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We present NRPMw, an analytical model of gravitational-waves from neutron star merger remnants
informed using 618 numerical relativity (NR) simulations. NRPMw is designed in the frequency domain
using a combination of complex Gaussian wavelets. The wavelet’s parameters are calibrated to equations of
state (EOSs) insensitive relations from NR data. The NR simulations are computed with 21 EOSs (seven of
which are finite-temperature microphysical models, and three of which contain quark phase transitions or
hyperonic degrees of freedom) and span total binary massesM∈ ½2.4; 3.4�M⊙, mass ratios up to q ¼ 2, and
(nonprecessing) dimensionless spins magnitudes up to 0.2. The theoretical uncertainties of the EOS-
insensitive relations are incorporated in NRPMw using recalibration parameters that enhance the flexibility
and accuracy of the model. NRPMw is NR faithful with fitting factors ≳0.9 computed on an independent
validation set of 102 simulations.
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I. INTRODUCTION

This work is the first of a series of papers that present a
faithful and complete (inspiral-merger-postmerger) model
for gravitational-wave (GW) signals from binary neutron
star (BNS) mergers, and its application to GW analyses
with the third-generation Einstein Telescope (ET) detector
[1–5]. Our model builds on a state-of-art effective-one-
body (EOB) approach for the inspiral-merger regime [6–9]
and on its numerical relativity (NR) completion for the
remnant’s emission [10,11]. Prospects applications to ET
GW observations include the following: the precision
measurement of the neutron star (NS) tidal polarizability
parameters [12,13], the determination of the remnant’s
black hole (BH) collapse [14,15], constraints on the
extreme density equation of state (EOS) [16,17], and
multimessenger observations [18]. These case studies will
be further discussed in companion papers in the context of
a Bayesian analysis framework [19] (paper II hereafter).
Here, we start presenting NRPMw, a new analytical model
for the postmerger (PM) emission from merger’s remnant,
that improves over our previous NRPM [11].
The PM GW emission from a merger’s remnant is

predicted to have a peak luminosity at frequencies of
few kilohertz, e.g. [11,20–24]. This high-frequency GW

transient can be robustly computed by means of NR
simulations and it is key to directly probe the nature of
the remnant in a (possibly multimessenger) BNS merger
observation. A GW observation from a merger remnant is
also a promising probe for the nuclear EOS at extreme
densities, e.g. [16,17,25–27]. Kilohertz PM transients are
unlikely to be captured by current ground-based detectors
[28], and no PM signal was detected for GW170817
[29–32]. However, they are a main target for third-
generation observatories [2,5,33–35] and for finely tuned
instruments [36]. In view of these considerations, it is
essential to develop accurate PM models for Bayesian GW
analyses.
Models of PM GWs were presented in Refs.

[11,21,22,37–45]. These templates are phenomenological
models that capture the main PM spectral features but
do not attempt to model the underlining remnant’s dynamics.
The complex spectral frequencies are either inferred from
the observations or (in part) fixed by EOS-insensitive
(quasiuniversal) relations that connect the main spectral
features to the binary parameters. Depending on whether the
quasiuniversal relations are employed or not during the GW
data inference (and for which quantities), the templates
might be used in fully informed, partially informed or
agnostic approach. Importantly, all approaches require the
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quasiuniversal relations to extract astrophysical constraints,
either a priori or a posteriori.
Most of the PM templates are built from a simple ansatz

made of few damped sinusoids in the time domain,
eventually represented in the frequency domain. Notable
exceptions to a sinusoids basis are the models proposed in
Refs. [37,39] where reduced basis were constructed directly
from NR data. Reference [37] used a principal component
analysis and ∼50 nonspinning simulations (12 of which
unequal masses) to demonstrate faithfulnesses ≳0.9 on a
subsample of the data. Reference [39] used a hierarchical
model trained on 35 nonspinning, equal-mass NR simu-
lations to demonstrate fitting factors up to 0.98 on the
training set. However, similar fitting factors can be
achieved with significantly less modeling efforts in agnos-
tic approaches based on wavelets or sinusoids basis
[38,41,42,44]. Moreover, the finite precision of NR sim-
ulations introduces uncertainties that impact the faithful-
nesses at ∼0.9 level [11,39]. Hence, simpler analytical
templates appear favored over more complex statistical
models. The agnostic approach utilized in Refs. [38,44]
delivers, on average, larger fitting factors to numerical data
when compared to fully or partially informed approaches,
e.g. [11,41–43]. This suggests that agnostic approaches are
able to detect PM signals at a lower signal-to-noise ratio
(SNR) because informed models are not sufficiently
accurate. The two approaches, however, appear comparable
at SNR relevant for astrophysical parameter estimation, and
they deliver comparable constraints on the EOS. We stress
that faithfulnesses calculations are often presented on
validation datasets of different sizes and a detailed com-
parison is difficult. For example, [42] found faithfulnesses
between 0.91–0.97 on a sample of nine simulations; [41]
found faithfulnesses between 0.4–0.95 on a sample of 60
simulations, and [11] between 0.4–0.95 on a sample of
about 150 simulations. A main motivation for (partially)
informed approaches is the possibility to design inspiral-
merger-postmerger templates by consistently extending
inspiral-merger templates. In Ref. [11], we developed the
first model of this kind by completing the EOB framework
of Refs. [6,7] with the NRPM PM model.
The new NRPMw is a PM frequency-domain template that

aims at striking a balance between fully informed and
agnostic approaches. It is constructed by superposing few
Gaussian, frequency-modulated wavelets whose parameters
are informed by new EOS-insensitive relations. The latter
build on the largest public databases of NR simulations
available to date. The theoretical uncertainties of the EOS-
insensitive relations are incorporated in the model using
recalibration parameters that are determined during the
inference. Hence, NRPMw performs best in a partially
informed inference. The recalibration enhances the flexi-
bility of the template and improves the fitting factors to a
level similar to agnostic templates. Data analysis applica-
tions of NRPMw are presented in paper II.

The rest of this paper is structured as follows. In Sec. II,
we discuss the PM waveforms’ phenomenology predicted
by state-of-art NR simulations. The modeling choices used
in NRPMw are presented in Sec. III. The quasiuniversal
relations calibrated for NRPMw are discussed in Sec. IV. In
Sec. V we validate the model against NR data by calculat-
ing its faithfulness on an independent validation set. We
summarize our findings and conclude in Sec. VI. Moreover,
we include several Appendices in order to extend the
discussions on the waveform modeling and on the cali-
bration of EOS-insensitive relations.
Conventions. We use geometric units c ¼ G ¼ 1 or

explicitly state units. Masses are expressed in solar masses
M⊙. The GW polarizations hþ and h×, plus and cross,
respectively, are decomposed in ðl; mÞ multipoles as

hþ − ih× ¼ D−1
L

X∞
l¼2

Xl
m¼−l

hlmðtÞ−2Ylmðι;φÞ; ð1Þ

where DL is the luminosity distance, −2Ylm are the s ¼ −2
spin-weighted spherical harmonics and ι;φ are, respec-
tively, the polar and azimuthal angles that define the
orientation of the binary with respect to the observer.
Each mode hlmðtÞ is decomposed in amplitude AlmðtÞ
and phase ϕlmðtÞ, as

hlmðtÞ ¼ AlmðtÞe−iϕlmðtÞ; ð2Þ

with a related GW frequency,

ωlmðtÞ ¼ 2πflmðtÞ ¼
d
dt
ϕlmðtÞ: ð3Þ

The moment of merger is defined as the time of the peak of
A22ðtÞ, and referred simply as merger when it cannot be
confused with the coalescence/merger process. If the
multipolar indices ðl; mÞ are omitted from a multipolar
quantity, we implicitly refer to the dominant (2, 2) mode.
Note that the time t refers to the retarded time in the case of
NR data. We define the Fourier transform hlmðfÞ of each
multipolar mode as

hlmðfÞ ¼
Z þ∞

−∞
hlmðtÞe−2πiftdt: ð4Þ

Analogously to the time-domain case, the frequency series
hlmðfÞ is decomposed in amplitude AlmðfÞ and phase
ϕlmðfÞ.
The binary mass is M ¼ m1 þm2, where m1;2 are the

masses of the two stars, the mass ratio q ¼ m1=m2 ≥ 1, and
the symmetric mass ratio ν ¼ m1m2=M2. We define the
parameter X ¼ 1–4ν. The dimensionless spin vectors are
denoted with χi for i ¼ 1, 2 and the spin component
aligned with the orbital angular momentum L are labeled
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as χi ¼ χi ·L=jLj. The effective spin parameter χeff is the
mass-weighted aligned spin, i.e.

χeff ¼
m1χ1 þm2χ2

M
: ð5Þ

Moreover, the quadrupolar tidal polarizability parameters
are defined as Λi ¼ ð2=3Þk2;iC−5

i for i ¼ 1, 2, where k2;i
and Ci are, respectively, the l ¼ 2 gravitoelectric Love
number and the compactness of the ith NS. The tidal
coupling constant is [46]

κT2 ¼ 3ν

��
m1

M

�
3

Λ1 þ ð1 ↔ 2Þ
�
; ð6Þ

that, similarly to the reduced tidal deformability Λ̃ [47],
parametrizes the leading-order tidal contribution to the
binary interaction potential.

II. WAVEFORM MORPHOLOGY

The PM waveform morphology and its connection to the
remnant’s dynamics predicted by simulations was discussed
in various papers, see e.g. Refs. [10,21,23,24,48–57]. We
review here the main aspects that are relevant for the GW
model proposed in the rest of the paper. Figure 1 shows the
PM signal in exemplary cases; the time axis is shifted to the
moment of merger.
A merger remnant is a massive, hot and rotating NS

whose mass is usually larger than the maximum mass
sustained by a cold, isolated Tolmann-Oppenheimer-
Volkoff (TOV) NS. It can either collapse to a BH or settle
to a stable rotating NS on secular timescales. Gravitational
collapse to BH takes place as the remnant reaches densities

comparable to the TOV’s maximum density [58] since the
remnant’s core is very slowly rotating [59]. The remnant of a
very massive BNS can promptly collapse after the moment
of merger and crucially before the first bounce of the two
cores [60,61].1

In the case of an equal mass BNS, the prompt collapse is
described by empirical relations relating the binary mass to
the TOV maximum mass and compactness proposed in
Refs. [63,64] and refined in various works, e.g. [14,15]. For
very asymmetric BNS, the tidal disruption of the secondary
drives the gravitational collapse [57] and it is mainly
controlled by the incompressibility parameter of nuclear
matter around the TOV maximum density [58]. While a
robust prompt collapse criterion is not known in these
conditions [57,58,65], tidal disruption effects are of the
order of current EOS effects in the equal-mass criterion, at
least for mass ratio q ≲ 1.4 [15,58]. Prompt collapse
mergers have the largest GW luminosities (at merger)
[24] but the PM signal is the rapidly damped ringdown
of the BH and it is practically negligible for the sensitivities
of current and next-generation detectors. A prompt collapse
signal is showed in the top panel of Fig. 1.
The evolution of a NS remnant is driven by an intense

emission of GWs lasting ∼10–20 milliseconds (GW-driven
phase) [24,66]. During this phase, the remnant either
collapses to BH (short-lived remnant) or settles to an
approximately axisymmetric rotating NS (long-lived rem-
nant).2 The GW-driven phase is associated to a luminous
GW transient at frequencies ∼2–4 kHz [10,21,49–51,53].
The spectrum of this transient is rather complex but has
robust and well-studied features at a few characteristic
frequencies. Most of the power is emitted in the l ¼ m ¼
2 GW mode at a nearly constant frequency ω22ðtÞ ≈ 2πf2.
Examples of l ¼ m ¼ 2 waveforms for short- and long-
lived remnants are shown in the three bottom panels of
Fig. 1. The f2 frequency is easily extracted from simulation
data and it was shown to correlate with various binary
quantities in a EOS-insensitive way, e.g. [10,11,23,53].
We stress that the PM spectrum is not composed of a

discrete set of frequencies: the presence of broad peaks with
typical full width at half maximum of 300–600 Hz is
simply a consequence of the efficiency of the emission
process. Indeed, inspection of the time-domain waveform’s
instantaneous frequency (see Fig. 1) shows that ω22ðtÞ

FIG. 1. Representative examples of BNS PM waveforms. The
plot shows the plus polarization hþðtÞ of the time-domain l ¼
m ¼ 2 waveform (solid line) and the instantaneous GW fre-
quency ω22ðtÞ (dashed line). The NR simulations are from the
CORE database and computed in Refs. [6,48].

