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In this paper, we focus on massive Einstein-dilaton gravity including the coupling of dilaton scalar field
to massive graviton terms, and then derive static and spherically symmetric solutions of dilatonic black
holes in four dimensional spacetime. We find that the dilatonic black hole could possess two horizons
(event and cosmological), extreme (Nariai) and naked singularity for the suitably fixed parameters.
In addition, we investigate thermodynamic properties of these dilatonic black holes, and check the
corresponding first law of black hole thermodynamics. Extending to the massive Einstein-dilaton gravity in
high dimensions, we further obtain the dilatonic black hole solutions in (dþ 1) dimensional spacetime.
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I. INTRODUCTION

Despite many successes agreement with observations,
the Einstein’s general relativity (GR) might be searched for
alternatives due to the cosmological constant problem [1],
and the origin of acceleration of our universe based on the
supernova data [2,3] and cosmic microwave background
(CMB) radiation [4,5]. An alternative theory of GR is
dilaton gravity, coming from the low energy limit of string
theory, in which Einstein’s gravity is recovered along with a
scalar dilaton field by nonminimal coupling to other fields
such as axion and gauge fields [6]. The presence of dilaton
field is necessary and plays an essential role in string theory
if one couples the gravity to other gauge fields. Until now,
many attempts have been made to investigate the dilaton
gravity theory. For instance, Refs. [7–13] discovered that
the dilaton field changes the causal structure of the black
hole and leads to the curvature singularities at finite radii.
The dilaton potential can be regarded as the generalization
of the cosmological constant, and also change the asymp-
totic behavior of the solutions. Combined three Liouville-
type dilaton potentials, the black hole solutions of dilaton

gravity in the background of (A)dS spaces were inves-
tigated in Refs. [14,15]. In addition, the scalar-tensor type
generalizations of general relativity have been also inves-
tigated by containing various kinds of curvature corrections
to the usual Einstein-Hilbert Lagrangian coupled to the
dilaton scalar field [16–18]. A particular model called the
Einstein-dilaton-Gauss-Bonnet (EdGB) gravity was exten-
sively studied in Refs. [19,20]. It found that the scalar
dilaton is a secondary hair because the dilaton charge is
expressed in terms of the black hole mass. Later, the
black holes in various dimensions [21–23]. rotating black
holes [24,25], wormholes [26], and rapidly rotating neutron
stars [27] were investigated in EdGB gravity.
From the perspective of modern particle physics [28,29],

gravity field can be treated as a unique theory of a spin-2
graviton. Massive gravity is a straight forward and natural
modification by simply giving a mass to the graviton, dating
back to 1939 when Fierz and Pauli [30] constructed a linear
theory of massive gravity, which is always plagued with the
Boulware-Deser ghost in nonlinear level [31,32]. Notice that
the authors of [33] constructed a theory where the Boulware-
Deser ghost was eliminated by introducing higher order
interaction terms into the Lagrangian. Then, the ghost-free
massive theory known as dGRT massive gravity was
discussed in Refs. [34,35]. In dGRT massive gravity, a class
of (charged) black hole solutions [36–38] and their corre-
sponding thermodynamics [39–42] in asymptotically AdS
spacetime were investigated, and the coefficients in the
potential associated with the graviton mass were shown to
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play the same roles as as the charge in thermodynamic phase
space. Other solutions of black holes were also studied in
massive gravity [43–49]. Recently, the so-called Quasi-
dilaton massive gravity has been also investigated in
Refs. [50–54], which are scalar extended dRGT massive
gravity with a shift symmetry. Inspired by these, we would
like to extend the study by considering the nonminimal
coupling of dilaton field to graviton, and derive analytically
solutions of dilatonic black holes in massive dilaton gravity.
The paper is organized as follows. In Sec. II, we will

present the static and spherically symmetric black hole
solutions in four dimensional massive Einstein-dilaton
gravity, and investigate the solution structures of dilatonic
black holes. In Sec. III, we will discuss the thermodynamic
properties of these black holes. Considering the massive
Einstein-dilaton gravity in high dimensional spacetime, we
will derive the (dþ 1) dimensional solutions of black hole
in Sec. IV. Finally, we close the paper with discussions and
conclusions in Sec. V.

II. BLACK HOLE IN MASSIVE
EINSTEIN-DILATON GRAVITY

The action for massive gravity with a nonminimal
coupling of dilaton field φ in four dimensional spacetime
is given by

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2ð∇φÞ2 − VðφÞ

þm2
0

X4
i¼1

cie−2βiφU iðg; hÞ
�
; ð1Þ

where φ ¼ φðrÞ is the dilaton scalar field, and VðφÞ is a
potential for φ. The last term in the action denotes general
form of nonminimal coupling between the scalar field and
massive graviton with coupling constants βi. Herem0 is the
mass of graviton, and ci are the number of dimensionless
coupling coefficients. Moreover, U i are symmetric poly-
nomials of the eigenvalues of the 4 × 4 matrix Kμ

ν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαhαν

p
in which h is a fixed rank-2 symmetric tensor,

satisfying the following recursion relation [34]

U1 ¼ ½K� ¼ Kμ
μ;

