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We present a classification of Kerr–de Sitter spacetimes based on the presence of horizons, ergospheres,
and the characteristics of photon motion. We utilize the concept of local escape cones for isotropically
radiating point sources to create shadows of the Kerr–de Sitter naked singularities within a class containing
astrophysically relevant parameters. For completeness, we also consider in the construction photons entering
the region of negative radii of the naked singularity spacetimes. The shadow construction is associated with
two astrophysically significant families of local reference frames (or local observers). The first family
represents locally nonrotating frames that, near the so-called static radius in Kerr–de Sitter spacetimes,
exhibit characteristics similar to those of static observers at large distances in asymptotically flat spacetimes.
The second family involves radially escaping geodesic frames, which are suitable for constructing the
shadow near the cosmological horizon of Kerr–de Sitter spacetimes. We explore how the aberration effect,
caused by the motion of free observers due to the repulsive influence of the cosmological constant, modifies
the shadow in comparison to those related to stationary locally nonrotating observers.
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I. INTRODUCTION

The appearance of the shadow of a black hole (BH) has
generated considerable interest in the astrophysical com-
munity, especially after the first image of the neighborhood
of the BH located at the center of the galaxy M87 was taken
by the Event Horizon Telescope (EHT) [1–8], and we can
therefore expect a further increase in this interest after the
image of the neighborhood of the BH at the center of our
Galaxy, known as the source SgrA* [9–14].
Starting from the pioneering work on the modeling the

shadow shape of BHs in the asymptotically flat spacetimes,
namely nonrotating Schwarzschild BHs [15,16], the
Schwarzschild BHs surrounded by an accretion disk [17],
and the rotating Kerr BHs [18–20], shadows of BHs or other
compact (no-horizon) objects, such as wormholes, have
been modeled in the framework of general relativity (GR)
by considering many variants of the BH configurations,
using different spacetime geometries, with or without the
presence of matter, using different approaches, and also
using alternative theories of gravity [21].
For example, the braneworld Kerr-Newman BHs have

been studied in [22–26]. Of particular interest are optical
phenomena around the regular BHs [27,28] constructed in
the framework of GR combined with various variants of
nonlinear electrodynamics [29–33]. BHs surrounded by the

test fields or dark matter were examined in [34–39]. Some
remarkable results have been obtained in alternative models
of gravity, including the M-theory [40], Einstein-Æther
theory [41], Einstein-Cartan-Sciama-Kibble theory [42], or
Gauss-Bonnet gravity [43]. A comprehensive review of
variants of BH spacetimes in which the optical phenomena
have been studied, can be found in [44].
The shadows associated with the no-horizon compact

objects have also been studied for spherically symmetric
naked singularities (NSs) [45,46], deformed NSs [47],
wormholes [48–52], Kerr NSs [53,54], braneworld Kerr-
Newman NSs [55–57], or standard Kerr-Newman BH and
NS [15,58]. So-called BH impostors have also been treated,
e.g., in [59].
Considerable effort has also gone into finding an alter-

native to the Kerr NS spacetime, which does not show the
region of causality violations (time machine [60]), which is
predicted to be in the vicinity of the ring singularity [61].
For this reason, “stringy” solutions corresponding to rapidly
rotating compact objects, so-called superspinars, have been
introduced, where the interior is described by assumed
stringy effects, and the exterior is described by the standard
Kerr NS geometry [62–64]; their astrophysical properties
have been studied in [65,66]. The pathological causality
violation region is then covered by the correctly behaving
region, the boundary of the inner solution is expected at a
radius r ≥ 0. Optical phenomena associated with Kerr
superspinars have been studied in [53,54], where it has
been shown that the superspinar shadow depends on the
position of the boundary of the external Kerr spacetime and
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differs significantly from the BH shadow. The distinction
between Kerr NSs and BHs has been studied in [54,66,67].
A comprehensive review of analytical studies of the

shadows of BHs and other compact objects with a presen-
tation of different approaches has recently been published
in [68]. A common feature of these studies is the focus on
the area of the photon spheres in the case of spherically
symmetric spacetimes, or photon shells in the case of the
axially symmetric and stationary spacetimes, surrounding
the central gravitating objects, as they play a crucial role in
defining the shadow.
The validity of the weak cosmic censorship conjecture,

which forbids the appearance of naked singularities,
clothing each one in an event horizon [69], is still an
open question [70,71]. The conversion of a BH into a NS
due to particle capture or perturbation processes seems
highly improbable as possible conversions due to pertur-
bations considered in the linear regime [72–74] are
corrected by the inclusion of backreaction (second order)
effects [75–80]. However, it has been shown that gravi-
tational collapse can lead to NSs [81–84], and, further-
more, the Kerr superspinars having exterior with the Kerr
NS geometry can be considered as primordial, being
remnants of the initial stringy phase of the evolution
of the Universe [62,63,66,85]. Therefore, we believe that
it is worthwhile to study the construction of the shadow
of both the complete Kerr NS spacetimes and the
Kerr superspinars to test their observational relevance,
as we can expect that in the near future we will be able
to distinguish very subtle details of the compact
objects due to the use of the long baseline interferometric
measurements.
The accelerated expansion of the Universe caused by

dark energy, that can be related to the vacuum energy [86],
can be conveniently represented by the relic cosmological
constant [87]. This constant is thought to have a significant
impact not only in cosmology [15,88,89], but also in
astrophysical processes related to the formation of large
galaxies and the accretion onto supermassive black holes
[90–94], as well as on the dark matter halos in large
galaxies or their clusters [95,96]. Therefore, the shadows
of BHs in asymptotically de Sitter spacetimes, specifically
those of Kerr–de Sitter (KdS) BHs, were found for locally
nonrotating reference frames (LNRFs), frames related to
circular geodesic orbits, and for radially freely falling/
escaping (geodesic) frames [97]. For an alternative KdS
BH solution and its shadow see [98,99]. Furthermore,
the impact of the observer’s state of motion on the BH
shadow was considered, including that of the Sgr A*, as
described in [100]. In other recent works, BHs embedded
in the expanding de Sitter universe have been studied in
[101–103], including rotating [97] and charged and rotat-
ing BHs [104], while the connection with the Friedman-
Lemaître-Robertson-Walker cosmological metric has been
considered in [105].

In the present paper we deal with the shadow of KdS NS
spacetimes, taking into account also the photons entering
the sheet of r < 0 in terms of the complete Kerr geometry—
we must stress that, for completeness, we also consider the
influence of this region, which is controversial because it
requires reinterpretation of the Kerr geometry for distant
observers at r < 0, and it also includes the causality
violation region [61]. Therefore, in the calculations of the
KdS NS shadow we consider the ring singularity at r ¼ 0,
θ ¼ π=2, and photons moving in both the sheets r > 0 and
r < 0, focusing attention on the special class of the KdS NS
spacetimes (see Sec. III D 3) that enables the existence of
spherical photon shells at radii r < 0, which determine the
shadow along with the spherical photon shells at r > 0.
Various methods exist for calculating the shadow of

compact objects, including one which incorporates astro-
metric observables [106]. In this study, we employ the
concept of light escape cones (LECs) and complementary
light capture cones (LCCs) related to the locally nonrotating
frames (LNRFs) to determine the shadow. In a given
reference frame, the LEC (LCC) is defined as the set of
directions, given by the directional angles related to the
frame sky, of the emitted photons that escape to infinity
(cannot escape to infinity). The LNRFs are a very conven-
ient platform for describing the optical effects [18], repre-
senting the most natural generalization of the static
observers of the Schwarzschild spacetimes, and a relevant
tool in studies of astrophysical phenomena in the vicinity of
rotating black holes [19]. Of course, the shadow of a
compact object (a BH or a NS) can be constructed for
any observer moving in the spacetime related to the compact
object. Usually, we construct the shadow as seen by distant
free observers, i.e., observers for whom the relativistic
effects can be considered negligible, namely observers
located on Earth. In the asymptotically flat Kerr spacetimes,
the distant observers are ideally realized by the static
observers (LNRFs) at infinity. The KdS spacetimes are
not asymptotically flat, so to keep the similarity with the
Kerr spacetimes, we have to look for a region that can be
considered as nearly flat, where free observers can be
defined as being nearly static. Intuitively, it is clear that
in an expanding universe such near-flat regions correspond
to the outer regions and close vicinity of gravitationally
bound systems such as galaxies and their clusters, where the
influence of gravity and universe expansion is sufficiently
suppressed. Of course, the situation is quite different for an
observer orbiting close to a K(dS)BH or NS with or without
an accretion disk [54,57,97]. For the construction of the
shadow for BH objects in the expanding universe with the
cosmological constant (see [102]).
We follow the KdS BH shadow calculation method used

in [97], where the LECs were calculated relative to different
reference frames, namely the accelerated LNRFs, the
geodesic radially falling/escaping frames, and the circular
geodesic frames. In this paper, due to the extended
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variability and complexity of the KdS NS spacetimes, we
limit ourselves to the KdS NS spacetimes of the class
containing the parameters allowed by the observational
constraints, given namely by enormously low value of the
relic cosmological constant (Λ ∼ 10−52 m−2) implied by
cosmic observations, and the constraints on the mass and
spin of the compact object given by observations of
active galactic nuclei in large galaxies, or even by the
whole galactic clusters [93,95]. This class of KdS NS
spacetimes allows the existence of the so-called static
radius [88,91,94,107,108]—the spacetime at and around
this radius represents the best local approximation to
the asymptotically flat region of the Kerr spacetimes
[107,108]; the static radius also represents an upper limit
on the extent of gravitationally bound systems (dark
matter halos) in spacetimes with the relic cosmological
constant [95,109]. At the static radius, the LNRF observ-
ers can be thought of as geodesic stationary observers
located at an unstable equilibrium point where the gravi-
tational attraction of the central object is just balanced by
the cosmic repulsion of the dark energy (cosmological
constant).
To simulate the appearance of the KdS NS shadow to a

freely escaping observer near the cosmological horizon, we
use the radially escaping geodesic reference frames, which
move purely radially relative to the LNRFs [54].
The concept of LECs (and complementary LCC) allows

to construct the BH or NS shadows relative to any observer,
including those orbiting very close to the central object
(see, e.g., [54,57]). Here we consider the standard case of a
shadow (silhouette) cast by a compact object located
between a very distant observer and an illuminating source
much larger than the compact object [18]. To construct the
LEC and the shadow, we assume the source of light
(emitter) located at the position of the observer and study
the motion of photons emitted in different directions. We
then use the results of the LEC construction to construct the
shadows. In our analysis we concentrate on special classes
of geodesics, namely so-called principal null congruence
geodesics remaining on fixed latitude [88], and in particular
the null geodesics corresponding to the spherical photon
orbits, which can be located in regions of both positive and
negative radii.
The present paper is organized as follows. In Sec. II we

briefly summarize the basic geometric properties of the KdS
backgrounds, namely, the event horizons and the ergo-
sphere, and present the corresponding separation of the KdS
spacetimes in the ða2 − yÞ–parameter plane. This separation
is related to the classification of the KdS spacetimes
introduced in [110]. In the following, the construction of
the shadow refers only to the KdS NS spacetimes with
parameters that are realistic from the point of view of
astrophysics, i.e., with the relict cosmological constant and
masses observed in the centers of active galactic nuclei.
In such spacetimes, at the so-called static radius, the

gravitational attraction of the central object is just balanced
by the cosmic repulsion [111]. In Sec. III we study the
motion of photons entering the region of negative radii in
the selected class of the KdS NS spacetimes, thus extending
the detailed study of [110] concentrated on the region of
positive radii. First, the constants of the photon motion are
introduced and the Carter equations of motion are presented.
Then the range of allowed motion constants is investigated.
Furthermore, special photon trajectories are studied,
namely, constant latitude trajectories and the spherical
photon orbits (SPOs). A special subsection is devoted to
the study of the locally measured orientation of the SPOs
with respect to the azimuthal direction, including orbits in
the region of negative radii. In Sec. IV the directional angles
of photons in the LNRFs are defined and their relation to the
motion constants is established. The section concludes with
the construction of the NS shadows as seen in LNRFs
located at the static radius, which is chosen because it
represents, together with its surroundings, the best local
approximation to flat spacetime in the KdS spacetimes
[107,108]. In Sec. V the local reference frames radially
moving (escaping) in the LNRFs are introduced, following
geodesics of the spacetime, and the shadow is constructed in
these frames as they approach the cosmological horizon.
Section VI presents a discussion and some conclusions.

II. KERR–DE SITTER GEOMETRY
AND ITS BASIC PROPERTIES

The Kerr–de Sitter spacetimes [61] are determined by
the mass parameter M, the spin parameter a ¼ J=M,
where J is the angular momentum of the central object,
and the cosmological constant Λ, which can be conven-
iently replaced by the dimensionless cosmological param-
eter y ¼ 1

3
ΛM2.