1This definition of prompt collapse implies negligible shocked
dynamical ejecta because the bulk of this mass ejection comes
precisely from the first core bounce [62]. Since it directly
connects to the main dynamical feature of the merger process
(shock and bounce) and to related observables, it is preferable to
other empirical definitions based on collapse time from the
moment of merger.

2A commonly used terminology for short-lived remnant is
hypermassive NS. This name is not appropriate for remnants
since it refers to cold equilibrium. See [61,67] and references
therein.
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increases as the remnant becomes more compact and has a
steep acceleration towards gravitational collapse,3 see e.g.
Fig. 1 of [10]. Moreover, the instantaneous GW frequency
has modulations with frequencies f0 ∼Oð1 kHzÞ that are
stronger for remnants closer to collapse. These modulations
are associated to the violent radial bounces of the remnant’s
core prior to collapse. Other robust features of the spectrum
are two secondary peaks at frequencies f2�0, respectively,
at larger and smaller frequencies than f2. These features are
associated to hydrodynamical modes in the remnant, e.g.
[50,68,69] and have been tentatively interpreted as non-
linear coupling between f2 and f0 [50], in analogy to
perturbations of rotating NS [70–72].
The remnant’s signal from asymmetric binaries with

mass ratio q≳ 1.5 carries the imprint of the tidal disruption
during merger [48,57]. An example is shown in the bottom
panel of Fig. 1. The tidal disruption of the secondary object
redistributes the matter over a larger volume surrounding
the remnant. As a consequence, radial fluctuations are
generally milder and the PMGW luminosity is smaller than
the comparable-mass case. These dynamical features are
reflected in the GW waveform. The PM amplitude can be
significantly smaller than in the equal-mass cases and the
peaks at frequencies f2�0 are typically suppressed.
Moreover, for q≳ 1.5, internal shocks and fluid flows
can introduce multiple discontinuities in the time-domain
GW phase.
The evolution of a NS remnant beyond the GW-driven

phase is highly uncertain at present. It requires detailed
simulations of viscous and nuclear processes on time-
scales beyond hundreds of milliseconds, for example to
quantify precisely the mass accreting or outflowing the
central object. NS remnants after the GW-driven phase
have an excess of both gravitational mass and angular
momentum when compared to equilibrium configuration
with the corresponding baryon mass [67,73]. Possible
mechanisms to shed (part of) this energy are long-term
GW instabilities [74,75] including one-arm instabilities
[54,76], that would lead to potentially detectable, long
GW transients at ≲1 kHz.
The PM model presented in the next sections describes

the GW transient during the GW-driven phase and it builds
on our previous work in Refs. [10,11]. In particular, we
devise new EOS-insensitive relations based on the tidal
coupling constant κT2 and incorporate them in a partially
informed model. We do not use empirical relations for
modeling prompt collapse and instead design a model
capable of inferring a generic collapse time from the
observational data (but see e.g. Ref. [14] for an application
of prompt collapse quasiuniversal relations in data analy-
sis context). Similarly, we account for the theoretical

uncertainties of the EOS insensitive using recalibration
parameters inferred from the data.

III. NRPMW DESIGN

In order to develop an analytical NR-informed PM
model for BNS mergers in the frequency domain, we first
introduce a truncated complex Gaussian wavelet WðtÞ,

Wðt; α; β; γ; τÞ ¼
�
eαt

2þβtþγ if t∈ ½0; τ�
0 otherwise

; ð7Þ

where α; β; γ ∈C are time-independent parameters and the
real interval ½0; τ� defines the nonvanishing support of W.
The coefficients fα; β; γg can be interpreted as follows:
ℜðαÞ and ℜðβÞ determine, respectively, the concavity and
the initial slope of the time-domain wavelet amplitude;
ℑðαÞ and ℑðβÞ define, respectively, the slope and the initial
value of the time-domain frequency evolution; γ is an
overall factor determining initial amplitude and phase.
The frequency-domain waveletWðfÞ can be analytically

computed from Eq. (7) using Gaussian integrals,

WðfÞ ¼ eγ

2

ffiffiffi
π

α

r
e−z

2 ½erfiðzþ ffiffiffi
α

p
τÞ − erfiðzÞ�; ð8Þ

where zðfÞ encodes the frequency dependency,

zðfÞ ¼ β − 2πif
2

ffiffiffi
α

p ; ð9Þ

and erfiðzÞ is the imaginary error function. For α ¼ 0,
Eq. (8) is not defined and it is directly replaced by a
Lorentzian function. Moreover, a direct implementation of
Eq. (8) can lead to floating point overflow fin a certain
portion of the parameter space. In these cases, we employ
the analytical approximations discussed in Appendix A.
Furthermore, we introduce a global time shift τ0 in order
to allow the wavelet to move on the time axis. The
time shift τ0 changes the wavelet support to ½τ0; τ þ τ0�
and it is easily implemented by a unitary factor, i.e.
Wðf; τ0Þ ¼ WðfÞe−2πifτ0 .
The wavelet is the basic component of NRPMw. In the

following paragraphs we describe how different wavelets
are combined based on the universal features of the PM
signal that are identified by characteristic times (“nodes,”
Sec. III A). Then, we discuss the modeling of subdominant
frequencies as additional wavelet modulations in Sec. III B.
The basic construction of the dominant l ¼ m ¼ 2mode is
discussed Sec. III C and the modeling of higher-order
modes in Sec. III D.

A. Nodal points

The time-domain strain has universal characteristic
features at specific times, as pointed out in Ref. [11]

3Considering gauge-invariant energetics it is possible to
associate to the remnant a dynamical frequency Ω such that
f2 ¼ Ω=π and analogously for other modes.
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(see also Fig. 2). We call these times nodal points and
indicate them as ftig for i ¼ 0, 1, 2, 3. Nodal points are
identified as stationary points of the strain’s amplitude, that
we indicate as fAig. As discussed in Ref. [11], NR
simulations show that in correspondence of the amplitude
minimum (t ¼ t0), the time-domain GW frequency ω22 ¼
−ℑð ˙h22=h22Þ is singular and the phase has a discontinuity
(see also Refs. [77–79].) Differently from Ref. [11], we
assume tiþ1 − ti to be constant, for i ¼ 0, 1, 2. Hence, the
nodal points can be reduced to two independent parame-
ters: the moment t0 of the first amplitude’s minimum after
merger, and a characteristic timescale T0 that is computed
as the difference t3 − t1. The timescale T0 defines the
subdominant frequency f0 ≃ T0

−1 that characterizes the
modulations of the PM signal. Note that the subdominant
component f0 has in general a non-negligible time depend-
ency, as shown by NR simulations (e.g. [79,80]). A further
time-domain node is introduced for the time of the remnant
collapse tcoll. Differently from [11], here we do not
introduce t4.

B. Amplitude and frequency modulations

Ampitude and frequency modulations (AMs, FMs) are
prominent features of the PM spectrum, as discussed in

Sec. II. NR simulations show that the main GW modu-
lations are given in the m ¼ 0 channel, and are associated
to the quasiradial density oscillations of the remnant [81].
We associate this mode to the fundamental frequency f0
and, for the modeling of the (2, 2) mode, we consider only
the modulation couplings between f2 and f0.

4 Moreover,
we neglect possible frequency evolution of the subdomi-
nant mode f0, i.e. this frequency component is assumed to
be constant in time. Modulation effects appear after the
collision of the NS cores, for t > t0, when the remnant is
strongly deformed and dynamically unstable.
AMs can be easily taken into account by employing

a combination of wavelets. Labeling the amplitude-
modulated wavelet as W̆, we can write

W̆ðtÞ ¼ WðtÞ½1þ Δam sin ðΩamtþ ϕamÞ�;

¼ WðtÞ − iΔam

2

X
k¼�1

kWðtÞeikðΩamtþϕamÞ; ð10Þ

where Δam defines the magnitude, Ωam the modulation
frequency and ϕam the initial phase of the AMs.
Equation (10) can be transformed in the Fourier space
obtaining

W̆ðfÞ ¼ WðfÞ − iΔam

2

X
k¼�1

kWðkÞðfÞ; ð11Þ

where

WðkÞðfÞ ¼ Wðf; α; β þ ikΩam; γ þ ikϕam; τÞ: ð12Þ

Equation (11) shows explicitly that an amplitude-
modulated wavelet W̆ can be easily written in terms of
the Gaussian wavelets W and it introduces two subdomi-
nant contributions in the Fourier domain that are displaced
with respect to the primary peak of �Ωam.
FMs affect the phase evolution of the time-domain

wavelet. We implement a FM wavelet W̃ defining the
frequency evolution as

ωW̃ðtÞ ¼ ωWðtÞ − Δfme−Γfmt sinðΩfmtþ ϕfmÞ; ð13Þ

where ωW̃ is the instantaneous frequency of the frequency-
modulated wavelet W̃, ωW is the instantaneous frequency
of the Gaussian wavelet W, and Δfm;Γfm;Ωfm;ϕfm ∈R are
the parameters that define the FM, i.e. Δfm is the initial
frequency displacement, Γfm the inverse damping time,Ωfm
the modulation frequency and ϕfm the initial phase. Using
Taylor expansion, the frequency-modulated wavelet W̃ can
be rewritten in terms of the frequency-domain Gaussian
wavelet W. A detailed discussion on the analytic form of

FIG. 2. Exemplary case showing the morphology of NRPMw
model. Different wavelet components are reported with different
colors: Wfus in blue, W̃bnc in orange, W̃pul in green, and W̃peak in
purple. The top panel shows the time-domain components and the
overall GW amplitude AðtÞ (black line) highlighting the charac-
teristic times with vertical lines, i.e. the time of the merger tmrg,
the nodal points ti for i ¼ 0, 1, 2, 3 and the time of collapse tcoll.
The bottom panel shows the Fourier spectra of each component,
the overall h22 spectrum (black line) and the characteristic PM
frequencies (vertical lines), i.e. the merger frequency fmrg, the PM
peak f2 and the subdominant couplings f2�0 ¼ f2 � f0.

