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The space-time explorer and quantum equivalence principle space test (STE-QUEST) recently proposed,
aims at performing a precision test of the weak equivalence principle (WEP), a fundamental cornerstone of
general relativity. Taking advantage of the ideal operation conditions for high-precision quantum sensing
on board of a satellite, it aims to detect possible violations of WEP down to the 10−17 level. This level of
performance leads to stringent environmental requirements on the control of the spacecraft. We assume an
operation of a dual-species atom interferometer of rubidium and potassium isotopes in a double-diffraction
configuration and derive the constraints to achieve an Eötvös parameter η ¼ 10−17 in statistical and
systematic uncertainties. We show that technical heritage of previous satellite missions, such as
MICROSCOPE, satisfies the platform requirements to achieve the proposed objectives underlying the
technical readiness of the STE-QUEST mission proposal.
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I. INTRODUCTION

The fundamental physics of nature is described by
general relativity (GR) and the Standard Model (SM) of
particle physics [1,2]. Both theories have been separately
extensively tested without showing any discrepancy but
their unification remains an unresolved problem. The
validity of GR at the quantum level is still unknown and
the discovery of new forces beyond the SM is not excluded.
Moreover, the SM accounts only for the visible matter in
the Universe, while the dominant component of matter is
dark and its quantum nature is still unclear. On the other
hand, the SM and quantum mechanics are very successful
at explaining the microscopic phenomena, but also pose
fundamental questions such as the measurement problem
and the quantum-classical transition. The ultimate theo-
retical challenge may be to construct a theory of quantum
gravity that reconciles SM and GR, which may require
modifying or extending one or both of these frameworks.
Several quantum gravity models, unifying all nongravita-
tional interactions with gravity predict a violation of the
Einstein equivalence principle (EEP), a cornerstone of GR,

yet not a fundamental symmetry of nature. It is conse-
quently of fundamental importance to search for possible
violations of the EEP, which has three facets [3]: local
Lorentz invariance, local position invariance, and univer-
sality of free fall, also referred to as weak equivalence
principle (WEP). Schiff’s conjecture speculates that a
violation of one implies the violation of the two others
[2]. If the WEP holds, the trajectory of a freely falling,
uncharged test body only depends on the initial position
and velocity of the test body but is independent of its mass,
composition, form or spin [2]. A convenient figure of merit
for all WEP tests is the Eötvös ratio η. It quantifies the
differential free-fall acceleration of two test masses of
different composition, thereby measuring a possible vio-
lation of the WEP. Although it is a useful tool for
comparing different experiments, it cannot account for
the diversity of possible underlying theories, e.g., different
types of couplings depending on the source and test objects,
or couplings to space-time-varying background fields other
than local gravity. Thus, not only the best performance in
the Eötvös ratio is required, but also a large diversity of test
objects and source masses of different nature.
At what performance of a WEP test do we expect to see

a violation? There is no firm and widely accepted value,*These authors contributed equally to this work.
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but a number of models predict violations in the
10−10–10−22 region based on unification scenarios [4],
supersymmetry, and dark matter [5–7], or Lorentz sym-
metry breaking at the Planck scale [8]. If one also takes
into account cosmological inflation scenarios the possible
region of WEP breaking is reduced to 10−10–10−19
[7,9–11].
Much of this region (down to 10−15) is already

excluded by experiments. A major discovery may thus
be “just around the corner.” Today the best result with
classical test masses has been obtained with the
MICROSCOPE space mission at the level of η ¼ ½−1.5�
2.3ðstatÞ � 1.5ðsystÞ� × 10−15 [12] while equivalent
ground tests are ultimately limited by the Earth’s gravi-
tational environment to η ≈ 10−13 [13,14].
Quantum tests of the WEP (Q-WEP) can be performed

through matter-wave interferometry where precision mea-
surements are obtained by mapping the physical quantity
of interest (the acceleration) to a phase shift determined
using interferometric techniques. Matter-wave interferom-
eters played a key role in the development of quantum
theory [15,16] and have been widely used to accurately
determine the fine structure constant [17,18] or the
gravitational constant [19,20]. Besides testing fundamental
laws of nature, quantum sensors have been developed to
measure inertial forces and used as gravimeters, gradi-
ometers, and gyroscopes [21]. Furthermore, in order to
exploit the enhanced sensitivity of long interrogation
times, large-scale setups are currently in planning or
construction for the detection of gravitational waves and
dark matter [22–27]. Indeed, long free-fall interrogation
times already enable a Q-WEP on ground at the level of
η ¼ ½1.6� 1.8ðstatÞ � 3.4ðsystÞ� × 10−12 with different
atomic isotopes [28–32], made possible by the extremely
low expansion energies accessible with ultracold ensem-
bles [33–37]. Longer interrogation times of some tens of
seconds being accessible in space, unlock the potential of
Q-WEP tests at the level of η in the range of 10−15 to 10−17,
as explored in this paper. This outlook is supported by the
significant progress made in the last decade on the
technological readiness level of cold and ultracold atomic
inertial sensors, as demonstrated in microgravity experi-
ments in 0-g flights [38–40], drop towers [36,41,42],
sounding rockets [43–46], and on board the International
Space Station [37,47,48].
In this article, we investigate the realistic requirements

on the atom interferometer and the spacecraft platform to
perform a space-borne Q-WEP test with a dual-species
atom interferometer of 87Rb and 41K isotopes. In Sec. II we
describe the working principle of the inertial sensor. In
Sec. III we investigate the constraints on the atom inter-
ferometer environment and those on the satellite control in
Sec. IV. A discussion about the feasibility of a Q-WEP
satellite-borne test is discussed in Sec. V before concluding
in Sec. VI.

II. ATOM INTERFEROMETRY

A. Principle

Dual-species atom interferometers are powerful tools for
measuring differential acceleration by exploiting quantum-
mechanical effects. In this study, we focus on a Mach-
Zehnder double-diffraction configuration [29,49–51]. The
interferometric sequence of each species, denoted by A and
B, consists of three atom-light interaction pulses as illus-
trated in Fig. 1. A first π=2 pulse creates a coherent
quantum superposition of momentum states and leads to
a spatial separation of the interferometer arms. The tra-
jectories are then reflected by a π pulse and finally
recombined at a final π=2pulse. In between the pulses,
each superposition freely evolves for a duration Ti and
accumulates a phase leading to a final phase differenceΦi, i
being A or B. That phase difference is evaluated by
measuring the relative atom numbers at the output ports
of each interferometer, which differ only in momentum in
the case of Bragg atom-light diffraction or in momentum
and internal states in the case of Raman diffraction [51].
We write the general linear phase combination, Φgen, as

Φgen ¼ AΦA þBΦB: ð1Þ

Here A, B are freely selectable constants in the data
analysis and Φi are the unmodified raw data of the
interferometer instrument. Note that the interrogation time
of each species can differ, TA ≠ TB.

FIG. 1. Dual-species atom interferometer sequence. The space-
time diagram shows the trajectories of the two species A≡
rubidium (green solid line) and B≡ potassium (orange dashed
line) atoms. The atomic ensemble of each species is split in a
superposition of momentum state, redirected and recombined
using double diffraction π=2, π and π=2 pulses at times ½−T; 0; T�
(red arrow). Note that the pulse separation time T can differ
between both species, but we choose TA ¼ TB ¼ T (see Sec. IV
A). Td denotes the dead time and is equally split between the state
preparation and the detection time as an illustration. The output
ports of each species interferometer can be distinguished by the
different external states �ℏki and 0ℏki. The presence of an
external potential is highlighted by the dotted line in the satellite
tube along the sensitive axis of the interferometer (purple
dotted line).
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The atom interferometer phase is related to the accel-
eration in the local inertial frame through the relation

Φi ¼ 2kiaiT2
i ; ð2Þ

where ki ¼ 4π=λi is the effective wave number and ai is the
total acceleration experienced by each species. We further
decompose the acceleration ai ¼ ac þ γi, into a species-
independent acceleration ac due to, e.g., atmospheric
drag of the satellite, and a species-dependent deviation
γi ¼ gi þ ab;i. This deviation encompasses the hypotheti-
cal Q-WEP violation we want to extract, gi, plus all
spurious bias phase shift terms Φb;i that can be interpreted
as an acceleration of the form ab;i ¼ Φb;i=2kiT2

i . The
sensitivity on the Eötvös parameter is quantified by

η ¼ γA − γB
g0

; ð3Þ

with g0 denoting the gravitational acceleration at the
location of the satellite, i.e., the spatial derivative of the
Newtonian gravitational potential of the Earth at
the satellite location. That sensitivity is bound either by
the uncertainty on the bias acceleration Δδab, i.e., the
uncertainty of δab ¼ ab;A − ab;B,

1 or by the uncertainty on
the measurement itself, limited by the standard quantum
limit for classically correlated particles. This paper aims to
study the different contributions in ab;i coming from the
interferometer environment and/or the satellite platform to
highlight the requirements to test the Q-WEP at different
values of the Eötvös parameter.

