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We provide the quantization of a charged black hole. We consider a redefinition of the scalar constraint
in order to render the algebra of constraints a Lie algebra. We apply loop quantum gravity techniques
adhered to a novel improved dynamics scheme. We show that the model is solvable in closed form. We
compute effective geometries, and show that the resulting effective space-times replace the inner horizon
with a transition surface that connects trapped and antitrapped regions within the charged black hole
interior. Quantum effects therefore stabilize the classical inner Cauchy horizons, as long as the charge is
small compared to the mass. We further discuss the properties of these effective geometries by defining an
effective stress-energy tensor out of the Einstein tensor, concluding that the null energy condition is
violated.
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I. INTRODUCTION

Black holes are ultracompact objects that have become a
trending topic of research nowadays [1,2], and the natural
focal point where we expect to find deviations from
classical general relativity. They are traditionally thought
to be a generic consequence of the gravitational collapse of
classical matter [3]. It involves the formation of a trapped
region and, ultimately, a singularity, where the classical
theory breaks down. The first solution to the Einstein
equations, describing the formation of a black hole was
obtained by Oppenheimer and Snyder [4]. It entails the
collapse of a perfectly spherical distribution of a homo-
geneous and pressureless perfect fluid (or dust cloud). The
eventual outcome of this collapse is a Schwarzschild black
hole, characterized by a spacelike curvature singularity
enclosed by a trapped region.
Initially, the status of the black hole singularity remained

ambiguous, raising questions about whether it was an
inherent outcome or a byproduct of spherical symmetry.
But it was soon established as a generic result through the
celebrated singularity theorems (see for instance [5]). These
theorems dictate that, once a trapped region forms and
specific conditions regarding energy positivity and causal-
ity are met, the collapse process inevitably goes on until a
singularity forms (in the sense of the inextendability of
incomplete geodesics). Notably, these theorems do not
provide insights into the nature of the singularity or the
causal structure enveloping it.
Actually, the internal structure of realistic black holes

seems to be notably more intricate than that portrayed by the
Oppenheimer-Snyder solution. For instance, perturbations

away from spherical symmetry result in spacelike singular-
ities with distinctive characteristics compared to their
symmetric counterparts. This is the case if one adds a small
charge or rotation to the Schwarzschild solution, resulting in
a geometry with a singularity structure that significantly
departs from an unperturbed one. For example, the Kerr-
Newman solution [6] features not only an outer apparent
horizon but also an inner one. Given that the trapped region
does not extend all the way to the singularity, the nature of
this singularity adopts a timelike character. Moreover, they
show intriguing causal features [7]. Likewise, perturbations
give rise to the mass inflation instability [8,9]. Here,
perturbations located at the inner horizon induced by
external energy fluxes result in an exponential growth of
the space-time curvature. TheCauchy horizon is replaced by
a (weak) curvature singularity [10], while the inner horizon
collapses, potentially forming a spacelike singularity at a
finite time [11]. This does not modify the external structure
of the black hole, which is puzzling from the perspective of
the no hair theorems.
Semiclassical effects may play an interesting role

when understanding the physics beyond the classical
theory [12–18]. However, we are interested in the non-
perturbative approach of loop quantum gravity (LQG)
to incorporate quantum corrections (see Refs. [19,20]
for a general viewpoint). Concretely, the quantization of
uncharged (nonspinning) space-times within the improved
dynamics scheme suggested in Refs. [21–23] allowed the
derivation of effective geometries with desirable proper-
ties. In particular, they agree very well with the exterior
geometry of a Schwarzschild black hole for macroscopic
masses, but display large corrections close to the would-be
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singularity, where curvature (including a nonvanishing
Ricci tensor) becomes Planckian, and there one finds a
transition from a trapped to an antitrapped region, in very
good agreement with [24]. Charged (nonspinning) space-
times have also been studied in Ref. [25] within LQG (see
also [26,27]). Despite there being a singularity resolution,
we lack a detailed study of the effective geometries
resulting from this quantization. Since they do not adopt
an improved dynamics scheme, one should expect they
will not show all the desirable properties mentioned above
(like Planck-order upper bounds for curvature scalars).
This will be the main motivation of this manuscript.
This paper is organized in the following way. In Sec. II

we describe the Reissner-Nordström space-time in the
classical theory. In Sec. III the kinematical aspects of the
quantum theory are described and the improved dynamics
scheme introduced. Section IV is devoted to the physical
Hilbert space and observables. The main properties of the
effective metric are discussed in Sec. V. Finally, we present
the conclusions of the analysis in Sec. VI. We also include
an Appendix with details about the solutions to the
Hamiltonian constraint.

II. REISSNER-NORDSTRÖM SPACE-TIME:
THE CLASSICAL THEORY

Here we recall the basics of gravity in spherical sym-
metry [28–33] in Ashtekar variables. The gravitational
sector consists of two pairs of canonical (gauge-invariant)
variables, Ex, Kx and Eφ; Kφ, the triad and the extrinsic
curvature, in the radial and transverse directions, respec-
tively. The Poisson brackets between the triad and the
extrinsic curvature are

fKxðxÞ; Exðx0Þg ¼ Gδðx − x0Þ; ð2:1Þ

fKφðxÞ; Eφðx0Þg ¼ Gδðx − x0Þ: ð2:2Þ

The matter sector is a spherically symmetric electromag-
netic field A ¼ ΓdxþΦdt parametrized by two configu-
ration variables Γ, Φ and their canonically conjugate
momenta, PΓ, PΦ, respectively. We assume a trivial bundle
for the electromagnetic field implying the absence of
monopoles. In the canonical treatment it is found that Φ
acts as a Lagrange multiplier, so it can be dropped as a
canonical variable (see Ref. [34] for more details). The
Poisson brackets are

fΓðxÞ; PΓðx0Þg ¼ δðx − x0Þ: ð2:3Þ

The theory has three constraints: the Hamiltonian,
diffeomorphism and electromagnetic Gauss law given by

H ¼ 1

G

�
−

Eφ

2
ffiffiffiffiffiffi
Ex

p − 2
ffiffiffiffiffiffi
Ex

p
KφKx −

K2
φEφ

2
ffiffiffiffiffiffi
Ex

p þ ððExÞ0Þ2
8

ffiffiffiffiffiffi
Ex

p
Eφ

þ
ffiffiffiffiffiffi
Ex

p ðExÞ00
2Eφ −

ffiffiffiffiffiffi
Ex

p ðExÞ0ðEφÞ0
2ðEφÞ2 þG

EφP2
Γ

2ðExÞ3=2
�
; ð2:4Þ

C ¼ G−1fðExÞ0Kx − EφðKφÞ0 − 8πPϕϕ
0g; ð2:5Þ

G ¼ −P0
Γ; ð2:6Þ

respectively. Here the prime denotes the partial derivative
with respect to x and we have set the Immirzi parameter to
one.1 The extended Hamiltonian takes the form