4Our simulations indicate that the couplings between (2, 1) and
(3, 3) modes can also be relevant for unequal-mass BNS.
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W̃ðfÞ is provided in Appendix B. Note that, differently
from the AMs shown in Eq. (10), the FM contribution
presented in Eq. (13) includes damped behavior, i.e.
Γfm ≠ 0 a priori. This term is needed to properly character-
ize the different timescales of the PM frequency compo-
nents f2 and f0.
Combining the definitions of W̆, Eq. (11), and W̃ [see

Eq. (B8)], it is possible to write a general modulated
Gaussian wavelet, labeled as W̃. We consider AMs over the
interval ½t0; t3� and FM for t > t0. We fix the modulation
frequencies to Ωam ¼ Ωfm ¼ 2πf0. Then, the AM magni-
tude Δam and phase ϕam are fixed by the values of the GW
amplitudes at the nodal points nodal points, i.e. fti; Aig for
i ¼ 1, 2, 3. The FM inverse damping time Γfm is assumed to
be identically zero for t < t1; then, it is fixed to a constant
positive value calibrated on NR data (see Sec. IV).
Furthermore, NR simulations show that AMs and FMs
approximately fluctuate in opposite directions [11]; i.e.
amplitude maxima occur at frequency minima and vice
versa. The FM phase ϕfm is fixed in order to satisfy this
requirement.

C. Wavelet combination

The NRPMw model is constructed by describing each
part of the PM signal between different nodal points with a
modulated wavelet component. The overall strain h22 is
computed summing all the contributions. The use of
wavelets allow us to assign a clear interpretation of each
parameter employed in the model. The combination of
different wavelets can capture rather complex signal
morphologies.
In NRPMw, the physical quantities (times, amplitudes and

frequencies) are estimated using quasiuniversal relations
calibrated on NR simulations (see Sec. IV). This allows us
to design a fully informed model that can connect the
signal’s morphology to the intrinsic parameters of the BNS
system (masses, spins and tidal parameters). However,
some wavelet parameters could be left unconstrained and
directly inferred from observational data [42] or they could
be reconstructed with regression methods directly from NR
simulations [39].
The time-domain l ¼ m ¼ 2 mode is modeled employ-

ing a combination of four different wavelet components,

hðtÞ ≈WfusðtÞ þ W̃bncðtÞ þ W̃pulðtÞ þ W̃peakðtÞ; ð14Þ

assuming continuity in amplitude and phase (except for a
phase-shift ϕPM, see later) for the time-domain counterpart.
Detailed expressions are given in Appendix C. The
combination of wavelets includes the following terms that
are shown in color in Fig. 2:
(1) Wfus describes the signal after merger and up to

t0, corresponding to the fusion of the NS cores.
The wavelet has an initial frequency fmrg and
nonvanishing frequency drift that can be positive

or negative depending on the properties of the
binary.

(2) W̃bnc describes the signal corresponding to the
bounce after the collision of the cores. The phase
here has a discontinuity ϕPM at t0. Moreover, for
t > t0, all wavelets include FMs with the subdomi-
nant frequency f0.

(3) W̃pul describes the emission up to t3 during which
the remnant is typically highly dynamical. Since the
largest amount of the GW luminosity is emitted at
times ≲5 ms [24], this component also includes
AMs with the subdominant frequency f0.

(4) W̃peak describes the signal after the luminosity peak
by a damped sinusoidal with initial frequency f2, a
frequency evolution parametrized by the drift αpeak
[also referred as ℑðαpeakÞ in Appendix C]. This
component characterizes the dominant Fourier peak
and it lasts until the time of collapse tcoll.

Additionally, the GWs emitted by the collapse and BH
ringdown can be modeled as a fifth term in Eq. (14), Wcoll
(see Appendix C for a detailed discussion). Knowing the
properties of the final BH, this component could be modeled
with the quasinormal modes of the remnant [82,83]. For
simplicity, however, we set here Wcoll ¼ 0.
Figure 2 shows an example of the discussed contributions

in time and frequency domain, with the different terms
appearing in Eq. (14) shown in different colors. The overall
spectrum shows the typical PM patterns: the dominant PM
peak associated to f2, a weaker peak at lower frequencies
corresponding to the merger dynamics and subdominant
peaks due to AMs and FMs. The superposition of the
wavelet components generates several local minima and
maxima in the overall h22 spectrum. Moreover, the destruc-
tive interference of the wavelets originates a local minimum
typically located between fmrg and f2. This feature is also
generally observed in BNS PM spectra extracted from NR
simulations. Moreover, the sharp cut at tcoll in time-domain
waveform originates the ringing effects observed in the h22
spectrum.5 The further inclusion of Wcoll will mitigate this
effect, yielding to a smoother waveform representation.
Overall, the model is characterized by 17 parameters,

that are the characteristic frequencies, amplitudes, times
and phases that define instantaneous GW amplitude and
frequency (see Appendix C). Most of these quantities can
be related to the binary properties using NR information.

D. Higher-order modes

NR simulations show prominent coupling effects in
higher mode (HM) terms of BNS PM transients, similarly
to what we discussed for the dominant (2, 2) mode. Also for
this reason, the power of HM contributions in BNS PM

5This can be easily seen performing the convolution product of
a sinusoidal wavelet with a Heaviside function.
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radiation is considerably larger compared with the pre-
merger dynamics [57,84]. For typical BNS systems, these
contributions cover a relatively broad spectrum, roughly
from ∼500 Hz to 5–7 kHz.
In general, HM contributions can be modeled as a

combination of wavelets with different frequencies impos-
ing continuity in amplitude and phase. For m ≠ 0, the
characteristic peak frequencies of HMs can be approxi-
mated using the quadrupolar term employing the multipolar
scaling, i.e. flm ≃ ðm=2Þf2. However, the hierarchy of
frequency couplings is not fully resolved. A detailed
analysis of these subdominant features might require better
resolved simulations to robustly identify the trend in the
spectra. We remand the inclusion of HM PM characteristic
properties to a future study.

IV. NR CALIBRATION

The NRPMw model has 17 parameters, i.e.

θPM ¼ fϕPM;ϕfm; t0; tcoll;

Amrg; A0; A1; A2; A3;

fmrg; f2; f0;Δfm;Γfm;

ℜðβpeakÞ;ℑðαfusÞ; αpeakg; ð15Þ

that can be mapped to the binary parameters,

θbin ¼ fm1; m2;Λ1;Λ2; χ1; χ2g; ð16Þ

using NR simulations. We chose to map only a subset of
θPM and let some other parameters to be determined by the
inference or any other minimization procedure with given
data. In particular, we map the following 13 parameters:

θfit ¼ fAmrg; A0; A1; A2; A3; fmrg; f2; f0; t0;

ℜðβpeakÞ;ℑðαfusÞ;Δfm;Γfmg0: ð17Þ

We fixϕfm by theAMsand theFMsas discussed in Sec. III B,
and we leave three additional degrees of freedom,

θfree ¼ fϕPM; tcoll; αpeakg: ð18Þ

This choice is motivated by the fact that these three
parameters cannot be robustly mapped using NR data.
The PM phase ϕPM shows a strong dependence on the
simulation’s grid resolutions and on the physical models,
e.g. [77,85,86]. The time of collapse tcoll is difficult to
robustly determine from simulations due its dependence on
grid resolution [11]; moreover, it strongly depends on the
properties of the nuclear EOS and might be biased by the
relatively small EOS set available [16,25,87]. The fre-
quency drift αpeak is also connected to the collapse
dynamics and, as such, it can be affected by various
processes, especially in long-lived remnants. For example,

we discuss in Appendix D the dependency of αpeak on the
turbulent viscosity in a subset of simulations.
The calibration set of binaries includes the public

available nonprecessing NR simulations of the CORE

[88,89] and the SACRA [90–92] databases, plus additional
data from simulations of Refs. [16,57,93] with the BLh and
BLQ EOS. The CORE database includes data computed
with two different NR codes, BAM [94,95] and THC [96]
and simulate microphysics, neutrino transport (with various
schemes) and turbulent viscosity. The final dataset is
composed by 618 simulations and it includes 190 different
binary configurations computed with three independent NR
codes and 21 different EOSs. The finite temperature,
composition-dependent EOSs are BHBΛϕ [97], BLh
[98,99], BLQ [16,98,99], HS(DD2) [[100,101] DD2 here-
after], LS220 [102], SFHo [103], SRO(SLy) [[104] SLy
hereafter]; the EOSs in piecewise polytropic forms are
these: ALF2 [105], ENG [106], MPA [107], MS1 [108],
MS1b [108], SLy [109], 2B, 2H, 15H, 125H, B, H, H4, HB
from Refs. [110,111] and the Γ ¼ 2 ideal gas EOS. We
remark that ALF2 and BLQ include a phase transition to
deconfined quark matter, and BHBΛϕ takes into account
the appearance of hyperons at high densities. The intrinsic
parameters of the data cover the ranges M∈ ½2.4; 3.4�M⊙,
q∈ ½1; 2�, κT2 ∈ ½22; 458� and χeff ∈ ½−0.14;þ0.22�. Among
the considered dataset, 80 simulations (∼13% of the
sample) resulted in prompt collapse and ∼40% of the total
data is composed by equal-mass nonspinning binaries.
We include all available resolutions for every binary
configuration and we treat each point as an independent
measure in order to improve the characterization of NR
uncertainties. The quasiuniversal relations presented in
this work extend those in Ref. [11] including effects of
large mass ratios, i.e. q > 1.5, and aligned spins with
jχeff j≲ 0.2. In Appendix F, we present a recalibration of
the quasiuniversal relations between the PM peak fre-
quency f2 and the NS radius that is not used in NRPMw
but often employed in GW inference.
The mapping between binary and NRPMw parameters is

performed on the mass-rescaled PM parameters using a
factorized fitting function (for any quantity Q),

Qfit ¼ a0QMðXÞQSðŜ; XÞQTðκT2 ; XÞ; ð19Þ

where QM ¼ 1þ aM1 X includes the mass ratio contribu-
tions in terms of the X ¼ 1–4ν parameter; QS ¼ 1þ pS

1 Ŝ
takes into account spin corrections in terms of the spin
parameter [112]

Ŝ ¼
�
m1

M

�
2

χ1 þ
�
m2

M

�
2

χ2; ð20Þ

and pS
1 ¼ aS1ð1þ bS1XÞ. The term
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QT ¼ 1þ pT
1κ

T
2 þ pT

2κ
T
2
2

1þ pT
3κ

T
2 þ pT

4κ
T
2
2
; ð21Þ

takes into account tidal effects in terms of κT2 and with
pT
i ¼ aTi ð1þ bTi XÞ. The coefficients fa·i; b·ig are deter-

mined fitting the NR data. We note that the choice of
the fitting function in Eq. (19) might be neither unique nor
optimal; we have experimented with few functions and
found Eq. (19) sufficiently simple, general and accurate for
our purposes. The choice of a rational function for QTðκT2 Þ
is instead motivated by previous works [10,11,113,114].
Finally, we stress the importance of using mass-rescaled
quantities in quasiuniversal relations [10,11]; Appendix F
demonstrates that factorizing the (trivial) binary mass scale
is key to obtain EOS-insensitive relations.
The fitting is performed using a least squared method.