B. Signal demodulation in satellite setups

Space-borne platforms allow for a long interrogation
time, Ti ≫ 1 s, and therefore high sensitivities [see
Eq. (2)]. Additionally, for space-borne setups, the projec-
tion of the gravitational potential onto the sensitive meas-
urement axis depends on the position and attitude of the
satellite. As a consequence, the differential phase shift
2ηg0kT2 is naturally modulated at certain frequencies. For
example, in the case of circular orbit with inertial attitude,
gðtÞ is modulated at orbital frequency, forb ¼ ωorb=2π.
Systematic effects modulated at different frequencies can
therefore be reduced by at least 2=ðNcTcωorbÞ, where Nc
denotes the total number of measurements and Tc the
cycle time of the measurement sequence [52,53]. Thus,
the more stringent requirements are only on systematic
effects modulated at forb.
In more detail, several strategies, listed below, can be

employed to drastically reduce the impact of a parasitic
systematic effect on the desired signal. It is worth noting
that these strategies can potentially accumulate. Here, we

consider a parasitic effect at frequency fp and amplitude
Ap, searching for a signal at frequency fsig:

(i) If fp differs from fsig, the perturbation can be
decorrelated from our science signal provided that
jfp − fsigj > 1=Tsc, where Tsc denotes the science
time. Consequently, for any parasitic periodic effect
of amplitude Ap at frequency fp, one only needs to
consider its amplitude Asys at fsig. For example, as
observed in the MICROSCOPE mission [12,54], the
dc self-gravity perturbation and its residual effect at
fsig, based on a typical thermal expansion coefficient
of 10−5/K for the satellite, and a typical peak to peak
temperature variation of about 1 K at orbital fre-
quency lead to a reduction factor of about 105. A
more precise evaluation would require a detailed
design and thermoelastic model of the satellite, and
is beyond the scope of this paper.

(ii) The effect of Asys can further be reduced by a likely
phase mismatch and controlled phase jumps, which
will be present in the searched signal but unlikely to
be fully present in the systematic effect. An inter-
esting strategy, which consists of rotating the satel-
lite by a fixed angle θR every given Norb orbits, is
discussed in more detail in Sec. IV D. Such a
strategy would relax the constraints on systematic
effects modulated at ωorb provided they are not at all,
or only partly, affected by these controlled rotations.
In Ref. [53] the authors estimate that this procedure
could lead to a further reduction factor of about 103,
mainly limited by the imperfect knowledge of the
parameters (angles, timing, …) and correlations of
the perturbation and the induced angular steps.

(iii) Finally, if the systematic effect can be modeled,
possibly with unknown parameters, its impact at fsig
can be efficiently corrected provided this effect has
also significant components at other frequencies
different from fsig, allowing the fitting of the model
parameters to the data. A prime example of this is the
effect of gravity gradients in MICROSCOPE whose
amplitude Asys at fsig could be reduced by more than
107 with respect to Ap (at fp ¼ 2fsig) by fitting the
model parameters to the data [54], although the
actual (unfitted) component Asys was only ∼103
times smaller than Ap.

To conclude, the stringent requirements that are derived
in the rest of the paper will in practice be relaxed by large
amounts. The order of magnitude of those reduction factors
is indicated in the individual sections. However, an exact
evaluation is beyond the scope of this paper as it requires a
detailed and specific satellite design.

C. Parameters of the interferometer sequence

Throughout this paper we consider a Q-WEP test at the
level of η ¼ 10−15 and η ¼ 10−17. The typical mission

1Throughout this paper we will use δ to represent the differ-
ence of two quantities, and Δ to indicate the uncertainty of a
quantity.
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parameters, as envisioned for the STE-QUEST space
mission scenarios [52,53,55], are explicitly given in
Table I and divided in three categories. The first one refers
to the satellite platform. The second one refers to interfer-
ometer sequence and includes details on the atomic species.
The last one highlights the constrains on the quantum-state
engineering of the two test masses.

III. CONSTRAINTS ON THE INTERFEROMETER
ENVIRONMENT

In this section we now focus on the constraints specific to
the interferometer environment in microgravity, even
though our treatment can be generalized to ground-based
environments. In the following, we choose the coordinate
system such that the sensitive axis of the interferometer is
along the x axis whereas the origin coincides with the initial
center of mass (c.m.) positions of the atoms.

A. Statistical error

In the case of a classically correlated atomic ensemble,
the phase sensitivity is ultimately limited to the quantum
projection noise, where the statistical uncertainty per shot is

defined as ΔΦi;SN ¼ 1=ðCi
ffiffiffiffiffi
Ni

p Þ with Ci being the contrast
and Ni the atom number of interferometer i. For a
dual-species atom interferometer, the standard quantum
noise per measurement cycle is given by ðΔδΦSNÞ2 ¼
A2ðΔΦA;SNÞ2 þB2ðΔΦB;SNÞ2, following the notation of
Eq. (1). In terms of a differential acceleration δa this leads
to the uncertainty

ðΔδaSNÞ2 ¼
�
AΔΦA;SN

2kAT2
A

�
2

þ
�
BΔΦB;SN

2kBT2
B

�
2

: ð4Þ

Integrating the measurement over Nc ¼ Tsc=Tc repeti-
tions, where Tsc is the total measurement time, Tc ¼ 2T þ
Td is the cycle time, and Td is the dead time, leads to

ðΔηÞ2 ¼ 2
ðΔδaSNÞ2
g20NcðTÞ

: ð5Þ

The extra coefficient 2 accounts for the sinusoidal varying
local value of the gravitational acceleration due to a circular
orbit [52]. Evaluating Eq. (5) with the parameters of
Table I2 shows that shot noise is below the goal for Δη
with some margin. In continuous operation the goal is
reached in ∼12 months for the η ¼ 10−15 case and ∼20
months for the η ¼ 10−17 one, well below the assumed
24 months science time.

B. Systematic effects

The presence of any kind of potential contributes to the
interferometer phase and can lead to bias acceleration
terms, ultimately limiting the sensitivity to the Eötvös
coefficient of Eq. (3). Contributions to bias phase terms are
of two kinds. On the one hand, there are effects coming
from the contribution of potential gradients, acting as
forces. On the other hand, there are effects coming from
the presence of potential energy differences inducing
Aharonov-Bohm-like phase shifts [56]. Effects of the first
kind directly act on the mean trajectories of the matter wave
while the ones of the second type do not. In this section, we
analyze the bias phase terms induced by an arbitrary
potential and derive constraints for specific effects.

1. Model of the phase accumulation

It should be noted that different approaches have been
proposed to calculate the phase shift caused by a nontrivial
potential whose scaling is more than quadratic in position
[57,58]. Here, we use the perturbative methods developed
in Ref. [57] and summarized in Appendix A. For species i,
the total accumulated phase Φi can be decomposed as

TABLE I. Operational parameters of the atom interferometer to
test the Q-WEP at the level of η ¼ 10−15 and 10−17. Note that
ðΔδx0Þ2 ¼ 2σ2r;0=N and ðΔδv0Þ2 ¼ ðσ2v;Rb þ σ2v;KÞ=N.

Parameters η ¼ 10−15 η ¼ 10−17

Mission
Orbit, altitude (km) Circular, 1400
Attitude Inertial + modulation
Gravitational acc. g0 (m · s−2) 6.6
Gravity gradient ∂g0=ð2∂rÞ (s−2) 8.5 × 10−7

Orbital frequency forb (Hz) 1.46 × 10−4

Mission duration TM (months) 36
Science time Tsc (months) 24

Interferometer
Atom number N 1 × 105 2.5 × 106

Wave number kA for Rb (nm−1) 2 × 2π=780
Wave number kB for K (nm−1) 2 × 2π=767
Interrogation time 2T (s) 9 50
Maximum separation Rb (m) 0.11 0.59
Maximum separation K (m) 0.23 1.27
Cycle time Tc (s) 15 60
Total number of measurements Nc 2.5 × 106 7.9 × 105

Contrast C 1

Atomic source
Differential initial c.m. position
δx0 (μm)

1� 0.45 1� 0.45

Differential initial c.m. velocity
δv0 (μm · s−1)

1� 0.39 0.1� 0.03

Expansion energy (pK) 50 10
Expansion velocity σv;Rb (μms−1) 70 31
Expansion velocity σv;K (μms−1) 101 45
Initial position spread σr;0 (μm) 100 500

2We choose the acceleration free combination A ¼
2kB=ðkA þ kBÞ and B ¼ −2kA=ðkA þ kBÞ, see Sec. IVA, thus
A ≈ −B ≈ 1.
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Φi ¼ Φi;0 þΦi;pert; ð6Þ

where Φi;0 and Φi;pert denote respectively the unperturbed
phase induced by a quadratic potential and the momentum
transfer, as well as a perturbative phase contribution. In the
following, we consider a polynomial potential of orderN of
the form

ViðxÞ ¼
XN
n¼1

ci;nxn; ð7Þ

which can be seen as an expansion of an arbitrary potential
around the initial c.m. position of the atoms x0 ¼ 0. In this
study we only consider the contributions up to orderN ¼ 4.
The coefficients ci;n also include an index for the species
that account for species-dependent potentials discussed
below. Appendix A features the derivation of Φi;pert for a
perturbative potential for a single atomic species. The
contribution of terms beyond N ¼ 4 in lowest order can
easily be obtained using Eq. (A8). When working with
different expansion coefficients, one has to check of course
the required order of the perturbative expansion, as shown
in the example given in Ref. [57].
Since the species have different masses mi, different

effective wave numbers ki, different interrogation times Ti,
different initial positions x0;i, velocities v0;i, position
widths σx;i, and velocity widths σv;i, we equip all quantities
with index i and find the phase

Φi ¼−
2kiT2

i

mi
ci;1−2

2kiT2
i

mi
xiðTiÞci;2þ κici;3

þ4

�
κixiðTiÞþ

kiT2
i

mi
ð4x3i ðTiÞ−2T3

i v0;iσ
2
v;iÞ

�
ci;4; ð8Þ

with abbreviation

κi¼−
kiT2

i

mi

�
6x2i ðTiÞþ6σ2x;iþT2

i

�
v20;iþ

�
ℏki
mi

�
2

þ7σ2v;i

��
;

ð9Þ

and xiðTiÞ ¼ x0;i þ v0;iTi.
In the following we calculate the constraints on the

expansion coefficients ci;n including their uncertainties
Δci;n by imposing that the uncertainty in the differential
acceleration for each order n be below the target uncer-
tainty, i.e.,

ΔδaðnÞ ¼ Δ
�

ΦðnÞ
A

2kAT2
A
−

ΦðnÞ
B

2kBT2
B

�
≤ ηg0; ð10Þ

for a self-gravity potential, blackbody radiation, as well as
the second-order Zeeman effect.