HE ¼
Z

dxfNH þ NxCþ λGg;

with N the lapse function, Nx ¼ gxxNx the shift vector and
λ the Lagrange multiplier of the Gauss constraint.
In order to make the constraint algebra a true Lie algebra,

one can rescale the lapse and the shift functions in the
following way:

N̄x ¼ Nx þ 2NKφ

ffiffiffiffiffiffi
Ex

p

ðExÞ0 ; ð2:7Þ

N̄ ¼ EφN
ðExÞ0 ; ð2:8Þ

so the extended Hamiltonian becomes

HE ¼
Z

dx

�
N̄

�
H̄G −

GðExÞ0P2
Γ

2ðExÞ3=2 −
2GKφΓP0

Γ

Eφ

�
þ N̄x½−ðExÞ0Kx þ EφðKφÞ0 − ΓP0

Γ� − λP0
Γ

�
; ð2:9Þ

where we have defined

H̄G ¼
� ffiffiffiffiffiffi

Ex
p

ð1þ K2
φÞ −

ððExÞ0Þ2 ffiffiffiffiffiffi
Ex

p

4ðEφÞ2 − 2GM

�0
: ð2:10Þ

The new Hamiltonian constraint (the phase space function
multiplying N̄ in the above expression) has an Abelian
algebra with itself, and the usual algebra with the diffeo-
morphism constraint and Gauss law (which remains invari-
ant after this redefinition of lapse and shift). The term 2GM,
with M the Arnowitt-Deser-Misner (ADM) mass is a
constant of integration that arises from an examination
of the theory at spatial infinity. We will now perform a
redefinition of the multiplier λ:

1For other choices of this parameter we obtain results similar to
those reported in the literature [24].
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λ → λ −
�
N̄x − 2GN̄

Kφ

Eφ

�
Γ: ð2:11Þ

With this, the Hamiltonian becomes

HE ¼
Z

dx

�
N̄

�
H̄G −

GðExÞ0P2
Γ

2ðExÞ3=2
�

þ N̄x½−ðExÞ0Kx þ EφðKφÞ0� − λðP0
ΓÞ
�
: ð2:12Þ

Now, integrating by parts the Gauss constraint, we get

HE ¼
Z

dx

�
N̄

�
H̄G −

GðExÞ0P2
Γ

2ðExÞ3=2
�

þ N̄x½−ðExÞ0Kx þEφðKφÞ0� þ λ0ðPΓ þQÞ
�
; ð2:13Þ

with the constant of integration Q being the ADM charge.
We will now redefine yet again the Lagrange multiplier for
the Gauss constraint:

λ0 →
N̄
2

GðExÞ0
ðExÞ3=2 ðPΓ −QÞ þ λ0; ð2:14Þ

so that the Hamiltonian becomes

HE ¼
Z

dx

�
N̄

�
H̄G −

GðExÞ0Q2

2ðExÞ3=2
�
þ N̄x½−ðExÞ0Kx

þ EφðKφÞ0� þ λ0ðPΓ þQÞ
�
: ð2:15Þ

For static situations we fix the electromagnetic gauge to
Γ ¼ 0, so the Lagrange multiplier λ is determined and the
Gauss law turns into a strong constraint PΓ ¼ −Q. This
leads to an extended Hamiltonian of the form

HE ¼
Z

dxðÑ H̃þN̄xCxÞ; ð2:16Þ

with

Cx ¼ G−1
Z

dx½−ðExÞ0Kx þ EφðKφÞ0�; ð2:17Þ

H̃ðÑÞ ¼ G−1
Z

dxÑ
ffiffiffiffiffiffi
Ex

p
Eφ

�
K2

φ −
	ðExÞ0
2
4ðEφÞ2

þ
�
1 −

2GMffiffiffiffiffiffi
Ex

p þ GQ2

Ex

��
; ð2:18Þ

and

Ñ ¼ −
1

Eφ ðN̄Þ0: ð2:19Þ

Each of the constraints eliminates one phase space
variable per space-time point. In order to have a fully
gauge fixed theory, we have to specify spatial coordinates
(in this case only the radial coordinate) and how the spatial
slicing is embedded in the space-time. This is equivalent to
fixing the lapse and shift functions. It is important to clarify
that for different choices one has diffeomorphically equiv-
alent solutions, so their physical content is the same. We
will restrict to the set of stationary slicings solutions for
which N̄x ¼ 0 and Ñ ¼ 0 (e.g. N̄ ¼ 1=2). Here, one can
easily solve the theory and express the basic phase space
variables in terms of two functional parameters gðxÞ, hðxÞ,
the ADM mass (M) and the charge (Q) observables as

ExðxÞ¼ gðxÞ; 	
EφðxÞ
2 ¼ ½g0ðxÞ�2=4

1þh2ðxÞþGQ2

gðxÞ −
2GMffiffiffiffiffiffi
gðxÞ

p ;

KxðxÞ¼
½h0ðxÞ�=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þh2ðxÞþGQ2

gðxÞ −
2GMffiffiffiffiffiffi
gðxÞ

p
r ; Kφ ¼ hðxÞ:

Here hðxÞ and gðxÞ [such that gðxÞ > 0 and g0ðxÞ ≠ 0]
are arbitrary functions representing the choice of coordi-
nates for stationary space-times, and requiring that the
resulting space-times are asymptotically flat, so gðxÞ¼
x2þOðx−1Þ and hðxÞ¼Oðx−1Þ when x → ∞. Considering
these conditions we have

N2 ¼ 1þ h2ðxÞ −GQ2

gðxÞ −
2GMffiffiffiffiffiffiffiffiffi
gðxÞp ;

Nx ¼ 2hðxÞ ffiffiffiffiffiffiffiffiffi
gðxÞp

g0ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2ðxÞ þ GQ2

gðxÞ −
2GMffiffiffiffiffiffiffiffiffi
gðxÞps

: ð2:20Þ

Finally, the space-time metric in spherical symmetry is
given by

ds2 ¼ −ðN2 − NxNxÞdt2 þ 2Nxdtdx

þ ðEφÞ2
jExj dx2 þ jExjdΩ2; ð2:21Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the metric of the unit
round sphere.