A. Line element

To describe the Kerr–de Sitter geometry we use the
standard Boyer-Lindquist spheroidal coordinates
t; r; θ;ϕ, expressed in the geometric unit system with
c ¼ G ¼ 1. In the following, for simplicity, we use the
dimensionless ratios of the parameter a introduced
above and coordinates—s=M → s, t=M → t; r=M → r; a=
M → a. In the following we assume M > 0; a > 0;
Λ > 0. The line element of the geometry then takes the
form [88,89]

ds2 ¼ −
Δr

I2ρ2
ðdt − a sin2 θdϕÞ2

þ Δθ sin2 θ
I2ρ2

½adt − ðr2 þ a2Þdϕ�2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2; ð1Þ
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where

Δr ¼ ð1 − yr2Þðr2 þ a2Þ − 2r; ð2Þ

Δθ ¼ 1þ a2y cos2 θ; ð3Þ

I ¼ 1þ a2y; ð4Þ

ρ2 ¼ r2 þ a2 cos2 θ: ð5Þ

B. Singularities

The behavior of the Riemann invariant RαβγδRαβγδ of the
Kerr–de Sitter geometry [61] demonstrates the existence of
a physical singularity determined by the condition,

ρ2 ¼ 0; ð6Þ

which is satisfied when

r ¼ 0; cos θ ¼ 0: ð7Þ

Thus the singularity is a ring of radius a located in the
equatorial plane θ ¼ π=2. Using the interior of the ring
singularity, the Kerr–de Sitter geometry can be extended
into the region of negative radii, see, e.g., [61,112–114].

C. Horizons

The coordinate pseudosingularities of the KdS geometry
occur at radii where

Δr ¼ 0 ð8Þ

and define the horizons of the KdS spacetimes.
Equation (8) can alternatively be written in the form

a2 ¼ a2hðr; yÞ≡ yr4 − r2 þ 2r
1 − yr2

: ð9Þ

The function a2hðr; yÞ was analyzed in [108]—here we
present a summary of the results of that paper.
In the following we concentrate on the study of the

repulsive cosmological constant, i.e., we assume y > 0.
Then the function a2hðr; yÞ defined in the relation (9) has
two divergent points

r�dðhÞ ¼ � 1ffiffiffi
y

p ; ð10Þ

which represents limits on the loci of the cosmological
horizons—the radius rþdðhÞ ¼ 1=

ffiffiffi
y

p
limits the cosmological

horizon at the region of positive radii, while r−dðhÞ ¼ −1= ffiffiffi
y

p
limits the secondary cosmological horizon at the region of
negative radii.

The behavior of the function a2hðr; yÞ is illustrated in
Fig. 1. It must be emphasized that only the regions where
a2 ≥ 0 are physically relevant.
The separation of the KdS spacetimes is governed by the

existence of the local extrema of the function a2hðr; yÞ
depending on the cosmological parameter y, i.e., the local
maximum, a2maxðhÞðyÞ, and the local minimum, a2minðhÞðyÞ,
induce the partition into the BH and NS spacetimes in the
parameter space ða2 − yÞ [108]. We therefore present the
following classification.
(1) Case 0 < y ≤ ycritðSdSÞ≡ 1=27 ≐ 0.03704

(i) The function a2hðr; yÞ has a positive maxi-
mum a2maxðhÞðyÞ > 0 and negative minimum

a2minðhÞðyÞ < 0 (see the red curve in Fig. 1).
(ii) for y ¼ ycritðSdSÞ, a2minðhÞðyÞ ¼ 0 (see the blue

curve in Fig. 1); ycritðSdSÞ denotes the critical
value of the cosmological parameter which
allows existence of the Schwarzschild-de Sitter
BH spacetimes.
(a) 0 < a2 < a2maxðhÞðyÞ

The geometry describes a BH space-
times; Eq. (8) has four real distinct roots

FIG. 1. Top: plot of the functions a2hðr; yÞ given for some
appropriately chosen values of the cosmological parameter y.
These functions are steeply increasing near the discontinuity
point at r ¼ r−dðhÞ ¼ −1= ffiffiffi

y
p

, where a2hðr; yÞ → þ∞ as r → r−dðhÞ
from the left, which is illustrated by the almost vertical lines at
r < 0. Bottom: the same in detail focusing on the region r > 0

and the admissible part a2 > 0.
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r−c < 0 < ri < ro < rc, corresponding re-
spectively to the radius of the secondary
cosmological horizon in the region r < 0,
the inner BH horizon, the outer BH horizon
and the cosmological horizon (at the standard
region of positive radii).

(b) a2 ¼ a2maxðhÞðyÞ
Extreme BH spacetimes where the inner

and outer BH horizons merge, ri ¼ ro.
(c) a2maxðhÞðyÞ < a2

The geometry describes the NS space-
times, which are only equipped with the two
cosmological horizons r−c < 0 < rc.

(2) Case ycritðSdSÞ < y ≤ ycritðKdSÞ

≡16ð26
ffiffiffi
3

p
− 45Þ=9 ≐ 0.05924

(i) The function a2hðr; yÞ has both local extrema
a2maxðhÞðyÞ and a2minðhÞ positive, 0 < a2minðhÞ <
a2maxðhÞðyÞ (see green curve in Fig. 1)—these
extrema converge for y ¼ ycritðKdSÞ to an
inflection point at

a2crit ≡ 3ð3þ 2
ffiffiffi
3

p
Þ=16 ≐ 1.21202

(see the orange curve in Fig. 1); ycritðKdSÞ and
a2crit denote the critical values of the cosmo-
logical parameter and the spin parameter,
respectively, for which the Kerr–de Sitter BH
spacetimes can still exist.
(a) a2 < a2minðhÞðyÞ or a2maxðhÞðyÞ < a2

The geometry describes a NS spacetimes
with two cosmological horizons, as in the
previous NS case.

(b) a2minðhÞðyÞ < a2maxðhÞðyÞ
The geometry describes a BH spacetimes

with two cosmological horizons and two BH
horizons as in the previous BH case.

(3) Case y > ycritðKdSÞ
The function a2hðr; yÞ has no local extrema (see

the black curve in Fig. 1), and the geometry
describes NS spacetimes with two cosmological
horizons as in the previous NS cases.

For completeness, we also describe all limit cases of
BH-NS spacetimes.
The limit case a2 ¼ a2minðhÞðyÞ corresponds to the coa-

lescence of the BH outer horizon and the cosmological
horizon ro ¼ rc—the marginal NS spacetime.
The limit case a2 ¼ a2maxðhÞðyÞ corresponds to the merg-

ing of the inner and outer BH horizons ri ¼ ro—the
extreme BH spacetime.

The extreme case y ¼ ycritðKdSÞ and a2 ¼ a2crit corre-
sponds to the ultraextreme NS spacetime with ri ¼ ro ¼
rc [108].
The behavior of the local extrema a2maxðhÞðyÞ and

a2minðhÞðyÞ as a function of the cosmological parameter y

is shown in Fig. 2.
In this article we pay special attention to the sheet of

negative r, so we specify the position of the secondary
cosmological horizon r−c . Its position should be constrained
by the relations r−zðhÞ < r−c < r−dðhÞ < 0, where r−zðhÞ < 0 is

the zero point of the function a2hðr; yÞ, which is located at

r−zðhÞ ¼

8><
>:

−2ffiffiffiffi
3y

p cos
h
1
3
arccos

ffiffiffiffiffiffiffiffi
27y

p i
; for y ≤ ycritðSdSÞ

−2ffiffiffiffi
3y

p cosh
h
1
3
arg cosh

ffiffiffiffiffiffiffiffi
27y

p i
; for y > ycritðSdSÞ;

ð11Þ

and the upper limit r−dðhÞ is the negative one from the two

divergent points r�dðhÞ ¼ �1=
ffiffiffi
y

p
of the function a2hðr; yÞ.

Note that the negative roots r−zðhÞ of the function a2hðr; yÞ
can have no physical meaning by themselves, since no
analytic extension of the Schwarzschild–de Sitter manifold
(a2 ¼ 0; y > 0) to negative radii over the ring singularity at
r ¼ 0 exists. In the pure Kerr spacetimes (a2 > 0; y ¼ 0)
there are at most two positive roots of Eq. (8).

D. Ergosphere

The ergosphere is the space-time region that allows the
extraction of rotational energy, which is part of the total
gravitational mass M, from the BH or NS by the so-called
Penrose process and its variants [19,115–120]. In the

FIG. 2. Plot of the functions a2maxðhÞðyÞ (black curve) and
a2minðhÞðyÞ (gray curve) and the induced partition of the KdS

spacetimes into the KdS BH spacetimes (gray area) and the KdS
NS spacetimes (white area). Critical values of the spacetime
parameters are included.
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ergosphere also photons with negative covariant energy can
exist [97,110], allowing the so-called radiative Penrose
process [115]. The ergosphere is bounded by the surfaces
of the static limit (ergosurfaces) and the horizons
[61,97,108]. All matter within the ergosphere is dragged
by the rotation of spacetime and is corotating in the positive
ϕ-direction, with an angular velocity of Ω ¼ dϕ

dt > 0 [15].
Matter in the ergosphere corotates relative to observers
whose proper time is equal to or very close to the
coordinate time. In the asymptotically flat Kerr spacetimes,
the coordinate time t is the proper time of static observers at
infinity (and very close for static distant observers). In the
KdS spacetimes the coordinate time t is close to the proper
time of static observers in unstable equilibrium at the static
radius, where the spacetime is closest to the flat space-
time [107].
For the Kerr spacetimes, the ergosphere has recently

been studied in [121–125], the influence of the cosmo-
logical constant has been studied, e.g., in [56,108,126].
Here we briefly discuss for the KdS NS spacetimes the
existence and extension of the ergosphere as a function of
on the spacetime parameters a2; y and its relation to other
relevant surfaces representing the spacetimes.
The ergoshere is characterized by the condition gtt > 0.

Its boundary, i.e., the ergosurface (the surface of the static
limit) is given by the condition,

gtt ≡ a2 sin2 θΔθ − Δr

I2ρ2
¼ 0; ð12Þ

which leads to a quartic equation with respect to the
variable r. However, in the equatorial plane (θ ¼ π=2) that
is of most interest because of the strongest effects induced
by the rotation of the spacetime; Eq. (12) is reduced to

a2 − Δr ¼ 0; ð13Þ

which has the solution

r ¼ 0; ð14Þ

independent of the space-time parameters, while the other
solutions are given by the cubic equation

yr3 þ ða2y − 1Þrþ 2 ¼ 0: ð15Þ

In the case y > 0, Eq. (15) always has just one negative root

rð−Þerg , which reads

rð−Þerg ¼

8>>>>>>><
>>>>>>>:

−2
ffiffiffiffiffiffiffiffiffi
1−a2y
3y

q
cos

�
1
3
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
27y

ð1−a2yÞ3
q �

; for a2 < 1=y;

−
ffiffi
2
y

3

q
; for a2 ¼ 1=y;

−2
ffiffiffiffiffiffiffiffiffi
a2y−1
3y

q
sinh

�
1
3
sinh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
27y

ða2y−1Þ3
q �

; for a2 > 1=y:

ð16Þ

Under the conditions we are dealing with, a2 > 0, y > 0,

the inequality r−ðcÞ < rð−Þerg < 0 holds; these surfaces thus

restrict the ergoregion in the region of negative radii,
r < 0—this part of the ergoregion lies between the cos-
mological horizon and the ergosurface that touches the
cosmological horizon at the symmetry axis θ ¼ 0; π. Note
that the ergoregion at negative radii has character indepen-
dent of the spacetime parameters. In the following dis-
cussion we concentrate on the properties of the ergosurfaces
in the region of positive radii, r > 0.
If 0 < a2 < a2erg−sðyÞ and 0 < y < ycritðSdSÞ, then

Eq. (15) has, in addition to the negative solution (16),
two positive roots r�erg, which read

r�erg ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2y

3y

s
cos

2
4π
3
� 1

3
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27y

ð1 − a2yÞ3
s 3

5; ð17Þ

which satisfies the relation 0 < rþerg < r−erg. Here the func-
tion a2erg−sðyÞ, which is related to the existence of the
ergosphere, is given in the form

a2erg−sðyÞ≡ 1 − 3y1=3

y
: ð18Þ

In the relevant interval 0 < y ≤ ycritðSdSÞ, where the function
a2erg−sðyÞ takes positive values, 0 ≤ a2erg−sðyÞ < 1=y. The
critical parameter ycritðSdSÞ is zero of the function a2erg−sðyÞ.
Its asymptotic behavior reads a2erg−sðyÞ → ∞ for y → 0þ.
For a2 ¼ a2erg−sðyÞ, these radii merge at the static

radius [127]

rs ¼ y−1=3; ð19Þ

as can be checked by inserting the function a2erg−sðyÞ into
expression (17).
If a2 > a2erg−sðyÞ, or ycritðSdSÞ < y, the two roots are

irrelevant, since they become to be complex.
Furthermore, the static radius does not exist for spacetimes
with a2 > a2erg−sðyÞ, as shown in [108]. We will not
consider such spacetimes for the construction of the
shadow, as they do not conform to the astrophysical
constraints.
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In the region of positive radii, the ergosphere interferes
with the equatorial plane at radii limited by the conditions