Higher-order coefficients give rise to a separation phase
depending on the differential position, δx0, and velocity,
δv0. The uncertainties in these values, Δδx0 and Δδv0, lead
to requirements on ci;n and Δci;n (see Appendix A 3). By
conducting ν0 additional characterization measurements of
the c.m. positions, these uncertainties, and consequently the
requirements, can be reduced by a factor of 1=

ffiffiffiffiffi
ν0

p
[59].

Note that we do not assign an uncertainty to ki, Ti, and mi
as they are known sufficiently well to not be limiting (see,
e.g., Sec. IVA 3).

2. Self-gravity potential

An inhomogeneous distribution of the satellite’s mass
yields a gravitational potential inducing a spurious bias
phase shift limiting the sensitivity to a possible WEP
violation. To study this effect we expand the gravitational
potential of the satellite around a point corresponding to the
nominal position x0 ¼ 0 of the c.m. of the BECs. For
simplicity, we only focus our analysis along the sensitive
axis of the experiment, where the effect is largest. We write
the Newtonian gravitational potential of a spherically
symmetric source mass acting on the atoms as

Vi;SG ¼ −
GMmi

xM

�
1þ

XN
n¼1

�
x
xM

�
n
�
; ð11Þ

whereG is the gravitational constant,M is the source mass,
mi is the mass of the atoms, x is the position of the atoms,
and xM is the position of the source mass. Comparing
Eq. (11) to Eq. (7), one has ci;n ¼ −GMmi=x

nþ1
M , ∀ n∈N.

Table II provides constraints on the different self-gravity
contributions and their uncertainties that are synchronous
with the signal. Note that, as discussed in Sec. II B, the
corresponding static constraints, i.e., the actual knowledge
of the satellite’s mass distribution, are up to 8 orders of
magnitude less stringent.
While for even n the maximum allowed coefficients,

cn;max, are of the same order as their uncertainties, Δcn;max,
for odd nwe findcn;max that are several orders of magnitude
larger than Δcn;max (see n ¼ 3 in Table II). In practice, e.g.,

TABLE II. Maximum allowed self-gravity variations and their
maximum allowed uncertainties that are synchronous with the
WEP violation signal, given in terms of cn ¼ GM=xnþ1

M for
η ¼ 10−15 and η ¼ 10−17. Note that the knowledge of the static
self-gravity coefficients may be up to 8 orders of magnitude less
stringent [cf. (i) and (ii) of Sec. II B].

η ¼ 10−15 η ¼ 10−17

n cn;max Δcn;max cn;max Δcn;max Unit

2 7.5 × 10−10 2.1 × 10−10 1.3 × 10−11 3.4 × 10−12 s−2

3 1.2 × 1012 6.4 × 10−13 2.3 × 1010 2.1 × 10−16 m−1 · s−2

4 9.5 × 10−8 2.7 × 10−8 5.1 × 10−11 1.4 × 10−11 m−2 · s−2
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anM ¼ 0.1 kgmass imbalance atxM ¼ 1 mdistance causes
coefficients cn ¼ 6.7 × 10−12m−nþ2 s−2 which lie in the
range ofΔcn;max and comply with the requirements stated in
Table II for all n and η ¼ 10−17. Similarly, the maximum
allowed temperature and magnetic field gradients (see next
sections) are much larger than expected in reality, in
particular for odd n, and primarily given for completeness.
It should be emphasized here that the n ¼ 2 coefficient is

a local gravity gradient which can be compensated the same
way as the Earth’s gravity gradient following the gravity
gradient cancellation method discussed in Refs. [52,60].

3. Blackbody radiation

The effect of thermal radiation leads to blackbody
radiation (BBR) acting as an extra external potential of
the form [61],

Vi;BBRðxÞ ¼
2αiσ

cϵ0
T4
tubeðxÞ; ð12Þ

where αi is the static polarizability of atomic species i, σ the
Stephan-Boltzmann constant, ϵ0 the vacuum permittivity,
and T tubeðxÞ the temperature profile inside the vacuum tube
at position x along the sensitive axis. To calculate the effect
we expand T tubeðxÞ around x0 ¼ 0 analogously to Sec. III
B 2. We write T tubeðxÞ ¼

P∞
0 tnxn. Comparing Eq. (12) to

Eq. (7), one has to leading order in t0 the coefficients
ci;n ¼ 8σαit30tn=ðcϵ0Þ, ∀ n∈N. The constraints on the
temperature gradients that vary synchronously with the
signal are given in Table III.
Note that the onboard temperature gradients are expected

to vary mainly at orbital frequency and its harmonics.
Because of the phase modulation of the signal by controlled
rotations, as discussed in point (ii) in Sec. II B, the error in
the knowledge of the amplitude of that variation could be
up to 3 orders of magnitude less stringent than the
constraints given in Table III.

4. Second-order Zeeman effect

We consider an interferometer sequence operated with
atoms in the mF ¼ 0 state and is thus up to first order
insensitive to magnetic effects. Here, we study the impact
of the second-order Zeeman effect on the differential phase
shift [62]. The potential induced by the presence of
magnetic field can be written as

Vi;BðzÞ ¼ πℏχiB2
tubeðxÞ; ð13Þ

where χi is the second-order Zeeman coefficient of atomic
species i and BtubeðxÞ is the magnetic field inside the
vacuum tube at position x along the sensitive axis. We
evaluate the effect of the magnetic field gradients the same
way as in the previous sections, i.e. we expand the magnetic
field in a series expansion BtubeðxÞ ¼

P∞
0 bnxn and cal-

culate constraints on the coefficients bn. The constraints on
the magnetic field gradients that vary synchronously with
the signal are given in Table IV.
In the case of a circular orbit, the main time variation of

B2
tubeðxÞ will be at 2forb because of the dipolar nature of the

Earth’s magnetic field, and thus decorrelate well from the
EP-violating signal at forb. The effect can therefore be
modeled and subtracted [cf. (ii) of Sec. II B] additionally to
the reduction by about 3 orders of magnitude because of the
phase modulation of the signal by controlled rotations
[point (ii) in Sec. II B].
We emphasize here that magnetic field gradients below

the nT=m level [63] are achieved on 30 cm scales on the
ground, in a much more perturbed magnetic environment
than in space, and at a few nT=m over 10 m scales [30,64].

IV. CONSTRAINTS ON THE SPACECRAFT

Accelerations and rotations of the satellite can directly
translate into additional phase shifts in the interferometric
measurement. We now derive the corresponding require-
ments on spurious accelerations and rotations of the
spacecraft.

TABLE III. Requirements on the temperature gradients and
their uncertainties that vary synchronously with the signal. Here
we assume an average temperature of t0 ¼ 283 K with uncer-
tainty Δt0 ¼ 1 mK and an average temperature gradient of
t1 ¼ 5 mK=m [54]. Numerical values have been obtained for
a static polarizability of the atoms: αRb ¼ 2πℏ × 0.0794 ×
10−4 Hz V−1 m2 and αK ¼ αRb=1.1 [62]. Note that the con-
straints on the purely orbital component may be up to 3 orders
of magnitude less stringent [cf. (ii) of Sec. II B].

η ¼ 10−15 η ¼ 10−17

n tn;max Δtn;max tn;max Δtn;max Unit

1 2.5 × 10−5 2.5 × 10−7 Km−1

2 3.6 1.0 6.1 × 10−2 1.6 × 10−2 Km−2

3 1.3 × 106 2.1 × 10−3 3.4 × 104 6.8 × 10−7 Km−3

4 3.1 × 102 1.1 × 102 1.6 5.6 × 10−2 Km−4

TABLE IV. Requirements on the magnetic field gradients and
their uncertainties that vary synchronously with the signal. We
assume here b0 ¼ 100 nT with uncertainty Δb0 ¼ 50 pT and
b1 ¼ 6 nT=m. From Ref. [62] we have χRb ¼ 575.14 ×
108 Hz=T2 and χK ¼ 15460 × 108 Hz=T2. Note that the knowl-
edge of the main component at 2forb may be up to 3 orders of
magnitude less stringent [cf. (ii) of Sec. II B] and can be measured
independently of the signal [cf. (iii) of Sec. II B].

