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Loop quantum gravity, as one branch of quantum gravity, holds the potential to explore the fundamental
nature of black holes. Recently, according to the quantum Oppenheimer-Snyder model in loop quantum
cosmology, a novel loop quantum corrected black hole in de Sitter spacetime has been discovered. Here, we
first investigate the corresponding quasinormal modes and late-time behavior of massless neutral scalar
field perturbations based on such a quantum-modified black hole in de Sitter spacetime. The frequency and
time domain analysis of the lowest-lying quasinormal modes is derived by the Prony method, the matrix
method as well as Wentzel-Kramers-Brillouin approximation. The influences of loop quantum correction,
the black hole mass ratio, and the cosmological constant on the quasinormal frequencies are studied in
detail. The late-time behaviors of quantum-modified black holes possess an exponential decay, which is
mainly determined not only by the multipole number but also by the cosmological constant. The impact of
loop quantum correction on the late-time tail is negligible, but it has a significant impact on damping
oscillation. To explore spacetime singularities, we examine the validity of strong cosmic censorship for a
near-extremal quantum-modified black hole in de Sitter spacetime. As a result, it is found that the strong
cosmic censorship is destroyed as the black hole approaches the near-extremal limit, but the violation
becomes weaker as the cosmological constant and the loop quantum correction increase.

DOI: 10.1103/PhysRevD.109.064012

I. INTRODUCTION

Spacetime singularities, characterized by infinite curva-
ture or density, have been a subject of great interest and
curiosity in the fields of gravitation theory and relativistic
astrophysics. According to the singularity theorems proved
by Hawking and Penrose, the existence of singularities is
unavoidable in generic gravitational collapses. The pres-
ence of singularities poses profound challenges to our
understanding of the universe within the context of classical
general relativity. One specific concern is the existence of
naked singularities, which are singularities that are not
hidden within a black hole event horizon and thus could be
observed by outside observers, breaking down the predic-
tive power of classical general relativity.
A fine gravitational theory is essentially expected to

deal with the problem of spacetime singularities. From a

theoretical standpoint, it is necessary to formulate a theory
of quantum gravity (QG) that combines the principles of
quantum mechanics and general relativity. Among the
various approaches to QG, loop quantum gravity (LQG)
has shown great promise with significant advancements
made (see, e.g., [1–7] and the references therein). By
applying the procedure of loop quantization to spherically
symmetric black holes, one has gained many insights into
the quantum nature of black holes [8–18], where the
singularity of the Schwarzschild black hole is believed
to be resolved through the effects of LQG as it should be
the case, although the specific detail of how this resolution
occurs is scheme dependent. More interestingly, the quan-
tum geometry effect can make the big bang singularity
replaced by a nonsingular big bounce [19,20] and provide
more effective black hole models [21–23]. In particular,
with the quantum Oppenheimer-Snyder model in loop
quantum cosmology, a new quantum black hole model
has been derived most recently [15], where the
Schwarzschild singularity is resolved by a transition region
that contains an inner horizon. Given this quantum black
hole solution, the quantum geometry modification has been

*Corresponding author: cgshao@hust.edu.cn
†cyshao@hust.edu.cn
‡zhang.cong@mail.bnu.edu.cn
§w.zhang@mail.bnu.edu.cn

PHYSICAL REVIEW D 109, 064012 (2024)

2470-0010=2024=109(6)=064012(13) 064012-1 © 2024 American Physical Society

https://orcid.org/0000-0003-0343-3250
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.064012&domain=pdf&date_stamp=2024-03-05
https://doi.org/10.1103/PhysRevD.109.064012
https://doi.org/10.1103/PhysRevD.109.064012
https://doi.org/10.1103/PhysRevD.109.064012
https://doi.org/10.1103/PhysRevD.109.064012


explored in shadows and stability of the black hole [24,25],
where a sequence of discrepancies was noticed in asymp-
totically flat spacetimes. Recent astronomical observations
show that there is a mysterious force that urges the universe
to expand acceleratedly, which implies the possibility
of the existence of a cosmological constant. Thus, it is
necessary to consider the effect of a cosmological constant
in the response of quantum-corrected black holes to minor
perturbations.
When black holes are slightly disturbed, the resulting