U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2 þ 8½K3�½K� þ 3½K2�2 − 6½K4�: ð2Þ
Varying the action with respect to the field variables gμν

and φ, the equations of motion are obtained as

Gμν ¼ Rμν −
1

2
Rgμν

¼ 2∂μφ∂νφ −
1

2
½V þ 2ð∇φÞ2�gμν þm2

0χμν; ð3Þ

∇2φ ¼ 1

4

�
∂V
∂φ

−m2
0

X4
i¼1

∂c̃i
∂φ

U i

�
; ð4Þ

where

c̃i ¼ cie−2βiφ; ð5Þ

χμν¼
c̃1
2
ðU1gμν−KμνÞþ

c̃2
2
ðU2gμν−2U1Kμνþ2K2

μνÞ

þ c̃3
2
ðU3gμν−3U2Kμνþ6U1K2

μν−6K3
μνÞ

þ c̃4
2
ðU4gμν−4U3Kμνþ12U2K2

μν−24U1K3
μνþ24K4

μνÞ:
ð6Þ

Now we introduce the static and spherical symmetry
metric ansatz

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2R2ðrÞdΩ2; ð7Þ

in which fðrÞ and RðrÞ are functions of r and dΩ2 ¼
dθ2 þ sin2 θdϕ2 is the line element for two dimensional
spherical subspace with constant curvature.
Since the fiducial metric hμν in the action (1) plays

the role of a Lagrange multiplier to eliminate the BD
ghost [36], one can choose an appropriate form to
simplify the calculation. The authors of Ref. [36]
pointed out that distinguished from the dynamical
physical metric gμν, the reference metric hμν is usually
fixed and assumed to be nondynamical in the massive
theory. In this work, we will follow [39,40] by choosing
the fiducial metric to be

hμν ¼ diagð0; 0; c20; c20sin2θÞ; ð8Þ

where c0 is a positive parameter and we set c0 ¼ 1 for
convenience in whole paper.
From the ansatz (8), the interaction potential in Eq. (2)

changes into

U1 ¼
2

Rr
; U2 ¼

2

R2r2
; U3 ¼ U4 ¼ 0: ð9Þ

Then, χμν in Eq. (6) becomes

χ11 ¼ χ22 ¼
c1rRe−2β1ϕ þ c2c20e

−2β2ϕ

ðrRÞ2 ;

χ33 ¼ χ44 ¼
c1e−2β1ϕ

2rR
ð10Þ
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and the corresponding components of equation of
motion (3) can be simplified to

G1
1 ¼

1

ðrRÞ2 ½rRðrRÞ
0f0 þ 2rRðrRÞ00f þ ðrRÞ02f − 1�

¼ −
1

2
VðφÞ − fφ02 þm2

0χ
1
1; ð11Þ

G2
2 ¼

1

ðrRÞ2 ½rRðrRÞ
0f0 þ ðrRÞ02f − 1�

¼ −
1

2
VðφÞ þ fφ02 þm2

0χ
2
2; ð12Þ

G3
3 ¼ G4

4 ¼
1

2rR
½ðrRÞf00 þ 2ðrRÞ0f0 þ 2ðrRÞ00f�

¼ −
1

2
VðφÞ − fφ02 þm2

0χ
.3
3: ð13Þ

Here the prime 0 denotes differentiation with respect to the
radial coordinate r.
Based on Eqs. (10)–(12), we obtain

ðrRÞ00
rR

¼ −φ02; ð14Þ

which can be rewritten as the following form

d2

dr2
lnRþ 2

r
d
dr

lnRþ
�
d
dr

lnR

�
2

¼ −φ02: ð15Þ

In order to derive the dilaton field φ, we assume that RðrÞ
could be an exponential function of φðrÞ, such as

RðrÞ ¼ eαφ; ð16Þ

where α is a constant. Then, Eq. (15) becomes a simple
differential equation for φ

αϕ00ðrÞ þ ðα2 þ 1Þϕ0ðrÞ2 þ 2αϕ0ðrÞ
r

¼ 0: ð17Þ

In fact, the similar assumption (16) has been extensively
used to look for the charged dilaton black hole solutions
[12,13] in Maxwell-dilaton gravity. By solving the Eq. (17),
the dilaton field can be obtained as

φðrÞ ¼ α

1þ α2
ln
δ

r
: ð18Þ

Here the integration constant δ is supposedly related to some
rescaling properties of solution.
Taking the trace of the gravitational field equation (3),

one can get

f00 þ 4ðrRÞ0f0
rR

þ 2fððrR0Þ2 þ 2rRðrR00 þ 3R0Þ þ R2 þ ðrRÞ2φ02Þ
ðrRÞ2 þ 2VðφÞ − 2

ðrRÞ2 −m2
0

X4
i¼1

χii ¼ 0; ð19Þ

Considering the G3
3 component of gravitational field equation (13) together with the assumption (16) and the solution of

dilaton field (18), Eq. (19) can be simplified as

f0

α2 þ 1
þ ð1 − α2Þf
ðα2 þ 1Þ2rþ

r
4α

∂V
∂φ

þm2
0

αδ

�
β2c2c20e

1−α2−2αβ2
α φ þ β1c1c0δe−ðαþ2β1Þφ

�
¼ 0 ð20Þ

On the other hand, we further consider the scalar field equation and substitute the metric ansatz (7) and scalar field (18)
including Eqs. (10) and (16) into Eq. (4). Then, the scalar field equation becomes

−
f0

α2 þ 1
þ ðα2 − 1Þf
ðα2 þ 1Þ2r −

rVðφÞ
2

þ e
1−α2
α φ

δ
þ c1c0m2

0e
−ðαþ2β1Þφ þ c2c20m

2
0

δ
e
1−α2−2αβ2

α φ ¼ 0 ð21Þ

According to Eqs. (20) and (21), we obtain a first order differential equation for dilaton field potential

∂VðφÞ
∂φ

− 2αVðφÞ þ 4αe
2φ
α

δ2
þ 4m2

0

δ2

�
c1δðαþ β1Þe−2φðβ1− 1

2αÞ þ c2ðαþ β2Þe−2φðβ2−1
αÞ
�
¼ 0 ð22Þ

The solution to the differential equation (22) can be written as the generalized form of the Liouville scalar potential