0 ≤ r ≤ rþerg and r−erg ≤ r < ∞

for a2 < a2erg−sðyÞ and 0 < y ≤ ycritðSdSÞ; ð20Þ

or

0 ≤ r < ∞ for a2erg−sðyÞ ≤ a2 or ycritðSdSÞ < y: ð21Þ

In the Kerr case (y ¼ 0), Eq. (15) becomes linear and has
the well-known solution r ¼ 2, which is the limit for radius
of the “inner” ergosurface r ¼ rþerg as y → 0þ, while the
“outer” ergosurface r ¼ r−erg does not exist, with r−erg → ∞
as y → 0þ. the behavior of both radii as a function of the
spacetime parameters a2; y is illustrated in Fig. 3. Recall
that in the BH spacetimes the region between the outer and
inner horizons, where grr < 0, must be excluded, since the
BH rotational energy (covariant) cannot be extracted from
this region by classical processes. Considering the energy
extraction from a BH we restrict the ergospheres to the
regions above the outer horizon and below the cosmologi-
cal horizon.
The function a2erg−sðyÞ has the inverse form

yergða2Þ≡ 1

a2
þ 3

ffiffiffi
23

p

ða10 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a18 þ a20

p
Þ1=3

−
3ða10 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a18 þ a20

p
Þ1=3ffiffiffi

23
p

a6
: ð22Þ

It has been shown in [110] that the inverse function yergða2Þ
in the parameter plane (y − a2) determines the boundary
between the KdS spacetimes where the radial photon
motion exhibits the-so called divergent repulsive barrier
(DRB), in the spacetimes where two separated ergoregions
exist, one near the BH horizon and the other near the
cosmological horizon, and the restricted repulsive barrier
(RRB), in the BH spacetimes where only one ergoregion
exists between the BH and cosmological horizons. Note
that in the case of RRB (DRB) the photons incoming with
high-axial angular momentum Φ [see Eq. (37)] from the
vicinity of the cosmological horizon can (cannot) reach the
surface r ¼ 0. The notion of these concepts is illustrated in
Sec. III C. The structure of the ergosphere is thus related to
the character of the photon motion.
Outside the equatorial plane, the distribution of the

points of the ergosurface can be described by the depend-
ence of their latitudinal coordinate on the radial coordinate
in the form

θergðrÞ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 − 4yΔr

p
2a2y

s
: ð23Þ

The extension of the ergosphere is then given by the
inequality θergðrÞ ≤ θ ≤ π − θergðrÞ. From Eq. (23) it fol-
lows that for a2 ≤ 1=y, the ergosurface is connected to the
ring singularity, i.e., θergð0Þ ¼ π=2. However, for a2 > 1=y,
it is separated from the singularity and it intersects the disc
r ¼ 0 at the latitudinal coordinate

θergð0Þ≡ θergð0Þ ¼ arcsin

ffiffiffiffiffiffiffi
1

a2y

s
: ð24Þ

From Eq. (24) it can be seen that for a2y → ∞, the
ergosurface shrinks to infinitesimal extension in the neigh-
borhood of the symmetry axis.

E. Division of the KdS spacetimes by relations
of horizons and ergosurfaces

From the discussion of Eqs. (16), (17), (23), and (24) it
follows that the functions a2erg−sðyÞ and 1=y play a crucial
role in determining of the character of the ergosphere. The
behavior of these functions, together with the functions
a2min =maxðhÞðyÞ, induces the partitioning of the KdS space-

times according to the relations of horizons and ergosur-
faces, shown in Fig. 4. In Fig. 5 we show the 3D
representation of the distribution of the horizons, ergosur-
faces and the static radius for some selected representative
values of the spacetime parameters a2; y, corresponding to
individual cases of the spacetime division shown in Fig. 4,
including the borderline cases. For convenience, we have
used the so-called Kerr-Schild coordinates x, y, z (here the
coordinate y should not be confused with the cosmological
parameter), which appropriately represent the neighborhood

FIG. 3. Dependence of radii rþerg; r−erg on the spacetime param-
eters a2; y. The lower 3D-graph has constant value rþerg ¼ 2 for
y ¼ 0 independently of the spin a2, while the upper 3D-graph
tends to infinity. These graphs are connected by an edge whose
projection into the (a2 − y)-plane is the function a2erg−sðyÞ, while
the projection into the (r − y)-plane is the dependence of the
static radius rs on the cosmological constant rs ¼ y−1=3.
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of the ring singularity, related to the Boyer-Lindquist
coordinates r, θ by the relations

x2 þ y2 ¼ ðr2 þ a2Þ sin2 θ;
z2 ¼ r2 cos2 θ: ð25Þ

The ergosphere of KdS BH spacetimes was discussed in
[108], where the existence of the ergosphere was demon-
strated also in the vicinity of the cosmological horizon. The
Penrose process in both BH and cosmological ergoregions
was also studied in [128].
We must emphasize that in the following the construc-

tion of the shadow is concentrated on the KdS NS space-
times with the static radius and the DRB of the photon
motion, since only this type of the NS spacetimes can be
relevant from the point of view of the restrictions coming
from astrophysical and cosmological observations [94].
In Sec. III F, we present a complete classification of the

KdS spacetimes based on the properties of the horizons,
ergosurfaces and the static radius, taking into account also
the properties of the null geodesics. We use the results of
the previous study presented in [110], focusing on the
existence and properties of the spherical photon orbits
(SPOs) governing the shadows of KdS BHs or KdS NSs.

F. LNRFs

The LNRFs were introduced (see [19]) as orthonormal
reference frames related to accelerated observers orbiting at
fixed coordinates r, θ, with zero angular momentum Φ;
observers related to the LNRFs are also called zero-angular
momentum observers (ZAMOs) [18,117]. Only these
frames treat the þϕ and −ϕ directions as equivalent with
respect to the local geometry, i.e., they can be regarded as
nonrotating with respect to the local geometry [15]. The
world lines of these frames (observers) are perpendicular to
the spacelike hypersurfaces t ¼ const, as can be seen from
the orthonormal tetrad of the basis vectors, whose angular
velocity is given by the metric coefficients,

ΩLNRF ¼ −
gtϕ
gϕϕ

¼ a½Δθðr2 þ a2Þ − Δr�
A

; ð26Þ

where

A ¼ ðr2 þ a2Þ2Δθ − a2Δr sin2 θ: ð27Þ

It is easy to show that both these functions A and ΩLNRF are
positive at the stationary regions Δr > 0 of the KdS
spacetime at positive radii r > 0. However, in the case
of negative radii, a small region near the ring singularity
where A < 0 exists. This inequality defines the causality
violation region where gϕϕ < 0; see Sec. III E.
The tetrad of the basis vectors reads

eðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2A

ΔrΔθρ
2

s �
∂

∂t
þ ΩLNRF

∂

∂ϕ

�
; ð28Þ

eðrÞ ¼
ffiffiffiffiffiffi
Δr

ρ2

s
∂

∂r
; ð29Þ

FIG. 4. Plot of the functions a2maxðhÞðyÞ (black curve), a2minðhÞðyÞ
(gray curve), a2erg−sðyÞ (black dashed curve) and 1=y (black dash-
dotted curve) and the induced separation of the KdS spacetimes
according to the relations of horizons and ergosurfaces; critical
values of the spacetime parameters are included. The functions
a2maxðhÞðyÞ, a2minðhÞðyÞ represent the partitioning of the spacetimes

into the BH and NS cases, as in Fig. 2. The function a2erg−sðyÞ
determines the partition into the spacetimes endowed with two
separated ergoregions and the static radius (below the curve) and
one ergoregion and no static radius (the rest of the parametric
plane). The accompanying captions (a)–(h) refer to the individual
cases shown in Fig. 5. The dark gray region corresponds to the
BH spacetimes with two ergoregions and the static radius [see
Fig. 5(a)]; the light gray region corresponds to the BH spacetimes
with one ergoregion and no static radius [see Fig. 5(c)]; the blue
region represents the NS spacetimes with two separated ergo-
regions and the static radius [see Fig. 5(d)]; the green region
represents the NS spacetimes with one ergoregion and no static
radius [see Fig. 5(f)]. The function 1=y, represented as a straight
line due to the logarithmic scale on both axes, separates the
spacetimes with a2 > 1=y (the red region), whose ergosurface is
separated from and surrounded by the ring singularity; the
ergosphere then extends outside the ergosurface, which has the
shape of a rotating ellipsoid, while the inner region, where
gtt < 0, is restricted to the vicinity of the spin axis [see Fig. 5(h)].
The boundary cases are shown in Figs. 5(b), 5(e), and 5(g). The
spacetimes with a2 ≶ 1=y also differ in the character of the
latitudinal photon motion (see [110]). As shown in the text below,
the different character of the ergoregions is directly related to the
properties of the photon motion, namely the spacetimes with two
ergospheres are characterized by the divergent barrier DRB of the
radial photon motion, while the spacetimes with one ergosphere
are characterized by the repulsive barrier RRB of the radial
photon motion (see Sec. III C for explanation). The displayed
value ye−h, which gives the intersection of the functions a2erg−sðyÞ,
a2maxðhÞðyÞ, yields ye−h ¼ 0.033185, the corresponding value a2e−h
(not shown) is a2e−h ¼ 1.0832.
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FIG. 5. Significant surfaces, i.e., horizons, ergosurfaces and static radius, if any, of the basic types of the KdS spacetimes, shown in the
Kerr-Schild coordinates x, y, z in the region of positive radii (here the coordinate y should not be confused with the cosmological
parameter y). The ergosurfaces are shown as orange lattice surfaces, the cosmological horizon as blue surface, the black spheres/rings
represent the BH event horizon/ring singularity, the green spheres represent the static radius. The individual figures are plotted for the
spacetime parameters representing the basic cases of the division of the KdS spacetimes shown in Fig. 4, so that the labels (a)–(h) in
Figs. 4 and 5 correspond to each other: (a) represents the KdS BH spacetime with two separated ergospheres; the inner BH ergosphere
and the outer cosmological ergosphere with the static radius and the DRB of the radial photon motion; (c) represents the KdS BH
spacetime with the single ergosphere bounded between two closed ergosurfaces, one in each half-space, with no static radius and with
the RRB of the radial photon motion; (d) describes the KdS NS spacetime with two separate ergospheres; the inner toroidal ergosphere
connected to the ring singularity, and the cosmological ergosphere, with the static radius and the DRB of the photon motion;
(f) describes the KdS NS spacetime with the only ergosphere extending outside the closed ergosurface, connected to the ring singularity,
with DRB of the photon motion and no static radius; (h) represents the extreme case of the NS spacetime with the only ergosurface
surrounded by the ring singularity; its latitudinal extension in the disc r ¼ 0 is, according to Eq. (24), given by θ0 ¼ 45°; (b)/(e)
correspond to the boundary case between BH/NS spacetime with DRB/RRB, when the inner and outer ergosurfaces meet each other at
the static radius; (g) shows the marginal case of NS spacetimes with ergosurfaces still connected to the ring singularity. In the BH cases
we do not reflect the region below the event (outer) BH horizon; the spacetime structure is of the same character as in the Kerr BH
spacetimes (see [61]). As far as naked singularities are concerned, we have to stress that only case (d) corresponds to the situations
relevant from the point of view of astrophysics and cosmology implying that the parameter y must be very small. Note that the r < 0
region, not shown here, always contains the secondary cosmological horizon for both BH and NS spacetime, along with the ergosphere
and ergoregion just between them.
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eðθÞ ¼
ffiffiffiffiffiffi
Δθ

ρ2

s
∂

∂θ
; ð30Þ

eðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ρ2

A sin2 θ

s
∂

∂ϕ
: ð31Þ

The complementary tetrad of the differential 1-forms of
the LNRFs is given by the relations

ωðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔrΔθρ

2

I2A

r
dt; ð32Þ

ωðrÞ ¼
ffiffiffiffiffiffi
ρ2

Δr

s
dr; ð33Þ

ωðθÞ ¼
ffiffiffiffiffiffi
ρ2

Δθ

s
dθ; ð34Þ

ωðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A sin2 θ
I2ρ2

s
ðdϕ − ΩLNRFdtÞ: ð35Þ

The quantities characterizing a moving test particle as
energy and components of angular momentum, measured
locally in the LNRFs, are given by the projection of the
particle 4-momentum pμ onto the corresponding vectors of
the orthonormal LNRF tetrad [18].
In the asymptotically flat Kerr spacetimes, the angular

velocity of these frames ΩLNRF ¼ dϕ
dt gives their angular

velocity relative to infinity, i.e., relative to static observers
located at infinity. At infinity, ΩLNRF ¼ 0; LNRFs corre-
spond to the static (free or geodesic) reference frames at

FIG. 5. (Continued).
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infinity. In calculations of astrophysical phenomena in
realistic situations, distant static frames (observers) are
well approximated by the LNRFs, which are realistic
approximations of the idealized static observers at infinity
(see e.g. [54]).
The KdS geometry is not asymptotically flat, so the

notion of the static free frames (observers) at infinity is not
appropriate in such spacetimes. Therefore, we need to look
for a suitable region of the KdS spacetimes that allows the
existence of distant static frames that can be considered as
free or nearly free, similarly to the static-free observers at
infinity of the asymptotically flat Kerr spacetimes. It was
shown in [107] that the region fulfilling this condition of
being nearly flat is the static radius (and its vicinity), where
test particles can be free in an unstable equilibrium [88,108].
The static radius exists in all the KdS NS spacetimes of
astrophysical relevance that are included in class IVa
considered here for the shadow construction.
We have chosen the parameters of the considered KdS

spacetimes in such a way as to allow a clear and illustrative
representation of the optical phenomena and properties of
the NS shadow, but the values of the cosmological param-
eter y are much larger than those corresponding to astro-
physically relevant spacetimes; for astrophysically relevant
values of the parameter y we have to use logarithmic scales
in demonstrating the effects on the magnitude of the shadow
(see e.g. [93]).

