2=2; p1=2; f2=0.2 a=0.7;,c1=-2;$1=2;$2=0.2

1=-2;c2=2;$1=2;$2=0.2

G
06 06 06
0.4 04
— c1>-8 — a0.6
04
o4 02f 02f T a7
— c1o-1 — a-»038
02t : T : : :
05 1.0 15 2.0 05 1. 15 2.0 25
-0.2 —02f
— c2>1
. . . . T
0.8 1.0 12 14 253
-04f 04
\ \ \ — 25
-02b -osl -06L
(a) (b) (c)
c1=-2;c2=2;a=0.7;82=0.2 c1=-2;c2=2;,a=0.7,81=2
G G
06
0.4
04
02t 02f
| L L L L 7 T T
| . . . . T 0.9 10 1. 12 13 14 15
0.9 1.0 11 1.2 1.3
0.2
— B115 — B2-0.1
-02f — —
B2 o4l B2-0.2
— B1925 —— B250.3
-04b -6l
(d) (e)
FIG. 11. The Gibbs free energy G versus r;, for a # 16.
c2=-0.2; p1=1; f2=2 ¢1=0.3;81=1;2=2 s ©1=0.3;02=-0.2;62=2 ©1=0.3;c2=-0.2;f1=1
15 15 15 ¢
—— c10.2 — p1-0.6 15 — B251.8
10 —— ¢1-0.3 —— B1-0.9 —— 22
—— o104 10 — p112 10 —— 2525
05
05
T 05
0.05 0. 0. 0.20 025 0.30 086
0. sl \ 0.05 u\ 0.15 =
T
0.04 0.06 0.08 0.10 12 14
1.0 l \ \ -05
(a) (c) (d)

FIG. 12.

By varying the action (39) with regard to metric g,,, and
@, the equations of motions can be written as

1 4 \% 2
Ry — ERQW = maﬂéﬂay(ﬂ - (5 + ﬁap(ﬂap(”) G
+m2)(ﬂw (40)
d—1[ov .oz,
V2o ="""12 2" %y (g, n 41
o= G e @

where the ¢; and y,, are defined in Eq. (5).
Now we introduce the metric ansatz for static black hole
solution in (d + 1)-dimensional space-time

ds® = —f(r)de* + [~ (r)dr? + PR (royda'dy . (42)

The Gibbs free energy G versus r;, for a = 1.

where 6;;dx'dx/ is the line element for (d — 1)-dimensional
spherical Einstein space and volume w,_;. Considering the
following reference metric

h,, = diag(0,0, c}o;;). (43)
the interaction potential in Eq. (2) changes into
i
U =11 Riori (44)
with  positive constant ¢, and the notation

I; = Hﬁ-;b(d— 1=j).
In order to solve the system of Einstein equation (40), we
assume [12,13]

R(r) = = (45)
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Then we can get the dilton field and the Liouville-type dilaton potential V(¢) as the following form

o(r) = mln <5> (46)

2(1+a?) \r

4 (47)

" 2y0e*0? + > e i, a# 1
(p =
2pperT + > 4 22e%%, a=1

where the summation term is the general form associating with coupling between the dilaton and massive gravity field, and
Aosyi and &;(i =0,1,...,4) are constants and satisfy

2 - i i _d(d-2)(d-1)
fo—m, éi__ﬂi+mv Ci_m_ﬁiv YO—W,

_ mcheaa+ (d—1)p;)57T, P 2(d-2) 1= mche L7 ((d = 1)B; + 2) A8
T T2+ (1= d)apy) 0T s T 2((-d)pi+i-2) (48)

and then the solutions of Eq. (40) in (d + 1)-dimensional spacetime can easily be calculated as

2 2a° )
2din s e ] 2% +a(d-1)p;=i+2
S (@ H1)2(d=2)8 P14l 4 2. —
—mr @+ — - 7 o michcA;r 2+ a#1
f(r) = W) it Mcocid 7 (49)
3-d H(d-2)r((d-1)log(£)—d—1) 4 5 (d=1)p;=i+4 -
-mrz — i =Y ymgeheBir 2, a=1
with
_a((d—l)/ii+ai)
4 i(@+1)2 &0 I
l- p—

(d=1) (> +ald=1)p;+d—i)2a*> +a(d—=1)p; = i)’
4iT1, 52 =P +Pi=i)

BT @@= - (@ D i)

(50)

Obviously, the solutions (49) when taking d = 3 equals to Eq. (25). According to the definition of ADM mass [55], the
mass of dilatonic black hole reads as

(tz(d 1)
M:(d—l)wd 15«+1m’ (51)
167(a® + 1)

where w,_; represents the volume of hyper-surface described by h;;dx'dx’. Therefore, using the definition of horizon
f(r,) = 0, the mass of black hole is written in terms of r;, as

@2(d=3) a’+d=2 @2 (d=1) Prald-p;+d=i
(+1)(d=2)(d=1) w18 +1 V,I”ZH 4 (d=1)mdA;ciciwy 5 a?+1 r, a1 21
M — 1675((12—1)((12+d—2) i=1 167z(az+1) @ ’ (52)
d=3 451 o @en(py)-i @Dt
_ (d—2)w,l,]57rh2 ((d l)log(T’) d—-1) _ 4 imgw,l,]cbc,-l'lié 2 r, 2 a=1
8z(d-1) i=1 8x(i+2—(d-1)g;)(i-2—(d-1)(p;+1)) ° .