VðφÞ ¼
	
2γ0e2ξ0φ þ 2γ1e2ξ1φ þ 2γ2e2ξ2φ; α ≠ 1

2λ0φe2φ þ 2λ1e2ζ1φ þ 2λ2e2ζ2φ; α ¼ 1
ð23Þ
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where the last two terms are associating with coupling between the dilaton field and graviton, and the parameters are
determined as following

γ0 ¼
α2

ðα2 − 1Þδ2 ; γ1 ¼
2αc1m2

0ðαþ β1Þ
δð2α2 þ 2αβ1 − 1Þ ; γ2 ¼

αc2m2
0ðαþ β2Þ

δ2ðα2 þ αβ2 − 1Þ
ξ0 ¼

1

α
; ξ1 ¼ −β1 þ

1

2α
; ξ2 ¼ −β2 þ

1

α
; ζ1 ¼ 1=2 − β1; ζ2 ¼ 1 − β2

λ0 ¼ −
2

δ2
; λ1 ¼

2ðβ1 þ 1Þc1m2
0

2β1δþ δ
; λ2 ¼

ðβ2 þ 1Þc2m2
0

β2δ
2

: ð24Þ

Then, the black hole solution fðrÞ from Eq. (21) can be written as

fðrÞ ¼

8>>>>>>>><
>>>>>>>>:

−mr
α2−1
α2þ1 − ðα2þ1Þδ−

2α2

α2þ1r
2α2

α2þ1

α2−1 − ðα2þ1Þ2c1m2
0
δ
−
αðαþ2β1Þ
α2þ1 r

2α2þ2β1αþ1

α2þ1

ðα2þ2β1αþ2Þð2α2þ2β1α−1Þ

− ðα2þ1Þ2c2m2
0
δ
−2αðβ2þαÞ

α2þ1 r
2αðαþβ2Þ
α2þ1

ðα2þ2β2αþ1Þðα2þβ2α−1Þ ; α ≠ 1

−mþ 2r
δ



log


δ
r

�þ 2
�
− 4c1m2

0
δ−β1−

1
2rβ1þ

3
2

4β2
1
þ8β1þ3

− 2c2m2
0
δ−β2−1rβ2þ1

β2
2
þβ2

; α ¼ 1

ð25Þ

wherem is an integration constant related to the mass of the black hole as it will be shown below. Therefore, there exist two
branch solutions for the dilatonic black holes in the massive Einstein-dilaton gravity.
Notice that, in the absence of the dilaton field (α ¼ 0), the solution fðrÞ in massive gravity reduces to

fðrÞ ¼ 1 −
m
r
þ 1

2
c1m2

0rþ c2m2
0; ð26Þ

which was presented in Ref. [39]. Here we have set c0 ¼ 1. Obviously, the solution fðrÞ in Eq. (26) does not describe an
asymptotically flat spacetimes unless m0 ¼ 0. For the dilatonic black hole solution fðrÞ in the dilaton massive gravity, the
dominant term of metric function fðrÞ approaches

lim
r→∞

fðrÞ ¼

8>>>>>>>><
>>>>>>>>:

− ðα2þ1Þδ−
2α2

α2þ1r
2α2

α2þ1

α2−1 − ðα2þ1Þ2c1m2
0
δ
−
αðαþ2β1Þ
α2þ1 r

2α2þ2β1αþ1

α2þ1

ðα2þ2β1αþ2Þð2α2þ2β1α−1Þ

− ðα2þ1Þ2c2m2
0
δ
−2αðβ2þαÞ

α2þ1 r
2αðαþβ2Þ
α2þ1

ðα2þ2β2αþ1Þðα2þβ2α−1Þ ; α ≠ 1

2r
δ



log


δ
r

�þ 2
�
− 4c1m2

0
δ−β1−

1
2rβ1þ

3
2

4β2
1
þ8β1þ3

− 2c2m2
0
δ−β2−1rβ2þ1

β2
2
þβ2

; α ¼ 1

ð27Þ

at the infinity. For example, taking α ¼ 0.6, β1 ¼ 0.5 and β2 ¼ 0.3, we have

lim
r→∞

fðrÞ ¼ 2.125r0.529412 − 1.9527c1m2
0r

1.70588 þ 2.33771c2m2
0r

0.794118; ð28Þ

where we set δ ¼ 1 for simplify. Clearly, the metric function is also not asymptotically flat but asymptotic infinity in
general.
For spacetime singularities, we calculate the Ricci and Kretschmann scalars

R ¼ −
4f0ðrRÞ0

rR
−
fð2ððrRÞ0Þ2 þ 4rRðrRÞ00Þ

ðrRÞ2 þ 2

ðrRÞ2 − f00ðrÞ; ð29Þ

RμνρσRμνρσ ¼ f

�
8f0ðrRÞ0ðrRÞ00

ðrRÞ2 −
8ððrRÞ0Þ2
ðrRÞ4

�
þ 4f02ððrRÞ0Þ2

ðrRÞ2 þ 4f2ðððrRÞ0Þ4 þ 2ðrRÞ2ððrRÞ00Þ2Þ
ðrRÞ4 þ 4

ðrRÞ4 þ f002: ð30Þ
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Note that both of Ricci and Kretschmann scalars are not
singular at the horizons, therefore these points are just
singularity of coordinate as it should be for a black hole.
Considering the leading terms of asymptotical behaviors of
metric at the origin, we obtain

lim
r→0

R ∼mr−
α2þ3

α2þ1; lim
r→0

RμνρσRμνρσ ∼mr−
α2þ5

α2þ1; ð31Þ

where Ricci and Kretschmann scalars are divergence at
origin r ¼ 0, finite for r > 0, which suggests the origin
r ¼ 0 is an essential and physical singularity in the
spacetime.
In order to comprehend the behavior of the metric

function deeply, we would like to give graphical depend-
ence of the function fðrÞ both for α ≠ 1 and α ¼ 1,
and we set m0 ¼ δ ¼ m ¼ 1 for simplify in following
discussions.