III. KINEMATICS AND IMPROVED DYNAMICS
IN THE QUANTUM THEORY

We begin the quantization process by recalling the basis
of spin network states in one dimension [28–31]. Consider
graphs g consisting of a collection of edges ej connecting
the vertices vj. One can construct the gravitational sector of
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the kinematical Hilbert space Hgrav
kin of the theory, charac-

terized by a basis of states jk⃗; μ⃗i, with kj ∈Z and μj ∈R,
the valences of edges ej and vertices vj, respectively. For
convenience, we will restrict our study to spin networks
such that j is an integer following a uniform sequence of
unit steps in the interval ½−S;−1� ∪ ½1; S�, with S finite and
arbitrarily large. Therefore each spin network will have a
total number of vertices 2S.2 On this basis, the kinematical
operator corresponding to the triad in the radial direction
defined on the lattice is

ÊxðxjÞjk⃗; μ⃗i ¼ l2
Plkjjk⃗; μ⃗i: ð3:1Þ

The operator corresponding to the triad in the tangent
direction is a well-defined density on vertices

ÊφðxÞjk⃗; μ⃗i ¼
X
vj

δðx − xjÞl2
Plμjjk⃗; μ⃗i: ð3:2Þ

Point holonomies Ûρj ≔ dexpðiρjKφðxjÞÞ of the connec-
tion Kφ act on vertices vj in the following way:

Ûρj jμji ¼ jμj þ ρji: ð3:3Þ

Note that there are also well-defined operators corre-
sponding to holonomies of the connection component Kx,
but, since we made the Hamiltonian Abelian, there are no
components of the curvature proportional to Kx, so we do
not need to construct them explicitly.
Now, wewill implement the improved dynamics scheme,

following similar ideas introduced by Chiou et al. [33] and
following [21]. We start approximating the components of
the classical curvature (of the real connection) by holono-
mies of finite closed loops along suitable edges generated by
the Killing vectors, such that the classical physical area
enclosed by these plaquettes equals the first nonzero
eigenvalue of the full LQG area operator Δ (the so-called
area gap). This prescription requires some knowledge from
the quantum geometry we have not yet derived, andwe hope
that at the end of the day we obtain a self-consistent and
physically sensible description. For instance, to properly
define areas and lengths, we need a metric. Here, we will
take the classical metric (in its diagonal gauge) given in
Eq. (2.21), namely, setting hðxÞ ¼ 0. Hence,

gθθðxÞ¼ExðxÞ; gxxðxÞ¼
ð½ExðxÞ�0Þ2
4ExðxÞ

1

1− 2GMffiffiffiffi
Ex

p þGQ2

Ex

: ð3:4Þ

We now define the areas of closed holonomies that
replace the components of the curvature in the quantum

theory on each vertex vj. Let us consider first a plaquette
adapted to a 2-sphere, such that its area is equal to Δ. A
2-sphere will have area 4πgθθðxÞ ¼ 4πExðxÞ. The plaquette
adapted to a 2-sphere must then satisfy

Δ ¼ 4πl2
Pljkjjρ̄2j ; ð3:5Þ

where l2
Plkj is the eigenvalue of the kinematical operator

ÊxðxÞ according to (3.1). These eigenvalues represent the
areas of the spheres of symmetry.3 Point holonomies (3.3)
of fractional length

ρ̄j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
4πl2

Pljkjj

s
ð3:6Þ

will produce a shift jμji → jμj þ ρ̄ji in a state which
depends on the spectrum of some kinematical operators.
We will adopt a more convenient state labeling jνji with

νj ¼ μj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πl2Pljkjj

Δ

q
. Point holonomies Û ρ̄j ≔ dexpðiρ̄jKφðxjÞÞ

have a well-defined and simple action on this new (single-
vertex) state basis of Hgrav

kin :

Û ρ̄j jνji ¼ jνj þ 1i: ð3:7Þ

The elements of the basis jk⃗; ν⃗i are normalized to
hk⃗; ν⃗jk⃗0; ν⃗0i ¼ δk⃗k⃗0δν⃗ν⃗0 , and kinematical operator (3.1)
remains unchanged on this basis. The volume operator
density is well-adapted on this basis:

V̂jjk⃗; ν⃗i ¼
ffiffiffiffiffiffi
Δ
4π

r
l2
Plνjjk⃗; ν⃗i: ð3:8Þ

We now consider a basis jk⃗; ν⃗;M;Qi in Hkin such that

hk⃗; ν⃗jk⃗0; ν⃗0i ¼ δk⃗k⃗0δν⃗ν⃗0δðM −M0ÞδðQ −Q0Þ: ð3:9Þ

In addition, and for the very first time in the literature,
we will introduce a second improved dynamics condition
given by holonomies that form closed plaquettes (annulus)
in the θ − x and φ − x planes. For simplicity, we set the
plaquettes in the θ ¼ π=2 plane. With respect to the
physical metric, infinitesimal lengths along the x direction
are given by the norm of the 1-form ðdxÞμ, namely,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgμνðdxÞμðdxÞνj
p ¼ ffiffiffiffiffiffiffiffiffijgxxj

p
dx, where the absolute value

has been introduced to make this expression valid even
when the 1-form ðdxÞμ becomes timelike (like in the
interior of the black hole). Those along the equator are
given to be the norm of the 1-form ðdφÞμ and have

2Note that more general spin networks can be easily consid-
ered, but the main results of our paper will not change within the
semiclassical sector.

3We remind the reader that in spherically symmetric LQG
the eigenvalues of Êx represent the area of the surfaces generated
by the corresponding Killing vectors, that is, the spheres of
symmetry.
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infinitesimal length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðdφÞμðdφÞν

p ¼ ffiffiffiffiffiffi
gθθ

p
dφ. Both in

the classical and the quantum theories, we need to specify a
choice of a radial coordinate. Following Ref. [23], we
define the radial coordinate l2

Plkj ¼ signðkjÞðx2j þx20Þ, with

xj ¼ ðjþ 1Þδx if j∈ ½−S;−1�;
xj ¼ ðj − 1Þδx if j∈ ½1; S�; ð3:10Þ

such that ðδx=lPlÞ∈N and with j ≠ 0. Note that
l2
Plkj¼�1 ¼ �x20 fixes the value of x0 to be related

with the smallest area of the spheres of symmetry. Its
value will be dynamically determined in the next section.
In turn, the spectrum of ½ðEx

jÞ0�2 can be approximated by

ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ Δ2=x20

q
þ δxÞ2. The reason for this approximation

is that we did not find a closed-form expression for it. The
previous approximated formula agrees very well with the
exact spectrum of the above operator, up to corrections of
the order Δ2=x20, which are negligible for macroscopic
black holes.
We now demand that closed plaquettes in the equator of

the innermost vertex (where we expect that quantum
corrections will be largest) enclose a physical area