evolution is divided into stages: the irregular initial burst
determined by the initial conditions, the damped oscil-
lations described by quasinormal modes, and a power-law
or exponential tails at late time. Among them, the
quasinormal modes and the late-time tail, which are
applied to test the stability of black hole spacetime against
small perturbations, carry key information about the
related nonperturbed black holes. Thus, the quasinormal
modes have been explored intensively in the test of the no-
hair theorem [26–28] and validation of modified theories
of gravity [29–31]. In addition, the quasinormal modes are
crucial in the ringdown waveform of the coalescence of
binary systems, which can provide observational evidence
of the black holes. In the wake of developments in science
and technology, more broader frequency band of the
ringdown phase is speculated to be detected with future
space-based observations, which can provide an unpar-
alleled opportunity to test the nature of gravity [32,33]. It
would be intriguing and significant to constrain quantum
correction parameters of the black holes in LQG with the
observed ringdown signals. On the other hand, the late-
time tails can reflect some essential properties of black
holes, such as the no-hair theorem and the instability of
Cauchy horizons [34–36], which is conducive to under-
standing the internal structure of black holes. To this end,
we perform a study on quasinormal modes and late-time
tails of scalar perturbations for such a loop quantum
gravity black hole in de Sitter spacetime.
On the other hand, as the stability of the Cauchy horizon

is closely related to the decay rate of dominant quasinormal
modes, an important question is whether the strong cosmic
censorship conjecture (SCC) is valid in a current physical
system. The SCC proposes that the timelike singularities
are not allowed, or can be formulated equivalently as a
more rigorous mathematical statement that the Cauchy
horizon inside of the black hole is unstable for the generic
perturbations and thus inextendible. Actually, in asymp-
totically flat spacetimes, the SCC is always valid except for
the accelerating black holes [37–39]. However, the validity
of SCC will become more complicated in the asymptoti-
cally de Sitter spacetimes. A positive cosmological constant
leads to an exponential decay of the external perturbations,
which can compete with the aforementioned blueshift effect
along the Cauchy horizon [40,41]. Thus the validity of the
SCC depends on which one will win in the competition.

To be more specific, the SCC has recently been found
violated in the nearly extremal charged Reissner-Nordstrom
de Sitter (RNdS) black hole by the scalar field [34,42–45],
the fermionic field [46–48], and the gravito-electromagnetic
field [49]. In addition, as to the rotating Kerr de Sitter black
hole, the SCC can be respected by the bosonic field
perturbations [50,51], but violated by the fermionic field
perturbation [52]. While for the Kerr-Newman de Sitter
black hole, the SCC is still violated by both the scalar and
fermionic fields [53]. In this paper, the global structure
of such a quantum black hole model resembles that of
the charged Reissner-Nordstrom black hole. In this sense,
the SCC is still plagued potentially by the emergence of the
inner Cauchy horizon if one immerses this quantum-
modified black hole in de Sitter space. Thus, we further
examine whether the SCC holds for such a quantum-
modified black hole in de Sitter spacetime. In particular,
Hollands considered a quantum scalar field in RNdS
spacetime and discovered that the quantum effect of the
perturbation field can rescue the SCC in semiclassical
analysis [54]. On the contrary, we utilize classical scalar
fields in quantum-corrected spacetimes to check the SCC.
Comparing these two semiclassical analyses, we can
understand in which case quantum effects have a more
significant impact on the SCC.
The remainder of our paper is organized as follows. In the

next section, we present the quantum Oppenheimer-Snyder
model and the corresponding modified metric of the loop
quantum black hole in de Sitter spacetime. Then we present
the equation ofmotion for a neutral massless scalar field.We
introduce the Prony method, the matrix method, and
Wentzel-Kramers-Brillouin (WKB) approximation to cal-
culate the quasinormalmodes and present the corresponding
numerical results in Sec. III. In Sec. IV, we illustrate the
dynamics of a neutral massless scalar perturbation and
explore late-time behaviors of the scalar field for such a
quantum-modified black hole. With the above preparation,
the validity of the SCC is checked in Sec. V. Finally, the
concluding remarks are presented in the last section.

II. THE LOOP QUANTUMGRAVITY CORRECTED
GEOMETRY OF THE BLACK HOLE IN

DE SITTER SPACE

Let us follow the procedure introduced in [15] to get the
quantum modified spacetime by considering the quantum
Oppenheimer-Snyder model. In this model, the entire
spacetime is divided into two regions. One region com-
prises a pressureless dust ball with a constant density, and
the other region is a vacuum outside the dust ball.
In the region with dust, we introduce a coordinate

ðτ; r̃; θ;ϕÞ with 0 < r̃ < r̃0 which adapts the symmetry
of the dust ball. Then, the metric of the ball takes the form

ds2in ¼ −dτ2 þ aðτÞ2ðdr̃2 þ dΩ2Þ; ð1Þ
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where dΩ2 ¼ dθ2 þ sin2 θdϕ2. The dynamics of the scale
factor aðτÞ is governed by the LQC modified Friedmann
equation