A. α ≠ 1

For α ≠ 1, Figs. 1 and 2 depict the plots of fðrÞ versus r,
indicating the presence of black hole horizons. Figure 1(a)
shows that when c1 > 0 and c2 > 0, there is only one black

hole horizon, and fðrÞ approaches to þ∞ if r → ∞.
However, when c1 < 0, there are two horizons: an event
horizon and a cosmological horizon, and fðrÞ approaches
to −∞ as r → ∞. As c1 decreases to a certain value, an
extremal black hole known as the Nariai black hole is
formed, exhibiting a coincidence of the event and cosmo-
logical horizons. A naked singularity may also appear with
the decreasing of c1. Similarly, Fig. 1(b) shows that when
c2 < 0 and c1 < 0, there is only one black hole horizon, but
when c2 > 0, there are two horizons: an event horizon and
a cosmological horizon. It is worth noting that as shown in
Eq. (26) for black hole solution in massive gravity, the
parameter c2 does not affect the asymptotic behavior of the
solution fðrÞ. However, with the nonminimal coupling to
the dilaton field, c2 plays an important role in the behavior
of solution fðrÞ because the term of c2 can become the
dominant term with suitable parameters α, β1, and β2 from
Eq. (27). The influences of the parameters α, β1, and β2 are
also respectively depicted in Fig. 2.

B. α= 1

When α ¼ 1, there is still the presence of one black hole
horizon with or without a cosmological horizon for

(a) (b) (c)

FIG. 2. The function fðrÞ versus r for different values of α, β1 and β2 in the case α ≠ 1.

(a) (b)

FIG. 1. The function fðrÞ versus r for different values of c1 and c2 in case α ≠ 1.
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different asymptotical behaviors, as shown in Fig. 3. The
influences of other parameters β1 and β2, are separately
demonstrated in Figs. 4. Similarly to the case when α ≠ 1, it
is possible to have an extremal black hole, known as the
Nariai black hole, by selecting appropriate parameter
values. Additionally, changing one of the parameters can
lead to the appearance of a naked singularity.

III. THERMODYNAMICS OF DILATONIC
BLACK HOLES

Now we plan to investigate the thermodynamics of
theses dilatonic black holes in massive Einstein-dilaton
gravity. According to the definition of ADM mass [55] and
definition of horizon fðrhÞ ¼ 0, the mass of dilatonic black
hole is given by

M ¼ δ
2α2

1þα2m
2ð1þ α2Þ

¼

8>>><
>>>:

rh
2ð1−α2Þ −

ðα2þ1Þc0c1m2
0
δ
αðα−2β1Þ
α2þ1 r

α2þ2αβ1þ2

α2þ1
h

2ðα2þ2αβ1þ2Þð2α2þ2αβ1−1Þ − ðα2þ1Þc2
0
c2m2

0
δ
−
2αβ2
α2þ1r

α2þ2αβ2þ1

α2þ1
h

2ðα2þαβ2−1Þðα2þ2αβ2þ1Þ ; α ≠ 1

1
2
rhðlogð δrhÞ þ 2Þ − c0c1m2

0
r2hð δ

rh
Þ12−β1

4β1ðβ1þ2Þþ3
−

c2
0
c2m2

0
rhð δ

rh
Þ−β2

2ðβ2
2
þβ2Þ ; α ¼ 1

ð32Þ

The ADMmass as a function of black hole radius are plotted in Figs. 5 and 6 for both cases of α ≠ 1, and α ¼ 1. In each case,
there exists a maximum massMmax, and there are two black holes with the same mass, distinguished by their size (a smaller

(a) (b)

FIG. 3. The function fðrÞ versus r for different values of c1 and c2 in case α ¼ 1.

(a) (b)

FIG. 4. The function fðrÞ versus r for different values of β1 and β2 in case α ¼ 1.
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one and a larger one). The ADMmass is always positive, and
therefore there is also a maximum radius rmax at which the
mass vanishes. It can be observed that for α ≠ 1, the
maximummassMmax increases with c1 and c2 but decreases
with α [see Figs. 5(a)–5(c)]. Conversely, Mmax decreases
with c1 and c2 when α ≠ 1 [see Figs. 6(a) and 6(b)]. The
remaining figures demonstrate the effects of the coupling of
dilaton field. The maximum mass always decreases with β1
for both cases of α, as shown in Figs. 5(d) and 6(c),
suggesting that the coupling of dilaton field to the first

terms of the graviton could always reduced the maximum
mass of black holes. However, for β2, Mmax increases when
α ≠ 1 but decreases when α ¼ 1 [see Figs. 5(e) and 6(d)].
To develop thermodynamics of dilatonic black hole, we

need to calculate the Hawking temperature of the black
hole geometrically associated with the black hole horizon.
In terms of the surface gravity κ corresponding to the null
killing vector ð ∂

∂tÞa at the horizon, the temperature can be
written as

T ¼ κ

2π
¼ 1

4π

∂fðrÞ
∂r

����
r¼rh

¼

8>>>>><
>>>>>:

− α2þ1
4πrh

 
δ
− 2α2

α2þ1r
2α2

α2þ1
h

α2−1 þ c0c1m2
0
δ
−
αðαþ2β1Þ
α2þ1 r

2α2þ2αβ1þ1

α2þ1
h

2αðαþβ1Þ−1 þ c2
0
c2m2

0
δ
−
2αðαþβ2Þ
α2þ1 r

2αðαþβ2Þ
α2þ1

h
αðαþβ2Þ−1

!
; α ≠ 1

logð δ
rh
Þþ1

2πδ −
c0c1m2

0
rhð δ

rh
Þ12−β1

2πð2β1þ1Þδ −
c2
0
c2m2

0
ð δ
rh
Þ−β2

2πβ2δ
; α ¼ 1

ð33Þ

The Temperature of black hole as a function of the radius is
plotted in Figs. 7 and 8 for different cases: α ≠ 1 and α ¼ 1.
For both cases, there is a minimum positive temperature
Tmin of the black hole, which illustrates there exist two
black holes with the same temperature, distinguished by
their size (a smaller one and a larger one). Moreover, the
minimum temperature (Tmin) decreases with c1 and β1 [see
Figs. 7(a), 7(d), 8(a), and 8(c)]. This suggests that the first

term of the graviton, including the effect of coupling
to the dilaton field, always reduces the minimum temper-
ature of the black holes. Figure 8(b) demonstrate that
the minimum temperature increases with c2 when α ≠ 1
but decreases with c2 when α ¼ 1. For α ≠ 1 [as shown in
Figs. 7(c)], the minimum temperature increases with α,
indicating that the dilaton field could always enlarge the
minimum temperature. In addition, also for both cases, the

(a) (b) (c)

(d) (e)

FIG. 5. The mass M of black hole versus rh in the case α ≠ 1.
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minimum temperature decreases with β1 but increases
with β2, illustrating that the coupling of dilaton field to
the first term of graviton could always reduce the
minimum temperature of black hole but the second term
of graviton could always enlarge that of black hole [as
shown in Figs. 7(d), 7(e), 8(c), and 8(d)].
The entropy of dilatonic black hole is given by

S ¼ πr2hRðrhÞ2 ¼ πδ
2α2

α2þ1r
2

α2þ1

h : ð34Þ

References [37–41] have pointed out that the graviton mass
does not significantly affect the form of the entropy, and
contributes only as a correction for the horizon radius. In
fact, the entropy of these black holes in massive Einstein-
dilaton gravity can be also derived from traditional metric
ansatz of dilatonic black holes, as shown in the Appendix.
Then, we find that the thermodynamic quantities satisfy the
first law of black hole thermodynamics

dM ¼ TdS: ð35Þ

In addition, another important aspect of black hole
thermodynamics involves analyzing the thermal stability
of black hole solutions. To assess the thermal stability, we
compute the heat capacity

C ¼ T
∂S
∂T

¼ T
∂S=∂rh
∂T=∂rh

; ð36Þ

which leads to

C¼

8>>>>>><
>>>>>>:

−8π2ðα2þ1Þ−1Tδ
4α2

α2þ1r
− 2α2

α2þ1r
2

α2þ1
þ1

h

1þαc0c1m
2
0
ðαþ2β1Þδ

αðα−2β1Þ
α2þ1 r

2αβ1þ1

α2þ1

2α2þ2αβ1−1
þc2

0
c2m

2
0
ðα2þ2αβ2−1Þδ

−
2αβ2
α2þ1r

2αβ2
α2þ1

α2þαβ2−1

; α≠1

− 4π2Tδβ1þβ2þ5
2r3=2h

c0c1m2
0
δβ2þ1r

β1þ1

h þ2c2
0
c2m2

0
δβ1þ

1
2r

β2þ1
2

h þ2δβ1þβ2þ1
2
ffiffiffi
rh

p ; α¼1

ð37Þ

From Eq. (36), the nonmonotonic nature of the temper-
ature allows us to conclude that the heat capacity exhibits

(a) (b)

(c) (d)

FIG. 6. The mass M of black hole versus rh in the case α ¼ 1.
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discontinuities as illustrated in Figs. 9 and 10 for both
cases. Figures 9 and 10 show that black holes with
relatively large horizon radii (rh > rcri) are stable
thermodynamic systems, while a domain of instability
exists for smaller radii below the point of discontinuity
(rh < r□). In other words, the figures clearly illustrate
the stable and unstable regions based on the disconti-
nuities observed in the heat capacity as a function of
the horizon radius.
To get more information about the phase transition,

we can examine the free energy. The Gibbs free energy is
G ¼ M − TS reads as

G¼

8>>>>>>>><
>>>>>>>>:

r
4
þαðα2þ1Þc0c1m2

0
ðαþ2β1Þδ

αðα−2β1Þ
α2þ1 r

α2þ2αβ1þ2

α2þ1

4ðα2þ2αβ1þ2Þð2α2þ2αβ1−1Þ

þðα2þ1Þc2
0
c2m2

0
ðα2þ2αβ2−1Þδ

−
2αβ2
α2þ1r

α2þ2αβ2þ1

α2þ1

4ðα2þαβ2−1Þðα2þ2αβ2þ1Þ ; α≠1

c0c1m2
0
δ
1
2
−β1 r

β1þ3
2

h
4β1þ6

þ c2
0
c2m2

0
δ−β2 r

β2þ1

h
2β2þ2

þ rh
2
; α¼1:

ð38Þ

We find that these discontinuities, which correspond to the
minima of temperature in the heat capacity curves, indi-
cate the occurrence of Hawking-Page phase transitions.