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgxxðxjÞj

q
δxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθðxjÞ

q
ρjjj¼1 ¼ Δ; ð3:11Þ

recalling that δxj is the step of the radial coordinate xj of
the lattice, which here satisfies δxj ¼ δx since we choose a
uniform lattice spacing,4 and 2πρj must be understood as a

fractional (coordinate) length along the equator in the φ
direction.5 Condition (3.11) takes a complicated form in
terms of physical operators. We will study it in the next
section.
Besides, in our model, there are global degrees of

freedom corresponding to the mass M and the charge
Q of the classical space-times. For both of them, we
adopt a standard representation as the one already
provided in [25]. Concretely, a complete basis of kinemati-
cal states is given by jk⃗; ν⃗;M;Qi, normalized such that
hk⃗; ⃗ν; M; Qjk⃗0; ⃗ν0; M0; Q0i ¼ δk⃗k⃗0δ ⃗ν⃗ν0δðM − M0ÞδðQ − Q0Þ.
The kinematical operators associated with the mass M̂ and
the charge Q̂ act as multiplicative operators, namely

M̂jk⃗; ν⃗;M;Qi ¼ Mjk⃗; ν⃗;M;Qi ð3:12Þ

Q̂jk⃗; ν⃗;M;Qi ¼ Qjk⃗; ν⃗;M;Qi: ð3:13Þ

Finally, on this kinematical framework, the action of the
diffeomorphism and scalar constraints is well defined.
Regarding the diffeomorphism constraint, its action is
encapsulated in the finite diffeomorphisms (unitary trans-
formations) that map a graph into itself, but moving the
positions of the vertices of the one-dimensional manifold
they have support on.
On the other hand, following [25], the scalar constraint

can be defined by means of the quantum operator which is
given by

ĤðN̄Þ ¼
Z

dxN̄

0B@2

264
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jÊxj

q �
1þ sin2

	 dρ̄jKφðxjÞ



ρ̄2j
þ G

Q̂2

jÊxj

�
− 2GM̂

vuut
375Êφ − ðÊxÞ0ðjÊxjÞ1=4

1CA: ð3:14Þ

The operator ĤðÑÞ acts on each vertex νj of the

kinematical states jk⃗; ν⃗;M;Qi on Hkin as a first order
differential operator in the representation in which holon-
omies act as multiplicative operators. On this kinematical
Hilbert space, the action of the constraints is well defined,
and their quantum algebra is free of anomalies. The
physical states that are annihilated by this operator will
be discussed in the following section.

IV. PHYSICAL SECTOR
OF THE THEORY WITHIN

THE IMPROVED DYNAMICS

The previous kinematical description is well adapted
to the quantization procedure of [25], now within the
improved dynamics scheme of [21]. Here, the scalar
constraint is again a differential operator. Its solutions
can be obtained as in Ref. [25] (see the Appendix for
details). They represent physical states, where the labels νj
play the role of gauge parameters which determine the

5Note however that a local version of the above improved
dynamics condition (valid at all j’s) implies a restriction for the
allowed sequences of kj of the spin networks. By itself, it is an
interesting proposal that deserves to be studied separately.

4This improved dynamics condition involves vertices j ¼ 1
and j ¼ 2. One can also obtain a similar result if one instead
chooses the vertices j ¼ −1 and j ¼ −2. Another possibility is to
evaluate the improved dynamics condition by choosing the
vertices j ¼ −1 and j ¼ 1. Here the spacing of the lattice would
be 2δx. In any case, we will get qualitative agreement.
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slicing of the space-time,6 and hence are not physical.
The space of solutions can be endowed with a physical
inner product, and promoted to a Hilbert space. Here, a
basis of physical states is jk⃗;M;Qi, normalized such that
hk⃗;M;Qjk⃗0;M0; Q0i ¼ δk⃗k⃗0δðM −M0ÞδðQ −Q0Þ. The basic
physical observables are the mass M̂ and the charge Q̂,
acting on the physical states in the following way:

M̂jk⃗;M;Qi ¼ Mjk⃗;M;Qi ð4:1Þ

Q̂jk⃗;M;Qi ¼ Qjk⃗;M;Qi; ð4:2Þ

and a set of observables Ô associated with k⃗ and para-
metrized by a continuous parameter z∈ ½−1; 1�,

ÔðzÞjk⃗;M;Qi ¼ l2
PlkIntðSzÞjk⃗;M;Qi; ð4:3Þ

with 2S the total number of vertices and IntðSzÞ the integer
part of Sz. The physical observable Ô codifies the (quan-
tized) areas of the spheres of symmetry. As we did with the
kinematical states, we will consider spin networks with a
finite but large number of vertices.
In the family of states jM;Q; k⃗i, the triad can be easily

represented as physical parametrized observables as

ÊxðxjÞjM;Q; k⃗i ¼ Ô
	
zðxjÞ


jM;Q; k⃗i
¼ l2

PlkjjM;Q; k⃗i
¼ signðkjÞðx2j þ x20ÞjM;Q; k⃗i; ð4:4Þ

and its spatial derivative

½ÊxðxjÞ�0jM;Q; k⃗i ¼ l2
Pl

kjþ1 − kj
δxj

jM;Q; k⃗i; ð4:5Þ

has positive definite spectrum (with its minimum eigen-
value equal to δx).
From the expression of the Hamiltonian constraint (2.18)

we can write the square of the triad Êφ as a parametrized
observable [20]:

ðÊφðxjÞÞ2 ¼
½ðÊxðxjÞÞ0�2=4

1þ sin2ðdρjKφðxjÞÞ
ρ2j

− 2GM̂ffiffiffiffiffiffiffiffiffiffiffi
jÊxðxjÞj

p þ GQ̂2

jÊxðxjÞj

; ð4:6Þ

with KφðxjÞ playing the role of a collection of parameters,
one for each vertex, which can depend on M̂, Q̂ or ÔðzÞ.
Êφ must be a well defined self-adjoint operator.