H2¼
�
ȧ
a

�
2

¼ 8πG
3

ρ

�
1−

ρ

ρc

�
þΛ
3
; ρ¼ M

4
3
πr̃30a

3
; ð2Þ

where the deformation parameter ρc denotes the critical
density defined as ρc¼

ffiffiffi
3

p
=ð32π2γ3G2ℏÞ with the Barbero-

Immirzi parameter γ:M is the mass of the ball with radius
aðτÞr̃0. It should be noted that the current work adds a
cosmological constant term to the modified Friedmann
equation, different from the initial model considered in [15].
Eq. (2) reverts to the usual Friedmann equation in the
classical regime where ρ ≪ ρc. However, in the quantum
regime where ρ is comparable with ρc so that the spacetime
curvature becomes Planckian, the deformation term will
prevent the matter density ρðτÞ from reaching infinity which
thus prevents the formation of the singularity. Indeed,
according to Eq. (2), at the moment τb with ρðτbÞ ¼
ρc½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ=ð2πGρcÞ

p �=2, one has H ¼ 0, which sig-
nifies a change of the dynamics of the ball from the
collapsing phase to the expanding phase at τb.
In the outside region of the dust ball, we assume the

spacetime to be spherically symmetric and static, as done
in [15]. We can use the coordinates ðt; r; θ;ϕÞ to describe
this region, which is adapted to the symmetry of the
spacetime. In this coordinate, the metric of the outside
region reads

ds2out ¼ −fðrÞdt2 þ gðrÞ−1dr2 þ r2dΩ2; ð3Þ

where fðrÞ and gðrÞ are two unknown functions to be
determined. In order to determine the unknown functions
fðrÞ and gðrÞ, we need to find the inner most boundary of
the outside region which is glued with the dust ball

surface. The junction condition for the gluing requires
that the reduced 3-metrics and the extrinsic curvatures
along the gluing surfaces obtained from the 4-metrics ds2in
and ds2out respectively are continuous. It should be noted
that the worldlines τ ↦ ðτ; r̃0; θ;ϕÞ of each particle
on the surface of the dust ball is a timelike geodesic
without rotation. This implies that the inner most surface
of the outside region is also composed of the congruence
of freely falling timelike geodesics associated to the
metric ds2out. Moreover, let τ → ðtðτÞ; rðτÞ; θ;ϕÞ be a
geodesic in the innermost surface of the outside region,
with τ being the length of the geodesic. Then, the surfaces
are glued by the identification ðτ; r̃0; θ;ϕÞ ∼ ðtðτÞ; rðτÞ;
θ;ϕÞ. The calculation could be simplified by such a
junction condition.
So far, we have built our model and sketched the

calculation to get the metric of the outside region by the
junction condition. Then, just following the procedure
shown in [15], we get

fðrÞ¼ gðrÞ¼ 1−
�
2GM
r

þΛr2

3
−
αG2M2

r4

�
1þ Λr3

6GM

�
2
�
;

ð4Þ

where α ¼ 16
ffiffiffi
3

p
πγ3Gℏ, proportional to the Planck area, is

the quantum deformation parameter. It should be noted that
the metric (4) is valid only for r > rb with rb denoting the
minimal radial of the dust ball at which the bounce occurs
[15]. In the left side of Fig. 1, we plot the values of fðrÞ
depending on r for Λ ¼ 0.1 and α ¼ 1.1663, in which M
can take different values. As shown in the figure, for M
bigger than some extreme value MExt, the metric function
fðrÞ has three roots, corresponding to the three horizons of
the black hole. They are respectively the Cauchy horizon ri,
the event horizon rh and the cosmological horizon rc, with
ri < rh < rc. If one may consider a process where the mass

FIG. 1. Left: The metric function fðrÞ versus r obtained for given Λ ¼ 0.1 and α ¼ 1.1663. Right: The allowed parameter space
ðα;MÞ of the loop quantum corrected black hole in the white region for Λ ¼ 0.01.
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of the black hole increases for the given cosmological
constant and loop quantum correction, the Nariai
solutions take place as the cosmological horizon coin-
cides with the event horizon, which is shown as a magenta
line. If one decreases the mass of the black hole,
the Cauchy and the event horizons gradually approach.
When the Cauchy horizon coincides with the event
horizon, the mass reaches an extreme value, which is
denoted as Mext. For M < Mext, the event horizon dis-
appears resulting in a naked singularity. This case is thus
prohibited by the weak cosmic censorship conjecture. So
the corresponding solution space is between the extremal
solutions and the Nariai solutions. As a demonstration,
we restrict the black hole mass M and the loop quantum
correction α in the white region in the right plot of
Fig. 1 for Λ ¼ 0.01, where the dotted blue line denotes
extremal black hole and dashed black line corresponds to
Nariai black hole.

III. THE QUASINORMAL MODES FOR MASSLESS
SCALAR PERTURBATIONS

Now, we consider a massless neutral scalar field pertur-
bation in the above background. The equation of motion in
such a curved spacetime is governed by the following
Klein-Gordon equation:

□Φ ¼ 0: ð5Þ

According to spherical symmetry of the spacetime, the
scalar field can be expanded as

Φ ¼ ϕðrÞ
r

Ylmðθ;φÞe−iωt; ð6Þ

where Ylmðθ;φÞ is the spherical harmonics function. By
plugging it into the Klein-Gordon equation, the master
equation in the radial part reads

�
d2

dr2�
þ ω2 − VeffðrÞ

�
ϕðrÞ ¼ 0; ð7Þ

where the effective potential is given by

VeffðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ f0ðrÞ

r

�
: ð8Þ

dr� is tortoise coordinate, which is defined as dr� ¼ dr
fðrÞ.