η ¼ 10−15 η ¼ 10−17

n bn;max Δbn;max bn;max Δbn;max Unit

1 2.2 × 10−3 2.2 × 10−5 nTm−1

2 9.8 × 102 2.8 × 102 1.6 × 101 4.5 nTm−2

3 1.1 × 108 3.4 × 10−1 3.0 × 106 1.1 × 10−4 nTm−3

4 6.6 × 106 2.2 × 104 1.8 × 105 1.1 × 101 nTm−4
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A. Acceleration

1. Systematic effect

Any common accelerations of the two test masses can be
suppressed by carefully choosing the experimental param-
eters as well as combining the phase shifts for each species
in an optimal way [see Eq. (1)]. An obvious choice would
be A ¼ 1 and B ¼ −1 leading to the direct subtraction of
both phases. However, a more rigorous analysis reveals that
we can exploit this freedom to construct a differential phase
shift observable that is nonsensible to common acceler-
ations. The transfer function of the differential atom
interferometer phase, Φgen in Eq. (1), defining the response
of the interferometer with respect to vibrational noise is
given by [65]

HðωÞ ¼ −4i
h
2AkAsin2ðωTA=2Þ þ 2BkBsin2ðωTB=2Þ

i
:

ð14Þ

The response to common accelerations can be reduced to
zero by setting T ¼ TA ¼ TB and AkA ¼ −BkB. To keep
A ≈ −B ≈ 1, we choose A ¼ 2kB=ðkA þ kBÞ and B ¼
−2kA=ðkA þ kBÞ such that

Φgen ¼
2kB

kA þ kB
ΦA −

2kA
kA þ kB

ΦB: ð15Þ

Rewriting the accelerations as ai ¼ ac � anc � ηg0=2,
where ac (anc) encompasses all the common (noncommon)
accelerations between the two species and where aη is the
extra acceleration due to a violation of the WEP, one has

Φgen ¼
4kAkB
kA þ kB

ð2anc þ ηg0ÞT2: ð16Þ

The combination is insensitive to any common acceler-
ations ac, but the sensitivity to ηg0 stays approximately
untouched assuming kA ≈ kB.
Of course, the performance of the acceleration free

combination defined by Eq. (15) relies on the exact
knowledge of the wave numbers ki. Assuming that this
knowledge is limited up to an uncertainty Δki, leads to an
uncertainty in the differential phase of

ΔδΦgen ¼ 4
kBΔkA − kAΔkB

kA þ kB
aðtÞT2; ð17Þ

where aðtÞ ¼ aAðtÞ ¼ aBðtÞ is the residual acceleration of
the satellite common to both species. We require that the
component of ΔδΦ that is modulated with orbital fre-
quency stays below the Eötvös signal. Thus, we find

jΔkA=kA − ΔkB=kBj × aðtÞjωorb
≤ ηg0; ð18Þ

leaving a requirement on the relative knowledge Δki=ki for
a given aðtÞjωorb

. Note that the laser frequency is well
known and the uncertainty Δki is dominated by pointing
errors [66].

2. Acceleration noise

Although any common accelerations are suppressed by
the acceleration free combination, Eq. (15), we require that
the phase shift induced by acceleration noise stays within a
certain region around midfringe, i.e., the point of maximum
phase sensitivity. We quantify this requirement by setting
ΔΦa

i ≤ π=10, where ΔΦa
i is the uncertainty in the phase

shift due to acceleration noise with power spectral density
(PSD) SaðωÞ [65],

ðΔΦa
i Þ2 ¼

Z þ∞

0

SaðωÞ
ω4

����8kisin2
�
ωT
2

�����
2

dω≤
�
π

10

�
2

: ð19Þ

The integration can be restricted to an area ω∈
½2π=Tc; 2πfcutoff �, where Tc is the cycle time of the
measurement. At high frequencies the linear acceleration
transfer function drops steeply as shown in Fig. 2, so we
can limit the integration up to a certain cutoff fcutoff . At low
frequencies, ΔΦa reduces to the variance of the atom-
interferometer phase 2kihaiT2, where hai is the average
acceleration during the interrogation time of the atoms. We
emphasize here that the slowly varying acceleration noise
can be approximated by a low-order polynomial and used
to suppress the noise in following measurements by feed
forwarding the information to the laser frequency. In order
to stay at midfringe, the change in acceleration in-between
cycles should follow the inequality,

hΦ̇ii ¼ 2kiT2hȧiTc ≤ π=10; ð20Þ

where hΦ̇ii is the average change of the interferometer
phase from one cycle to the next.

FIG. 2. Linear acceleration transfer function, HxðωÞ=ω2 ¼
8k sin2ðωT=2Þ=ω2, Eq. (19), for the 87Rb atom interferometer
using the parameters in Table I. It shows constant behavior for
low frequencies and drops steeply ∼f−2 at high frequencies
f ≫ 2=T. The frequency cutoff fcutoff up to which the integration
in Eq. (19) is performed is marked in dotted green.
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3. Application

The acceleration free combination, Eq. (15), ensures that
any accelerations that are common to both species are
suppressed, leaving only the requirement on the knowledge
of the relative wave numbers, Eq. (18). Taking the drag-free
controlled MICROSCOPE satellite as an example [67], no
residual acceleration exceeding aðtÞjωorb

> 10−12 m=s2 was
observed, implying that ðΔkA=kA − ΔkB=kBÞ ≤ 6.6 × 10−5

is sufficient to reach η ≤ 10−17, well within the reach of
present day laser systems.
The midfringe requirement leads to requirements on the

single-species atom interferometer acceleration noise.
Table V features the constraints evaluated for the param-
eters in Table I assuming white acceleration noise and
using fcutoff ¼ 0.5 Hz.

B. Rotation

Systematic and statistical effects due to rotations are not
suppressed by the acceleration free combination, Eq. (15),
and, thus, are of particular interest when setting constraints
on the platform.
We now investigate the configuration shown in Fig. 3 to

derive the phase shifts induced by rotations of the mirror or
the spacecraft. We work in an inertial frame whose origin
coincides with the center of mass of the satellite for all
times t. The orientation is chosen such that the sensitive
axis of the interferometer is aligned with the x axis when
the atoms are released. The mirror is assumed to be
rectangular with a thickness of dM with its center of mass
positioned at rM. Small rotations of the mirror θM simply
add to the effect of the rotation of the satellite θS such that
the overall rotation can be defined as θðtÞ ¼ θMðtÞ þ θSðtÞ.

1. Systematic effect

Spurious rotations of the spacecraft cause additional
accelerations scaling with the initial kinematics of the
atoms. We first derive constraints on the angular velocity
of the satellite by looking at the case of a constant rotation
rate Ω, θðtÞ ¼ Ωt around the z axis (see Fig. 3).
Using geometric considerations, the atom interferometer

phase can be derived (see Appendix B):

Φi ¼ 4kivy;0;iΩT2þ2kiðrx;0;i−vx;0;iðTþT0ÞÞðΩTÞ2; ð21Þ

to second order in ΩT. Here T0 is the dead time,
corresponding to the time between release and first laser

pulse, and ra;0;i (va;0;i) denotes the atoms’ initial position
(velocity) in the a∈ fx; y; zg direction.
When calculating the differential phase according to

Eq. (15), the dependencies on the individual initial kin-
ematics directly translate into dependencies on the differ-
ential initial kinematics. Any systematical uncertainty must
be below the target signal at ωorb. Thus, we find the
following requirement on the satellite’s angular velocity at
orbital frequency:

Ωjωorb
≤ ηg=ð2δvy;0Þ; ð22Þ

for the first order in Eq. (21). The second order leads to a
requirement on Ω2 at orbital frequency

Ω2jωorb
≤ ηg=δrx;0;

Ω2jωorb
≤ ηg=ðδvx;0ðT þ T0ÞÞ; ð23Þ

which translates into a requirement on Ω at half the orbital

frequency:Ωjωorb=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2jωorb

q
and other cross terms of the

form Ωjω1
Ωjω2

, where jω1 � ω2j ¼ ωorb.
3

FIG. 3. Schematic representation of the experimental setup
inside the satellite. Initially, the inertial frame coincides with
the satellite frame. After release, the satellite undergoes rotations
θSðtÞ whereas the mirror (blue) is rotated by θMðtÞ. The laser
head’s position (red) is fixed in the satellite frame. The x axis of
the inertial frame is chosen to be initially parallel to the sensitive
axis of the interferometer (dashed). The incident and reflected
laser beam is marked as a red line. The atoms’ position is marked
in green and orange.

TABLE V. Constraints on spurious linear accelerations of the
spacecraft for η ¼ 10−15 and η ¼ 10−17.