Denoting by QNR
i any NR quantity of interest extracted

from the ith NR simulation and Qfit
i its fit, we define the

relative residual of the ith NR simulation,

ri ¼
Qfit

i −QNR
i

Qfit
i

; ð22Þ

and minimize χ2 ¼ P
i r

2
i . For each calibrated PM param-

eter, Table I reports the calibrated coefficients and the
associated relative error, defined as the standard deviation
of the relative residuals, i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðriÞ

p
. For later purposes

(see Sec. VA), we report in Table I the Kullback-Leibler
divergence DKL between the distribution of the residuals ri
and a normal distribution with zero mean and variance
VarðriÞ. This quantity allows us to verify the Gaussian
character of the residuals.
In the following, we discuss the fit results, i.e. empirical

relations for the merger properties (Sec. IVA), for the
characteristic PM frequencies and amplitudes (respectively,

Secs. IV B and IV C) and for the late-time properties
(Sec. IV D).

A. Merger properties

Among all the quantities of interest, the amplitude
and the frequency at merger, respectively, Amrg and fmrg,
are properties that can be extracted with good accuracy
from NR data [11,113]. Our new relations have 1-σ errors
smaller than 3%, as shown in Table I. These relations are
constructed to match the binary black hole values for
κT2 → 0; the limiting values are taken from the EOB model
of Ref. [112].
The slope parameter ℑðαfusÞ characterizes the deriva-

tive of the GW frequency immediately after merger,
i.e: ℑðαfusÞ ∝ ðdf=dtÞmrg. For every NR simulation, we
estimate this property from the (2, 2) time-domain waveform
as the mean value of df=dt taken in the range ½tmrg; t0�. The
calibrated relation for ℑðαfusÞ shows larger uncertainties
compared to fmrg, as reported in Table I. However, the
presented relation shows clear trends in the tidal parameter
and in the mass ratio. In particular, large-mass-ratio binaries
(i.e. q≳ 1.5) show ℑðαfusÞ≲ 0 due to tidal disruption.
Another early PM quantity is the time of the first

amplitude minimum t0. This quantity is extracted from
the time-domain waveform and can be well captured by the
our relations within ∼10%. NR simulations of binaries with
q≳ 1.5 generally show increasing t0 due to tidal disruption.
Also the calibrated relations for ℑðαfusÞ and t0 include a
robust binary black hole limit for κT2 → 0 within the
nominal error bars.

B. PM frequencies

We extract the main PM frequency f2 from NR PM
spectra of the (2, 2) mode. Generally, the f2 frequency is
estimated as the global maximum of the PM spectrum;

TABLE I. Summary of the quasiuniversal relations for the PM parameters θfit as functions of the inspiral parameters θbin. The first
column report the quantity of interest and the second column shows the range spanned by the available NR data. From the third to the
14th column, we report the calibrated coefficients of the quasiuniversal relations. The last three columns show, respectively, the χ2, the
relative standard deviation of the fit and the Kullback-Leibler divergenceDKL between the recovered residuals and a normal distribution.

Qfit Range a0 aM1 aS1 bS1 aT1 aT2 aT3 aT4 bT1 bT2 bT3 bT4 χ2 Error DKL

Amrg=M [0.159, 0.313] 0.3948 −1.133 −0.02992 −2.593 0.03902 5.1846 × 10−5 0.06033 1.380 × 10−4 10.41 54.51 10.83 54.54 0.189 1.8% 0.26

A0=M [2.04 × 10−4, 0.0699] 0.02356 0 1.077 260.4 −1.318 × 10−3 0 0 0 −4.314 0 0 0 267 66% 0.14

A1=M [0.0262, 0.238] −0.05641 −5 −1.135 146.8 −0.8343 3.882 × 10−4 0.2464 0 −5 0 0 0 13.2 15% 0.18

A2=M [4.76 × 10−4 , 0.175] 0.1667 −5.135 −3.796 −28.47 0 0 5.774 × 10−3 0 0 0 4.027 × 10−8 0 78.2 38% 0.077

A3=M [5 × 10−3, 2.04 × 10−1] 0.1662 0.1072 −2.046 −45.06 −7.06 × 10−5 0 1.354 × 10−3 0 −1423 0 284.7 0 38.4 26% 0.044

Mfmrg=ν [0.0554, 0.141] 0.2276 0.9233 0.5938 −1.994 0.03445 5.58 × 10−6 0.08405 1.133 × 10−4 13.83 517.4 12.75 139.8 0.431 2.6% 0.45

Mf2 [0.0216, 0.0512] 0.0881 22.81 0.2925 25.0 0.007023 −1.782 × 10−6 0.02587 6.58 × 10−6 5.428 0 39.29 0 0.814 3.9% 0.029

Mf0 [1.86 × 10−3, 0.0441] 0.02734 19.32 −1.857 −75.77 −2.967 × 10−3 8.484 × 10−6 8.584 × 10−3 0 20.49 21.5 10.47 0 107 45% 0.10

M=t0 [8.09 × 10−3, 0.0288] 0.03265 0.2994 −0.2329 4.768 3.584 × 10−3 0 0.01053 0 −11.96 0 −3.22 0.0 5.11 9.2% 0.72

MℜðβpeakÞ [6 × 10−4, 6.58 × 10−3] 0.1912 4.074 −1.573 100 0.05884 0 3.896 0 −5.293 0 0 0 37.7 27% 0.042

M2ℑðαfusÞ=ν [−3.3 × 10−4 , 5 × 10−3] 0.003721 −1.799 0.3555 −7.167 0.0139 −2.425 × 10−5 0.05883 1.882 × 10−4 −28.64 −36.18 19.53 7.089 346 75% 3.7

MΔfm [1.5 × 10−4 , 0.0423] 0.05139 0.4944 −3.734 −145 −6.25 × 10−3 1.728 × 10−5 0.01944 0 −7.936 1.882 100 0 278 74% 0.041

MΓfm [0, 0.05] 0.1637 209.3 −0.2997 24.5 0.02195 0 0.3528 0 −0.5111 0. 74.72 0 326 98% 1.05
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however, when modulations are prominent and the PM
portions are short (i.e. ≲8 ms), the f2 contribution is no
longer the dominant peak and it needs to be identified in the
local maxima. As shown in Table I, the quasiuniversal
relation for f2 is accurate to ∼4% at 1 − σ level (6–7% at
90% credibility level), that corresponds to an error of about
100 Hz (200 Hz). The latter is typically smaller than the full
width at half maximum of the spectrum peaks. Figure 3
shows this quasuniversal relation: the frequency Mf2
primarily correlates with the tidal polarizability κT2, while
mass ratio and spin contributions mildly affect the overall
value of this quantity.
The bottom panel of Fig. 3 shows data points with

deviations larger than 2 − σ. Around κT2 ≃ 207, it is
possible to identify a cluster of NR data corresponding
to spinning unequal-mass H4 binaries 1.65þ 1.10M⊙ with
different combinations of spins [48,56]. For these large
mass-ratio cases, the spin correction employed in Eq. (19)
will be improved in a future work when more data will be
available. The largest residual (∼15%) is given by the
nonspinning equal-mass binaries BHBΛϕ 1.50þ 1.50M⊙
[25] and BLQ 1.40þ 1.40M⊙ [16]. In both cases, the
remnant collapses into BH shortly after merger, i.e.
tcoll ≃ 3 ms, and the determination of the peak and secon-
dary frequencies from this signal is rather delicate due to
the short duration of the transient. From the Fourier spectra,
it is possible to identify two dominant broad peaks at
frequencies Mf2−0 ≃ 0.036 and Mf2 ≃ 0.048 for the

BHBΛϕ binary and Mf2−0 ≃ 0.036 and Mf2 ≃ 0.047 for
the BLQ binary. These values agree with the estimate of
Mf0 coming from the instantaneous GW frequency; how-
ever, the peak widths vary depending on the window used
to smooth the NR data and it is not possible to clearly
identify a carrier frequency and a modulation magnitude
from the time-domain waveform.6 Consistently with
Ref. [11] we chose to identify the second peak with f2
and conservatively include it in the determination of the
quasiuniversal relation. In contrast, the choice of the first
peak as f2 would be consistent with Refs. [16,25], and the
datapoints would not be outliers in the residual plot.
The value of the frequency f0 is estimated as f0 ¼

T0
−1 ≃ ðt3 − t1Þ−1 (Sec. III A). The frequency f0 shows a

nonmonotonic dependency on the tidal coupling κT2 for
q ≃ 1. For large mass ratio, i.e. q > 1.5, the NR-calibrated
relation predicts a decreasing f0 with typical values of
Oð10−3Þ. The relative error associated with f0 is ∼60%,
which is considerably larger than the error on the peak
frequency f2. This uncertainty can be related to the method
used to estimate f0 and to the numerical error that affects
amplitude fluctuations. In principle, the frequency f0 can
be also extracted from the ðl ¼ 2; m ¼ 0Þmode of the GW
waveform. However, numerical errors appear to be larger
for HM components, due to the lower magnitude of the
strains, and the corresponding spectra do not show neat and
unambiguous Fourier peaks, yielding to less accurate
calibrated relations.

C. PM amplitudes

The PM amplitudes A1, A2 and A3 are extracted from the
time-domain NR data and they show a decreasing trend for
increasing κT2 and for increasing mass ratio, similarly to
Ref. [11]. This can be understood as the effects of stiffer
EOSs and larger mass ratios that produce less violent
dynamics in the remnant (for a fixedM). As a consequence
of tidal disruption, the first amplitude A0 increases with
increasing mass ratio. Overall, these quantities show errors
between 15% and 40%, except for A0, which shows an error≳60% since this quantity is comparable in magnitude to
NR errors.

D. Late-time features

The damping timeℜðβpeakÞ of the decaying tail in NRPMw
is estimated from NR data using the approximation for
exponential sinusoidal functions, i.e:ℜðβpeakÞ≃maxðAðtÞÞ=
½2maxðAðfÞÞ�, where maxðAðtÞÞ is the maximum amplitude
of the time-domain waveform and maxðAðfÞÞ is the
maximum amplitude of the frequency-domain spectrum.
Despite errors of ∼30%, the calibrated relation has a

FIG. 3. Quasiuniversal relation for the PM peak frequency f2 as
function of the tidal polarizability κT2. Top panel: calibrated
relations (black lines) compared to NR data (colored dots)
extracted from the CORE and the SACRA databases. Each color
corresponds to a different EOS. NR medians and error bars are
reported averaging over different numerical resolutions (when
available) for the same binary configuration. Bottom panel:
relative residuals between the calibrated relation and the NR
data validation set. The gray areas show the 50% (dark) and 90%
(light) credible regions of the residuals.