Physically, there only exist purely ingoing waves near the
event horizon and purely outgoing waves near the cosmo-
logical horizon [33]. Thus the boundary conditions are
imposed as

ϕðrÞ ≈ e−iωr�ðr → rhÞ; ϕðrÞ ≈ eiωr�ðr → rcÞ: ð9Þ

Then, the discrete quasinormal frequencies can be derived
by solving the equation of motion with the above boundary
conditions (9).
In the remainder of this paper, we will use three

numerical methods to accurately calculate the lowest-lying
quasinormal modes and present some relevant results.
Presently, many numerical computations of quasinormal
modes have been developed with high precision [55–57].
Here, we introduce the finite difference method [58] to
obtain the numerical evolution of the scalar field and then
extract the quasinormal spectrum from the data samples
with the Prony method [59]. In order to check the correct-
ness of our results, we also employ the matrix method [60]
and WKB approximation [61–63].
First, it is necessary to perform a coordinate trans-

formation to derive the double null coordinates, which is
defined as u ¼ t − r� and v ¼ tþ r�. Accordingly, the
Klein-Gordon equation can be expressed as

−4
∂
2ϕ

∂u∂v
¼ Veffðrðu; vÞÞϕ: ð10Þ

According to finite difference scheme, the data at N can be
obtained fromW, E, and S, such that the above equation of
motion gives rise to

ϕN ¼ϕW þϕE−ϕS−ΔuΔvVeffðrðu;vÞÞ
ϕW þϕE

8
; ð11Þ

where the indicesN,W,E,S denote grid-points, respectively
corresponding to the points N ≡ ðuþ Δ; vþ ΔÞ, W≡
ðu; vþ ΔÞ, E≡ ðuþ Δ; vÞ, and S≡ ðu; vÞ with Δ the step
width of ðu; vÞ. The time-domain profile will appear soon,
once one provides the specific initial conditions

ϕðu; 0Þ ¼ 0; ϕð0; vÞ ¼ e−
ðv−vcÞ2

2σ2 ; ð12Þ

where vc and σ correspond to the center and width of
the Gaussian wave packet. The resulting temporal evolu-
tion ϕðt; r�Þ can be obtained from equally elapsed late-
time data.
Next, to extract the quasinormal mode from the

temporal evolution data, the Prony method is a very
useful tool, which as an extension of the Fourier decom-
position, is of great significance for signal processing and
data analysis. The late-time signal at a certain r� is
composed of a set of quasinormal modes, which can be
expanded as

ϕðtÞ ¼
Xp
j¼1

Cje−iωjt: ð13Þ

The time interval of the time-domain profile is between t0
and t ¼ t0 þ qh, where h is the time interval of each
point. q as the number of sample signals is an integer and
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satisfies q ¼ 2p. For convenience, every sample is
labeled by an integer n. According to the above formula,
the time-domain data at any time can be expressed as

xn ¼
Xp
j¼1

C̃jznj ; ð14Þ

where xn ¼ϕðt0þnhÞ;zj¼ e−iωjh; C̃j¼Cje−iωt0 . In order
to find zj, it is necessary to introduce a polynomial
function

AðzÞ ¼
Yp
j¼1

ðz − zjÞ ¼
Xp
i¼0

αizp−i; ð15Þ

with α0 ¼ 1. Obviously, for any integer j from 1 to p,
AðzjÞ ¼ 0. Thus, it is easy to obtain the sum

Xp
i¼0

αixj−i ¼
Xp
i¼0

αi
Xp
k¼1

C̃kz
j−i
k ¼

Xp
k¼1

C̃kz
j−p
k AðzkÞ ¼ 0:

ð16Þ
Considering α0 ¼ 1, the above equation can be
rewritten as

Xp
i¼1

αixj−i ¼ −xj: ð17Þ

Thus, we can get p equations after taking j from pþ 1 to
q such that αi can be solved. After substituting αi
into Eq. (15), zj can be derived easily. Then the quasi-
normal modes are obtained with the relation ωj ¼
i
h lnðzjÞ. The coefficients C̃j can also be found according
to Eq. (14).
As a comparison, we further resort to the matrix method

and WKB approximation to ensure the accuracy of
numerical results. For the matrix method, after the metric
function fðrÞ is expanded by Taylor series near the event
and cosmological horizons, the boundary conditions can be
rewritten as