Quantity Equations η ¼ 10−15 η ¼ 10−17 Unitffiffiffiffiffi
Sa

p
(19) 3.5 × 10−9 4.1 × 10−10 m=s2=

ffiffiffiffiffiffi
Hz

p
hȧi (20) 3.2 × 10−11 2.6 × 10−13 m=s3

3Suppose the angular velocity is modulated according
to Ωjω1

¼ Ω1 cosðω1tÞ and Ωjω2
¼ Ω2 cosðω2tÞ, where

jω1 � ω2j ¼ ωorb. Then it follows that Ωjω1
Ωjω2

¼
Ω1Ω2½cosððω1 − ω2ÞtÞ þ cosððω1 þ ω2ÞtÞ�=2. In particular,
jω1 � ω2j ¼ ωorb leads to Ωjω1

Ωjω2
¼ ðΩ2Þjωorb

.
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2. Rotation noise

In the following, we consider arbitrary satellite rotations
θðtÞ to give constraints on rotational noise and derive
further suppression techniques.
Up to first order in θðtÞ, the atom interferometer phase is

given by (see Appendix B)

Φi ¼ 2ki½r̃y;iðT0Þθð−TÞ − 2r̃y;iðT0 þ TÞθð0Þ
þ r̃y;iðT0 þ 2TÞθðTÞ�; ð24Þ

where r̃y;iðtÞ ¼ ry;0;i þ ðvy;0;i þ rx;0;iΩ0Þt denotes the
atom’s position in the rotated reference frame with Ω0 ¼
dθ=dtjt¼0 and t is the time after release.
The corresponding transfer function is obtained by

taking the Fourier transform of the sensitivity function
associated to the signal of Eq. (24),

HθðωÞ ¼ 4kAB½−2iðδry;0 þ δvy;0ðT0 þ TÞÞ sin2ðωT=2Þ
þ δvy;0T sinðωTÞ�; ð25Þ

where kAB ¼ 2kAkB=ðkA þ kBÞ. The uncertainty of the
differential phase induced by rotations θ of the satellite
is then given by

ðΔδΦθ̈Þ2 ¼
Z þ∞

0

jHθðωÞj2
Sθ̈
ω4

ðωÞdω; ð26Þ

where Sθ̈ðωÞ is the power spectral density of angular
acceleration noise.
We require that any uncertainty in the differential phase

induced by rotational noise of the satellite per cycle must be
below the shot noise limit (see Sec. III A):

ΔδΦθ̈ ≤ ΔδΦSN ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2B þ k2A

p
kA þ kB

1ffiffiffiffi
N

p ≈
ffiffiffiffi
2

N

r
: ð27Þ

We can restrict the integration in Eq. (26) to
ω∈ ½2π=Tc; 2πfcutoff � as for high frequencies the transfer
function drops steeply (see Fig. 4). For low frequencies
ω < 2π=Tc the uncertainty reduces to the Coriolis phase
4kABδvy;0hΩiT2, where hΩi is the average value of θ̇ during
the atom interferometer sequence. This can be treated as
a systematic effect resulting in a requirement on hΩi
[see Eq. (22)].
Additional noise constraints arise from the midfringe

requirement and from the coupling of the atoms’ finite
velocity spread to hΩi inducing shot to shot noise. The
requirement to stay at midfringe is treated the same way as
low frequency acceleration noise by feed forwarding the
results of previous measurements. This yields a require-
ment on the average phase change per cycle,

hΦ̇i ¼ 4kiT2vi;y;0 ˙hΩiTc ≤ π=10: ð28Þ

Additional phase noise arises due to the limited knowledge
of the atoms’ kinematics. The shot to shot phase noise
induced by the position and velocity uncertainty Δri;0 and
Δvi;0 is required to be smaller than the shot noise,

�
4kiT2

σv;iffiffiffiffi
N

p hΩi
�

2

þ
�
2kiT2

σr;iffiffiffiffi
N

p hΩ2i
�

2

≤
1

N
; ð29Þ

assuming a shot noise limited process of determining the
atoms’ mean position and velocity: Δri;0 ¼ σr;i=

ffiffiffiffi
N

p
and

Δvi;0 ¼ σv;i=
ffiffiffiffi
N

p
[59].

3. Application

Table VI lists the constraints coming from rotations of
the spacecraft including their evaluation using the param-
eters of Table I assuming white angular acceleration noise
and using fcutoff ¼ 0.5 Hz in Eq. (26). Note that, in
particular for Ωjωorb

and Ωjωorb=2, these requirements do
not take into account the phase modulation of the signal by
controlled rotations [point (ii) of Sec. II B] and thus could
be relaxed by about 3 orders of magnitude.

FIG. 4. Angular acceleration transfer function, Eq. (25), using
the parameters in Table I. For low frequencies f ≪ 2=T it
behaves as f−1 while for larger frequencies f ≫ 2=T it follows
f−2, similar to the linear acceleration transfer function (see
Fig. 2). The frequency cutoff fcutoff up to which the integration
in Eq. (26) is performed is marked in dotted green.

TABLE VI. Constraints on angular velocity for η ¼ 10−15 and
η ¼ 10−17. Note that, in particular for Ωjωorb

and Ωjωorb=2, these
requirement could be relaxed by about 3 orders of magnitude
when applying phase modulation as described in point (ii) of
Sec. II B.

Quantity Equations η ¼ 10−15 η ¼ 10−17 Unit

Ωjωorb
(22) 3.3 × 10−9 3.3 × 10−10 rad=s

Ωjωorb=2 (23) 3.8 × 10−5 5.1 × 10−6 rad=sffiffiffiffiffi
Sθ̈

p
(27) 8.4 × 10−6 3.2 × 10−7 rad=s2=

ffiffiffiffiffiffi
Hz

p
˙hΩi (28) 1.6 × 10−5 1.3 × 10−7 rad=s2

hΩi (29) 7.5 × 10−6 5.4 × 10−7 rad=s
hΩ2i (29) 1.5 × 10−5 9.8 × 10−8 rad2=s2
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C. Orbit control

The error mitigation techniques as well as the extraction
of the target signal rely on the knowledge of the local
gravitational potential. Since the inertial quantum sensor
performs a local differential measurement, orbit errors only
play a role via perturbing effects from external factors. An
error in the knowledge of the satellite’s position at the time
of a measurement directly translates to an error due to an
incorrect estimation of the corresponding differential gravi-
tational acceleration and its gradients.

1. Model

To analyze the effect of an orbit uncertainty we utilize a
satellite simulator which enables us to study the effects of
statistical and systematic uncertainties in the satellite’s orbit
or attitude. The simulator, called SQUID (satellite-based
quantum systems for inertial sensing and discovery of new
physics), allows to synthetically generate a space-borne
atom interferometer signal and also analyze it assuming
arbitrary orbit and attitude configurations. Here, we gen-
erate a realistic signal using a distorted orbit and fit it using
a model assuming a perfect, i.e., circular, orbit to study
orbit uncertainty induced limitations.
We implement orbit distortions using the Hill model

which characterizes the position errors (for weakly eccen-
tric orbits) at time t according to [68]

ΔRðtÞ ¼ 1

2
X cosðωorbtþ φRÞ þ cR;

ΔTðtÞ ¼ −X sinðωorbtþ φRÞ −
3

2
ωorbcRtþ dR;

ΔNðtÞ ¼ Y cosðωorbtþ φNÞ; ð30Þ

where (ΔR, ΔT, ΔN) denotes the uncertainty in the (radial,
tangential, normal) axis. X, Y, cR, and dR are amplitude
coefficients. For example, a radial uncertainty with X > 0

relates to an eccentricity of e ¼ ffiffiffiffiffiffiffiffi
X=r

p
, where r is the

radius of the inertial circular orbit. A deviation from the
circular orbit, e.g., one leading to e > 0, introduces addi-
tional components of the gravity gradient that are modu-
lated with the orbital frequency [52].
The signal under consideration is given by

δΦðtjÞ ¼ 2½ηgxðtjÞ þ δrx;0ΓxxðtjÞ�kABT2; ð31Þ

where Γxx is the xx component of the gravity gradient
and x equals the direction of the sensitive axis of
the interferometer assuming an inertial attitude. The
signal is sampled at certain satellite positions rSðtjÞ
where tj marks the times a measurement is performed:
tj ∈ ½0; Tc;…; Tsc�.
To perform the analysis, a signal is generated according

to Eq. (31) using positions rS computed for a circular orbit
with a distortion given by Eq. (30). To estimate the

uncertainty introduced by the distortion, we perform a
least squares analysis of this signal using a fit model
assuming an undistorted circular orbit (see Appendix C).

2. Application

To estimate the maximum allowed orbit distortion for the
STE-QUEST mission proposal, we initialize the unper-
turbed orbit as circular with the parameters stated in Table I
(η ¼ 10−17). We will focus on X because distortions along
the radial and tangential axis directly couple into the signal
through the gravity gradient. The normal axis is always
perpendicular to the sensitive axis and will lead to less
stringent requirements. The simulation was carried out with
input values of η ¼ 10−17 and δrx;0 ¼ 1 μm. The result of
the analysis, i.e., the resulting fitted values and uncertain-
ties of η and δrx;0 as a function of X, is depicted in Fig. 5. It
is clearly visible that the correct value for δrx;0 is recovered
in the fit with an uncertainty of �0.05 nm, independent of
the orbit error X ≤ 103 m. The resulting η, however, drifts
away from the expected value η ¼ 10−17 for increasing
orbit errors X. After X ≈ 250 m, the expectation value
leaves the confidence interval of the fit. This would
correspond to a requirement on the maximum tolerable
eccentricity, e ≈ 5.6 × 10−3.
Note that this analysis does not take any attenuation

techniques into account. Normally, the satellite’s position is
measured together with the differential acceleration leading
to a requirement only on the knowledge of the orbit’s
eccentricity.