G. Equations of geodesic motion

Due to the time and axial symmetry of the KdS
spacetime, there are two Killing vector fields; the time
Killing vector field ξðtÞ ¼ ∂=∂t and the axial Killing vector
field ξðϕÞ ¼ ∂=∂ϕ, such that projections

E ¼ −ξμðtÞpμ ¼ −pt; ð36Þ

and

Φ ¼ ξνðϕÞpν ¼ pϕ ð37Þ

of the test particle coordinate 4-momentum pμ, where

pμ ¼ dxμ

dλ
; ð38Þ

onto the Killing vectors are constants of motion along the
geodesic (representing the covariant energy and the covar-
iant axial angular momentum). Here λ is the affine
parameter normalized so that

pμpμ ¼ −m2; ð39Þ

where m is a trivial motion constant—the rest mass of
the particle (m ¼ 0 for photons). The energy and momen-
tum components in a reference frame, related to local

measurements in the considered frames, e.g. in
the LNRFs, are given by the projections pðtÞ ¼
−ELNRF ¼ eμðtÞpμ, pðϕÞ ¼ ΦLNRF ¼ eμðϕÞpμ, pðrÞ ¼ eμðrÞpμ,

pðθÞ ¼ eμðθÞpμ. These quantities are not constants of the

motion and depend on the position and velocity of the
observer (frame). For definitions of the 3-vector of
velocity with respect to reference frames see [19]. In
the LNRFs particles with zero covariant-angular momen-
tum, Φ ¼ 0, move perpendicular to the ϕ-direction, i.e.,
with pϕ ¼ 0.
Recall that in the KdS spacetimes, the covariant (con-

served) quantities E, Φ cannot be interpreted as the energy
and axial component of the angular momentum with respect
to static observers at infinity, as in the Kerr spacetimes, since
the KdS spacetimes are not asymptotically flat [88,89]; they
are close to this interpretation for static observers near the
static radius, if it exists, as shown in [107]. There is a
nontrivial (fourth) motion constant, the so-called Carter
constantK, associated with the hidden symmetry of the KdS
spacetime expressed by the Stachel-Killing tensor discussed
in [61,129]. The geodesic motion of test particles in the KdS
spacetimes is given by the Carter equations [61],

ρ2pr ¼ �
ffiffiffiffi
R

p
; ð40Þ

ρ2pθ ¼ �
ffiffiffiffiffi
W

p
; ð41Þ

ρ2pϕ ¼ I

�
aPr

Δr
−
Pθ csc2 θ

Δθ

�
ð42Þ

ρ2pt ¼ I

�ðr2 þ a2ÞPr

Δr
−
aPθ

Δθ

�
; ð43Þ

where

RðrÞ ¼ P2
r − Δrðm2r2 þKÞ; ð44Þ

WðθÞ ¼ ðK − a2m2 cos2 θÞΔθ − P2
θ csc

2 θ; ð45Þ

Pr ¼ I½Eðr2 þ a2Þ − aΦ�; ð46Þ

Pθ ¼ IðaE sin2 θ −ΦÞ: ð47Þ

III. MOTION OF PHOTONS

The motion of photons in the KdS spacetimes has been
studied extensively in [110] for regions of positive radii
r > 0. Here we extend this study and discuss the passage of
a photon from the region of positive radii through the disc
r ¼ 0; θ ≠ π=2 to the region of negative radii r ≤ 0, or its
hit of the ring singularity at r ¼ 0; θ ¼ π=2.
For the photon motion at positive radii r > 0, there are

clear qualitative differences in the properties of the radial
motion depending on the parameters a and y, and an
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appropriate classification of the KdS spacetimes based on
the character of the photon motion has been introduced
[110]. In the present paper, we focus on the KdS NS
spacetimes of the class IVa. This class corresponds to the
KdS NS spacetimes with DRB, where there are two
ergospheres and the static radius.

A. Constants of photon motion

Following previous works [97,110,130], for E ≠ 0 we
introduce the impact parameter

l≡Φ=E; ð48Þ

and the associated motion constant

X ≡ l − a: ð49Þ

The fourth Carter’s constant K must be non-negative [61];
K ¼ 0 for photons moving along the rotational axis of
the spacetime θ ¼ 0; π, or for so-called principal null
congruence (PNC) photons moving along the curves with
θ ¼ const [131]. However, K is usually replaced by the
combination

Q≡K − I2ðaE −ΦÞ2; ð50Þ

called the modified Carter’s constant, which must be zero
for the motion confined to the equatorial plane. For photon
motion it is useful to consider the impact parameter related
to the modified Carter constant

q≡Q=I2E2 ¼ K=I2E2 − X2: ð51Þ

B. The coordinate and locally measured components
of photon four-momentum

It is customary to denote the 4-momentum of a photon by
k and its coordinate components by kμ. Therefore, in the
case of photons, Eqs. (38) and (39) become

kμ ¼ dxμ

dλ
ð52Þ

and

kμkμ ¼ 0; ð53Þ

respectively, where λ is an affine parameter. Due to the
introduced motion constants X, q, Eqs. (40)–(43) then take
the form,

ρ2kr ¼ �
ffiffiffiffi
R

p
; ð54Þ

ρ2kθ ¼ �
ffiffiffiffiffi
W

p
; ð55Þ

ρ2kϕ ¼ I2E

�
aðr2 − aXÞ

Δr
þ X þ a cos2θ

sin2θΔθ

�
; ð56Þ

ρ2kt ¼ I2E

�ðr2 þ a2Þðr2 − aXÞ
Δr

þ aðXþ a cos2θÞ
Δθ

�
; ð57Þ

where the functions R, W, governing the radial and
latitudinal motion are of the form

RðrÞ≡ I2E2½ðr2 − aXÞ2 − ΔrðX2 þ qÞ�; ð58Þ

WðθÞ≡ I2E2

�
ðX2 þ qÞΔθ −

ða cos2θ þ XÞ2
sin2θ

�
: ð59Þ

In a given reference frame, the locally measured
4-momentum components kðaÞ are given by the projections
of the photon 4-momentum k onto the vectors of the
tetrad—here considered as the LNRF tetrad introduced
above—we arrive at the formula

kðaÞ ¼ ωðaÞ
μ kμ: ð60Þ

We can also project the covariant coordinate components
kμ to the local tetrad of vectors by introducing

kðaÞ ¼ kμe
μ
ðaÞ: ð61Þ

The orthonormality relations

eðaÞ:eðbÞ ¼ ηðaÞðbÞ; ð62Þ

where

ηðaÞðbÞ ¼ diagf−1; 1; 1; 1g ð63Þ

is the Minkowski metric, and the duality relations

ωðaÞ½eðbÞ� ¼ δðaÞðbÞ ð64Þ

then make sure that these quantities are related in a special
relativistic way

kðaÞ ¼ ηðaÞðbÞkðbÞ: ð65Þ

C. Motion constants of photons reaching the disc r= 0
and the region of negative radii r < 0

We determine the range of values of the motion constants
q, X corresponding to photons coming from the region of
positive radii r > 0 and either hitting the ring singularity at
r ¼ 0, or continuing into the region of negative radii. the
motion of these photons in the region of r < 0 will be
considered in the next section concentrating on the SPOs
and the θ ¼ const. motion governing the shadow.
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It is convenient to first determine the range of relevant
values of the motion constant q.

1. Range of the parameter q

The reality condition of the radial motion at a given
radius re

Rðre;X; qÞ ≥ 0 ð66Þ

implies that no photons with q > 0 can reach the ring
singularity or the disc r ¼ 0, nor enter the region of r < 0,
as shown by the equality

Rðr ¼ 0;X; qÞ ¼ −a2q: ð67Þ

The surface r ¼ 0 can only be reached by photons in the so-
called vortical type of the motion, with the motion constant
q ≤ 0 [88,131]; the upper limit q ¼ 0 corresponds to the
equatorial motion terminating at the ring singularity.
The reality condition of the radial motion expressed by

the inequality (66) implies a restrictive condition on the
values of the motion constant q, at a given radius re, in the
form

q ≤ qmaxðX; reÞ; ð68Þ

where

qmaxðX; rÞ≡ ðr2 − aXÞ2
Δr

− X2: ð69Þ

The constraint implied by the radial equation of motion
thus gives the upper limit on the parameter q.
For a given value of the motion constant q, we can define

an effective potential related to the motion constant X. The
radial motion is governed by the effective potential (see
[110,130])

Xr
�ðr; q; y; a2Þ≡ ar2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δr½r4 þ qða2 − ΔrÞ�

p
a2 − Δr

; ð70Þ

the equality X ¼ Xr
�ðr; q; y; a2Þ determines the turning

points of the radial motion. The functions Xr
�ðr; q; y; a2Þ,

discussed in detail in [110], delimit the forbidden region in
the (r − X)-plane, acting as a repulsive barrier (RB) of the
radial photon motion, where the inequality (66) is not
satisfied. This barrier can be either divergent (DRB) or
restricted (RRB), independent of the spacetime parameters;
the DRBs diverge at two radii r > 0, while the RRBs have
no divergent points at r > 0, thus being restricted from
above for values of the axial angular momentum parameter
X [130,132]. A detailed discussion of the properties of the
effective potential of the radial motion can be found in [110]
and for KdS BHs also in [97]. Here, for illustration,
we present in Fig. 6 typical cases of the behavior of

Xr
�ðr; q; y; a2Þ, relevant for the motion near the disk

r ¼ 0. For completeness, both DRB and RRB cases are
included—we can see that in both types of spacetimes the
photons with q ¼ 0 cannot enter the r < 0 region, while in
the q < 0 case the r < 0 region is available for some family
of photons, while it is unavailable for the other family.
The lower limit of the parameter q follows from the

reality condition of the latitudinal motion at given latitu-
dinal angle θe

Wðθe;X; qÞ ≥ 0: ð71Þ

For a given latitudinal angle θe, the condition (71) can be
rewritten in the form

q ≥ qminðX; θeÞ; ð72Þ

where

qminðX;θeÞ≡cot2θe
Δθe

½ð1−a2ysin2θeÞX2þ2aXþa2cos2θe�:

ð73Þ

The condition that guarantees the possibility of the lat-
itudinal motion for at least some angle 0 ≤ θe ≤ π is then
(see [110])

q ≥ qθminðXÞ; ð74Þ

where qθminðXÞ is defined piecewise as

qθminðXÞ≡

8>>><
>>>:
0; for X <Xmaxðq2Þ or X > 0;

q2ðX;y;aÞ; for Xmaxðq2Þ ≤X <−a;
q1ðXÞ; for −a≤X ≤ 0;

ð75Þ

and the auxiliary functions q1ðXÞ, q2ðX; y; aÞ are defined
by the relations

q1ðXÞ≡ −X2 ð76Þ

and

q2ðX; y; aÞ≡ −
½2aþ Xð1 − a2yÞ�2

I2
: ð77Þ

The limit value

Xmaxðq2Þ ¼
2a

a2y − 1
ð78Þ

is the local maximum of the function q2ðX; y; aÞ.
The function qθminðXÞ has a global minimum q ¼ −a2 at

X ¼ −a, i.e., at the intersection of the functions q1ðXÞ,
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q2ðX; y; aÞ. It is therefore the lower limit of the allowed
values of the parameter q. The relationship between the
functions q1ðXÞ, q2ðX; y; aÞ, qθminðXÞ and qminðX; θeÞ is
illustrated in Fig. 7.
We can conclude that the values of the parameter q, that

allow photons to pass from the region of positive radii to the
region of negative radii, cover the interval

−a2 ≤ q ≤ 0: ð79Þ

The admissible values of the impact parameter X depend on
the given motion constant q. In the following section we
will show that there are qualitative differences between the
cases −a2 ≤ q < 0 and q ¼ 0, so we will consider these
cases separately.