ϕðrhÞ ≈ ðr − rhÞ−
iω

f0ðrhÞ; ϕðrcÞ ≈ ðrc − rÞ iω
f0ðrcÞ: ð18Þ

More specifically, the wave function of the scalar field ϕðrÞ
can be transformed into YðyÞ through the following
relationship

ϕðrÞ ¼ y
− iω
f0ðrhÞ

−1ð1 − yÞ iω
f0ðrcÞ−1YðyÞ; ð19Þ

where y ¼ r−rh
rc−rh

. Correspondingly, the perturbation equa-
tions and the desired boundary conditions reduce to

b0ðω;yÞYðyÞþb1ðω;yÞY 0ðyÞþb2ðω;yÞY 00ðyÞ¼ 0;

Yð0Þ¼Yð1Þ¼ 0: ð20Þ

By discretizing the above equation, an equation with the
matrix form can be expressed as ΓðωÞY ¼ 0. The quasi-
normal modes can be determined by solving the nonlinear
algebraic equation detðΓðωÞÞ ¼ 0.
TheWKB approximation is also a semianalytic approach

to calculate the quasinormal modes. The quasinormal
modes can be derived by the six-order WKB formula,
which reads

iðω2 − Veffðr0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

effðr0Þ
p þ

X6
j¼2

Λj ¼ nþ 1

2
; ð21Þ

where the prime 0 represents the derivative with respect
to tortoise coordinate r� and r0 is the maximum
extremum of the effective potential. n is the overtone
and Λj is the higher order correction term that can be
found in [64–67].
In Tables I and II, we present low-lying quasinormal

modes for the massless neutral scalar field obtained
from the Prony method, the matrix method, and WKB
approximation. As shown in Tables I and II, the numerical
results derived by all methods are consistent with each
other, and their accuracy error is controlled within 5%,
which demonstrates the reliability of our numerical cal-
culations. Our results also indicate that the loop quantum
correction α has a significant impact on the quasinormal
modes. For both l ¼ 1 and l ¼ 2modes, as α increases, the
real part of the quasinormal frequency increases, which
implies that α can amplify the oscillation frequencies of

TABLE I. The lowest-lying quasinormal modes of l ¼ 1 with different modes, where the results are obtained by
different numerical methods for M ¼ 2 and Λ ¼ 0.01.

l ¼ 1

α Prony Matrix method WKB approximation

0 0.11229–0.04101i 0.11234–0.04103i 0.11234–0.04104i
0.08706 0.11240–0.04099i 0.11246–0.04101i 0.11246–0.04103i
0.69650 0.11323–0.04083i 0.11327–0.04085i 0.11326–0.04089i
2.35068 0.11551–0.04029i 0.11557–0.04029i 0.11557–0.04035i
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waveforms. By contrast, the magnitude of the imaginary
part decreases with an increase of loop quantum correction
α, indicating a slower dissipation of the massless neutral
scalar field. As evident from Fig. 2, we present the lowest-
lying quasinormal modes by varying the loop quantum
correction α, which further highlights the observation that
the quantum correction can increase the real part of the
quasinormal modes and decrease the magnitude of the
imaginary part. Moreover, the absence of non-negativity
in the imaginary part of quasinormal modes indicates this
quantum-modified black hole is stable against the scalar
perturbations.
In addition, we also explore the impact of the black hole

mass ratioMExt=M and the cosmological constant Λ on the
lowest-lying quasinormal modes, as shown in Fig. 3. One
observes that both the real part and the magnitude of the
imaginary part of quasinormal frequency grow with an
increase of the black hole mass ratioMExt=M. This implies
as the black hole approaches extremality, the period of
the oscillation decreases and decays faster in time. On the
contrary, as the cosmological constant Λ increases, both the
oscillation and decay of the scalar field become slower.
After comparison, it is found that a nonvanishing α can
makeΛ have a weaker effect on the decay of the field than a
vanishing α.

IV. LATE-TIME TAILS

In this section, we further explore the reactions of
the loop quantum corrected black hole under scalar
perturbations and investigate how the asymptotic behav-
iors of the late-time tail can be affected by the cosmo-
logical constant, the multipole number, the black hole
mass ratio, and the loop quantum correction. The late-
time tail dominates the last stage of the temporal
evolution of the scalar field. Past studies [68–70] indicate
that the quasinormal frequencies correspond to the poles
of Green’s function, while the late-time tail is mathemati-
cally governed by branch cuts of Green’s function in
the complex frequency plane. From a physical perspec-
tive, researchers have thought the late-time tails are
mostly determined by the asymptotics of the effective
potential at spatial infinity [58,69]. In asymptotically flat
spacetimes, since the backscattering of perturbed wave
packets from asymptotically far regions, inverse power-
law tails are mostly observed [69,71–73]. As expected, if
we remove the cosmological constant in such a model,
the radiative decay follows inverse power-law form as
shown in the top right of Fig. 4, where we present
temporal evolutions of massless scalar perturbation,
simulated by Gaussian wave packets. On the other hand,

FIG. 2. The lowest-lying quasinormal modes as a function of the loop quantum correction α with l ¼ 1 and l ¼ 2, where M ¼ 1 and
Λ ¼ 0.01 are set.