FIG. 5. Orbit control analysis. The signal was generated using
η ¼ 10−17 and δrx;0 ¼ 1 μm. The fit was performed for various
distortion strengths X [see Eq. (30)] while every other parameter
in Eq. (30) was set to zero. Each blue point corresponds to ten fits
with different white noise that have been averaged. The error bars
represent the standard deviation of the ten fits.
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D. Attitude control

The decorrelation technique (see Sec. II B) to decouple
the signal at interest, i.e., ηgxðtÞ, from spurious effects
modulated at the same frequency relies on the control of the
satellite’s attitude. By periodically performing discrete
rotations of the satellite during the science time, we
introduce phase jumps in the Eötvös signal ηgxðtÞ that
help to decorrelate it from external influences modulated at
orbital frequency that are not affected by these rotations.
These rotations, however, need to be controlled up to a
certain level to not introduce additional systematics reduc-
ing the sensitivity of the sensor. Here, we exploit SQUID to
analyze uncertainties in these satellite rotations and set
requirements on the attitude control system.

1. Model

For the numerical analysis, we proceed similarly as in
Sec. IV C. Here, the synthetic signal includes the WEP
violation plus some spurious accelerations,

δΦðtjÞ ¼ 2
h
ηgxðtjÞ þ δaDC þ δaorbðtjÞ

i
kABT2; ð32Þ

where tj ∈ ½0; Tc;…; Tsc� denotes the times a measurement
is performed. The linear gravitational acceleration gxðtjÞ ¼
gx½rSðtjÞ; θðtjÞ� is determined by the satellite’s position rS
and attitude θ at time tj. δaDC denotes a spurious constant
differential acceleration while δaorbðtjÞ is modulated at
orbital frequency, i.e., δaorbðtjÞ ¼ δaorb;max cosðωorbtjÞ.
Note that both of these additional differential accelerations
are assumed to be immune to changes in the satellite’s
attitude.
Here, we focus on a circular orbit where the satellite is

kept inertial but rotated by 10°þ Δθm every 50 orbits. Δθm
denotes the rotation noise that is drawn from a Gaussian
distribution with zero mean and standard deviation σΔθ
every time the satellite is rotated. To this signal, we
additionally add atomic shot noise. The model matrix is
constructed as in Eq. (C2) assuming rotations of the
satellite without any noise: Δθm ¼ 0, ∀ m. Finally, we
fit the signal using our model for the free parameters η,
δaDC, and δaorb;max for various noise levels σΔθ.

2. Application

In the following, wewill consider the parameters of STE-
QUEST (see Table I, η ¼ 10−17) to set a requirement on the
attitude control system with a focus on the decorrelation
technique defined in Sec. II B. The result of this analysis is
depicted in Fig. 6. Here, we iterate over different rotation
noise strengths σΔθ and try to recover the Eötvös parameter,
η, a constant differential acceleration, δaDC, and a differ-
ential acceleration modulated at orbital frequency, δaorb;max,
from the noisy signal. The signal is generated using
η ¼ 10−17, δaDC ¼ g0 × 10−9 and δaorb;max ¼ g0 × 10−14

as these correspond to the orders of magnitude of
uncertainties in the differential acceleration induced by
blackbody radiation and magnetic fields (dc effects) and
by self-gravity gradients (alternating current effect) (see
Sec. III B). The differential acceleration signals δaDC and
δaorb;max could be recovered independent of the rotation
noise σΔθ ∈ ½10−5; 10−1�∘. The Eötvös parameter, however, is
only recovered up to an uncertainty of 10−17 for rotation
noise below a few 0.01°, which is well within reach of
standard star trackers and attitude control systems.

V. FEASIBILITY

In this section, we want to summarize and compute the
previously derived requirements for the parameters in
Table I. The technical readiness level of a mission like
STE-QUEST greatly benefits from the heritage of platform
stability systems of previous missions. Thus, we also
evaluate the requirements by analyzing the environment
of previous and current missions, i.e., MICROSCOPE,
LISA Pathfinder (LPF), and GRACE-FO.4

FIG. 6. Attitude control analysis. The signal was generated
using Eq. (32) for η ¼ 10−17, δaDC ¼ 6.6 × 10−9 m=s2, and
δaorb;max ¼ 6.6 × 10−14 m=s2. Each row displays the fit result
for the respective parameter that is shown for various attitude
noise levels σΔθ. The orange points show the target values,
whereas the blue points show the recovered value from the fit.
The error bars represent the standard deviation of the ten fits.

4Note that, contrary to MICROSCOPE and LPF, GRACE-FO
has no active drag-free control, and we only use the performance
of the onboard accelerometer [69] as an estimate of the expected
residual satellite accelerations.
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Table VII summarizes the constraints for STE-QUEST
as well as the results for MICROSCOPE, LPF, and
GRACE-FO. For MICROSCOPE, we use the PSD of
differential acceleration given in Ref. [70], as the
satellite drag-free system is servocontrolled by one test
mass, thus the differential acceleration between the test
masses acts as an out of loop sensor for residual
spacecraft accelerations. The rotation PSD is obtained
from Ref. [67], based on star-tracker data. For LPF
and GRACE-FO, we use the PSDs presented in
Refs. [69,71], respectively. Integrating the PSDs together
with the respective transfer functions [Eqs. (19) and
(26)] using a frequency band of f∈ ½1=Tc;∞Þ directly
yields the uncertainty in the phase for a measurement of
the differential acceleration. The quantities h·i in
Table VII, which are requirements on the fluctuations
in between cycles, are evaluated by integrating the
respective PSD using frequencies smaller than the cycle
frequency, i.e., f∈ ð0; 1=Tc�. The angular velocity com-
ponent modulated at orbital frequency, Ωjωorb

, is obtained
by Ωjωorb

¼ Sθ̈ðωorbÞ=ω2
orb=Tobs, where Sθ̈ is the angular

acceleration PSD that was obtained from a measurement
with duration Tobs, analogously for Ωjωorb=2.
In conclusion, most of the requirements are met with

some margin, proving the technical readiness level of even
a Q-WEP test at the η ¼ 10−17 level. For LPF, the change
in the average linear acceleration in-between measure-
ments, hȧi, is about twice as large as the requirement.
However, this is limited by out of loop noise on LPF,
which could be reduced by acting on the laser frequency,
which allows increasing the loop bandwidth. The same
method can be applied to handle the slightly too large
value of GRACE-FO.

VI. CONCLUSION

We have studied the platform requirements for a
satellite-based dual-species atom interferometer testing
the WEP beyond current state-of-the-art measurements. In
particular, we have derived the rotation, acceleration, and

orbit control requirements that a satellite needs to fulfill in
order to allow a measurement of the Eötvös parameter η to
the unprecedented sensitivity of 10−17. We have demon-
strated that the performance of previous (MICROSCOPE
and LPF) and current (GRACE-FO accelerometer) satel-
lite missions is sufficient to achieve the proposed
sensitivity, underpinning the technical readiness of the
STE-QUEST mission.
Additionally, we have derived requirements on self-

gravity, temperature, and magnetic field control inside
the satellite at the payload location. To do so we have
evaluated the effect of perturbing potentials up to order 4 of
a polynomial expansion in position, which is beyond the
reach of “standard” methods (e.g. [72]).
Ultimately, missions using atom interferometry are

limited by atomic shot noise and the necessarily finite
number of atoms that can be cooled and used. We anticipate
that the development of entangled atomic source strategies
[73–76] could reduce the constraints on the satellite plat-
form and/or lead to better sensitivity to a violation of WEP.
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TABLE VII. Requirements on satellite accelerations and rotations for η ¼ 10−15 and η ¼ 10−17. Both scenarios feature different atom
interferometer sequences given in Table I. The constraints are checked by analyzing the data from MICROSCOPE ([70] for acceleration
and [67] for rotation data), LISA Pathfinder (LPF) [71], and GRACE-FO [69]. Note that ΔΦa

i and ΔδΦθ̈ are evaluated at frequencies
fTc > 1 whereas the quantities h·i are constraints on smaller frequencies fTc < 1.

Quantity Equations η ¼ 10−15 MICROSCOPE LPF GRACE-FO η ¼ 10−17 MICROSCOPE LPF GRACE-FO Unit

ΔΦa
i (19) π=10 0.01 0.11 0.003 π=10 0.02 0.22 0.03 rad

hȧi (20) 3.2 × 10−11 1.0 × 10−12 5.3 × 10−11 2.0 × 10−12 2.6 × 10−13 7.6 × 10−14 5.4 × 10−13 3.0 × 10−13 m=s3

Ωjωorb
(22) 3.3 × 10−9

a
1.2 × 10−8 4.0 × 10−10 � � � 3.3 × 10−10

a
1.2 × 10−8 4.0 × 10−10 � � � rad=s

Ωjωorb=2 (23) 3.8 × 10−5
a 3.7 × 10−8 3.8 × 10−10 � � � 5.1 × 10−6

a 3.7 × 10−8 3.8 × 10−10 � � � rad=s
ΔδΦθ̈ (27) 4.5 × 10−3 2.1 × 10−5 1.9 × 10−6 � � � 8.9 × 10−4 2.6 × 10−5 1.5 × 10−6 � � � rad
hΩi (29) 7.5 × 10−6 1.3 × 10−9 2.9 × 10−10 � � � 5.4 × 10−7 3.9 × 10−11 4.5 × 10−12 � � � rad=s
hΩ̇i (28) 1.6 × 10−5 4.1 × 10−9 8.8 × 10−10 � � � 1.3 × 10−7 5.9 × 10−10 5.0 × 10−11 � � � rad=s2

aCan be relaxed by a factor 103 to address the modulation of the EP-violating signal (cf. (ii) of Sec. II B).
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(AI-Quadrat), No. 50RK1957 (QGYRO), No. 50WM2177
(INTENTAS), as well as No. 50NA2106 (QGYRO+).