6We used a sinusoidal transition window centered around
merger with different transition lengths in order to remove the
inspiral contributions.
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physically reasonable trend. For example, ℜðβpeakÞ
decreases for increasing mass ratios, in agreement with
the tidally disruptive dynamics of high-mass ratio mergers.
The FM displacement Δfm is estimated from the time-

domain NR waveforms as the largest displacement in the
instantaneous GW frequency f22ðtÞ from the PM peak f2.
The Δfm predictions show similar trends and comparable
values to f0 for equal-mass binaries. More significant
differences emerge instead as the mass-ratio get larger.
The FM damping time Γfm is also estimated from the time-
domain NR data fitting a damped sinusoidal to the
instantaneous GW frequency. This quantity has the less
accurate relation among the presented cases (∼90%) due to
the large errors introduced by the extraction method.

V. VALIDATION

We validate the NRPMw model by computing its
faithfulness F against 102 NR waveforms of Refs.
[11,57,62,73,93,115] that were not used for the calibration.
Among the considered simulations, 12 binaries show prompt
collapse into BH. The validation set is composed by NR
simulations of nonspinning BNS performed with THC [96]
that include different neutrino treatments, turbulent viscosity
schemes and five EOSs, i.e. BHBΛϕ [97], DD2 [100],
LS220 [102], SFHo [103] and SLy [109]. The intrinsic
binary properties cover the ranges M∈ ½2.6; 3.4�M⊙,
q∈ ½1;1.8� and κT2 ∈ ½47; 199�. The unfaithfulness F ¼1−F
between two waveform templates, say h1 and h2, is
defined as

F̄ ðh1; h2Þ ¼ 1 − max
tmrg;ϕmrg

ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p ; ð23Þ

where the maximization is performed over the coalescence
time and phase, respectively, tmrg and ϕmrg. The inner
product ðh1jh2Þ is

ðh1jh2Þ ¼ 4ℜ
Z

h�1ðfÞh2ðfÞ
SnðfÞ

df; ð24Þ

where SnðfÞ is the power spectral density (PSD) of the
detector. We employ the PSD curve of the next-generation
detector ET [2,3] (configuration D). The unfaithfulness is
computed between the PM part of the NR waveform
and the NRPMw for the same intrinsic parameters, i.e.
F̄ ðhNR; hNRPMwÞ, over the frequency range [1, 8] kHz.
Moreover, we compare the NR faithfulness of NRPMw

to that of the time-domain NRPM model introduced in
Ref. [11]. Note that NRPM can be also enhanced with the
parameters fα; β;ϕPMg [17], that are analogous to
fαpeak; tcoll;ϕPMg for NRPMw and further discussed in
Appendix E. The main differences between the two
models are the following. The frequency evolution of
NRPMw around merger is fully calibrated on NR data,

while NRPM uses a post-Newtonian approximation. The
quasiuniversal relations used in NRPM are not calibrated
on SACRA data, although they are compatible with the
new ones computed here for NRPMw. Moreover, NRPMw
includes a full description of damped FM effects and it
permits the calibration of the collapse time tcoll, that
improves the characterization of the f2 peak.
In the following sections, we discuss the introduction of

the recalibration parameters for both time- and frequency-
domain models (Sec. VA) and we present the unfaithful-
ness results (Sec. V B) computed on the independent
validation set of NR data.

A. Recalibrations

The EOS-insensitive relations developed in Sec. IV carry
intrinsic uncertainties due to small violations of universality
(EOS dependence) and/or fitting inaccuracies. Calibration
errors of the empirical relations should be taken into
account every time such mappings are employed, in
particular during the calculation of fitting factors and
during parameter estimation, in order to perform robust
predictions. This can be done by introducing appropriate
parameters associated with the fluctuation of the residuals.
A byproduct of this process is that the model can improve
its performance in describing the data.
Labeling Q a generic quantity estimated from a quasiu-

niversal relation calibrated on NR data, we introduce an
associated recalibration δQ that affects the prediction Qfit

of the EOS-insensitive relation as

Q ¼ Qfitð1þ δQÞ: ð25Þ

The recalibration δQ corresponds to a fractional displace-
ment from the prediction Qfit of the quasiuniversal relation.
The recalibration procedure employed here is similar to the
spectral calibration envelopes used in GW analyses [116].
However, here we aim to integrate the model’s uncertainties
in the inference rather than the instrumental errors. A
similar approach has been used in [18] (Sec. V).
In GW inference applications, the recalibrations of each

calibrated PM property are treated as standard parameters.
In this context, it is key that the prior distribution used in
the inference is a good representation of the residuals of the
EOS-insensitive relation. This allows us to perform a
rigorous marginalization on the theoretical uncertainties
of the model, delivering more robust and conservative
estimates. Interestingly, under the assumption that the NR
error is subdominant compared to the physical breaking of
quasiuniversality, the measurement of the recalibration
parameters from the data could also be used to distinguish
between different EOSs and observatively probe the break-
ing of quasiuniversality.
A robust characterization of the NR errors is needed in

order to employ a coherent prior distribution for the
recalibration parameters in the GW inference routines.
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A priori, any prior with main support comparable to the
span of know examples is a reasonable pragmatic choice. A
more accurate approach would estimate the uncertainties
associated to an EOS-insensitive relation as functions of the
employed parameters using regressive methods or param-
eter estimation techniques. Following the methods of
Refs. [18,116], an alternative and simpler approach is to
consider a normally distributed prior distribution with
variance prescribed by the errors of the residuals (see
Table I).
Figure 4 illustrates the use of recalibrations in NRPMw for

an examplary case. The recalibration parameters δfit ¼ fδig
are considered for each element of θfit. These additional
degrees of freedom mildly affect the merger portion, i.e.
t < t0 due to the accuracy of the empirical relations close to
merger. However, the recalibration coefficients have a larger
effect on the late-time PM features whose EOS-insensitive
relations introduce larger uncertainties. Analogously, the
recalibrations can be introduced for NRPM. This additional
flexibility is expected to significantly improve the data
fitting by adjusting the PM morphology of the template to
match the targeted signal, similarly to agnostic approaches
(e.g. [38,42]).

B. Unfaithfulness

We compare here the NR faithfulness results for NRPMw
and NRPM. In Fig. 5, we report histograms of the unfaithful-
ness computed on the validation NR sample of

(i) NRPM without resorting to minimization methods;
(ii) NRPMminimizing over the additional PM parameters

fα; β;ϕPMg and setting δfit ¼ 0;
(iii) NRPM with recalibration parameters δfit and mini-

mizing over δfit and fα; β;ϕPMg;
(iv) NRPMw minimizing over the additional PM param-

eters θfree and setting δfit ¼ 0;

(v) NRPMw with recalibration parameters δfit and min-
imizing over δfit and θfree.

In particular, the minimization procedure is performed as
follows. For each NR waveform, we compute the corre-
sponding NRPMw (or NRPM) template fixing the intrinsic
parameters θbin to the values of the NR simulation and
estimating the additional parameters (θfree and δfit) mini-
mizing the unfaithfulness F̄ , i.e. Eq. (23), using a

FIG. 4. Effect of recalibration terms on NRPMw waveform. The figures show exemplary templates of the GW plus polarization hþ in
the time domain (left) and in the frequency domain (right). The template has been computed for the parametersM ¼ 2.5M⊙, q ¼ 1.08,
κT2 ¼ 102, tcoll ¼ 8 ms, αpeak ¼ 0.013 kHz2, ϕPM ¼ π=2 and locating the source at a luminosity distance of 40 Mpc. Black lines show
the exact NRPMw predictions, i.e. the recalibration parameters are identically zero, δfit ¼ 0. The colored lines show three exemplary
cases where the values of the recalibrations δfit have been randomly extracted from a zero-mean normal distribution with variance
prescribed by the errors of the residuals.

FIG. 5. Recovered unfaithfulness F̄ between PM models and
NR data of the validation set [11,57,62,73,93,115] employing
ET-D sensitivity [2,3]. For NRPM [11] (thin lines), we compute F̄
with the standard model (a), including PM parameters (b) and
also the recalibrations (c). Analogously, the F̄ recovered for
NRPMw (thick lines) include the PM parameters (d) and also the
recalibrations (e). The dashed histogram shows the F̄ for case
(e) computed over the calibration set.
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differential evolution method [117]. For each case and for
each NR data, the additional degrees of freedom are
independently varied over a physically motivated range7

in order to estimate the minimum F̄ . If tcoll is such that
some wavelet components are not included in the template,
NRPMw does not depend on the related wavelet parameters;
the latter are simply fixed by NR-calibrated relations or
extracted from the prior. Moreover, Fig. 5 includes also
the NR accuracy of the validation set (black line) computed
as the unfaithfulness between low-resolution and high-
resolution PM templates extracted from NR simulations
with identical EOS and BNS parameters.
Case (i) gives results comparable to [11], with median

value F̄ equal to 0.45 and few cases with F̄ ≤ 0.1 (2%).
Indeed, the only differences between this work and
Ref. [11] are the PSD and the different validation set. In
case (ii), the inclusion of the free parameters fα; β;ϕPMg
improves the faithfulness of NRPM by shifting the median
value to F̄ ≃ 0.27, but the majority of the recovered values
(97%) lies above F̄ ¼ 0.1. The results of case (ii) show
values comparable to NR accuracy. The additional inclu-
sion of the recalibration parameters, shown in case (iii),
considerably enhances the quality of the recovered wave-
forms, since F̄ decreases with median F̄ ¼ 0.06 and down
to F̄ ∼Oð10−3Þ, corresponding to short-lived remnants and
prompt BH collapses. The fraction of cases with F̄ < 0.1
corresponds to 83% and we recovered F̄ < 0.2 for all
binaries in the validation set.
Moving to the novel NRPMw model, case (iv) show an

overall improvement in the faithfulness compared to the
equivalent case (ii), with median F̄ ∼ 0.13 and a fraction of
38% with F̄ < 0.1. We attributed this enhancement to the
modeling choices employed in NRPMw, since the number of
parameters minimized (θfree) is the same as case (ii).
Moreover, case (iv) shows a small cluster with F̄ ≲ 3 ×
10−2 (∼20%), mainly populated by short-lived remnant and
prompt BH collapses. In case (v), the additional inclusion
of recalibration terms considerably improves the agreement
of NRPMw to the NR data. We obtain a median F̄ of 2.5 ×
10−2 and report 94% of the validation set with F̄ < 0.1. We
recover similar statistics applying case (v) over the 600 NR
simulations of the calibration set, shown with dashed line in
Fig. 5. Moreover, the histogram (v) shows that the cluster
constituted by short-duration signals moves toward F̄ ¼
10−2 and we recovered values comparable to or smaller
than F̄ ¼ 3 × 10−2 for several long-duration transients,
such as SLy 1.30þ 1.30M⊙, and unequal-mass binaries,
such as DD2 1.50þ 1.25M⊙. The overall improvement

with respect to the comparable case (iii) is roughly half
order of magnitude. The recovered results validate the
modeling choices, suggesting that the primary contribu-
tions of the theoretical errors are the inaccurate predictions
of the EOS-insensitive relations. Moreover, the majority of
the recovered values lie below the NR accuracy threshold,
representing an improvement with respect to the non-
recalibrated scheme and validating the usage of NRPMw
in practical data analysis. For some exemplary cases, we
repeated the unfaithfulness computations varying the
smoothness of the employed window function, finding
absolute deviations of Oð10−3Þ.
Considering the faithfulness condition proposed in