(a)

(d)

(b)

(e)

(c)

FIG. 7. The temperature T versus rh for α ≠ 1. The extreme points of each T − r curves (rcri, Tmin) are, respectively, (a) (0.555418,
1.07929), (0.737029, 1.01689), (1.29893, 0.90413) for c1 ¼ −8;−4;−1 (b) (0.858517, 0.633958), (1.08183, 1.27758), (1.25738,
1.90305) for c2 ¼ 1, 3, 5 (c) (0.989441, 0.687425), (0.978303, 0.958608), (0.833922, 1.73715) for α ¼ 0.6, 0.7, 0.8 (d) (0.948498,
0.986909), (0.978303, 0.958608), (0.992489, 0.941541) for β1 ¼ 1.5, 2, 2.5 (e) (1.05142, 0.856112), (0.978303, 0.958608), (0.852074,
1.10364) for β2 ¼ 0.1, 0.2, 0.3.

(a) (b) (c) (d)

FIG. 8. The temperature T versus rh for α ¼ 1. The extreme points of each T − r curves (rcri, Tmin) are, respectively, (a) (2.68273,
0.0700174), (2.97447, 0.0448315), (3.32688, 0.0152299) for c1 ¼ 0.2, 0.3, 0.4 (b) (1.08101, 0.221862), (1.61782, 0.153979),
(2.97447, 0.0448315) for c2 ¼ −1;−0.5;−0.2 (c) (2.68804, 0.0523771), (2.88079, 0.047834), (3.24997, 0.0355224) for β1 ¼ 0.6, 0.9,
1.2 (d) (3.63175, 0.0239511), (2.97447, 0.0448315), (2.24071, 0.0730591) for β2 ¼ 1.8, 2, 2.5.
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Hawking-Page phase transitions were also recently found
in dilatonic black holes that are neither asymptotically flat
nor AdS as in Ref. [56]. As shown in Figs. 11 and 12, the
upper and lower branches correspond to small and large
black holes, respectively. A positive Gibbs free energy
indicates that the system is in a radiation phase, whereas a
Hawking-Page phase transition occurs at the intersection
point of the lower branch with G ¼ 0. The temperature at
this point is known as the Hawking-Page temperature, THP.
The fact that large black holes always have a lower Gibbs
free energy compared to small black holes confirms the
above arguments regarding their thermal stability. The
effects of parameter variations can also be seen from
Figs. 11 and 12. Increasing c1 or β1 lowers THP.
Similarly, lowering α or β2 lowers the Hawking-Page
temperature THP. However, THP increases with c2 when
α ≠ 1 but decreases with c2 when α ¼ 1.

IV. BLACK HOLE SOLUTIONS
IN (d + 1)-DIMENSIONAL SPACETIME

In this section, we would like to extend to the massive
Einstein-dilaton gravity in high dimensional spacetime.
The action is given as

I ¼ 1

16π

Z
dðdþ1Þx

ffiffiffiffiffiffi
−g

p �
R −

4

d − 1
ð∇φÞ2 − VðφÞ

þm2
0

X4
i¼1

cie−2βiφU iðg; hÞ
�
; ð39Þ

where the last term denotes the general form of the
coupling between the scalar field and massive graviton,
the U i are symmetric polynomials of the eigenvalues of the
ðdþ 1Þ × ðdþ 1Þ matrix Kμ

ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαhαν

p
, and satisfy the

relation in Eq. (2).

(a) (b) (c)

(d) (e)

FIG. 9. The heat capacity C versus rh for α ≠ 16.

(a) (b) (c) (d)

FIG. 10. The heat capacity C versus rh for α ¼ 16.
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By varying the action (39) with regard to metric gμν and
φ, the equations of motions can be written as

Rμν −
1

2
Rgμν ¼

4

d − 1
∂μφ∂νφ −

�
V
2
þ 2

d − 1
∂
ρφ∂ρφ

�
gμν

þm2χμν; ð40Þ

∇2φ ¼ d − 1

8

�
∂V
∂φ

−m2
X4
i¼1

∂c̃i
∂φ

U iðg; hÞ
�
; ð41Þ

where the c̃i and χμν are defined in Eq. (5).
Now we introduce the metric ansatz for static black hole

solution in (dþ 1)-dimensional space-time

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2R2ðrÞσijdxidxj; ð42Þ

where σijdxidxj is the line element for (d − 1)-dimensional
spherical Einstein space and volume ωd−1. Considering the
following reference metric

hμν ¼ diagð0; 0; c20σijÞ; ð43Þ

the interaction potential in Eq. (2) changes into

U i ¼ Πi
ci0
Riri

ð44Þ

with positive constant c0 and the notation
Πi ¼

Q
i−1
j¼0ðd − 1 − jÞ.

In order to solve the system of Einstein equation (40), we
assume [12,13]

RðrÞ ¼ e
2α
d−1φ; ð45Þ

(a) (b) (c)

(d) (e)

FIG. 11. The Gibbs free energy G versus rh for α ≠ 16.