By calculating the Hawking temperature and entropy of black hole as

22 @-l +a(d=1)pj—i+1
_ < arald Dpimitl
(@®+1)(d-2)8 a2+1r‘,”' + m2A;chci(@®+a(d=1)pi+d—i)r,  © +1
T — idf(r) o dr(a*-1) Z 4n(a®+1) , a#l, (53)
471’ ar — (1=d)p;—i (d-1)B;—i+2
g (d—2)k(log (L im}cic; Hﬁr 2 1
T+ PO (=N i) a= 1L
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1 @(d-1) 4=L
S = Za)d_lé @41 r}:“. (54)
It is easily checked that the first law of black hole
thermodynamics still holds for dilatonic black hole in high
dimensional spacetime

dM = Tds (55)

V. CONCLUSIONS AND DISCUSSIONS

Considering the nonminimal coupling between graviton
and dilaton field, we discussed the massive Einstein-dilaton
gravity. According to the gravitational field and dilaton
field equations by varying the action, we obtained the static
spherically symmetric solutions of dilatonic black hole for
a # 1 and a = 1 cases in four dimensional spacetime. Here
the dilaton potential V(¢) takes a so-called Liouville-type
form both for @ # 1 and @ = 1, and the last two terms of
potential are associated with the graviton terms.

Later, we have analyzed the singularity of the solution,
we give the Ricci and Kretschmann scalars, which suggest
that the horizons of black holes are just singularity of
coordinate as it should be. What is more, both of the scalars
have the same the asymptotic behavior at the origin, and
one can obtain that there is a point of essential located at the
origin, and the asymptotic behavior of the solutions is not
asymptotically flat but infinity in general when r — co. We
also show that the black hole solutions can provide one
horizon, two horizons (event and cosmological), extreme
(Nariai) and naked singularity black holes for the suitably
fixed parameters. With dilaton field, the parameter c,
affects the behavior of the metric function.

We further studied the mass, temperature and entropy of
these dilatonic black holes and checked the first law of
black hole thermodynamics. The analysis of the mass
suggest that both for @ # 1 and a = 1, there could exists
a maximum of the mass function of black hole horizon. For
the temperature of these black holes, and found that it has a
minimum positive value T,;,, distinguishing two sizes of
black holes (a smaller one and a larger one) with the same
temperature. Moreover, the minimal points of the temper-
ature function correspond to the discontinuous points of the
heat capacity, the domain of smaller radii r;, < r,; of black
holes lies instable and black holes with relatively large
horizon radii r, > r,,; demonstrate stability, which implies
the occurrence of Hawking-Page phase transitions in these
thermodynamic systems. By investigating the Gibbs free
energy, we have found the fact that large black holes always
have a lower Gibbs free energy compared to small black
holes confirming the arguments of their thermal stability.

Finally, we generalized these discussions to the high
dimensional spacetime, and got the (d + 1) dimensional
solution of dilatonic black hole both for @ # 1 and @ = 1 in
massive FEinstein-dilaton gravity. The corresponding
thermodynamic quantities of black holes were also

calculated, and we find the first law of black hole
thermodynamics still maintains.
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APPENDIX: NEW FORM SOLUTION

In this Appendix, we will present the static and spherically
symmetric dilatonic black hole solutions with the traditional
metric ansatz form in four dimensional spacetime.

We assume the new metric ansatz with

ds®> = —N*(F)f(F)di* + f~1(F)dP* + F*(d6 + sin® 0dg?),

(A1)
where f(7) and N(7) are functions of 7. Choosing the same

reference metric in Eq. (8), the interaction potential in
Eq. (2) changes into

2¢ 2c2
U ==2 U==2 Us=u,=0, (A2)
7 7
and y, from Eq. (5) read as
2 COC]?e_ZﬁI(/) + Czcge_zﬁﬂ/)
X1=X2= 22 ,
cicoe” e
== ——. (A3)

Then, the corresponding components of the Einstein
equation Eq. (3) can be simplified to

i 1O+ )

1
= _EV((P) —fo*+miy'y,

! )
(A4)
g2, - VO () 30+ 22 (N )
F*N(7)
= —% V(p) + fo + mixrs, (AS)
G*s = 53y CFF (PN (7)+ NS )+ 74(7)
F2CIN) + TN}
= V(o) = f9™ 4 mis, (A6)
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where the prime ' denotes differentiation with respect to the
radial coordinate 7.

Considering the different forms between new line
element (Al) and traditional one (7), we assume the
relationship of transformation of the two solutions

2

F=rR(r) = SE5TrET, or r=fltes e, (A7)

where R(r) is determined by Egs. (16) and (18). Based on
Egs. (A3)-(AS5), we obtain

Y0 oy

(A8)

Therefore, the dilaton field can be written as
|

cocym3F(2) =2

@(F) = a In(5/7) (A9)
and the function N(7) reads as
N(F) = (1 + a?)i s (A10)

According to the similar calculations, we found the differ-
ential equation of dilaton potential V(¢(7)) is same as
Eq. (22) of V(¢(r)). So the total expansion of V()
remains consistent with Eq. (23) in the previous text.
Finally, we can obtain the solution of metric function

f(F) as

2 2 (%S)—zaﬁz

g at-1 1 _
mr +1_a4 0

f(7) =

a?+2ap,+2) (2% +2ap,—1)

coct mg?(é) 25

_ coeamg
@@ *F 1

2\ 02 5205 525
coCamyd~ P22

(A1)

1 +1log(6/7) — & — .

47486, +3

_ , a=1

263125,

As shown in Refs. [37-41], the graviton mass does not significantly affect the form of the entropy. According to the well-
known entropy-area law, the entropy as a pure geometrical quantity corresponding to the radius 7, of black hole can be

obtained as

202
S = 7 = gdlery .

2
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