Concretely, when sin2ðρjKφðxjÞÞ ¼ 1, it must satisfy
ðÊφÞ2 > 0, so

1þ 1

ρ̄2j
−

2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijExðxjÞj
p þ GQ2

jExðxjÞj
> 0; ∀ xj;M;Q: ð4:7Þ

Condition (4.7) leads to a minimum global eigenvalue of
jÊxðxjÞj, given by l2

Pljk�1j ¼ x20, which yields the smallest
value of the area of the 2-spheres. At this point of the lattice
we expect large quantum effects. If in addition we replace
ρ̄0 by Eq. (3.6), we can obtain the values of x0 fulfilling
inequality (4.7) by analyzing the zeros of

σ ¼ 1þ 4πx20
Δ

−
rS
x0

þ r2Q
x20

; ð4:8Þ

for a given mass, M, and a given charge, Q. Here, we have
introduced rS ¼ 2GM and rQ ¼ ffiffiffiffi

G
p

Q, in order to simplify
the notation.
If rQ is small enough compared to rS, we can find two

real positive solutions x�0 of Eq. (4.8) by setting σ ¼ 0. But,
before we focus on their physical consequences, let us note
that if we now increase r2Q, keeping rS ≫ lPl, one can see
that the two real solutions to Eq. (4.8) converge to only one.
Its value is given by

reqQ ¼ 3

8

�
Δr4S
2π

�
1=6

ð4:9Þ

or, equivalently,

xeq0 ¼ 1

2

�
rSΔ
2π

�
1=3

: ð4:10Þ

For larger values of rQ, we have σ > 0, implying that
inequality (4.7) is always satisfied and there is no restric-
tion for the values of kj.
In this work we will focus on the physical consequences

of the limiting case in which rQ ≪ rS; rS ≫ lPl. We leave
other regimes to be explored in future works (see Ref. [27]
for additional details). In the considered limit, the largest
solution to (4.8) is given by

xþ0 ¼
�
rSΔ
4π

�
1=3

−
r2Q
3rS

þO
��

lP

rS

�
4=3

�
þO

"
r4Q

Δ1=3r7=3S

#
ð4:11Þ

while the smaller solution is of order x−0 ∼ r2Q=rS. In

principle, all of the eigenvalues of the operator jÊxðxjÞj
greater than ðxþ0 Þ2 and smaller than ðx−0 Þ2 are allowed.
However, in the case in which x−0 > lPl, there will be spin
networks producing effective geometries that will show an
inner core separated from the external region with a strong
quantum character (in agreement with Ref. [27]). This will
require a more delicate analysis that we will leave for a

6In the classical theory this is equivalent to fixing Eφ with a
gauge fixing condition.
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future publication. Hence, we will consider configurations
such that x−0 <lPl. Note that this actually implies r2Q=rS <
lPl. Given that we are assuming rQ ≪ rS; rS ≫ lP, the
above condition will be likely satisfied. Therefore, the spin
networks we will consider here will only have support on
eigenvalues of the operator ÊxðxjÞ greater than ðxþ0 Þ2.
Moreover, the second improved dynamics condition (3.11)

reads as ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ2=x40

p
þ δx=2x20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rS
x0
− 1 − r2Q

x2
0

r δx
ffiffiffiffiffiffiffi
Δπ

p
¼ Δ; ð4:12Þ

and in the limit rQ ≪ rS; rS ≫ lP implies

δx ¼ 2lPlInt

�
xþ0
lPl

�
; ð4:13Þ

at leading order. All this fixes the values of the parameters x0
and δx. It is important to note that condition (4.7), which
implements the improved dynamics condition (3.5), refers to
the spectral properties of a parametrized observable in a
gauge that in the classical theory allows one to cover the
maximum extension of the space time and hence allows us to
obtain the minimum value for the areas of the spheres of
symmetry. We should note that this maximum extension is
gauge invariant by construction. On the other hand, once this
condition is solved, and the minimum value of kj is
determined, condition (4.12) refers to the second improved
dynamics condition that we must solve for δx. For it, we
choose a diagonal gauge that iswell adapted to the calculation
of lengths in the radial directions. One could think that this
condition is gauge dependent. However, we construct this
condition via scalars (norms of two 1-forms), i.e. geometrical
quantities that are independent of the gauge one chooses.
Therefore, condition (4.12) is gauge invariant.
Let us now compare this result to the uncharged case

studied in [21,35]. The equation (4.8), when rQ ¼ 0,
becomes

1þ 4πx20
Δ

−
rS
x0

¼ σ: ð4:14Þ

Setting σ ¼ 0 we can find one real positive solution to this
equation, which in the limit rS ≫ lPl is given by

xS0 ¼lPlInt

�
1

lPl

�
rSΔ
4π

�
1=3

�
; δxS¼2lPlInt

"
xS0
lPl

#
: ð4:15Þ

For values of xj < xS0 the quantity σ in (4.14) becomes
negative, so the inequality (4.7) is not satisfied. Comparing
this result with (4.11), we can see that condition (4.7) leads,
in both cases, to a minimum eigenvalue for the operator

ÊxðxjÞ both of which differ by a term of order Oðr2Q=rSÞ.
As we will see in the next section, there is an event horizon
located at lPl

ffiffiffiffiffiffiffijkjj
p ¼ rS in the uncharged case and at

lPl

ffiffiffiffiffiffiffijkjj
p ¼ rS − r2Q=rS in the charged case. The Cauchy

horizon present in the classical Reissner-Nordström black
hole is located at a value of lPl

ffiffiffiffiffiffiffijkjj
p

which is smaller than
xþ0 and is therefore inaccessible. From this discussion, we
conclude that one of the consequences of adding a small
charge to a quantum Schwarzschild black hole is merely
that of shifting its event horizon and transition surface
locations by a small amount. Besides, as we expected, the
global space-time structure will remain qualitatively equiv-
alent to the one of the uncharged black hole.

V. REISSNER-NORDSTRÖM
EFFECTIVE METRIC

Let us now construct the line element of the space-time
with the purpose of analyzing the physical aspects of the
improved dynamics and compare them with the results
of [21]. In order to do this, we are going to use the same
slicing as [21,35], which uses Eddington-Finkelstein hori-
zon penetrating coordinates such that

sin2ð dρ̄jKφðxjÞÞ
ρ̄2j

¼

�
− GQ̂2

jÊxðxjÞj þ
2GM̂ffiffiffiffiffiffiffiffiffiffiffi
jÊxðxjÞj

p
�

2

1 − GQ̂2

jÊxðxjÞj þ
2GM̂ffiffiffiffiffiffiffiffiffiffiffi
jÊxðxjÞj

p : ð5:1Þ

The operators corresponding to the metric components
are then given by

ĝttðxjÞ¼ 1þ GQ̂2

jÊxðxjÞj
−

2GM̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jÊxðxjÞj

q ;

ĝxxðxjÞ¼
0@ 	

ÊxðxjÞ

0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jÊxðxjÞj

q
1A2

; ĝθθðxjÞ¼ jÊxðxjÞj;