(a) (b) (c) (d)

FIG. 12. The Gibbs free energy G versus rh for α ¼ 1.
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Then we can get the dilton field and the Liouville-type dilaton potential VðφÞ as the following form

φðrÞ ¼ ðd − 1Þα
2ð1þ α2Þ ln

�
δ

r

�
ð46Þ

VðφÞ ¼
(
2γ0e2ξ0φ þ

P
4
i¼1 2γie

2ξiφ; α ≠ 1

2λ0φe
4φ
d−1 þP4

i¼1 2λie
2ζiφ; α ¼ 1

ð47Þ

where the summation term is the general form associating with coupling between the dilaton and massive gravity field, and
λ0,γi and ξiði ¼ 0; 1;…; 4Þ are constants and satisfy

ξ0 ¼
2

ðd − 1Þα ; ξi ¼ −βi þ
i

ðd − 1Þα ; ζi ¼
i

d − 1
− βi; γ0 ¼

α2ðd − 2Þðd − 1Þ
2ðα2 − 1Þδ2 ;

γi ¼ −
m2

0c
i
0ciαð2αþ ðd − 1ÞβiÞδ−iΠi

2ði − 2α2 þ ð1 − dÞαβiÞ
; λ0 ¼ −

2ðd − 2Þ
δ2

; λi ¼ −
m2

0c
i
0ciΠiδ

−iððd − 1Þβi þ 2Þ
2ðð1 − dÞβi þ i − 2Þ ð48Þ

and then the solutions of Eq. (40) in ðdþ 1Þ-dimensional spacetime can easily be calculated as

fðrÞ ¼
8<
:−mr

α2−dþ2

α2þ1 − ðα2þ1Þ2ðd−2Þδ−
2α2

α2þ1r
2α2

α2þ1

ðα2−1Þðα2þd−2Þ −
P

4
i¼1m

2
0c

i
0ciAir

2α2þαðd−1Þβi−iþ2

α2þ1 ; α ≠ 1

−mr
3−d
2 − 4ðd−2Þrððd−1Þ logðrδÞ−d−1Þ

ðd−1Þ2δ −
P

4
i¼1 m

2
0c

i
0ciBir

ðd−1Þβi−iþ4

2 ; α ¼ 1

ð49Þ

with

Ai ¼
iðα2 þ 1Þ2δ−

αððd−1ÞβiþαiÞ
α2þ1 Πi

ðd − 1Þðα2 þ αðd − 1Þβi þ d − iÞð2α2 þ αðd − 1Þβi − iÞ ;

Bi ¼ −
4iΠiδ

1
2
ð−dβiþβi−iÞ

ðd − 1Þððd − 1Þβi − iþ 2Þððd − 1Þβi þ d − iþ 1Þ ð50Þ

Obviously, the solutions (49) when taking d ¼ 3 equals to Eq. (25). According to the definition of ADM mass [55], the
mass of dilatonic black hole reads as

M ¼ ðd − 1Þωd−1δ
α2ðd−1Þ
α2þ1 m

16πðα2 þ 1Þ ; ð51Þ

where ωd−1 represents the volume of hyper-surface described by hijdxidxj. Therefore, using the definition of horizon
fðrhÞ ¼ 0, the mass of black hole is written in terms of rh as

M ¼

8>>><
>>>:

− ðα2þ1Þðd−2Þðd−1Þωd−1δ
α2ðd−3Þ
α2þ1 r

α2þd−2
α2þ1

h
16πðα2−1Þðα2þd−2Þ −

P
4
i¼1

ðd−1Þm2
0
Aici0ciωd−1δ

α2ðd−1Þ
α2þ1 r

α2þαðd−1Þβiþd−i
α2þ1

h
16πðα2þ1Þ ; α ≠ 1;

− ðd−2Þωd−1δ
d−3
2 r

d−1
2

h ððd−1Þ logðrhδ Þ−d−1Þ
8πðd−1Þ −

P
4
i¼1

im2
0
ωd−1ci0ciΠiδ

ðd−1Þð1−βiÞ−i
2 r

ðd−1Þβiþd−iþ1

2
h

8πðiþ2−ðd−1ÞβiÞði−2−ðd−1Þðβiþ1ÞÞ ; α ¼ 1:

ð52Þ

By calculating the Hawking temperature and entropy of black hole as

T ¼ 1

4π

∂fðrÞ
∂r

����
r¼rh

¼

8>><
>>:

− ðα2þ1Þðd−2Þδ−
2α2

α2þ1r
α2−1
α2þ1
h

4πðα2−1Þ −
P

4
i¼1

m2
0
Aici0ciðα2þαðd−1Þβiþd−iÞr

α2þαðd−1Þβi−iþ1

α2þ1
h

4πðα2þ1Þ ; α ≠ 1;

− ðd−2Þkðlogðrhδ Þ−1Þ
2πδ þP4

i¼1

im2
0
ci
0
ciΠiδ

ð1−dÞβi−i
2 r

ðd−1Þβi−iþ2

2
h

2πðd−1Þðð1−dÞβiþi−2Þ ; α ¼ 1:

ð53Þ
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S ¼ 1

4
ωd−1δ

α2ðd−1Þ
α2þ1 r

d−1
α2þ1

h : ð54Þ

It is easily checked that the first law of black hole
thermodynamics still holds for dilatonic black hole in high
dimensional spacetime

dM ¼ TdS ð55Þ

V. CONCLUSIONS AND DISCUSSIONS

Considering the nonminimal coupling between graviton
and dilaton field, we discussed the massive Einstein-dilaton
gravity. According to the gravitational field and dilaton
field equations by varying the action, we obtained the static
spherically symmetric solutions of dilatonic black hole for
α ≠ 1 and α ¼ 1 cases in four dimensional spacetime. Here
the dilaton potential VðφÞ takes a so-called Liouville-type
form both for α ≠ 1 and α ¼ 1, and the last two terms of
potential are associated with the graviton terms.
Later, we have analyzed the singularity of the solution,

we give the Ricci and Kretschmann scalars, which suggest
that the horizons of black holes are just singularity of
coordinate as it should be. What is more, both of the scalars
have the same the asymptotic behavior at the origin, and
one can obtain that there is a point of essential located at the
origin, and the asymptotic behavior of the solutions is not
asymptotically flat but infinity in general when r → ∞. We
also show that the black hole solutions can provide one
horizon, two horizons (event and cosmological), extreme
(Nariai) and naked singularity black holes for the suitably
fixed parameters. With dilaton field, the parameter c2
affects the behavior of the metric function.
We further studied the mass, temperature and entropy of