APPENDIX A: PHASE SHIFT CALCULATIONS

The phase shift Φ of a single atom interferometer arises
from the overlap of two wave packets that traveled along
different arms of the interferometer. This propagation is
encoded in the unitary time-evolution operator Ûj asso-
ciated with arm j ¼ 1, 2 that ends in the considered exit
port. It includes the relevant momentum transfer at the
points of atom-light interaction, as detailed below. In a
typical geometry, both arms are generated from the same
initial wave packet jψi, so that the expectation value of the
overlap reads

O ¼ hψ jÛ†
1Û2jψi ¼ V expðiΦÞ; ðA1Þ

where we have defined the visibility V. There are different
methods to calculate the phase shift, such as in phase
space [77,78] or using path integrals [56,58,72,79],
as well as representation-free [80,81] and perturbative
techniques [57].

1. Path integrals

The most commonly used method is based on path
integrals [72], where the overlap is usually obtained in
position representation with ψðξÞ ¼ hξjψi so that it takes
(in one dimension) the form

O ¼
ZZZ

dxdξ1dξ2ψ�ðξ1Þhξ1jÛ†
1jxihxjÛ2jξ2iψðξ2Þ: ðA2Þ

In principle, the propagator can be calculated by path
integrals

hxjÛjjξji ¼
Z

x

ξj

DX expðiSj½X�=ℏÞ; ðA3Þ

where the action functional Sj½X� depends on the
Hamiltonian that describes the motion along arm j, so that
Eq. (A2) corresponds to the influence functional [82,83].
For an exact description the complete path integral has to be
evaluated, and so far there is no connection to a classical
trajectory, let alone the classical action, since the evaluation
requires an integration over all trajectories X. Hence, the
path integral is in general not associated with any vanishing
variation of the action [84].
However, one can write X ¼ xj þ ν, where xjðtÞ is the

classical trajectory with initial condition ξj and νðtÞ are
fluctuations with vanishing initial conditions. Expanding
the action around the classical trajectories xj, the linear
order of expansion vanishes since the classical trajectory
follows Euler-Lagrange equations. Hence, one arrives
[85] at

hxjÛjjξji ¼ expðiSj½xj�=ℏÞ
Z

Dν expðiδSj½ν�=ℏÞ ðA4Þ

with

δSj½ν� ¼
∂
2Sj

2∂x2j
ν2 þ ∂

2Sj
2∂ẋ2j

ν̇2 þ ∂
2Sj

2∂xj∂ẋj
νν̇þ � � � ; ðA5Þ

where the derivatives are evaluated at ν ¼ 0 and the
remaining path integral is the fluctuation integral. It can
be calculated exactly for linear potentials and is indepen-
dent of initial and final conditions. Since the momentum
transfer that acts during beam splitter and mirror pulses can
be modeled by a linear potential, a calculation for simple
cases of atom interferometers is straightforward.
For a symmetric double-diffraction Mach-Zehnder inter-

ferometer with interrogation time T and acceleration a that
closes in phase space, one arrives at a phase

ðS2−S1Þ=ℏ¼ 2kaT2þΦLð−TÞ−2ΦLð0ÞþΦLðTÞ ðA6Þ

and no further phase contributions arise from the fluc-
tuation integral. In this case, one can associate the phase
with the difference of classical action S2 − S1. Here, ΦLðtÞ
is the laser phase at time t and its discrete second derivative
enters the phase.
Moreover, the fluctuation integral can also be evaluated

for general quadratic Lagrangians, and hence, as an
approximation for higher orders using the method of
stationary phase. However, in this case the observed phase
difference depends not solely on the difference of actions,
because the wave packets do not generally overlap perfectly
in phase space [86] and a separation phase occurs [58]. In
addition, depending on the particular potential, the shape of
the wave packets might change and lead to additional
contributions. Nevertheless, one can use path integrals to
calculate perturbative effects of rotations and quadratic
potentials [72].
Such techniques can be used for phase estimations that

are based on classical actions, also for potentials beyond
quadratic order and without explicitly evaluating the
fluctuation integral [56]. While these approaches give some
insight into possible phase contributions, they are effec-
tively semiclassical.
When evaluating the difference of actions between both

classical trajectories, the virial theorem can be used to
express the corresponding integrals solely through the
midpoint trajectory ðx1 þ x2Þ=2 and the arm separation
x1 − x2 for a linear potential [87]. One can also perform an
expansion of the potential around this midpoint trajectory
in orders of the arm separation [58]. This way, one obtains a
convenient tool for a calculation of the action difference,
but not for obtaining the exact Feynman propagator for
arbitrary potentials by evaluating the fluctuation integral.
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One can circumvent such problems by treating weak
potentials as a perturbation.

2. Perturbative operator method

We rely on a perturbative but operator-valued method
following the work of [57]. Let us assume that the
Hamiltonian inducing the motion along arm j takes the
form Ĥj ¼ Ĥj þ V̂. The first, unperturbed contribution,

Ĥj ¼
p̂2

2m
− ℏ

X
l

½kðlÞj x̂þΦðl;jÞ
L ðtÞ�δðt − TlÞ;

includes the momentum transfer kðlÞj on arm j of pulse l at
time Tl (being equal to −T, 0, and T respectively at the
first, second, and third pulse), and we have included the

corresponding laser phase Φðl;jÞ
L in this effective potential.

Moreover, we assume that the perturbing potential has the
form

Vðx̂Þ ¼
XN
n¼1

cnx̂n ðA7Þ

that also incorporates a linear term, which accounts for
perturbative accelerations and, in particular, accelerations
in microgravity.
We then change into the interaction picture [57] with

respect to the unperturbed Hamiltonian Ĥj to calculate the
overlap fromEq. (A2).Wemake use of the fact that the phase
for a closed [86], unperturbed atom interferometer can be
trivially calculated, e.g., using path integrals [72] as
described above or by an representation-free method [80].
The remaining part of the overlap amounts to perturba-
tively calculating the Schwinger-Keldysh closed-time-
path Green’s function, which is equivalent to evaluating
the influence functional known from the path-integral
formalism [83]. Using a combination of Magnus expansion
and cumulant expansion, one can show [57] that Φ ¼
ΦLð−TÞ − 2ΦLð0Þ þΦLðTÞ þΦpert, directly obtained from
the overlap, consists of a phase induced by the unperturbed
Hamiltonian and additional perturbations Φpert that can be
divided into two contributions, namely

Φpert¼−
1

ℏ

Z
T

−T
dt½Vðx1ðtÞÞ−Vðx2ðtÞÞ�

−
1

2ℏ

Z
T

−T
dt

�
∂
2V
∂
2x

����
x1ðtÞ

−
∂
2V
∂
2x

����
x2ðtÞ

�h
σ2xþσ2vt2

i
: ðA8Þ

Here, xjðtÞ describes the classical unperturbed trajectory
along arm j, i.e., the one induced by the classical analog of
Ĥj. Moreover, σ2x is the initial width in position of the wave
packet and σ2v is its initial velocity width. For this form, we
have assumed that there is initially no correlation between

position and momentum. The first contribution is just the
perturbing potentialV evaluated at the classical, unperturbed
trajectories of both arms, whereas the second contribution
accounts for imperfect overlap of wave packets due to their
deformation.
We find for harmonic, cubic, and quartic perturbations,

i.e., for N ¼ 4, in a double-diffraction Mach-Zehnder
interferometer

Φpert ¼ −
2kT2

m
c1 − 2

2kT2

m
xðTÞc2 þ κc3

þ 4

�
κxðTÞ þ kT2

m
ð4x3ðTÞ − 2T3v0σ2vÞ

�
c4; ðA9Þ

with the abbreviation

κ ¼ −
kT2

m

�
6x2ðTÞ þ 6σ2x þ T2

�
v20 þ

�
ℏk
m

�
2

þ 7σ2v

��

and xðTÞ ¼ x0 þ v0T, where x0 and v0 correspond to the
initial expectation value of position and velocity, respec-
tively. In particular, we observe that wave packet defor-
mations arise for cubic potentials, whereas for quadratic
potentials initial conditions enter because the perturbation
causes the interferometer to open [86]. The first term that
stems from linear potentials has exactly the form 2kaT2

discussed in Eq. (A6).