2. The case − a2 ≤ q < 0

As shown in [110], in the case of q < 0, the restrictions
imposed on the latitudinal motion give stronger constraints
on the value of the parameter X than the reality conditions

of the radial motion (66) in the region of r ≥ 0. The limits
of the allowed values of the impact parameter X resulting
from the condition (74) are given by the inequality

Xθþðθ; q; a2; yÞ ≤ X ≤ Xθ
−ðθ; q; a2; yÞ; ð80Þ

where the functions Xθ
�ðθ; q; a2; yÞ, defined as

Xθ
�ðθÞ≡ a cosθ� sinθ

ffiffiffiffiffiffi
Δθ

p ½a2 cos2 θþ qð1þ a2y sin2 θÞ�
cosθða2y sin2 θ− 1Þ ;

ð81Þ

are the effective potentials governing the latitudinal motion.
Note that the following relationship holds

XθþðθÞ ¼ Xθ
−ðπ − θÞ; ð82Þ

and the inequality (80) holds for 0 ≤ θ ≤ π=2. For π=2 ≤
θ ≤ π the labels “þ,” “−” have to be interchanged.

FIG. 6. Types of the effective barriers to the radial motion of photons that are relevant for entry into the r < 0 region. Upper row: the
effective potentials Xþ=−ðrÞ of the radial photon motion (full/dashed black curves) in the KdS NS spacetime with parameters a2 ¼ 1.2,
y ¼ 0.02 representing the spacetimes with divergent barrier of the radial photon motion (DRB); (a) for photons with motion constant
q ¼ −0.5; (b) the same in detail; (c) for photons with the motion constant q ¼ 0. Bottom row: behavior of the effective potentials
Xþ=−ðrÞ in the KdS NS spacetime with parameters a2 ¼ 16, y ¼ 0.02 representing the spacetimes with restricted barrier of the radial
photon motion (RRB); (d) for photons with motion constant q ¼ −0.5; (e) the same in detail; (f) for photons with the motion constant
q ¼ 0. In the case q < 0 (left and middle column), photon motion in both types of spacetimes is allowed for Xθ

min ≤ X ≤ Xθ
max [see

Eqs. (83)–(85)]. The allowed area is represented by a white band whose boundaries, indicated by a horizontal gray solid/gray dashed
line, correspond to the values Xθ

min=max. In this case, for r > 0 no radial turning point exists, so the nature of the repulsive barrier is not
significant, while for r < 0 it is, and some photons can continue to the area of negative radii while others are repelled by the repulsive
barrier back into the positive radius region. In the case q ¼ 0 (right column), photons with X ≤ Xmaxðq2Þ or X ≥ 0 are confined to the
equatorial plane (see Sec. III C 3). The value of Xmaxðq2Þ [see Eq. (78) below] is indicated by the horizontal gray line. They may terminate
in the ring singularity or are repelled towards the cosmological horizon. Photons with Xmaxðq2Þ < X < 0 travel from r > 0 through the
interior of the disc r ¼ 0; θ ≠ π=2 back to region of r > 0.
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The functions Xθ
�ðθ; q < 0Þmeet at their common points

at θ ¼ 0, θcom ≡ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þq

a2ð1−qyÞ

q
, and π − θcom, π, so that

their graphs form closed curves, placed symmetrically with
respect to θ ¼ π=2, whose interiors in the (θ − X)-plane
form the regions of allowed θ-motion. In the range
θcom ≤ θ ≤ π − θcom, the functions Xθ

�ðθÞ are not defined.
The functions Xθ

�ðθ; q ¼ 0Þ are not defined at θ ¼ π=2, but

lim
θ→π=2þ

Xθþðθ; q ¼ 0Þ ¼ lim
θ→π=2−

Xθ
−ðθ; q ¼ 0Þ ¼ 0

and

lim
θ→π=2−

Xθþðθ; q ¼ 0Þ ¼ lim
θ→π=2þ

Xθ
−ðθ; q ¼ 0Þ ¼ Xmaxðq2Þ;

(see Fig. 8).
The function Xθþðθ; q < 0Þ has a local minimum

Xθ
minða2; y; qÞ ¼

I
ffiffiffiffiffiffi−qp − 2a

1 − a2y
ð83Þ

on the interval 0 < θ < π=2, while the function
Xθ
−ðθ; q < 0Þ has a local maximum

Xθ
maxðqÞ ¼ −

ffiffiffiffiffiffi
−q

p ð84Þ

on this interval. Of course, for π=2 ≤ θ ≤ π the extrema
(83) and (84) correspond to the local minimum and local
maximum of the function Xθ

−, Xθþ, respectively. The above
statement about the constraints on the value of the parameter
X means that the latitudinal motion is allowed for

Xθ
min ≤ X ≤ Xθ

max ð85Þ

in the case of q < 0; in the limit q → 0− this interval
approaches the interval

Xmaxðq2Þ ≤ X ≤ 0; ð86Þ

or, in terms of the impact parameter l,

lmaxðq2Þ ≡ Xmaxðq2Þ þ a ≤ l ≤ a: ð87Þ

In the Sec. III D 1 we will show that the local maxima Xθ
max

and the local minima Xθ
min correspond to the impact

parameters XPNC and X�, respectively, of photons of a
special type that follow trajectories with constant latitude.
The case q < 0 corresponds to the “vortical” motion

(see, e.g., [88]), while for r > 0 no radial turning point of
the vortical motion exists. However, there may be a radial
turning point at r < 0 due to the radial potential barrier
formed at r < 0 (see Fig. 6). Typical orbits of this type are
constructed in the (r − θ)-plane by the numerical integra-
tion of the equation

sr

Z
r

re

drffiffiffiffi
R

p ¼ sθ

Z
θ

θe

dθffiffiffiffiffi
W

p ð88Þ

with appropriately chosen integration limits and signs
sr;θ ¼ �1. The results are shown in Fig. 9.

FIG. 7. The functions q1ðXÞ, q2ðX; y; aÞ, qθminðXÞ and
qminðX; θeÞ given for the spacetime parameters y ¼ 0.02,
a2 ¼ 9, representing the case a2y < 1. The function
qminðX; θeÞ is shown in different shades of gray for different
angles θe. Given θe, the latitudinal motion is allowed in the region
q ≥ qminðX; θeÞ. The graph of qminðX; θe ¼ π=2Þ is partially
overlapped by the graph of the function qθminðXÞ shown in red.
The range of parameters that allow negative radii is highlighted
by a light red shading. The points of contact of the functions
qminðX; θeÞ with the function q1ðXÞ represent the motion con-
stants of the PNC photons maintaining the initial coordinate
θe ¼ θPNC; correspondingly, points of contact with the graph
q2ðX; y; aÞ correspond to another class of the θ� photons, but with
different properties than the PNC photons (cf. [131]).

FIG. 8. The functions Xθþ (full curves), Xθ
− (dashed curves) for

spacetime parameters y ¼ 0.02, a2 ¼ 9 and for the motion
constant q decreasing from q ¼ 0 (black) to q ¼ −8 in steps
of δq ¼ −2, shown in decreasing shades of gray. The interior of
the closed curves delimit the region that allows latitudinal motion.
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3. The case q = 0

For q ¼ 0 and

X ≤ Xmaxðq2Þ or X ≥ 0 ð89Þ

only the equalityW ¼ 0 in the condition (71) is fulfilled for
the emission angle θe ¼ π=2, thus the motion is restricted
to the equatorial plane. However, there is now an additional
restriction of the intervals in (89) induced by the reality
condition of the radial motion (66) and the associated
effective potential Xr

�ðr; q; y; a2Þ.

In Fig. 6 we show that for q ¼ 0 some kind of the RB is
formed at r > 0 for incoming photons from large radii and
an infinitely high barrier exists at r ¼ 0. Therefore, these
photons cannot enter the region of r < 0 and either
terminate at the ring singularity at r ¼ 0, θ ¼ π=2, or
are repelled backwards by the repulsive barrier at the
radius r ¼ 0.
For Xmaxðq2Þ < X < 0 and the emission angle θe ≠ π=2,

W > 0 holds and the photon has a latitudinal turning points
between latitudes given by the inequality (80). However,
for θ ¼ π=2 it is now dθ=dλ ¼ 0 and d2θ=dλ2 ¼ 0, hence
the possible achievement of θ ¼ π=2means stopping in the

FIG. 9. Photon trajectories entering the r < 0 region, shown in the (r − θ)-plane. The trajectories are obtained by integrating Eq. (88) in
the KdS NS spacetime with parameters a2 ¼ 1.2, y ¼ 0.02. Black semiellipses indicate surfaces of constant Boyer-Lindquist radius, black
dashed hyperbolic curves indicate surfaces of constant latitudinal coordinate. The photons start their motion near the cosmological horizon
at rc ¼ 5.77 with motion constants q < 0 and Xmaxðq2Þ < X < 0 allowing the entry of the r < 0 sheet. The coordinate surfaces in the
r > 0=r < 0 sheet are labeled in black/purple. Note that the upper half of the figures shows the “northern” half-space of the r > 0 -sheet
and the lower half of the figures shows the “northern” half-space of the r < 0 sheet, as follows from the construction of the connection of
both sheets according to [112]. Red/orange color (left figure) corresponds to the locally prograde photons emitted at θe ¼ π=4 with motion
constant X ¼ −0.74 > −a, q ¼ −0.3, giving trajectories with the latitudinal turning points θN , θS at θN ¼ π=8; θS ≈ 1 and allowing the
continuation of the trajectories in the northern half-space of the r < 0 region, without radial turning point, to r → r−c , initially oriented in
positive/negative latitudinal direction. the blue/green color (right figure) describes the locally retrograde photons starting at θe ¼ π=5,
X ¼ −1.44 < −a, q ¼ −0.5with the latitudinal turning point θN ≈ π=7, θS ¼ π=4 and the radial turning point at r ¼ −0.2 in the northern
half-space of the r < 0 region, which return back to the “northern” half-space of the r > 0 region, initially oriented in positive/negative
latitudinal direction. The azimuthal motion is suppressed, so the full 3D orbits can spiral many times around the spin axis.

ZDENĚK STUCHLÍK and DANIEL CHARBULÁK PHYS. REV. D 109, 064008 (2024)

064008-16



equatorial plane. If θe ¼ π=2 at the beginning of the
motion, the motion is unstably confined to the equatorial
plane and terminates at the ring singularity. For θe ≠ π=2
the photons travel from r > 0 through the interior of the
disc r ¼ 0, θ ≠ π=2 back to r > 0.
In Fig. 10 we show typical trajectories of photons with

q ¼ 0 and Xmaxðq2Þ < X < 0 obtained by direct integration
of Eq. (88). It is shown that none of these photons terminate
at the ring singularity, regardless of whether they are locally
prograde with respect to the LNRF (kðϕÞ=kðtÞ > 0), with
X > −a, or retrograde [kðϕÞ=kðtÞ < 0], with X < −a
(for clarification of the terms “prograde/retrograde,” see
Sec. III E), and independent of the initial direction of the
latitudinal motion. It is shown that the trajectories asymp-
totically approach the equatorial plane after passing through
the disc r ¼ 0.

D. Some important cases of photon trajectories

We now discuss cases of the null geodesics of the KdS
NS spacetimes, which play a crucial role in the treatment of
the shadow (silhouette) of the NS spacetimes, taking into
account the region of negative radii; namely, we study the
photons following trajectories with constant latitudinal
coordinate or constant radial coordinate.

1. Trajectories of constant latitude

The motion constants X, q corresponding to the local
maxima Xθ

max of the functions Xθ
þ=−ðθÞ [see Eq. (84)]

satisfy the equality

q ¼ q1ðXÞ; ð90Þ

FIG. 10. Photon trajectories crossing the surface r ¼ 0 from the “northern” to the “southern” half-space of the r > 0 region, shown in
the (r − θ)-plane. The trajectories are obtained by integrating Eq. (88) in the KdS NS spacetime with parameters a2 ¼ 1.2, y ¼ 0.02 for
photons arriving from the vicinity of the cosmological horizon at rc ¼ 5.77 with motion constants q ¼ 0 and Xmaxðq2Þ < X < 0, which
do not allow continuation to the r < 0 region, since a radial turning point occurs at r ¼ 0 according to the behavior of the effective
potentials [see Figs. 6(c) and 6(f)]. This is interpreted as a transit through the r ¼ 0 surface and continuation to larger radii in the
“southern” half-space of the r > 0 sheet. Red/orange curve (left figure) describes trajectory with no/one latitudinal turning point,
corresponding to photons initially directed in a positive/negative latitudinal direction; both curves correspond to the locally prograde
photons with motion constant X ¼ −0.67 > −a, giving the latitudinal turning point θt ¼ π=8 (orange curve). Purple/magenta curve
(middle figure) describes trajectory with no/one latitudinal turning point, corresponding to photons initially directed in a positive/
negative latitudinal direction; both curves correspond to a photon with X ¼ −1.10 ¼ −a, i.e., with zero covariant angular momentum l,
and thus with zero locally measured motion in the azimuthal direction [see Eq. (134)]; the magenta curve shows the trajectory crossing
the spin axis. Blue/green color (right figure) describes trajectory with no/one latitudinal turning point, corresponding to photons initially
directed in a positive/negative latitudinal direction; both curves correspond to the locally retrograde photons with X ¼ −1.90 < −a; the
green curve shows a trajectory with latitudinal turning point θt ¼ π=4. The trajectories without latitudinal turning point approach the
final latitude θf ∼ π=2 in the “southern” half-space. The azimuthal motion is suppressed, so the real trajectories may spiral many times
around the spin axis.
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and they belong to the special class of the PNC geodesics of
the KdS geometry, privileged by the geometry [15]. The
PNC photon 4-vectors appear in the Kerr-Schild coordinates
as “generators” of the Kerr(dS) metric [112]—the KdS
spacetime can be expressed as de Sitter-plus-squared-null
form related to these photons [61], while the Kerr spacetime
can be expressed as Minkowski-plus-squared-null form
[15]. Photons moving along the PNC geodesics maintain
a constant latitude θ ¼ θPNC. This can be verified by
inserting the equality in (76) into (59), which implies that
the reality condition for the latitudinal motion reduces to
WðθÞ ¼ 0, which can only be true for