these dilatonic black holes and checked the first law of
black hole thermodynamics. The analysis of the mass
suggest that both for α ≠ 1 and α ¼ 1, there could exists
a maximum of the mass function of black hole horizon. For
the temperature of these black holes, and found that it has a
minimum positive value Tmin, distinguishing two sizes of
black holes (a smaller one and a larger one) with the same
temperature. Moreover, the minimal points of the temper-
ature function correspond to the discontinuous points of the
heat capacity, the domain of smaller radii rh < rcri of black
holes lies instable and black holes with relatively large
horizon radii rh > rcri demonstrate stability, which implies
the occurrence of Hawking-Page phase transitions in these
thermodynamic systems. By investigating the Gibbs free
energy, we have found the fact that large black holes always
have a lower Gibbs free energy compared to small black
holes confirming the arguments of their thermal stability.
Finally, we generalized these discussions to the high

dimensional spacetime, and got the (dþ 1) dimensional
solution of dilatonic black hole both for α ≠ 1 and α ¼ 1 in
massive Einstein-dilaton gravity. The corresponding
thermodynamic quantities of black holes were also

calculated, and we find the first law of black hole
thermodynamics still maintains.
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APPENDIX: NEW FORM SOLUTION

In this Appendix, wewill present the static and spherically
symmetric dilatonic black hole solutions with the traditional
metric ansatz form in four dimensional spacetime.
We assume the new metric ansatz with

ds2 ¼ −N2ðr̃Þfðr̃Þdt2 þ f−1ðr̃Þdr̃2 þ r̃2ðdθ2 þ sin2 θdϕ2Þ;
ðA1Þ

where fðr̃Þ and Nðr̃Þ are functions of r̃. Choosing the same
reference metric in Eq. (8), the interaction potential in
Eq. (2) changes into

U1 ¼
2c0
r̃

; U2 ¼
2c20
r̃2

; U3 ¼ U4 ¼ 0; ðA2Þ

and χμν from Eq. (5) read as

χ11 ¼ χ22 ¼
c0c1r̃e−2β1ϕ þ c2c20e

−2β2ϕ

r̃2
;

χ33 ¼ χ44 ¼
c1c0e−2β1ϕ

2r̃
: ðA3Þ

Then, the corresponding components of the Einstein
equation Eq. (3) can be simplified to

G̃1
1¼

−1þfðr̃Þþ r̃f0ðr̃Þ
r̃2

¼−
1

2
VðφÞ−fφ02þm2

0χ
1
1;

ðA4Þ

G̃2
2 ¼

N0ðr̃Þ½−1þ fðr̃Þ þ r̃f0ðr̃Þ� þ 2r̃fðr̃ÞN0ðr̃Þ
r̃2Nðr̃Þ

¼ −
1

2
VðφÞ þ fφ02 þm2

0χ
2
2; ðA5Þ

G̃3
3 ¼

1

2r̃Nðr̃Þ f3r̃f
0ðr̃ÞN0ðr̃Þ þ Nðr̃Þ½2f0ðr̃Þ þ r̃f00ðr̃Þ�

þ 2fðr̃Þ½N0ðr̃Þ þ r̃N00ðr̃Þ�g

¼ −
1

2
VðφÞ − fφ02 þm2

0χ
3
3; ðA6Þ
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where the prime 0 denotes differentiation with respect to the
radial coordinate r̃.
Considering the different forms between new line

element (A1) and traditional one (7), we assume the
relationship of transformation of the two solutions

r̃ ¼ rRðrÞ ¼ δ
α2

α2þ1r
1

α2þ1; or r ¼ r̃1þα2δ−α
2

: ðA7Þ

where RðrÞ is determined by Eqs. (16) and (18). Based on
Eqs. (A3)–(A5), we obtain

N0ðr̃Þ
r̃Nðr̃Þ ¼ φ0ðr̃Þ2: ðA8Þ

Therefore, the dilaton field can be written as

φðr̃Þ ¼ α ln ðδ=r̃Þ ðA9Þ

and the function Nðr̃Þ reads as

Nðr̃Þ ¼ ð1þ α2Þr̃α2δ−α2 ðA10Þ

According to the similar calculations, we found the differ-
ential equation of dilaton potential Vðφðr̃ÞÞ is same as
Eq. (22) of VðφðrÞÞ. So the total expansion of VðφÞ
remains consistent with Eq. (23) in the previous text.
Finally, we can obtain the solution of metric function
fðr̃Þ as

fðr̃Þ ¼
8<
:

−mr̃−α
2−1 þ 1

1−α4 −
c0c1m2

0
r̃ðδr̃Þ−2αβ1

ðα2þ2αβ1þ2Þð2α2þ2αβ1−1Þ −
c2
0
c2m2

0
ðδr̃Þ−2αβ2

ðα2þαβ2−1Þðα2þ2αβ2þ1Þ ; α ≠ 1

1þ logðδ=r̃Þ − m
r̃2 −

c0c1m2
0
r̃ðδr̃Þ−2β1

4β2
1
þ8β1þ3

− c2
0
c2m2

0
δ−2β2 r̃2β2

2β2
2
þ2β2

; α ¼ 1
ðA11Þ

As shown in Refs. [37–41], the graviton mass does not significantly affect the form of the entropy. According to the well-
known entropy-area law, the entropy as a pure geometrical quantity corresponding to the radius r̃h of black hole can be
obtained as

S ¼ πr̃2 ¼ πδ
2α2

α2þ1r
2

α2þ1

h : ðA12Þ
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