ĝtxðxjÞ¼−
ðÊxðxjÞÞ0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jÊxðxjÞj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jÊxðxjÞj

q −
GQ̂2

jÊxðxjÞj

vuut ;

ĝϕϕðxjÞ¼ jÊxðxjÞjsin2ðθÞ: ð5:2Þ

We will now consider a family of quantum states which are
sharply peaked in both the mass and charge and are
compatible with the restriction to a single spin network
(one-dimensional lattice). The construction of such states
can be done in an analogous way to that of [21]. They will
be peaked on rQ ≪ rS so that the minimum value for kj in
our spin network is that corresponding to (4.11). We adopt

here the approximation ½ðEx
jÞ0�2 by ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ Δ2=x20

q
þ δxÞ2

discussed in the previous section. An effective space-time
metric can then be defined as gμν ¼ hĝμνi, where the
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expectation value is computed on the states previously
mentioned and where we replace the discrete label j
by a continuous dimensionful coordinate lPlj → x∈R.7

Moreover, although the expectation values depend on
superpositions in the mass M̂ and the charge Q̂, we will
restrict ourselves to the case in which both ΔM and ΔQ are
negligible (a discussion of this point can be found in
Appendix B of [21] for the uncharged case). In this limit,
the effective metric can be written as gμν ¼ð0Þ gμν þ � � �,
where “…”means contributions proportional to ΔM2, ΔQ2

and ΔMΔQ that will be ignored. In total, we obtain the
following metric:

ð0Þds2 ≔ −fðxÞdt2 þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ Δ2=ðxþ0 Þ2
p þ xþ0

�
2	

x2 þ ðxþ0 Þ2

 dx2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðxÞ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ Δ2=ðxþ0 Þ2

p þ xþ0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
x2 þ ðxþ0 Þ2


q dtdx

þ 	
x2 þ ðxþ0 Þ2



dΩ2: ð5:3Þ

where

fðxÞ ¼ 1 −
rSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðxþ0 Þ2
p þ r2Q

x2 þ ðxþ0 Þ2
; ð5:4Þ

xþ0 is given by Eq. (4.11) and we have replaced δx
by Eq. (4.12).

A. Curvature of the effective space-time

In order to compare our results with [21] we will analyze
the properties of the curvature of the effective metric (5.3)
by computing the Ricci scalar Rμνgμν, the Kretschmann
scalarK ¼ RμνρσRμνρσ and the Ricci tensor squared RμνRμν.
Their asymptotic expressions at spatial infinity are,
respectively,

R2¼ð3rSxþ0 þ6ðxþ0 Þ2−2Δ=ðxþ0 Þ2Þ2
x8

þO
�
1

x9

�
ð5:5Þ

K ¼ 12ðrS2 þ 2rSx
þ
0 þ 2ðxþ0 Þ2Þ

x6
þO

�
1

x7

�
ð5:6Þ

RμνRμν ¼ 6ðxþ0 Þ2
x6

þO
�
1

x7

�
: ð5:7Þ

In the asymptotic region, we should note that the terms
involving Q are subdominating compared to the main
deviations from the classical theory.
In the most quantum region around x ¼ x0 (where the

curvature reaches Planck scale) and in the limit rS ≫ lPl
we obtain

R2 ¼ 144π2

Δ2
þO½r−2=3S � ð5:8Þ

RμνRμν ¼ 72π2

Δ2
þO½r−2=3S � ð5:9Þ

K ¼ 144π2

Δ2
þO½r−2=3S �: ð5:10Þ

For macroscopic black holes, several curvature scalars
reach upper bounds in the most quantum region which
are fully determined by the area gap, set in this case as
Δ ¼ 4

ffiffiffi
3

p
π, where we have set the Immirzi parameter of

LQG to be γ ¼ 1. In Fig. 1 we have plotted the three
curvature scalars, in the most quantum region for small
charges (Q ¼ 1 in natural units). Figure 1 shows the
curvature scalars for a choice of the mass parameter
corresponding to rS ¼ 2 × 1010.

B. Effective stress-energy tensor

The effective stress-energy tensor is defined as

Tμν ≔
1

8πG
Gμν; ð5:11Þ

withGμν the Einstein tensor. It codifies the properties of the
effective quantum geometries (ð0Þgμν) and can be charac-
terized by an effective energy density ρ and radial and

FIG. 1. This plot shows the square of the Ricci scalar, the
Kretschmann scalar and the Ricci tensor squared for Q ¼ 1 and a
choice of rS ¼ 2 × 1010 (in natural units).

7This approximation is well justified. See Ref. [22] for a more
detailed treatment of the discrete model. Besides, and for
simplicity, we assume x takes values in the whole real line,
although we should keep in mind that the fundamental theory has
a finite number of vertices and therefore we can only cover a large
but finite portion of the space-time.
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tangential pressures densities, px and pθ, respectively. The
components of the stress-energy tensor in the exterior
region (the region where the effective quantum geometry
has a timelike Killing vector Xμ) are

ρ ≔ Tμν
XμXν

ð−XρXρÞ
; ð5:12Þ

px ≔ Tμν
rμrν

ðrρrρÞ
; ð5:13Þ

pθ ≔ Tμν
θμθν

ðθρθρÞ
; ð5:14Þ

with rμ the vector field pointing in the radial direction and
θμ the vector field pointing in the θ-angular one. It is worth
mentioning that, on the interior region, Xμ becomes space-
like while rμ becomes timelike. This is equivalent to
reversing the role of Xμ and rμ in the previous expressions.
The asymptotic behavior of these quantities at x → ∞ is
given by

ρ ¼ r2Q þ x0ð2rS þ 3x0Þ
x4

þO
�
1

x5

�
; ð5:15Þ

px ¼ −
2x0
x3

þ −r2Q þ 3x20
x4

þO
�
1

x5

�
; ð5:16Þ

pθ ¼
x0
x3

þ 2r2Q − rSx0 − 6x20
2x4

þO
�
1

x5

�
: ð5:17Þ

We can see that the effective stress-energy tensor in the
spherical electrovacuum case falls off sufficiently fast, so
the effective metric will come closer to the Minkowski
metric at spatial infinity. The energy density and tangential
pressure include contributions from Q2.
Now, in the most quantum region and for macroscopic

black holes (x ¼ 0, rS ≫ lPl), we have

ρ ¼ O
h
r−2=3S

i
;

px ¼ −
1

Δ
þO

h
r−2=3S

i
;

pθ ¼ −
1

4Δ
þO

h
r−2=3S

i
: ð5:18Þ

The components of the stress-energy tensor of a macro-
scopic black hole reach mass-independent upper bounds
completely specified by the area gap Δ. In Fig. 2, we show
them in a neighborhood of the transition surface for
concrete values of the mass and charge.
As a final comment, let us remember that the singularity

theorems (Hawking and Penrose) are based on the null
energy condition. Here, these are given by ρþ px ≥ 0 and
ρþ pθ ≥ 0. In the most quantum region, these two con-
ditions are clearly violated from Eq. (5.18). Just as in the
uncharged case [21–23], we see that the quantum theory

contains semiclassical states that approximate general rela-
tivity coupled to an effective anisotropic fluid which violates
the hypothesis of singularity theorems. This is in accordance
with the results obtained in thiswork, namely, the elimination
of the singularity by LQG [24] and the fact that curvature
scalars reach upper bounds in the bounce completely
determined by the area gap Δ.