θPNC ¼ arccos

ffiffiffiffiffiffiffiffi
−
X
a

r
¼ constant: ð91Þ

The motion constants are then

XPNC ¼ −a cos2 θPNC; ð92Þ

or equivalently [88,131],

lPNC ¼ a sin2 θPNC ð93Þ

and

qPNC ¼ −a2 cos4 θPNC: ð94Þ

According to the relations (92) and (94), the following
inequalities have to be satisfied:

−a ≤ XPNC ≤ 0; ð95Þ

or equivalently,

0 ≤ lPNC ≤ a ð96Þ

and

−a2 ≤ qPNC ≤ 0; ð97Þ

where the lower limits apply to photon emission on the spin
axis and the upper limits to emission on the equatorial plane.
According to the relation (96) [see Eq. (134)] the PNC
photons are locally corotating with respect to the LNRF. Of
course, the azimuthal coordinate component of the PNC
photon 4-momentum is also in the positive ϕ direction in the
stationary region Δr > 0, as can be seen from the azimuthal
Eq. (56), which now has the form

dϕ
dλ

¼ aI2E
Δr

: ð98Þ

The “radial” equation (58) for the PNC photons with
motion constants given by Eqs. (92)–(94) reduces to

dr
dλ

¼ �IE; ð99Þ

where the þ=− sign corresponds to the outgoing/ingoing
photons with E > 0. From Eq. (99) it follows that there are
no turning points in the radial direction for the PNC
photons with E ≠ 0, i.e., if they are initially directed
inwards, they either reach r ¼ −∞ for θPNC ≠ π=2, or
hit the ring singularity for θPNC ¼ π=2.
It follows from the discussion above that of particular

interest is the PNC photon at θPNC ¼ π=2, with qPNC ¼ 0,
XPNC ¼ 0, which is the marginal photon confined in the
equatorial plane that still hits the ring singularity. It also
corresponds to the edge of the ring singularity silhouette as
seen in the equatorial plane (cf. [133]).
Another class of the null geodesics of constant latitude,

which we denote θ ¼ θ� for short, has the motion constant
given by

q ¼ q2ðX; y; aÞ ð100Þ

corresponding to the local minima Xθ
min of the functions

Xθ
þ=−ðθÞ [see Eq. (83)]. The associated motion constants

together

X� ¼ a
cos2 θ�ð1 − a2yÞ − 2

Δ2θ�
; ð101Þ

or equivalently,

l� ¼ −aI sin2 θ�

Δ2θ�
; ð102Þ

and

q� ¼ −
a2I2 cos4 θ�

Δ2
2θ�

; ð103Þ

where we define

Δ2θ� ≡ 1þ a2y cos 2θ� > 0: ð104Þ

From Eq. (102) it follows that l� ≤ 0, i.e., such photons are
oriented in negative ϕ-direction with respect to the LNRF.
A comparison of Eqs. (93), (94) and (102), (103) indicates
that in the pure Kerr case y ¼ 0, lPNC ¼ −l�, qPNC ¼ q�
(see [131]).
Inspecting the radial motion of photons with motion

constants given by Eqs. (101)–(103), we find the radial
function in Eq. (54) in the form
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Rðr;X�; q�Þ≡ R�ðr; θ�Þ

¼ I2r4 þ 2I2a2 cos2 θ�r2 þ 8a2 sin2 θ�Δθ�rþ I2a4 cos4 θ�

Δ2
2θ�

; ð105Þ

which means that for this class of null geodesics there are
no turning points of the radial motion at positive radii
r > 0, but a turning point can exist at negative radii r ≤ 0
for a sufficiently large latitude θ�.
Obviously, the θ� ¼ π=2 photons must hit the ring

singularity, so for the incoming photons a “turning” point
at r ¼ 0 exists, as confirmed by the equality

R�ðr; θ� ¼ π=2Þ ¼ I2r4 þ 8a2r
ð1 − a2yÞ2 : ð106Þ

On the other hand, there is a free path to r → −∞, at least
for photons moving along the spin axis since

R�ðr; θ� ¼ 0Þ ¼ ðr2 þ a2Þ2 > 0: ð107Þ

The radial equation then has the form of Eq. (99) which is
valid for the PNC photons. It can be shown that for any pair
ða2; yÞ there exists indeed an angle θ�min, 0 < θ�min < π=2,
such that for θ� ≥ θ�min a radial turning point r� < 0 exists
for the incoming θ� photons (see Fig. 11).
The radial turning points descent from r� ¼ 0 for θ� ¼

π=2 to the lowest value r� ¼ r�SPO < 0 for θ� ¼ θ�min, which
is in fact an unstable off-equatorial circular photon orbit (see
Fig. 11), which is, as shown in Sec. III E, locally counter-
rotating. As wewill show in the next section, the radius r�SPO
corresponds to the lowest ever spherical photon orbit, which
represents the lower limit of the SPO region at negative radii
of given spacetime [see Figs. 15(a), 18(f), and 20]. The
dependence of both quantities, θ�min, r

�
SPO, on the spacetime

parameters a2; y is shown in Figs. 12 and 13.
According to Eqs. (101)–(103), for a2y < 1 the motion

constants of the θ� photons are restricted by the relations

Xmaxðq2Þ ≤ X� ≤ −a; ð108Þ

where the lower (upper) limit corresponds to θ� ¼ π=2
(θ� ¼ 0) and

−a2 ≤ q� ≤ 0; ð109Þ

FIG. 11. The null geodesics of constant latitude θ� in the KdS
NS spacetime with a2 ¼ 1.2, y ¼ 0.02, with radial turning points
at negative radii. The phases in the region r > 0 are shown in red,
those in the region r < 0 in light purple. The radial turning points
r� < 0 lie on the purple curve, the purple point represents the
deepest “turning point” at r�SPO ¼ −0.54 of a photon with
θ�min ¼ 31.3°, which is actually an unstable circular photon orbit
lying in a plane parallel with the equatorial plane with the
symmetry axis aligned with the spin axis. As shown below, this
radius corresponds to the lowest SPO of given spacetime. For θ�
growing to θ� ¼ π=2, the radial turning points approach the value
r ¼ 0, i.e. the ðθ� ¼ π=2Þ photons hit the ring singularity.

FIG. 12. The dependence of the latitude θ�min, towhich the lowest
SPO of a given spacetime with radius r�SPO < 0, i.e., the unstable
retrograde circular photon orbit, is confined, on the cosmological
parameters a2, y.
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where, as in Eq. (97), the lower limit applies to the photon
emission on the spin axis, the upper to emission in the
equatorial plane.
The pair X� ¼ Xmaxðq2Þ; q

� ¼ 0 corresponds to the local
maximum of the function q2ðX; y; aÞ. Photons with motion
constants approaching these values, i.e., with θ� → π=2,
have a turning point at r < 0 close to the ring singularity.
Thus, the θ� photons, similarly to the PNC photons, delimit
the angular size of the escape light cone coming through the
ring singularity [see Fig. 29(a)] as θe ≈ π=2. Of course,
when constructing the shadows, they also delineate the
silhouette of the ring singularity as the observer’s inclina-
tion approaches the equatorial plane.

2. Spherical photon orbits

The SPOs are determined by the conditions

RðrÞ ¼ 0;
dR
dr

¼ 0; ð110Þ

whose simultaneous solution gives the motion constants for
the photons on the SPOs

X ¼ XSPOðrÞ≡ r½ð1 − ya2Þr2 − 3rþ 2a2�
a½2yr3 þ ðya2 − 1Þrþ 1� ; ð111Þ

or alternatively,

l ¼ lSPOðrÞ≡ Ir3 − 3r2 þ a2Irþ a2

a½2yr3 þ ðya2 − 1Þrþ 1� ; ð112Þ

and

q¼ qSPOðrÞ

≡−
r3

a2
y2a4r3þ2ya2r2ðrþ3Þþ rðr−3Þ2−4a2

½2yr3þðya2−1Þrþ1�2 : ð113Þ

The functions XSPOðrÞ, lSPOðrÞ, qSPOðrÞ have common

divergence points at radii rð−ÞdðSPOÞ, r�dðSPOÞ for a2y < 1,

where

rð−ÞdðSPOÞ ¼−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2y
6y

s
cos

2
41
3
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27y

2ð1−a2yÞ3
s 3

5; ð114Þ

and

r�dðSPOÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2y

6y

s
cos

2
4π
3
� 1

3
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27y

2ð1 − a2yÞ3
s 3

5;
ð115Þ

which satisfies the relation rð−ÞdðSPOÞ < 0 < rþdðSPOÞ < r−dðSPOÞ.
The positive radii are related to the marginal spherical

photon orbits. They coalesce for a2 ¼ a2dðSPOÞðyÞ, where

a2dðSPOÞðyÞ≡
1

y
−

3
ffiffiffi
43

p

2
ffiffiffiffiffi
y23

p : ð116Þ

Note that the function a2dðSPOÞðyÞ in the ða2 − yÞ plane

determines the boundary between the KdS spacetime classes
VI and VII, as introduced in [110]. For a2 ≶ a2dðSPOÞðyÞ, the
functions XSPOðrÞ, qSPOðrÞ have two/no divergence points.
Their typical behavior is shown in Fig. 14.
For the SPOs at negative radii, the point rð−ÞdðSPOÞ < 0 is

relevant. It can be verified that for r → rð−ÞdðSPOÞ from the

right, qSPOðrÞ → −∞ holds (see Fig. 14). Since − a2 ≤
q ≤ 0 necessarily holds, it follows that the range of the
SPOs with negative radii is restricted to the interval

rð−ÞdðSPOÞ < rSPO < 0. More precisely, the radius of the

lowest SPO is given by the equality

qSPOðrÞ ¼ qθminðXSPOðrÞÞ; ð117Þ

which is represented in Fig. 15 as the intersection of the
curve qSPOðXSPOÞ, parametrized by the radii rSPO of the
unstable spherical photon orbits [ðXSPOðrSPOÞ; qSPOðrSPOÞ�,
with the curve qθminðXÞ. As follows from the comment to
Fig. 7, this intersection corresponds to the θ� photon. Since
it is the lowest orbit, according to the notation introduced in
the previous subsection, it corresponds to the designation
r�SPO, to which the θ�min photons are wound (see Fig. 11).
Due to the vortical character of the motion of photons with
q < 0, the SPOs at negative radii have a different shape than

FIG. 13. Dependence of the off-equatorial circular photon
orbits with negative radii r�SPO on which the θ�min-photons are
wound on the spacetime parameters a2; y. These are the radii of
the lowest SPOs of a given spacetime that enclose the region of
the SPOs from below.
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at r > 0 (cf. [134,135]). The lowest SPOs at r ¼ r�SPO are
the special case of SPOs reduced to off-equatorial circular
photon orbits, which are unstable and counterrotating (see
Sec. III E).
Formally we can get the solution rSPO ¼ 0, which

however corresponds to the physical singularity and there-
fore cannot be regarded as an orbit.
Another solution of the system of equations (110) is

X ¼ r2

a
; ð118Þ

and

q ¼ −
r4

a2
: ð119Þ

The relations (118) and (119) represent a parametric
determination of the descending part of the function
q1ðXÞ defined in the relation (76), where r is the parameter.
However, this part is in the region that negates the
inequalities (74) and (75) which reflects the reality of
the latitudinal motion (see Fig. 7), and should therefore be
excluded from further considerations.
The condition for stable/marginally stable/unstable

spherical orbits [136]

d2R=dr2 ⋚ 0 ð120Þ

implies the inequality

8rð3yr4 − I2r3 þ 3ð1 − a2yÞr2 − 3rþ a2Þ ⋛ 0; ð121Þ

which has been checked on the radii of the spherical orbits
r ¼ rSPO considered here. The equality in (120) gives the
radii rms of the marginally stable orbits.
The curve qSPOðXSPOÞ plays crucial role in the con-

struction of LECs/shadows, because in the parameter plane
(X − q) the curve determines the boundary between the
photons with radial turning point and the photons escaping
to “our” infinity (r → þ∞), or to the secondary infinity
(r → −∞). Therefore, the curve forms a “critical locus” in
the (X − q)-plane (see [137]).
In the case of photon motion in the region of negative

radii r < 0, there are no qualitative changes in its character
for the spacetimes with a2y < 1. This can be proved by
analyzing the functions XSPOðrÞ, qSPOðrÞ using the so-
called “Chinese boxes” method (see [130]). The same
applies to the critical locus, with typical behavior shown
in Fig. 15.