TABLE II. The lowest-lying quasinormal modes of l ¼ 2 with different modes, where the results are obtained by
different numerical methods for M ¼ 2 and Λ ¼ 0.01.

l ¼ 2

α Prony Matrix method WKB approximation

0 0.19039–0.03935i 0.19039–0.03938i 0.19039–0.03938i
0.08706 0.19057–0.03933i 0.19057–0.03936i 0.19057–0.03937i
0.69650 0.19182–0.03921i 0.19182–0.03924i 0.19182–0.03925i
2.35068 0.19539–0.03876i 0.19540–0.03879i 0.19540–0.03880i
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in asymptotically de Sitter spacetime, the late-time tail
becomes exponential. As depicted in the figure, the late-
time behavior is transformed from power-law decay to
exponential falloff in the presence of a tiny positive
cosmological constant, which is the same as that in RNdS
spacetime [41]. Currently, there is no exact analytical
formula available for the late-time behavior in de Sitter
spacetime. Among the earlier efforts, it was found that the
qualitative description of exponential decay law can be
approximately expressed as [40,41]

ϕ ≈ e−αðl;s;κcÞt; ð22Þ

where l is the multipole number. s represents the spin of
fields and κc is the surface gravity at the cosmological
horizon. Therefore, here we will discuss how different
parameters in the model affect late-time behavior in de
Sitter spacetime. In the top left of Fig. 4, we can see when
l ¼ 0, the scalar perturbations decay to a nonzero con-
stant at late times. As the multipole number l increases,
the late-time tail decays faster. These characteristics

indicate the exponential tail can easily overpower the
quasinormal frequency and purely imaginary quasinor-
mal modes show up eventually. Nevertheless, for propa-
gating scalar field with larger l, instead of a tail, what
finally emerges are the longest-lived quasinormal
frequencies, which are prolonged forever. Additionally,
one observes that the larger cosmological constant can
make the late-time tail decay faster in the top right
of Fig. 3. In the bottom left of Fig. 3, if we change
the black hole mass ratio, the curves of late-time tails are
essentially parallel, which implies the impact of the black
hole mass ratio on the late-time behavior is relatively
small. As the loop quantum correction α fades away,
this black hole can naturally return to Schwarzschild-de
Sitter spacetime. Due to the minor impact of the black
hole mass on the late-time tail, we fix M ¼ 1 in
Schwarzschild-de Sitter spacetime and fix MExt=M ¼
0.9 in other cases to study the effect of loop quantum
correction on the late-time tail. In the bottom right of
Fig. 4, it is found the loop quantum correction plays the
same role as the black hole mass ratio and the effect of

FIG. 3. Top: the lowest-lying quasinormal modes as a function of the black hole mass ratio MExt=M with l ¼ 1 and l ¼ 2, where
α ¼ 1.1663 and Λ ¼ 0.01 are set. Bottom: the lowest-lying quasinormal modes as a function of the cosmological constant Λ with l ¼ 1
and l ¼ 2, where MExt=M ¼ 0.9 and α ¼ 1.1663 are set.
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loop quantum correction is insignificant for late-time tail.
Even if the loop quantum correction disappears, it does
not have a significant impact on the behavior of the late-
time tail.

V. VALIDITY OF STRONG COSMIC CENSORSHIP

Based on the analysis above, the presence of a cosmo-
logical constant can lead to an exponential decay of
perturbations, at the same time, there is an exponential
blueshift amplification along the Cauchy horizon [36]. The
alarming fact is that the redshift effect of the remnant field
can be enough to offset the blueshift effect, which deter-
mines the fate of SCC. Therefore, it is interesting to check
the validity of SCC for loop quantum gravity black holes in
de Sitter spacetime.
Let us assume that the effective quantum action for loop

quantum gravity with a quantum scalar field Φ can be
written as:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R−2Λ
16π

þLℏðgÞ−
1

2
∇μΦ∇μΦþLℏðΦÞ

�
;

ð23Þ

where R is the Ricci scalar, LℏðgÞ is quantum corrections
related to spacetime and LℏðΦÞ is the quantum correction
part of the scalar field. In semiclassical analysis, Hollands
disregarded the term “LℏðgÞ” in Eq. (23) and investigated
the impact of quantum effects within the quantum scalar
field on the SCC in the framework of classical metric tensor
[54]. In contrast to Hollands’ approach, we, in our semi-
classical analysis, discard the term “LℏðΦÞ” in Eq. (23),
allowing us to examine the validity of SCC by considering
classical scalar fields in quantum-corrected spacetime.
To this end, we can compare the quantum effects in black
hole spacetime with that in scalar field [54] to discover
which one has a more significant impact on the SCC.
Furthermore, we are going to explore the effects of the