VI. DISCUSSION AND CONCLUSIONS

We have expanded upon the research conducted in [21]
by considering the case of a spherically symmetric black
hole with an electric charge. We have restricted our study to
the case in which the charge is small compared to the mass
of the black hole. After identifying suitable operators for
the components of the space-time metric and a suitable
family of semiclassical states we derived an effective
geometry and studied its properties. Most of the results
obtained in [21] seamlessly extend to the charged scenario:
(i) The effective metric approaches the Reissner-Nordström
geometry sufficiently fast at low curvatures; (ii) asymptoti-
cally, the curvature scalars and the energy and pressure fall
off sufficiently fast in an analogous way to that of the
uncharged case, except for the energy density which is
dominated by Q2; (iii) in the most quantum region, the
curvature scalars are bounded from above and are at most
Planck scale; and (iv) the effective energy-momentum
tensor violates the null energy condition present in the
singularity theorems. There is, however, a major difference.
In [21] it was found that there is a minimum allowed value
for the eigenvalues of the operator Êx, and this in turn
implied the elimination of the singularity for the effective
geometry obtained there. In the charged case however we
found, in the limits rQ ≪ rS; rS ≫ lP that there is an
interval ðk−0 ; kþ0 Þ of values that are not allowed so all states
have to satisfy k−0 < kj and kj > kþ0 . When constructing the
effective metric, however, we wanted to consider states

FIG. 2. This plot shows the energy and pressure densities for
Q ¼ 1 and a choice of rS ¼ 2 × 1010 (in natural units).
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which approximate a smooth geometry, and thus we restrict
the study to those with a monotonously growing sequence
of values of kj with uniform jumps (of the corresponding
radial coordinate) and such that the lowest of them is
k0 > kþ0 . The resulting semiclassical metric resembles that
of the uncharged case constructed in [21]: It features an
event horizon in agreement with the classical theory and a
minimum radius in which the curvature is maximum and
Planck order. This is a spacelike hypersurface showing a
transition from a trapped region to an antitrapped region,
reaching a future (low curvature) white-hole (Cauchy)
horizon. Hence, these semiclassical geometries can be
understood as one-way hidden wormholes in the classi-
fication given in [36]. This is unlike the classical case in
which adding an infinitesimal charge changes the basic
structure of the space-time since the classical Reissner-
Nordström metric features a (high curvature) Cauchy
horizon no matter how small the charge is. In the improved
case, this Cauchy horizon is “hidden” behind an inacces-
sible region in which quantum operators are not well
defined. In [25] it was mentioned that the discrete nature
of space-time could in principle play a role in stabilizing the
Cauchy horizon of the classical Reissner-Nordström met-
ric. The results of this work seem to point in that direction,
since in the effective metric constructed in this work,
radiation incoming from Iþ cannot reach the classical
Cauchy horizon since it is located beyond the inaccessible
region. However, incoming radiation will reach the low
curvature Cauchy horizon to the future of the antitrapped
region. This deserves a detailed study in the future.
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APPENDIX: QUANTIZATION: DYNAMICS

Starting from the expression (3.14) for the Hamiltonian
operator, it has a well defined action on kinematical states
of the form

jΨi ¼
Z

dMdQ
Y
vj

Z
π=ρ̄j

0

dKφðvjÞ

×
X
k⃗

ψðM;Q; k⃗; K⃗φÞ
M;Q; k⃗; K⃗φ

E
: ðA1Þ

Here, we adopt theKφ representation while forKx the usual
loop representation, the main reason of this choice being
the simplification of the analysis. Physical states will be
constructed out of solutions to the equation hΨjĤ†ðN̄Þ ¼ 0,
where hΨj are states defined on a dense set of the dual to the
kinematical Hilbert space. In the representation we are
adopting, we will be dealing with a collection of differential
equations rather than finite difference ones in the variables
νj, which are not solvable in closed form. Since the
Hamiltonian operator has the form of a sum of operators
acting on different vertices, we may assume

ψðM;Q;k⃗;K⃗φÞ¼
Y
j

ψ j

	
M;Q;kj;kj−1;KφðvjÞ



: ðA2Þ

It is easy to verify that the action of Êφ in the loop
representation given by (3.2), in the connection represen-
tation and under the integral becomes simply Êφ ¼
−il2

P∂=∂Kφ. Recalling the action of the operators given
by Eqs. (3.1) and (3.3), the action of the Hamiltonian
constraint on states (A2) yields

4il2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

j sin
2ðyjÞ

q
mj

∂yjψ jþl2
Pðkj−kj−1Þψ j¼0; ðA3Þ

where we have defined

yj ¼ ρ̄jKφðvjÞ;

m2
j ¼ ρ̄j

0@1 −
2GMffiffiffiffiffiffiffiffiffiffi
l2
Pkj

q þGQ2

l2
Pkj

1A;

and with ρ̄j given by (3.6). Equation (A3) can be solved
for ψ j:

ψ j

	
M;Q; kj; kj−1; KφðvjÞ



¼ exp

�
i
4
mjðkj − kj−1ÞFðρ̄jKφðvjÞ; imjÞ

�
ðA4Þ

with F a two variable function given by

FðA; BÞ ¼
Z

A

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2 sin2ðtÞ

p : ðA5Þ

While the steps followed to solve (A3) and the results
closely mirror those presented in [25], a notable distinction
lies in the dependency of the factor ρ̄j on kj, whereas
in [25], it remained a constant.
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Physical states are then given by

jχiphys ¼
Z

dMdQjM;Qi

⊗
j

�X
kj

χðM;Q;kjÞψ jðM;Q;kj;Kφ;jÞjkji
�
; ðA6Þ

where the diffeomorphism constrain has been imposed by
requiring group averaging. Besides, K⃗φ play the role of a
collection of parameters that will indicate the choice of
slicing. Kinematical states can then be promoted easily to
the physical operators (see Sec. IV). This is the case of M̂
and Q̂. Other kinematical operators must be promoted as
parametrized observables, like Êx and Êφ.