3. Polar SPOs

The polar SPOs are of particular interest because the
photons following these orbits cross the spin axis. The
polar SPOs are characterized by the impact parameter
XSPO ¼ −a ðlSPO ¼ 0Þ which allows crossing of the
symmetry axis. Using the definition of the impact param-
eter lSPO ¼ 0 in Eq. (112), we get the equation

Ir3 − 3r2 þ a2Irþ a2

a½2yr3 þ ðya2 − 1Þrþ 1� ¼ 0; ð122Þ

which has two positive roots

r�pol ¼
1

I

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2I2

3

r
cos

�
π � ψ

3

��
; ð123Þ

FIG. 14. Illustration of the effective potentials governing the photon motion. Typical behavior of the functions XSPOðrÞ, qSPOðrÞ is
shown. The solid lines correspond to the KdS NS spacetimes of the classes IV, V, as introduced in [110], characterized by the DRB of the
radial photon motion and two divergences of XSPOðrÞ, qSPOðrÞ; the dashed lines correspond to the class VI with the RRB and two
divergences of XSPOðrÞ, qSPOðrÞ, and the dot-dashed lines correspond to the classes VII, VIII with RRB and no divergences of XSPOðrÞ,
qSPOðrÞ. Note the qualitatively unchanged behavior of both functions XSPOðrÞ, qSPOðrÞ for rð−ÞdðSPOÞ < r ≤ 0. Since − a2 ≤ q ≤ 0, the

range of the spherical orbits at negative radii rSPO must be rð−ÞdðSPOÞ < r�SPO < rSPO < 0. The asymptotic behavior XSPO → þ∞ at

r < rð−ÞdðSPOÞ is therefore irrelevant.
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where

cosψ ¼ a2I2 − 1�
1 − a2I2

3

�
3=2 : ð124Þ

The maximum spin parameter a2maxðpolÞ allowing the exist-

ence of the polar SPOs at positive radii, is determined by
the condition

cosψ ¼ 1; ð125Þ

which gives

a2maxðpolÞðyÞ≡
2

3y

�
cosh

ξ

3
− 1

�
: ð126Þ

Here

cosh ξ ¼ 27

2
ya2maxðpolÞK þ 1 ð127Þ

and

a2maxðpolÞK ¼ 6
ffiffiffi
3

p
− 9 ¼ 1.3923 ð128Þ

is the maximum value of a2 that allows for the existence of
polar SPOs in the Kerr case (cf. [134]).

There is always one other solution of Eq. (122) corre-

sponding to the polar SPO at negative radii rð−Þpol , which is as
follows:

rð−Þpol ≡

8>>><
>>>:

1
I

�
1−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− a2I2

3

q
cos

�
ψ̂
3

��
; for a2I2< 3;

1
I

�
1−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2I2
3
−1

q
sinh

�
ψ̄
3

��
; for a2I2 ≥ 3;

ð129Þ

where

cos ψ̂ ¼ a2I2 − 1�
1 − a2I2

3

�
3=2 ð130Þ

and

sinh ψ̄ ¼ a2I2 − 1�
a2I2
3

− 1
�
3=2 : ð131Þ

E. Orientation of the SPOs

We define the orientation of the SPOs in the LNRFs
according to the sign of the azimuthal component kðϕÞ of
the four-momentum (wave vector) k of the future-directed

FIG. 15. (a) Representation of the NS shadow in the space of the photon motion constants (X − q). The boundary of the shadow
corresponds to the motion constants associated with the SPOs. Typical behavior of the critical locus qSPOðXSPOÞ (orange curve)
corresponding to SPOs with negative radii rSPO < 0 in spacetimes with a2y < 1, here represented by the case y ¼ 0.02, a2 ¼ 1.2.
Above the locus there is a barrier (lighter purple area) which repels the incoming photons back to the region r > 0, while the area below
(darker purple) corresponds to photons, which can reach the other infinity r → −∞ depending on the latitude θe, which determines the
opening of the function qminðX; θeÞ. It is shown here for a deliberately chosen parameter θe ¼ θ�min, which represents a latitude of the off-
equatorial unstable counter-rotating circular photon orbit, that is the lowest SPO of the given spacetime with radii r�SPO. The
corresponding motion constants are represented by the black dot and θ�min ¼ 31.3°, r�SPO ¼ −0.54. The curve denoted as qexðXexÞ and
shown in lighter orange is obtained from the parametric expression of the dependence of the function (119) on the function (118) by
eliminating of the parameter r < 0. It coincides with the descending part of the function q1ðXÞ and is completely in forbidden region
(gray area), so it does not matter. (b) Continuation of the left figure—behavior of the critical locus corresponding to the SPOs of positive
radii rSPO > 0. The yellow area shows the allowed range of the motion constants determined by the conditions (68) and (72).
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photon, kðtÞ > 0. For this purpose it is convenient to
introduce an angle Ψ (see [110]) such that

sinΨ≡ kðϕÞ=kðtÞ; ð132Þ

i.e., Ψ ¼ 0 for motion in the direction of the latitudinal
basis vector eðθÞ,Ψ ¼ π=2 for motion in the direction of the
azimuthal basis vector eðϕÞ. According to Eq. (65) it is
kðϕÞ ¼ kðϕÞ; kðtÞ ¼ −kðtÞ, and we can write

sinΨ ¼ −
kðϕÞ
kðtÞ

¼ −
kμe

μ
ðϕÞ

kνeνðtÞ
¼ −

kϕe
ϕ
ðϕÞ

ktetðtÞ þ kϕe
ϕ
ðtÞ
: ð133Þ

Using the relations (36), (37), and (48), and after substitut-
ing from Eqs. (28) and (31), we finally get

sinΨ ¼ ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔrΔθ

A2 sin2 θ

r
·

l
1 −ΩLNRFl

: ð134Þ

In general, the function sinΨ defined in relation (134)
determines the instantaneous locally measured azimuthal
orientation of a photon passing through the current coor-
dinates ðr; θÞ, with a generally nonzero locally measured
radial velocity, these measurements being made by the
observer in the LNRF. As this equation implies, this
instantaneous orientation at a given photon location
depends only on the impact parameter l. In the case of
SPO photons at a given radius r, the impact parameter l is
fixed at l ¼ lSPOðrÞ, along with the impact parameter
q ¼ qSPOðrÞ, which is irrelevant for the orientation of the
motion.
Now we can show that the sign of the function sinΨ

remains unchanged for the SPOs of a fixed radius,
independently of the latitudinal coordinate of the photon,
so that it does indeed express the orientation of any
given SPO.

1. Orientation and latitudinal range of the SPOs

To discuss the locally measured orientation of the
azimuthal motion of a photon at a given SPO in a given
KdS spacetime, it is convenient to introduce the function

Zθ ≡ ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔrΔθ

A2 sin2 θ

r
; ð135Þ

where the subscript θ indicates only the dependence on the
photon latitude. It is obvious that Zθ > 0 for any latitude at
the stationary region Δr > 0. Equation (134) can then be
written in the form

sinΨ ¼ Zθl
1 −ΩLNRFðr; θÞl

: ð136Þ

We can easily see that the metric coefficients imply the
relation

gtt ¼ gϕϕðΩ2
LNRF − Z2

θÞ: ð137Þ

In the region of positive radii, gϕϕ > 0, so in the
ergosphere, where gtt > 0, the inequality 0 < Zθ <
ΩLNRF holds, while outside the ergosphere, gtt < 0, the
inequality 0 < ΩLNRF < Zθ holds. At the ergosphere boun-
dary, i.e., at the ergosurface where gtt ¼ 0, the equality
ΩLNRF ¼ Zθ holds, so the quantity Zθ corresponds to the
angular velocity of the LNRF observer located at the
ergosurface.
However, there is a causality violation region where

gtt > 0 and gϕϕ < 0 in the region of negative radii. In such
a case the function A, defined in relation (27), is negative
and the relations (28)–(31) and (32)–(35) for the local
tetrads and hence the locally measured quantities have to be
redefined. We will leave the discussion for this case for the
next study, and here we restrict ourselves to the noncausal
violation region where gtt < 0 and gϕϕ > 0 in the case of
negative radii.
Now we can easily determine the sign of the function

sinΨ for given spacetime parameters a2; y and photons
orbiting on a given SPO with radius r ¼ rSPO and with a
given impact parameter lðrSPOÞ. A direct analysis of the
function sinΨ with respect to the variable θ is rather
tedious, but, as we shall see below, it is sufficient for our
purposes to compare the values of the expressions
ðΩLNRF − ZθÞ−1, ðΩLNRF þ ZθÞ−1 as a function of the angle
θ with the motion constant l. Typical behavior of the
functions ðΩLNRF þ ZθÞ−1, ðΩLNRF − ZθÞ−1 and the regions
of the prograde and retrograde orbits defined by them are
shown in Figs. 16–18, which provides an overview for the
following discussion.
We first investigate the condition for prograde orbits,

which reads

0 ≤ sinΨ ≤ 1: ð138Þ

We solve this double-sided inequality separately for the
positivity condition

0 ≤ sinΨ; ð139Þ

and separately for the reality condition

sinΨ ≤ 1; ð140Þ

which must be satisfied simultaneously. Obviously, the
positivity condition (139) implies

0 ≤ l < Ω−1
LNRF; ð141Þ

as can be seen from the auxiliary Table I.
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FIG. 16. The latitudinal range of motion of the photons and the orientation of their azimuthal motion given for typical radii at the
Kerr–de Sitter naked singularity spacetimes with parameters a2 ¼ 1.001, y ¼ 10−5. The extension in the latitudinal coordinate θ is given
in terms of the impact parameter l. A photon with a certain impact parameter lmoves in the latitudinal direction between two latitudinal
turning points, symmetrically located with respect to the equatorial plane, which correspond to the intersections of the line l ¼ const.
with the curves ðΩLNRF þ ZθÞ−1 (red curve), ðΩLNRF − ZθÞ−1 (blue curve), where the intersections with the curve ðΩLNRF þ
ZθÞ−1=ðΩLNRF − ZθÞ−1 define motion in the positive/negative azimuthal direction, i.e., prograde/retrograde trajectories (red/blue
region), with a generally nonzero radial component of motion. The SPO photons in a particular radius rSPO are determined by the special
l ¼ lSPOðrÞ. Such photons have q ¼ qSPOðrÞ, that does not matter for the orientation of the motion. Such photons are forced to oscillate
between two latitudes, represented as the red/blue dots, while the motion continues in fixed azimuthal direction. Photons with
l ≠ lSPOðrÞ- case have the turning point of the θ-motion at this rSPO, if their impact parameter q is chosen properly, but they move in the
radial direction. Therefore, the SPOs of photons with motion retrograde to the local LNRFs are shown in the blue region, while prograde
SPOs are shown in the red region; the special case of retrograde SPOs of photons with l > 0 and E < 0, which lie entirely in the
ergosphere, is shown in green. The region of the ergosphere is shown in Figs. 16(a) and 16(b) by a band of gray color overlaying other
colored regions, defined by vertical dashed lines, which also represent asymptotes of the function ðΩLNRF − ZθÞ−1. The latitudinal extent
of the ergosphere at a given radius rSPO is θergðrSPOÞ ≤ θ ≤ π − θergðrSPOÞ, where θergðrSPOÞ is given by the relation (23). The radii of
SPOs of a certain type of stability, orientation and sign of covariant energy E fall into intervals defined by specific values of rþdðSPOÞ, r

�
pol,

rms, r−ph as described in the text. (a) Radius rSPO ¼ 0.5 corresponds to the case 0 < rSPO < rþdðSPOÞ; the SPO photons move in a retrograde

direction along a stable SPO that is completely embedded in the ergosphere, with a positive impact parameter l and with a negative
covariant energy E < 0. (b) Radius rSPO ¼ 1.7 corresponds to the case rms < rSPO < r−pol; the SPO photons move in a prograde direction
along an unstable SPO that partially interferes with the ergosphere, with a positive impact parameter l and with a positive covariant
energy E > 0. (c) Radius rSPO ¼ 2.15 is in the same interval as in case (b) but now the SPO is outside the ergosphere. (d) Radius
rSPO ¼ 3.3 corresponds to the case r−pol < rSPO < r−ph; the SPO photons move retrogradely along an unstable SPO, completely outside
the ergosphere, with a negative impact parameter and positive covariant energy E > 0. The selected radii are highlighted by horizontal
dotted lines in Fig. 19(a), which shows the distribution of different types of SPOs in the considered spacetime. Other qualitatively
different cases of orbits are shown in Fig. 17 for a spacetime with parameters a2 ¼ 1.2, y ¼ 0.02, for which they can be displayed more
clearly, and which differs from the one considered here in that its ergosphere extends into a region of unstable retrograde orbits [cf. cases
(a), (b) in Fig. 19].
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The reality condition (140) implies an inequality

sinΨ − 1 ¼ ðΩLNRF þ ZθÞl − 1

1 −ΩLNRFl
≤ 0; ð142Þ

which has solutions

l ≤ ðΩLNRF þ ZθÞ−1 or Ω−1
LNRF < l; ð143Þ

as follows from the auxiliary Table II. The conjunction of
the inequalities (141) and (143) gives the solution to the
inequality (138) in the form