Refs. [118–120] and fixing N ¼ 9 as number of intrinsic
parameters fθbin; θfreeg, the recovered upper-bound accu-
racy F̄ ≃ 10−1 of NRPMw in case (e) can be translated into
a model robustness threshold of SNR ∼ 7. Above this
threshold, systematic waveform errors can become rel-
evant. The threshold moves to SNR∼11 if we include the
recalibrations δfit as intrinsic parameters, i.e. N ¼ 22. On
the other hand, employing the recovered median value
F̄ ≃ 2.5 × 10−2, we estimate a faithfulness threshold
SNR equal to 13 for N ¼ 9 and 21 for N ¼ 22.
Considering an averaged threshold of SNR∼10, this limit
matches the requirements imposed by ET detector for
(optimally oriented) sources located at luminosity dis-
tances ≳40 Mpc [11,17,41,42,121].
The F̄ values computed on simulations with different

grid resolution or physical schemes suffer from consid-
erable fluctuations for some binaries. Some examples are
these: LS220 1.47þ 1.27M⊙ that gives log10 F̄ ¼ −0.84
at standard resolution without turbulent viscosity and
log10 F̄ ¼ −1.42 at high resolution with turbulent viscos-
ity; and LS220 1.35þ 1.35M⊙ (with turbulent viscosity)
that gives log10 F̄ ¼ −1.05 at standard resolution and
log10 F̄ ¼ −1.79 at low resolution. These results suggest
that the largest F̄ might be related to an inaccurate
modeling of the late-time features or to an excess of
numerical error in the data. The accuracy of NR templates
computed from different grid resolutions spans the range
F̄ ≃ 0.6 to F̄ ≃ 10−2 with a median value of ∼0.25
(similarly to the results of Ref [11]). These non-negligible
errors originate from finite resolution of numerical data. For
the current knowledge (limited by number and accuracy of
NR templates), NRPMw includes the necessary degrees of
freedom required to match PM GW signals up to SNRs
expected for next-generation detectors [5,17,122]. On the
other hand, these results show that NRPMw can better
reproduce the high-resolution NR data compared to the
corresponding low-resolution NR template for a fixed
combination of intrinsic BNS parameters. The unfaithful-
ness between different NR resolutions of Oð0.1Þ suggests
that low-resolution NR templates provide inadequate rep-
resentations of the GW signals and raises the necessity of
more accurate NR templates.

7For NRPMw, we set the time of collapse tcoll ≥ t0, the
frequency drift M2αpeak ∈ ½−10−5; 10−5�, the PM phase
ϕPM ∈ ½0; 2π� and the recalibrations δi ∈ ½−4σi;þ4σi�, where i
runs over the calibrated PM quantities and σi is the corresponding
standard deviation of the NR residuals (see Table I). The
parameter space is uniformly sampled for all degrees of freedom.
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Figure 6 shows the comparison between the PM model
spectra and NR data for four exemplary cases extracted
from the validation set. The first case is DD2 1.509þ
1.235M⊙ which generates a long-lived remnant,
tcoll ∼Oð100 msÞ. The NRPM model (i) predicts an erro-
neous f2 peak, which biases the estimation of the damping
time in case (ii). The result improves to log10 F̄ ¼ −1.3 in
case (iii). The novel NRPMw matches well the NR data,
delivering log10 F̄ ¼−1.3 in case (iv) and log10 F̄ ¼−1.6
in case (v). The second case is LS220 1.635þ1.146M⊙
with tidal-disruptive behavior that collapses into
BH∼12ms after merger. For this simulation, NRPMw (iv) is
not capable to match the dominant PM peak returning
F̄ ≃ 0.15. Then, the recalibrations (v) strongly improve the
agreement to NR data, yielding log10 F̄ ¼ −1.7. The third
case is SFHo 1.364þ 1.364M⊙ which generates a short-
lived remnant with tcoll ≃ 4 ms. This spectrum highlights
the relevance of modulation effects in PM signals. The
comparison shows the flexibility of the recalibrated
NRPMw (v) in capturing the several Fourier peaks, deliv-
ering log10 F̄ ¼ −1.9. The last case is SLy 1.364þ
1.364M⊙ with tcoll ≃ 12 ms that shows prominent modu-
lations in the spectrum. NRPM does not match well the
prominent subdominant peaks returning log10 F̄ ¼ −0.7 in
case (iii). This result is similar to NRPMw (iv) but

considerably improved with the inclusion of recalibrations
(v) to log10 F̄ ¼ −1.8.

VI. CONCLUSIONS

This paper presents NRPMw, a frequency-domain model
for PM GW from BNS remnants calibrated with EOS-
insensitive relations from the largest publicly-available set
of NR simulations. NRPMw is designed to be employed in
fully or partially informed Bayesian inference from GW
data. NRPMw includes the dependency on the intrinsic
binary parameters through the EOS-insensitive relations,
thus allowing (i) the direct astrophysical inference of all
the BNS parameters without assuming a premerger signal/
detection, and at the same time (ii) a phase-coherent
attachment with premerger templates [11]. The current
uncertainties of EOS-insensitive relations can be taken
into account in a partially informed approach using
recalibrations parameters. This enhances the flexibility
of the model in capturing the complex morphology of PM
signals and improves fitting factors. We stress that a
recalibration procedure similar to the one introduce here
should be employed every time EOS insensitive are
applied to any type of data.
NRPMw was validated with an independent set of 102

NR simulations. The fitting factors favorably compares

FIG. 6. Comparison between PM models and exemplary NR data of the validation set. Colored lines show the spectra for the different
models, analogously to Fig. 5. Solid lines are used for NRPMw spectra and dashed lines are employed for NRPM. NR spectra are reported
with black solid lines. The plot includes also the corresponding unfaithfulnesses estimated with NRPMw model, i.e. case (d) in blue and
case (e) in green.
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against the results obtained with similar frequency-domain
models [41] and significantly improve those we obtained
with NRPM [11]. The improvement is mainly related to a
more accurate modeling of the merger features and to an
improved description of the FMs when compared to NRPM.
The faithfulness of the recalibrated NRPMw is comparable
to that obtained using unmodeled (noninformed) templates
and agnostic approaches [42,43]. This comes at the cost of
13 recalibration parameters and three free parameters,
compared to the typical Oð10Þ parameters of unmodeled
templates. However, differently from the latter, NRPMw
delivers complete posteriors for the BNS parameters,
including mass, mass ratio, etc. The NRPMw faithfulnesses
are comparable to the accuracy of current NR templates for
BNS remnants. The further development of high-precision
NR simulations is key for the design of robust PM models.
NRPMw builds on a new set of EOS-insensitive relations

for the PM spectra. We have focused the development of
quasiuniversal relation that employ the tidal coupling
constant κT2 in view of utilizing the model as an EOB
completion [10,11,113,114]. The most robust relations we
obtained are, not surprisingly, the merger amplitude, the
merger frequency and the dominant f2 peak. The 1 − σ
uncertainties of these relations are of the order of 4% due to
either uncertainties of NR data or EOS-dependent features.
The use of dimensionless and mass-rescaled quantities is a
key aspect in building EOS-insensitive relations. An
example illustrating this fact is the breaking of the
quasiuniversal relations claimed in Ref. [123]. The latter
refers to relations of type f2ðRÞ that are different from those
employed here. In Appendix F, we verified that those f2ðRÞ
relations are broken also by some data of the CORE

database. The additional term proposed in [123] does
not fix the breaking of some CORE data with softening
effects at high densities. However, we verified that the use
of mass-rescaled quantities, i.e. Mf2ðR=MÞ, leads to more
robust EOS-insensitive relations. Hence, considering
Mf2ðR=MÞ or f2ðRÞ in a Bayesian analysis of the same
data would incorrectly lead to two different conclusions
about the EOS.
We found that the presence of softening effects due to

quark deconfinement or hyperonic degrees of freedom at high
densities does not introduce significant deviations above the
2 − σ credibility level in the EOS-insensitive relation for f2
developed here. Hence, the observational imprint of EOS
softening might be better revealed from an earlier BH
collapse phenomenology, e.g. [16,25,87,124,125], rather
than from the measurement of PM frequencies (under
the assumption that our sample of models adequately
represent the “true” EOS). However, the cases BHBΛϕ
1.50þ 1.50M⊙, BLQ 1.40þ 1.40M⊙

8 and other literature

results [26,126,127] suggest that the EOS-insensitive rela-
tions for Mf2ðκT2 Þ (and in principle for other quantities)
might break for particular binary masses and in presence of
“strong” phase transitions.9 This opens the possibility of
using NRPMw to identify this new extreme matter physics via
Bayesian analyses following the method of [11,44]. We stress
that these types of analyses strictly probe only the violation of
the particular quasiuniversal relation that is assumed in a
model. Hence, the robust construction of EOS-insensitive
relations and the use of recalibration parameters are key for
the interpretation of the inference results. Future analysis
must incorporate the here proposed recalibration parameters
in the inference, because assessing the breaking of the
quasiuniversality requires the knowledge of the theoretical
uncertainty of the EOS-insensitive relation.
In paper II [19], we report a study on the application of

NRPMw to detection and Bayesian parameter estimation of
mock PM signal with ET and we will discuss full-spectrum
BNS analyses in a third paper of this series. In this regard,
the employment of recalibration parameters δfit is essential
also in the context of Bayesian inference since they
improve the agreement of NRPMw to NR data below their
threshold accuracy, as discussed in Sec. V. As anticipated
by the faithfulness calculations presented here, NRPMw can
improve the performances of NRPM [11], yielding to
threshold SNRs comparable to those of unmodeled analy-
ses [38,42]. For example, the model can be used to infer the
dynamical frequency evolution of the remnant and the time
of BH collapse already at the minumum SNR treshold.
Under the important caveat on the robusteness of the
assumed EOS-insensitive relations discussed above, these
observables can provide insight into the properties of
matter under extreme conditions and prove breaking of
quasiuniversality. Moreover, NRPMw can be employed
together with inspiral-merger templates to characterize
the full GW spectrum of BNS mergers and improve the
EOS constraints [11,17].