FIG. 4. Top left: the temporal evolution of massless scalar perturbations with MExt=M ¼ 0.9, Λ ¼ 0.001, and α ¼ 1.1663 on the
multipole number l ¼ 0, l ¼ 1, l ¼ 2, and l ¼ 10. Top right: the temporal evolution of massless scalar perturbations with l ¼ 1,
MExt=M ¼ 0.9, and α ¼ 1.1663 on the cosmological constant Λ ¼ 0, Λ ¼ 0.001 and Λ ¼ 0.01. Bottom left: the temporal evolution of
massless scalar perturbations with l ¼ 1, Λ ¼ 0.001, and α ¼ 1.1663 on the black hole mass ratio MExt=M ¼ 0.9, MExt=M ¼ 0.7, and
MExt=M ¼ 0.5. Bottom right: the temporal evolution of massless scalar perturbations with l ¼ 1 and Λ ¼ 0.001 on different loop
quantum corrections.

SHAO, ZHANG, ZHANG, and SHAO PHYS. REV. D 109, 064012 (2024)

064012-8



black hole mass ratio, the cosmological constant on the
validity of SCC for loop quantum gravity black holes under
scalar field perturbation. For research purposes, our focus
here is only on a black hole with three horizons.
Now let us consider the relationship between quasinor-

mal frequencies and the SCC. If one imposes purely
ingoing wave near the event horizon, the solution from
the equation of motion has both the outgoing and ingoing
waves near the Cauchy horizon, which can be expressed as

ϕin ≈ e−iωuðr − riÞ
iω
κi ; ϕout ≈ e−iωu; ð24Þ

where u is outgoing coordinate defined as u ¼ t − r� and κi
is the surface gravity of Cauchy horizon defined as κi ¼
j 1
2
f0ðriÞj. Obviously, the ingoing wave has nonsmooth

radial dependence, which results in the potential non-
smoothness behavior in the energy-momentum tensor of
the scalar field. Commonly, the violation of the SCC
implies the weak solution can be extended beyond the
Cauchy horizon. In other words, the energy-momentum
tensor consisting of the square of its first derivative for the
scalar field can be integrable at the Cauchy horizon, which
requires [34]

β ¼ −
Imω

κi
>

1

2
: ð25Þ

for all the quasinormal modes. On the contrary, as long as
one finds the lowest lying quasinormal modes with the
criterion β ≤ 1

2
, the SCC is preserved. Hence, in order to

check the validity of the SCC, we exclusively focus on the
lowest-lying quasinormal modes. Note that there are three
distinct families to classify the relevant quasinormal modes,
namely, the near-extremal modes with l ¼ 0, the de Sitter
modes with l ¼ 1, and the photon sphere modes with large
ls. In what follows, we are going to check the validity of the
SCC with these three modes.
As shown in Fig. 5, we present the variation of β with the

black hole mass ratio MExt=M for different cosmological
constants for the given l. When the cosmological constant
is fixed, β becomes larger and larger as the mass of the
black hole is close to the extremal limit. It was implied that
the SCC will only be violated as the mass ratio exceeds a
certain critical value. In addition, the threshold value of the
mass ratio for the violation of the SCC increases with the
cosmological constant. As a demonstration, we also plot
the variation of β with the cosmological constant Λ for
different black hole mass ratios MExt=M in Fig. 6. It was
clear that the larger the cosmological constant is, the harder
the SCC is violated. This indicates that the cosmological
constant plays an important role in recovering the SCC.
Moreover, the critical value for Λ to rescue the SCC
becomes larger with the increase of the mass ratio.

FIG. 5. The lowest-lying quasinormal modes with the frequency β ¼ −ImðωÞ
κi

as a function of the black hole mass ratioMExt=M, where
the dotted magenta horizontal line represents the threshold value β ¼ 1

2
and the dotted cyan vertical line denotes the critical value of the

mass ratio for the violation of the SCC.

FIG. 6. The lowest-lying quasinormal modes with the frequency β ¼ −ImðωÞ
κi

as a function of the cosmological constant Λ, where the
dotted magenta horizontal line represents the threshold value β ¼ 1

2
and the dotted cyan vertical line denotes the critical value ofΛ for the

restoration of the SCC.
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Finally, to display the impact of loop quantum correction
on the SCC, we present the density plots of β in the MExt