3. Deriving constraints on the potential’s coefficients

In order to reach the proposed target uncertainty, we
require that each spurious phase shift induced by the
different coefficients of the potential in Eq. (A7) is smaller
than the Eötvös signal 2ηg0kABT2. It should be noted that
the coefficients cn scale different parameters in the differ-
ential phase:

δΦ ¼ δΦ1ðki; T;miÞc1 þ δΦ2ðki; T;mi; x0;i; v0;iÞc2

þ
XN
j¼3

δΦjðki; T;mi; x0;i; v0;i; σx;i; σv;iÞcj; ðA10Þ

where i marks the species and assuming cn is species
independent. The terms that are independent of statistical
parameters can be suppressed by knowing the value of cn
up to an uncertainty Δcn leaving

Δδϕ ¼ jδΦ1jΔc1 þ
XN
j¼2

½jΔδΦjðΔδx0;Δδv0Þjcj

þ jδΦjðδx0; δv0ÞjΔcj þ jΔδΦjðΔδx0;Δδv0ÞjΔcj�;
ðA11Þ

where ΔδΦjðΔδx0;Δδv0Þ ¼ j∂δΦj=ð∂δx0ÞjΔδx0 þ j∂δΦj=
ð∂δv0ÞjΔδv0. Note that this is a pessimistic treatment.
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Since most of these contributions are uncorrelated, the
favorable quadratic sum would also suffice.
Thus, we get requirements on the nominal values cn for

n > 2 and on the uncertainties Δcn for all n:

cj ≤ 2ηgkABT2=jΔδΦjj; j∈Nnf1g
Δcj ≤ 2ηgkABT2=ðjδΦjj þ jΔδΦjjÞ; j∈N: ðA12Þ

For some applications, the potential might not only be
linear in the coefficients of interest. For example, for the
blackbody radiation potential we find

VBBRðxÞ ¼
2αiσ

cϵ0
T4
tubeðxÞ; T tubeðxÞ ¼

X
n¼0

tnxn ðA13Þ

yielding cn ¼ fðftmgnm¼0Þ, where f denotes an arbitrary
function. Thus, the constraints on tn are codependent where
the constraint on tn depends on the value of tn−1,

tj≤2ηgkABT2=ΔδΦjðftmgj−1m¼0Þ; j∈Nnf1g;
Δtj≤2ηgkABT2=ðj∂tjδΦðftmgnm¼0Þjþj∂tjΔδΦðftmgnm¼0ÞjÞ;

j∈N: ðA14Þ

This set of equations can be solved by assuming values for
t0, Δt0 and t1. The second-order Zeeman effect can be
treated analogously.

APPENDIX B: DERIVING THE ANGULAR
ACCELERATION TRANSFER FUNCTION

For the following derivation of the angular acceleration
transfer function, we look at the configuration shown in
Fig. 3 and work in an inertial frame whose origin coincides
with the center of mass of the satellite for all times t. The
orientation is chosen such that the sensitive axis of the
interferometer is aligned with the x axis when the atoms are
initialized. The mirror is assumed to be rectangular with a
thickness of dM with its center of mass positioned at rM.
Small rotations of the mirror θM simply add to the effect of
the rotation of the satellite θS such as the overall rotation
is θðtÞ ¼ θMðtÞ þ θSðtÞ.
In the inertial frame, the effective wave vector reads ki ¼

−ki × ðcos½θðtÞ�; sin½θðtÞ�ÞT and the initial velocity of the
atoms is defined as v0 ¼ ṽ0 þΩ × r̃0. For simplicity, initial
accelerations are neglected. Here, r̃0 and ṽ0 denote the
initial position and velocity of the atoms in the rotating
satellite frame. The resulting interferometer phase, Φi,
can be deduced from the effective laser phase ϕiðtÞ ¼
kiðtÞ · riðtÞ, where kiðtÞ and riðtÞ are respectively the
effective wave vector and the c.m. position of species i at
pulse at time t∈ f−T; 0; Tg. We find

ϕiðtÞ¼ kiðr̃x;iðT0þTþ tÞ− ðrM;xþdMÞÞ

þkir̃y;iðT0þTþ tÞθðtÞ−1

2
kir̃x;iðT0þTþ tÞθðtÞ2

þOðθðtÞ3Þ; ðB1Þ

where r̃x;iðtÞ ¼ rx;0;i þ ðvx;0;i − ry;0;iΩ0Þt and r̃y;iðtÞ ¼
ry;0;i þ ðvy;0;i þ rx;0;iΩ0Þt denote the atoms’ position in
the rotated reference frame and T0 is the dead time
measuring the duration from the release of the atoms
until the first laser pulse at t ¼ −T is applied. Ω0 ¼
dθ=dtjt¼−T0−T denotes the angular velocity of the satellite
at the release of the atoms. In the final atom interferometer
phase,Φi ¼ 2½ϕið−TÞ − 2ϕið0Þ þ ϕiðTÞ�, all terms that are
constant or linear in time vanish:

Φi ¼ 2ki½r̃y;iðT0Þθð−TÞ − 2r̃y;iðT þ T0Þθð0Þ
þ r̃y;iðT0 þ 2TÞθðTÞ� þ OðθðtÞ2Þ: ðB2Þ

The sensitivity function of the differential phase δΦ [see
Eq. (15)] for a jump in the satellite rotation ΔθðtÞ at time t
is defined as [65]

gθðtÞ ¼ lim
Δθ→0

ΔδΦðΔθðtÞÞ
ΔθðtÞ : ðB3Þ

Inserting Eq. (B2) yields

gθðtÞ ¼ 2kAB ×

8>>><
>>>:

0; t < −T
−ðδry;0 þ δvy;0T0Þ; −T < t < 0

ðδry;0 þ δvy;0ðT0 þ 2TÞÞ; 0< t < T

0; t > T;

ðB4Þ

where kAB ¼ 2kAkB=ðkA þ kBÞ. With this, we immediately
obtain the corresponding transfer function by taking the
Fourier transform of the sensitivity function [65]:

HθðωÞ ¼ 4kAB½−2iðδry;0 þ δvy;0ðT0 þ TÞÞsin2ðωT=2Þ
þ δvy;0T sinðTωÞ� ðB5Þ

APPENDIX C: ANALYZING SYSTEMATIC
UNCERTAINTIES USING THE SATELLITE

SIMULATOR

In this section, we go into more detail of how the SQUID
simulator analyzes systematic and statistical uncertainties,
using the orbit analysis in Sec. IV C as an example. The
signal under consideration is given by

δΦðrSÞ ¼ 2½ηgxðrSÞ þ 2δrx;0ΓxxðrSÞ�kABT2; ðC1Þ
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where rS denotes the satellite’s position and Γxx is the xx
component of the gravity gradient. For simplicity, we focus
only on Γxx, but this can easily be extended to include the
other components. Note that in the following the signal is
sampled at certain satellite positions rSðtiÞ where ti marks
the times a measurement is performed: tiþ1 ¼ ti þ Tc.
For the numerical analysis, we construct the model used

for the fit according to

M ¼ 2

0
BB@

gxðrSðt0ÞÞ ΓxxðrSðt0ÞÞ
� � � � � �

gxðrSðtn−1ÞÞ ΓxxðrSðtn−1ÞÞ

1
CCAkT2; ðC2Þ

for the free parameters pf ¼ ðη; δrx;0ÞT such that δΦ ¼
ðδΦðrSðt0ÞÞ;…; δΦðrSðtn−1ÞÞÞT ¼ M · pf.
Our analysis is performed in the following steps:
(1) Generate a signal δΦ̃ðrS þ ΔrSÞ assuming a certain

value for η and δrx;0 [see Eq. (C1)] for a distorted
circular orbit according to the Hill model
ΔrS ¼ ðΔR, ΔT, ΔN) [see Eq. (30)] that is addi-
tionally subject to white noise (i.e., atomic shot
noise).

(2) Generate a model matrix M according to Eq. (C1)
using the undistorted circular orbit from item 1.

(3) Fit the generated signal (item 1) using the model
(item 2) for the free parameters η and δrx;0 for
various distortion strengths ΔrS.

The fit can be obtained by a generalized least squares
(GLS) analysis where the best possible estimate of the free
parameters pf is obtained by

pGLS
f ¼ ðMTΩ−1MÞ−1MTΩ−1δΦ̃; ðC3Þ

whereΩ is the covariancematrix andvGLS ¼ ðMTΩ−1MÞ−1
the variance-covariance matrix. Assuming a white noise
model, Ω reduces to Ω ¼ σ1 where σ is the width of the
distribution. In this case, the analysis simplifies to the
ordinary least squares (OLS) method defined as

pOLS
f ¼ ðMTMÞ−1MTδΦ̃ ðC4Þ

with its variance-covariance matrix being vOLS ¼
σ2ðMTMÞ−1.
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Damien Boulanger, Ratana Chhun et al., MICROSCOPE
satellite and its drag-free and attitude control system,
Classical Quantum Gravity 39, 204003 (2022).

[68] Loïc Duchayne, Flavien Mercier, and Peter Wolf, Orbit
determination for next generation space clocks, Astron.
Astrophys. 504, 653 (2009).

[69] Bruno Christophe, Damien Boulanger, Bernard Foulon,
P.-A. Huynh, Vincent Lebat, Francoise Liorzou, and E.
Perrot, A new generation of ultra-sensitive electrostatic
accelerometers for grace follow-on and towards the
next generation gravity missions, Acta Astronaut. 117, 1
(2015).

[70] Hélène Pihan-le Bars, Christine Guerlin, Aurélien Hees,
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