The waveform model developed in this work, NRPMw, is
implemented in BAJES and the software is publicly available
at [128].
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APPENDIX A: WAVELET APPROXIMATIONS

We discuss the approximations employed to compute the
frequency-domain wavelet WðfÞ Eq. (8) for different
values of the α parameter.
When α is identically zero, Eq. (7) reduces to a damped

sinusoidal function, but Eq. (8) leads to an indeterminate
form. Then, the latter can be replaced by

WðfÞ ¼ eγ
�
eτζ − 1

ζ

�
; ðA1Þ

where ζðfÞ ¼ β − 2πif. Equation (A1) represents a good
approximation also when the wavelet is strongly damped,
i.e: ℜðβÞ dominates over the quadratic contributions. This
is crucial to simplify the computations for higher-order FM
terms, whose damping time decrease linearly with the
approximation order (see Appendix B).
For jαj ≪ 1, arithmetic overflows arise in numerical

computations. Then, for these cases, we expand Eq. (7)
around small values of αt2, i.e.

WðtÞ ¼ eβtþγ
X∞
n¼0

ðαt2Þn
n!

: ðA2Þ

Each term in Eq. (A2) can be analytically integrated,
leading to a well-defined solution of the Fourier counter-
part. In particular,

WðfÞ ¼ eγ
X∞
n¼0

Z
τ

0

ðαt2Þn
n!

eðβ−2πifÞtdt; ðA3Þ

from which it follows

WðfÞ ¼ eγffiffiffi
π

p
X∞
n¼0

ð4αÞnΓ
�
nþ 1

2

�
G2nð−ζτÞ − 1

ζ2nþ1
; ðA4Þ

where ΓðnÞ is the gamma function and GnðxÞ
corresponds to

GnðxÞ ¼ e−x
Xn
k¼0

xk

k!
: ðA5Þ

We observe that Gn → 1 for n → ∞. Limiting the series to
n ¼ 0, Eq. (A4) leads to the damped sinusoidal case, i.e.
Eq. (A1). In our implementation, we use Eq. (A4) as
approximation of WðfÞ for jαjτ2 ≲ 0.1 accounting up
to n ¼ 4.

APPENDIX B: FM APPROXIMATION

In this appendix, we discuss the approximation per-
formed in order to reach an analytical form for the FM
effects in terms of WðfÞ, i.e. Eq. (8).
Let us start considering a generic nonmodulated wavelet

WðtÞ, as the one in Eq. (7). This term can be decomposed in
amplitude and phase, analogously to Eq. (2), from which
we can compute the frequency, that reads

ωWðtÞ ¼ −2ℑðαÞt − ℑðβÞ: ðB1Þ

In order to include damped FMs, we generalize the notion
of W introducing W̃, such that

ωW̃ðtÞ ¼ ωWðtÞ − Δfme−Γfmt sinðΩfmtþ ϕfmÞ; ðB2Þ

where Δfm;Γfm;Ωfm;ϕfm ∈R define the modulation, i.e.
the frequency displacement Δfm ≥ 0, the inverse damping
time Γfm, the modulation frequency Ωfm and the initial
phase ϕfm. Integrating Eq. (B2), the frequency-modulated
wavelet W̃ðtÞ can be rewritten in the time domain as

W̃ðtÞ ¼ Wðt; α; β; γ; τÞe−iFðt;Δfm;Γfm;Ωfm;ϕfmÞ; ðB3Þ

where FðtÞ corresponds to

FðtÞ ¼ Δfme−Γfmt

Γ2
fm þ Ω2

fm

½Γfm sinðΩfmtþ ϕfmÞ

þΩfm cosðΩfmtþ ϕfmÞ� − F0; ðB4Þ

with

F0 ¼
Δfm

Γ2
fm þΩ2

fm

ðΓfm sinϕfm þΩfm cosϕfmÞ: ðB5Þ

Notice that FðtÞ∈R and e−iFðtÞ is a unitary complex factor
for every given t.
Due to the oscillatory nature of FðtÞ, the frequency-

domain wavelet W̃ðfÞ cannot be analytically computed
using Gaussian integration rules. Then, we rewrite FðtÞ in
terms of exponential functions,

FðtÞ ¼ iΔfm

2jβfmj2
ðβ�fme−βfmt−iϕfm − βfme−β

�
fmtþiϕfmÞ−F0; ðB6Þ

where βfm ¼ Γfm þ iΩfm. Subsequently, we expand the
exponential e−iF, i.e.
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e−iFðtÞ ¼
X∞
n¼0

½−iFðtÞ�n
n!

: ðB7Þ

Combining Eqs. (B3), (B6) and (B7), we can write W̃ðtÞ in
terms of WðtÞ and perform an analytical Fourier transform.
In particular,

W̃ðfÞ ¼ eiF0

X∞
n¼0

�
Δfm

2jβfmj2
�

n wnðfÞ
n!

; ðB8Þ

where

wnðfÞ ¼
Xn
k¼0

�
n
k

�
ðβ�fmÞkð−βfmÞn−kWðf; α; βn;k; γn;k; τÞ;

ðB9Þ

with

βn;k ¼ β − kβfm − ðn − kÞβ�fm;
¼ β − nΓfm þ iðn − 2kÞΩfm;

γn;k ¼ γfm þ iðn − 2kÞϕfm: ðB10Þ

and fα; β; γ; τg are the parameters of the corresponding
nonmodulated wavelet.
Equation (B8) generates several Fourier contributions

centered around the frequencies ℑðβÞ � nΩ, as expected
from FM effects. A second order approximation gives good
agreement for small modulation indices, i.e. Δ=Ω ≪ 1;
however, whenΔ is comparable toΩ, additional terms need
to be taken into account for an accurate description. The
maximum order of approximation nmax is estimated using
an empirical rule of thumb, nmax ≈ 2ð1þ Δ=ΩÞ.

APPENDIX C: CHOICES FOR WAVELET
COMPOSITION

The first contribution, Wfus, corresponds to the fusion of
the NS cores. This term is modeled with a Gaussian wavelet
(i.e. iβ∈R), with initial amplitude, frequency and phase
defined by the values at merger, respectively Amrg, fmrg and
ϕmrg. The width of the amplitude is fixed as follows:

ℜðαfusÞ ¼
logðA0=AmrgÞ

t20
; ðC1Þ

while the frequency slope ℑðαfusÞ is directly estimated from
NR data. The fusion wavelet Wfus is truncated at t0. It
follows that

WfusðfÞ ¼ Wðf; α ¼ ℜðαfusÞ − iℑðαfusÞ;
β ¼ −2πifmrg;

γ ¼ logðAmrgÞ − iϕmrg;

τ ¼ t0;

τ0 ¼ 0Þ: ðC2Þ

Subsequently, we include an intermediate wavelet W̃bnc
that characterizes the bounce of the remnant after the
collision of the NS cores, corresponding to the time interval
½t0; t1�. The initial amplitude is determined in order to
match the A0 and the phase is computed from the wavelet
Wfus including an additional phase shift ϕPM, shown by NR
simulations [78,88], i.e.

ϕbnc ¼ ϕmrg þ ϕPM þ 2πfmrgt0 þ ℑðαfusÞt20: ðC3Þ

The amplitude coefficients, ℜðαbncÞ and ℜðβbncÞ, are
chosen such that the amplitude peaks in the first local
amplitude maximum, i.e. t1, with value A1:

ℜðαbncÞ ¼
logðA0=A1Þ
ðt1 − t0Þ2

; ðC4Þ

ℜðβbncÞ ¼
2 logðA1=A0Þ

t1 − t0
: ðC5Þ

The frequency is kept constant with value ℑðβbncÞ ¼
−2πif2. Then, including FM effects as discussed in
Sec. III B, we get

W̃bncðfÞ ¼ Wðf; α ¼ ℜðαbncÞ;
β ¼ ℜðβbncÞ − 2πif2;

γ ¼ logðA0Þ − iϕbnc;

τ ¼ t1 − t0;

τ0 ¼ t0;

Δfm ¼ Δfm;

Γfm ¼ 0;

Ωfm ¼ 2πf0;

ϕfm ¼ ϕfmÞ: ðC6Þ

After t1, the remnant is strongly deformed and the
quadrupolar radiation is affected by couplings with sub-
dominant modes, that introduce AMs. Physically, this
phenomenon can be naively interpreted with the presence
of radial pulsation in the mass distribution of the remnant
object [23]. We limit ourselves to the modeling of AMs in
the region ½t1; t3� taking into account the coupling with the
(2,0) mode, analogously to Ref. [11]. This pulsating portion
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of signal can be approximated using a wavelet W̃pul of
the form,

W̃pulðtÞ¼A1½1−Δam sin2 ðπf0tÞ�e½ℜðβpulÞ−2πif2�t−iϕpul ; ðC7Þ

where the initial amplitude and phase are chosen to
match values of W̃bnc at t1, in particular the phase ϕpul

corresponds to

ϕpul ¼ ϕbnc þ 2πf2ðt1 − t0Þ; ðC8Þ

the coefficient ℜðβpulÞ is defined by the amplitudes A1;3 as

ℜðβpulÞ ¼
log ðA3=A1Þ

t3 − t1
; ðC9Þ

and the coefficient Δam defines the magnitude of AMs,

Δam ¼ 1 −
A2

A1

�
A1

A3

�t2−t1
t3−t1 ¼ 1 −

A2ffiffiffiffiffiffiffiffiffiffi
A1A3

p ; ðC10Þ

where we made use of the definition of ti (Sec. III A) in the
second equality. Then, Eq. (C7) can be rewritten in terms of
frequency-domain wavelets, Eq. (8), as

W̃pulðfÞ ¼
�
1 −

Δam

2

�
Wðf; α ¼ 0;

β ¼ ℜðβpulÞ − 2πif2;

γ ¼ logðA1Þ − iϕpul;

τ ¼ t3 − t1;

τ0 ¼ t1;

Δfm ¼ Δfm;

Γfm ¼ Γfm;

Ωfm ¼ 2πf0;

ϕfm ¼ ϕfmÞ

þΔam

4
Wðf; α ¼ 0;

β ¼ ℜðβpulÞ − 2πiðf2 − f0Þ;
γ ¼ logðA1Þ − iϕpul;

τ ¼ t3 − t1;

τ0 ¼ t1;

Δfm ¼ Δfm;

Γfm ¼ Γfm;

Ωfm ¼ 2πf0;

ϕfm ¼ ϕfmÞ

þΔam

4
Wðf; α ¼ 0;

β ¼ ℜðβpulÞ − 2πiðf2 þ f0Þ;
γ ¼ logðA1Þ − iϕpul;

τ ¼ t3 − t1;

τ0 ¼ t1;

Δfm ¼ Δfm;

Γfm ¼ Γfm;

Ωfm ¼ 2πf0;

ϕfm ¼ ϕfmÞ: ðC11Þ

Subsequently, we model the signal with a damped tail
related to the quadrupolar deformations of the rotating
remnant. The corresponding wavelet W̃peak is modeled in
the range ½t3; tcoll�. If the remnant is a stable NS configu-
ration, then tcoll → ∞. The initial amplitude and phase are
chosen to match the values of W̃pul at t3,

ϕpeak ¼ ϕpul þ 2πf2ðt3 − t1Þ; ðC12Þ

Apeak ¼ A3: ðC13Þ

The frequency evolution is characterized by the typical f2
peak, i.e: ℑðβpeakÞ ¼ −2πf2, with a nonvanishing slope
ℑðαpeakÞ (also referred as αpeak in the manuscript to lighten
the notation). Then,

W̃peakðfÞ ¼ Wðf; α ¼ −iℑðαpeakÞ;
β ¼ ℜðβpeakÞ − 2πif2;

γ ¼ logðA3Þ − iϕpeak;

τ ¼ tcoll − t3;

τ0 ¼ t3;

Δfm ¼ Δ0
fm;

Γfm ¼ Γfm;

Ωfm ¼ 2πf0;

ϕfm ¼ ϕfmÞ; ðC14Þ

where Δ0
fm ¼ Δfm exp½Γfmðt3 − t1Þ�.