M − α
plane for Λ ¼ 0.01 and Λ ¼ 0.05 in Fig. 7. The critical
threshold β ¼ 1=2 is marked as a solid red line. Only in the
area above the solid red line can the SCC be violated. As
expected, as long as the black hole approaches the extremal
limit, the SCC is always violated. As one can see, as the
loop quantum correction increases, the critical value of the
black hole mass ratio for the violation grows larger. By
comparing the critical value of the black hole mass ratio in
the case of Λ ¼ 0.01 and Λ ¼ 0.05, we find that the
increase of the cosmological constant will cause the critical
value for the violation to increase. Put it another way, both
the cosmological constant and the loop quantum correction
can moderate the violation of the SCC. However, the
violation of SCC still persists as long as the black hole
mass ratio is abysmally close to 1. By comparing the
quantum scalar field in RNdS spacetime [54], we find both
the quantum effects in black hole spacetime and the
quantum effects in the scalar field can play a key role in
restoring the SCC. However, the quantum effects of the
scalar field have a more significant impact on SCC
compared to that in black hole spacetime. The quantum
configurations in black hole spacetime can only decelerate
the violation of SCC to a certain degree but cannot prevent
the occurrence of the violation of SCC.

VI. CONCLUDING REMARKS

In this paper, we thoroughly investigate the perturbation
of the massless neutral scalar field on a novel loop quantum
gravity black hole in de Sitter spacetime. This model is

different from classical black holes in asymptotically flat
spacetimes due to the presence of the cosmological con-
stant and the quantum correction parameter. Therefore, we
focus on studying the influence of parameters in the model
on the quasinormal modes and late-time behavior of the
scalar field. Moreover, the global structure between the
loop quantum gravity black hole and the charged Reissner-
Nordstrom black hole is roughly analogous, so we extend
the analysis of the validity of SCC for this quantum-
modified black hole in de Sitter spacetime.
To accomplish this purpose, we have performed a time-

domain analysis of scalar perturbation and extracted the
lowest-lying quasinormal modes by the Prony method. To
validate the reliability of the numerical results obtained, we
employed two numerical methods, referred to as the matrix
method and WKB approximation, for additional calcula-
tions. After all approaches were applied, we obtained
consistent results that affirm the accuracy of our data.
On the one hand, we found that the loop quantum gravity
black hole exhibits dynamic stability against scalar pertur-
bation. The effect of loop quantum correction can magnify
oscillation frequencies but moderate the decay of the
scalar field. This indicates that the loop quantum effects
might be constrained through observing quasinormal
frequencies with a long decay time in the ringdown signal.
Moreover, we investigated the effects of the black hole
mass ratio and the cosmological constant on the quasi-
normal spectrum for different multipole numbers. It has
been observed that as the black hole mass ratio increases,
both the real and imaginary parts of the quasinormal modes
increase in magnitude. This suggests that the scalar field
undergoes more rapid oscillation and dissipation as the

FIG. 7. The density plots of β in the MExt
M − α plane with Λ ¼ 0.01 (left plane) and Λ ¼ 0.05 (right plane), where the region above the

red line indicates the violation of the SCC.
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quantum-corrected black hole approaches the extreme
state. When the cosmological constant increases, it has
an opposite effect on the quasinormal modes of black holes.
Instead of speeding up the oscillation and decay rate of
scalar fields, it actually slows them down. On the other
hand, the time-domain analysis of scalar perturbation
reveals the late-time tail follows an exponential form,
which is different from that for asymptotically flat space-
time. The late-time behavior prominently depends on the
multipole number and the cosmological constant. When the
multipole number is zero, the perturbation field decays to a
nonzero constant. As the multipole number increases, the
attenuation rate of the late-time tail becomes faster.
However, there is a point where the multipole number is
large enough that the late-time response does not display a
tail anymore. Instead, it shows an infinitely prolonged
exponential quasinormal ringing. Furthermore, we observed
that the late-time behavior of the scalar field decays more
rapidly as the cosmological constant increases. Interestingly,
we also found that the effects of the black holemass ratio and
the loop quantum correction on the late-time tail are
negligible in comparison. This suggests that it might be
challenging to distinguish the presence of loop quantum
corrections in black hole spacetime solely through the
analysis of late-time ringdown signal.
In view of the intimate relationship with the stability of

the Cauchy horizon and the decay rate of the dominant
quasinormal modes, we further explored the validity of the

SCC for the quantum-modified black hole under scalar
perturbation. As a result, the SCC is always violated as long
as the black hole approaches the extremal one. Moreover,
the violation becomes increasingly challenging with the
larger cosmological constant. The critical value of the black
hole mass ratio for the violation increases with the loop
quantum correction. Thus it follows that both the cosmo-
logical constant and the loop quantum correction are crucial
in mitigating such a violation. In semiclassical analysis,
quantum effects in black hole spacetime have a smaller
impact on the SCC compared to quantum effects of
quantum scalar fields in RNdS spacetime [54]. The effect
of loop quantum correction in black hole spacetime only
serves to slow down the violation of SCC but cannot
prevent it from occurring. To have a deep understanding of
this issue, it is better to explore what the emergent classical
geometry really looks like in loop quantum gravity coupled
to the quantum scalar field. But this is utterly beyond the
scope of this paper and expected to be reported some-
where else.
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