[1] B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[2] K. Akiyama et al., Astrophys. J. Lett. 875, L1 (2019).
[3] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[4] J. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
[5] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure

of Space-Time, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2011).

[6] E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A.
Prakash, and R. Torrence, J. Math. Phys. (N.Y.) 6, 918
(1965).

[7] B. Carter, Phys. Rev. 174, 1559 (1968).
[8] R. H. Price, Phys. Rev. D 5, 2419 (1972).
[9] E. Poisson and W. Israel, Phys. Rev. Lett. 63, 1663 (1989).

[10] A. Ori, Phys. Rev. Lett. 67, 789 (1991).
[11] P. R. Brady and J. D. Smith, Phys. Rev. Lett. 75, 1256

(1995).
[12] A. Fabbri and J. Navarro-Salas, Modeling Black Hole

Evaporation (World Scientific, Singapore, 2005).
[13] A. Fabbri, S. Farese, J. Navarro-Salas, G. J. Olmo, and H.

Sanchis-Alepuz, J. Phys. Conf. Ser. 33, 457 (2006).
[14] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Phys. Rev.

D 77, 044032 (2008).
[15] C. Barcelóo, V. Boyanov, R. Carballo-Rubio, and L. J.

Garay, Classical Quantum Gravity 36, 165004 (2019).
[16] J. Arrechea, C. Barceló, R. Carballo-Rubio, and L. J. Garay,

Phys. Rev. D 101, 064059 (2020).
[17] C. Barceló, V. Boyanov, R. Carballo-Rubio, and L. J. Garay,

Phys. Rev. D 102, 045001 (2020).
[18] J. Arrechea, C. Barceló, R. Carballo-Rubio, and L. J. Garay,

Phys. Rev. D 104, 084071 (2021).
[19] J. Olmedo, Universe 2, 12 (2016).

[20] R. Gambini, J. Olmedo, and J. Pullin, Handbook of
Quantum Gravity, edited by C. Bambi, L. Modesto, and
I. Shapiro (Springer, Singapore, 2023).

[21] R. Gambini, J. Olmedo, and J. Pullin, Classical Quantum
Gravity 37, 205012 (2020).

[22] R. Gambini, J. Olmedo, and J. Pullin, Phys. Rev. D 105,
026017 (2022).

[23] R. Gambini, J. Olmedo, and J. Pullin, Int. J. Mod. Phys. D
32, 2350101 (2023).

[24] A. Ashtekar, J. Olmedo, and P. Singh, Phys. Rev. D 98,
126003 (2018).

[25] R. Gambini, E. Mato, and J. Pullin, Phys. Rev. D 91, 084006
(2015).

[26] H. A. Borges, I. P. R. Baranov, F. C. Sobrinho, and S.
Carneiro, Classical Quantum Gravity 41, 05LT01 (2024).

[27] A. Alonso-Bardaji, D. Brizuela, and R. Vera, Phys. Rev. D
107, 064067 (2023).

[28] M. Bojowald, Classical Quantum Gravity 21, 3733 (2004).
[29] M. Bojowald and R. Swiderski, Classical Quantum Gravity

21, 4881 (2004).
[30] M. Bojowald and R. Swiderski, Classical Quantum Gravity

23, 2129 (2006).
[31] M. Campiglia, R. Gambini, and J. Pullin, Classical Quan-

tum Gravity 24, 3649 (2007).
[32] R. Gambini, J. Pullin, and S. Rastgoo, Classical Quantum

Gravity 26, 215011 (2009).
[33] D. Chiou, W. Ni, and A. Tang, arXiv:1212.1265.
[34] I. Bengtsson, Classical Quantum Gravity 7, 27 (1990).
[35] R. Gambini, J. Olmedo, and J. Pullin, Front. Astron. Space

Sci. 8, 74 (2021).
[36] R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M. Visser,

Phys. Rev. D 101, 084047 (2020).

ANALYSIS OF IMPROVED DYNAMICS OF NONROTATING … PHYS. REV. D 109, 064011 (2024)

064011-11

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704351
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1103/PhysRevLett.63.1663
https://doi.org/10.1103/PhysRevLett.67.789
https://doi.org/10.1103/PhysRevLett.75.1256
https://doi.org/10.1103/PhysRevLett.75.1256
https://doi.org/10.1088/1742-6596/33/1/059
https://doi.org/10.1103/PhysRevD.77.044032
https://doi.org/10.1103/PhysRevD.77.044032
https://doi.org/10.1088/1361-6382/ab2e43
https://doi.org/10.1103/PhysRevD.101.064059
https://doi.org/10.1103/PhysRevD.102.045001
https://doi.org/10.1103/PhysRevD.104.084071
https://doi.org/10.3390/universe2020012
https://doi.org/10.1088/1361-6382/aba842
https://doi.org/10.1088/1361-6382/aba842
https://doi.org/10.1103/PhysRevD.105.026017
https://doi.org/10.1103/PhysRevD.105.026017
https://doi.org/10.1142/S0218271823501018
https://doi.org/10.1142/S0218271823501018
https://doi.org/10.1103/PhysRevD.98.126003
https://doi.org/10.1103/PhysRevD.98.126003
https://doi.org/10.1103/PhysRevD.91.084006
https://doi.org/10.1103/PhysRevD.91.084006
https://doi.org/10.1088/1361-6382/ad210c
https://doi.org/10.1103/PhysRevD.107.064067
https://doi.org/10.1103/PhysRevD.107.064067
https://doi.org/10.1088/0264-9381/21/15/008
https://doi.org/10.1088/0264-9381/21/21/009
https://doi.org/10.1088/0264-9381/21/21/009
https://doi.org/10.1088/0264-9381/23/6/015
https://doi.org/10.1088/0264-9381/23/6/015
https://doi.org/10.1088/0264-9381/24/14/007
https://doi.org/10.1088/0264-9381/24/14/007
https://doi.org/10.1088/0264-9381/26/21/215011
https://doi.org/10.1088/0264-9381/26/21/215011
https://arXiv.org/abs/1212.1265
https://doi.org/10.1088/0264-9381/7/1/009
https://doi.org/10.3389/fspas.2021.647241
https://doi.org/10.3389/fspas.2021.647241
https://doi.org/10.1103/PhysRevD.101.084047