When tcoll is finite and the remnant collapse into BH, NR
simulations show an increasing frequency and a damping
amplitude similarly to a BH ringdown. This evolution can
be captured with the inclusion of an additional wavelet
component, i.e. Wcoll. However, this contribution is
expected to be relatively weak in terms of GW luminosity
with respect to the previous dynamics [24]. Moreover, the
characteristic BH frequencies for this kind of systems lie in
a very high frequency range, roughly ≳6 kHz [83], where
the sensitivities of the detectors are generally poor. It
follows that the collapse portion of the signal is expected
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to have negligible effect on the overall GW power and, for
these reasons, we approximate Wcoll ¼ 0.
The overall model includes 17 parameters: the merger

amplitude Amrg and frequency fmrg; the frequency drift at
merger ℑðαfusÞ; the characteristic PM frequencies f2 and
f0; the frequency drift ℑðαpeakÞ (or αpeak); the time of the
first nodal point t0 and the corresponding phase shift ϕPM;
the amplitude values at the different nodal points fAig, for
i ¼ 0, 1, 2, 3; the inverse damping time of the Lorentzian
tail ℑðβpeakÞ; the time of collapse tcoll; and the FM
properties, i.e. Δfm and Γfm and ϕfm. Finally, we observe
that W̃bncðfÞ, W̃pulðfÞ and W̃peakðfÞ are chosen to be
identically zero for Λ1 ¼ Λ2 ¼ 0.

APPENDIX D: VISCOSITY IMPACT ON
FREQUENCY DRIFT

In this Appendix, we show the effects of different
viscosity schemes on the dynamical evolution of the
GW frequency. This discussion aims to motivate the
introduction of the frequency drift αpeak as free parameter.
Figure 7 shows three NR simulations extracted from

[62,115] and computed with identical grid resolution. The
data correspond to a BNS system with M ¼ 2.7M⊙ and
q ¼ 1 with matter properties described by the same EOS,
i.e. LS220 [102]. Moreover, all cases include neutrino
reabsorption scheme [129]. The blue curves refer to
binaries with no turbulent viscosity. The orange and green
curves include turbulent viscosity with a fixed mixing
length respectively equal to lmix ¼ 5 m and lmix ¼ 25 m.
The mixing length lmix represents the characteristic scale
over which turbulence acts [115]. Finally, the purple data
are simulated with a turbulent viscosity scheme calibrated
on high-resolution magneto-hydro-dynamical simulations
of BNS mergers [130].

Over the domain t=M ≲ 300, the different cases show a
similar behavior. However, for later times, the frequency
drift significantly differs, with a more pronounced slope for
the lmix ¼ 25 m case. The same binary is the one that
shows the earliest BH collapse. Notably, as shown in [115],
the frequency slope is softer for lmix ¼ 50 m with respect
to the lmix ¼ 25 m case; however, the assumption lmix ¼
50 m appears to be physically disfavored from studies of
magnetorotational instability turbulence in BNS simula-
tions [130]. On the other hand, the simulation with
calibrated lmix shows an initial trend similar to the lmix ¼
5 m case; later, for t=m≳ 1000, the two GW frequencies
differ and the calibrated-viscosity case shows a BH
collapse. Interestingly, the binaries with the steepest fre-
quency drifts tend to generate shorter GW bursts due to
earlier BH collapse. These physical effects cannot be
described by the binary properties only (i.e. masses, spins
and tides). Thus, it is necessary to rely on additional
coefficients that aim to characterize the physical informa-
tion on the matter dynamics encoded in the PM transients.

APPENDIX E: ADDITIONAL PARAMETERS
FOR NRPM

In [17] and in Sec. V B, we introduced the additional
parameters fα; β;ϕPMg for the NRPM model [11]. This
Appendix aims to expand this discussion, specifying the
role of each term with reference to [11].
The additional phase ϕPM affects the phase evolution of

NRPM introducing a phase discontinuity in t0, as previously
discussed for NRPMw. The damping time α, defined in
Eq. (11) of [11], is promoted to additional parameter, since
it improves the fitting of the characteristic peak for NRPM.
This is also motivated by the relation between the time of
collapse and the high-density EOS properties [16,25,87].
Finally, the β parameter is inspired by the template model
introduced in [42] and it takes into account linear devia-
tions from the peak frequency f2. In particular, it modifies
Eq. (7d) of [11] as

ω̂ðt̂ > t̂3Þ ¼ ω̂2 · ½1þ βðt̂ − t̂3Þ�: ðE1Þ

As discussed for NRPMw and in Appendix D, general PM
GW transients show nonvanishing frequency slope and this
feature appears to correlate with the viscosity scheme
employed in the NR simulation.

APPENDIX F: QUASIUNIVERSAL RELATIONS
OF TYPE f 2ðRÞ

In this appendix, we discuss the quasiuniversal relations
between the PM peak frequency f2 and the NS radius
at fiducial values in light of the results of [27,123]. In
particular, we calibrate the relations f2ðR1.4Þ and f2ðR1.8Þ
including the CORE data [16,57,62,73,88], where R1.4 (R1.8)

FIG. 7. GW data extracted from NR simulations with neutrino
reabsorption of a BNS merger with M ¼ 2.7M⊙, q ¼ 1 and
LS220 EOS [62,115]. Blue curve refers to data with no turbulent
viscosity, orange curve refer to fixed lmix ¼ 5 m, green curve
refers to fixed lmix ¼ 25 m and purple curve refers to lmix
calibrated on [130]. Solid lines show the GW frequency Mf and
shaded lines show the GW waveform h=M. The instant t ¼ 0
corresponds to the merger.
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is the radius of a 1.4M⊙ (1.8M⊙) NS computed from the
TOV equations.
Following [123], we employ a quadratic relation for the

calibration of the PM peak as function of the NS radius,
including linear corrections in the ratio R1.4=R1.8, i.e.

f2ðRXÞ ¼ a0 þ a1RX þ a2R2
X; ðF1Þ

f2

�
RX;

R1.4

R1.8

�
¼ a0 þ a1RX þ a2R2

X þ a3
R1.4

R1.8
; ðF2Þ

for X ¼ 1.4, 1.8, where f2 is measured in kHz and RX in
km. Subsequently, we fit the NR data scaling the calibrated
quantities by the total massM of the system, i.e. f2 ↦ Mf2
and RX ↦ RX=M. Our final calibration set is composed by
65% by binaries with R1.4=R1.8 > 1. Table II shows the

TABLE II. Summary of the calibrated relations for the PM peak
frequency f2 as function of the NS radii R1.4 and R1.8. The first
column shows the calibrated quantity of interest; the calibrated
values of the empirical coefficients are reported from the second
to the fifth column.

Qfit a0 a1 a2 a3

f2ðR1.4Þ 5.42 0.0449 −0.0198 � � �
f2ðR1.8Þ 11.5 −0.990 0.0233 � � �
Mf2ðR1.4=MÞ 0.2 −0.0762 0.0078 � � �
Mf2ðR1.8=MÞ 0.236 −0.103 0.0125 � � �
f2ðR1.4; R1.4=R1.8Þ 6.4 −1.33 0.0381 6.97
f2ðR1.8; R1.4=R1.8Þ 9.99 −1.24 0.0349 2.76

Mf2ðR1.4=M;R1.4=R1.8Þ 0.162 −0.115 0.0145 0.0919
Mf2ðR1.8=M;R1.4=R1.8Þ 0.213 −0.105 0.013 0.0241

FIG. 8. Predicted values from the calibrated relations Eq. (F1) compared to the respective NR observed quantities. Top panels show
X ¼ 1.4 and bottom panels show X ¼ 1.8. Left panels show non-mass-scaled f2 and right panels show mass-scaled dimensionlessMf2.
The diagonal (black line) represents the case in which predictions and observations match and the gray area is the 90% credibility level.
The CORE data are reported with circles colored according to R1.4=R1.8 and magenta crosses are the data extracted from [27].
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values of the calibrated coefficients faig for the different
quantities. Figures 8 and 9 show the NR data fNR2 plotted
against the predictions ffit2 of the calibrated relation and the
statistical quantities of interest; i.e. the χ2 (defined in
Sec. IV), the adjusted coefficient of determination R2,
the Bayesian information criterion (BIC) and the Akaike
information criterion (AIC). For the computation of the
BIC and the AIC, we define a log-likelihood from Eq. (22)
equal to − 1

2
χ2.

From our analysis, the calibrations performed with the
mass-scaled quantities show improved trends with respect
to the analogous non-mass-scaled case. This is due to the
factorization of the total binary mass M, as expected by
basic arguments in general relativity. Moreover, the addi-
tional contribution R1.4=R1.8 appears to be more relevant

for the calibration of low-density properties, i.e. f2ðR1.4Þ,
in agreement with [123]. However, the BIC and the AIC do
not favor the introduction of these additional term, even if
the χ2 of the calibrated relation Mf2ðR1.4=MÞ slightly
decreases including R1.4=R1.8 in the fit. We find that the
most robust and reliable quasiuniversal relation is the
mapping Mf2ðR1.8=MÞ, which reinforces the hypothesis
that PM quantities correlate with high-density EOS proper-
ties [17]. The differences between our results and the
findings of [123] might be related to the different size and
composition of the NR set, such as a different set of EOSs,
or to different definitions in the statistical quantities.10

FIG. 9. Predicted values from the calibrated relations Eq. (F1) compared to the respective NR observed quantities. Top panels show
X ¼ 1.4 and bottom panels show X ¼ 1.8. Left panels show non-mass-scaled f2 and right panels show mass-scaled dimensionlessMf2.
The diagonal (black line) represents the case in which predictions and observations match and the gray area is the 90% credibility level.
The CORE data are reported with circles colored according to R1.4=R1.8 and magenta crosses are the data extracted from [27].

10We verified that our results are stable when employing a
Gaussian likelihood or the standard Pearson’s χ2 statistic.
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Notably, simulations of the CORE database show deviations comparable to the cases presented in [27,123] that cannot be
fully cured with the introduction of the additional term R1.4=R1.8.
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