0 ≤ l ≤ ðΩLNRF þ ZθÞ−1 < Ω−1
LNRF; ð144Þ

which corresponds to the red regions shown in Figs. 16–18.
The condition for retrograde orbits

−1 ≤ sinΨ ≤ 0 ð145Þ

is treated in the same way. From the Table I it can be seen
that the negativity condition

sinΨ ≤ 0 ð146Þ

is satisfied for

−∞ < l ≤ 0 or Ω−1
LNRF ≤ l: ð147Þ

The reality condition

−1 ≤ sinΨ ð148Þ

implies the inequality

0 ≤
ðZθ −ΩLNRFÞlþ 1

1 − ΩLNRFl
¼ sinΨþ 1; ð149Þ

which must be solved separately for the motion inside the
ergosphere, gtt > 0, where Zθ −ΩLNRF < 0, and outside
the ergosphere, gtt < 0, where Zθ −ΩLNRF > 0 in the case
of positive radii.
In the case of motion inside the ergosphere, the inequal-

ity (149) has solutions

−∞< l< Ω−1
LNRF or ðΩLNRF −ZθÞ−1 ≤ l<∞; ð150Þ

as follows from the auxiliary Table III. The conjunction of
the inequalities (147) and (150) then gives the solution of
the inequality (145) in the form

−∞ < l ≤ 0 ð151Þ

or

ðΩLNRF − ZθÞ−1 ≤ l < ∞: ð152Þ

The inequality (151)/(152) corresponds to the blue/green
regions shown in Figs. 16(a), 16(b), and 17 between the
vertical dashed lines. Note that by the relation (152) there
are locally retrograde photons with positive-impact param-
eter l. In order to preserve the standard physical meaning
for the locally measured kðtÞ, i.e., kðtÞ > 0, we have to set

FIG. 17. The latitudinal range of motion of the photons and the orientation of their azimuthal motion given for typical radii at the
Kerr–de Sitter naked singularity spacetimes with parameters a2 ¼ 1.2, y ¼ 0.02. This figure follows Fig. 16 in an analogous way and
shows other qualitatively different cases of SPOs, which for the spacetime case in Fig. 16 either do not occur or could not be displayed
clearly due to disproportions. (a) Radius rSPO ¼ 1.15 corresponds to the case rþdðSPOÞ < rSPO < rþpol; the SPO photons move in a

retrograde direction along a stable SPO that partially interferes with the ergosphere, with a negative impact parameter l and with a
positive covariant energy E > 0. (b) Radius rSPO ¼ 1.5 corresponds to the case rþpol < rSPO < rms; the SPO photons move in a prograde
direction along a stable SPO that partially interferes with the ergosphere, with a positive impact parameter l and with a positive covariant
energy E > 0. (c) Radius rSPO ¼ 2.2 corresponds to the case r−pol < rSPO < r−ph; the SPO photons move in a retrograde direction along an
unstable SPO that partially interferes with the ergosphere, with a negative impact parameter l and with a positive covariant energy
E > 0. The selected radii are highlighted by horizontal dotted lines in Fig. 19(b), which shows the distribution of different types of SPOs
in the considered spacetime.
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FIG. 18. The latitudinal range of motion of the photons and the orientation of their azimuthal motion given for selected negative radii
in the Kerr–de Sitter naked singularity spacetimes with parameters a2 ¼ 1.2, y ¼ 0.02. The coloring follows Figs. 16 and 17 in an
analogous way and shows other qualitatively different cases of SPOs. The black and gray horizontal lines define the range of allowed
values of the impact parameter l, which are given by the constraints imposed on the latitudinal motion according to Eq. (87). The purple
vertical band corresponds to the region of causality violation where gϕϕ < 0 (A < 0), restricted in the latitudinal direction at a given
radius r to the interval θCV ≤ θ ≤ π − θCV. Note that in the causality violation region the equations of motion have to be modified due to
the interchange of the character of the ϕ; t coordinates. Here we are not discussing these subtleties, as ϕ is not spacelike coordinate in the
causality violation region being thus irrelevant for our discussion. Outside the causality violation region the behavior is standard, but
partly it corresponds to the vortical motion. The individual cases correspond to the following situations: (a) Radius rSPO ¼ 0 does not
correspond to a SPO, but the photon trajectory terminates in the ring singularity. (b) and (c) Unstable prograde SPOs; photons enter the

causality violation region. (d) Unstable polar SPO at radius rð−Þpol given by Eq. (129); photons oscillate above the “north”/”south” pole
with latitudinal turning point θpol=ðπ − θpolÞ, which merges with the boundary point θCV=ðπ − θCVÞ of the causality violation region.
(e) Unstable retrograde SPOs; vortical motion between two latitudinal turning points “above”/“below” the equatorial plane outside the
area of causality violation. (f) Off-equatorial unstable retrograde circular photon orbit of the θ� photons with the motion constants given
by Eqs. (102) and (103), following the constant latitude θ�min ¼ 31.3°, cf. Figs. 11 and 15(a). The radius r�SPO corresponds to the
“deepest” SPO enclosing the region of the SPOs.
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kðϕÞ < 0, or, equivalently, Φ < 0, as follows from
kðϕÞ ¼ kðϕÞ ¼ ΦeϕðϕÞ. Therefore, by the definition (48),

such photons must have negative covariant energy E < 0
and such SPOs must be completely immersed in the
ergosphere (see [110]). The area of these orbits is marked
in green.
In the case of motion outside the ergosphere, the

inequality (149) has a solution

ðΩLNRF − ZθÞ−1 ≤ l < Ω−1
LNRF; ð153Þ

as follows from the auxiliary Table IV. The conjunction of
inequalities (147) and (153) now gives the solution of the
inequality (145) in the form

ðΩLNRF − ZθÞ−1 ≤ l ≤ 0; ð154Þ

which corresponds to the blue regions shown in Figs. 16(a),
16(b), and 17 outside the belt bounded by the vertical

dashed lines and the blue region shown in Figs. 16(c),
16(d), and 18.
As shown above, the orientation of the photon motion

relative to the LNRFs is governed only by the impact
parameter l. In Figs. 16 and 17, we show several typical
cases of the extension of the latitudinal motion of the SPO
photons at positive radii along with to the motion orienta-
tion relative to the LNRFs for a given choice of the impact
parameter lSPO for KdS NS spacetimes represented by the
spacetime parameters a2 ¼ 0.001; y ¼ 10−5 with compari-
son to the situation for the KdS NS spacetimes with larger
parameters—a2 ¼ 1.2; y ¼ 0.02 where the retrograde
SPOs enter the ergosphere.
In the region of positive radii r > 0, for a given radius r,

the allowed values of the impact parameter l are given by
the constraints imposed on radial motion by Eq. (66).
Therefore, in Figs. 16 and 17 the values of the local
extrema of the functions ðΩLNRF þ ZθÞ−1ðθ; rÞ, ðΩLNRF −
ZθÞ−1ðθ; rÞ at the point θ ¼ π=2, which determine the range
of the allowed values of the impact parameter l at given
radius r, are given by the values of the effective potentials
lr
�ðr; q ¼ 0; y; a2Þ, i.e.,

ðΩLNRF þ ZθÞ−1ðθ ¼ π=2; rÞ ¼ lr
−ðr; q ¼ 0Þ; ð155Þ

ðΩLNRF − ZθÞ−1ðθ ¼ π=2; rÞ ¼ lrþðr; q ¼ 0Þ; ð156Þ

where we have introduced the notation

lr
�ðr; qÞ≡ Xr

�ðr; qÞ þ a; ð157Þ

with Xr
�ðr; qÞ defined in relation (70).

In Fig. 18, we show for completeness the latitudinal
extent of the SPOs and their orientation on the negative
radii. The photon motion at negative radii does not differ
qualitatively between the KdS spacetimes of different
cosmological parameters, so we consider here the
representative case of a spacetime with parameters
a2 ¼ 1.2, y ¼ 0.02. The local extrema of the functions
ðΩLNRF þ ZθÞ−1ðθ; rÞ, ðΩLNRF − ZθÞ−1ðθ; rÞ at θ ¼ π=2 in
the case of r < 0 fall into the domain of causality
violation, the discussion of which we postpone for another
detailed study of the character of the motion in the
causality violation region.
From the comment to Figs. 16–18 it follows that although

the individual functions ðΩLNRF þ ZθÞ−1, ðΩLNRF − ZθÞ−1
change their value depending on the latitude θ, a photon
with a given impact parameter l does not change the
azimuthal direction of motion with respect to the LNRF
observer currently orbiting at the photon location, i.e., the
photon remains to be at either a prograde or retrograde SPO.
The photons following the prograde/retrograde SPO in
given reference frame we also call locally corotating/
counterrotating, but these attributes can be generalized to
any motion, where the term corotating/counterrotating

TABLE IV. Auxiliary table for solving the inequality −1 ≤
sinΨ in the case of gtt < 0.

l ð−∞; 1
ΩLNRF−Zθ

� ½ 1
ΩLNRF−Zθ

; 1
ΩLNRF

Þ ð 1
ΩLNRF

;∞Þ
ðZθ −ΩLNRFÞlþ 1 − þ þ
1 − ΩLNRFl þ þ −
sinΨþ 1 − þ −

TABLE II. Auxiliary table for solving the inequality sinΨ ≤ 1.

l ð−∞; 1
ΩLNRFþZθ

� ½ 1
ΩLNRFþZθ

; 1
ΩLNRF

Þ ð 1
ΩLNRF

;∞Þ
ðΩLNRF þ ZθÞl − 1 − þ þ
1 − ΩLNRFl þ þ −
sinΨ − 1 − þ −

TABLE III. Auxiliary table for solving the inequality −1 ≤
sinΨ in the case of gtt > 0.

l ð−∞; 1
ΩLNRF

Þ ð 1
ΩLNRF

; 1
ΩLNRF−Zθ

� ½ 1
ΩLNRF−Zθ

;∞Þ
ðZθ −ΩLNRFÞlþ 1 þ þ −
1 − ΩLNRFl þ − −
sinΨþ 1 þ − þ

TABLE I. Auxiliary table for determining the sign of sinΨ.

l ð−∞; 0� ½0;Ω−1
LNRFÞ ðΩ−1

LNRF;∞Þ
Zθl − þ þ
1 − ΩLNRFl þ þ −
sinΨ − þ −
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means a motion that satisfies the condition (138)/(145), i.e.,
in accordance with our intuition, particles following them
are proceeding in a positive/negative azimuthal direction
relative to the local LNRF.

2. Distribution of the SPOs

In Figs. 19 and 20 we give for the same KdS NS
spacetimes the dependence of the extension of the latitu-
dinal motion and in Figs. 21 and 22 the dependence of the
motion constants lSPO, qSPO of the SPO photon on the
radius of the SPO. For a class IVa KdS NS which belongs
to the family of observationally acceptable spacetimes, at
the region of positive radii the SPOs are located in the
interval 0 < rSPO < r−ph, where r−ph denotes the retrograde
equatorial circular photon orbit (ECPO), which is given by
the positive root of the function qSPOðrÞ. There are two
polar SPOs, the stable one at rþpol and unstable one at r−pol
given by Eq. (123), rþpol < r−pol < r−ph. The distribution of
the SPOs is shown in Figs. 19 and 20. The prograde SPOs
are located in the interval rþpol < r < r−pol; stable at
rþpol < rms and unstable at rms < r−pol, where rms denotes
the radius of the marginally stable SPO, which is given by
the local maximum of the function lSPOðrÞ [or local

minimum of the function qSPOðrÞ]. The retrograde unstable
SPOs are at r−pol < r−ph, and stable at 0 < r < rþpol. The
SPOs that are completely embedded in the ergosphere,
orbited by locally retrograde photons with positive impact
parameter lSPO and with negative covariant energy E < 0,
are in the interval 0 < r < rþdðSPOÞ, orbits with positive

covariant energy E > 0 are in the interval rþdðSPOÞ < r <

r−ph, where rþdðSPOÞ is the point at which the functions

lSPOðrÞ, qSPOðrÞ diverge, defined in relation (115).
In the case of negative radii, only unstable SPOs exist.

The prograde SPOs are at rð−Þpol < r < 0, which enter the
region of the causality violations in the vicinity of the
equatorial plane θ ¼ π=2 and which study we postpone to
another paper. The retrograde SPOs are in the interval

r�SPO < r < rð−Þpol . Photons in these SPOs perform so-called
vortical motion, during which they oscillate between two
latitudinal turning points that are in the same half-space
with the equatorial boundary plane. The lowest SPO at
r ¼ r�SPO is purely circular.
For completeness, we still investigate the radial extent of

the causality violation region, which is given by the
condition gϕϕ < 0. As shown in Fig. 20, this radial extent
is largest for θ ¼ π=2, where it is limited by the value of

FIG. 19. Distribution of the SPOs in the class IVa KdS NS spacetimes. The red/blue color corresponds to the locally prograde/
retrograde SPOs, the full/faint shades correspond to the stable/unstable SPOs. The green color corresponds to the locally retrograde
SPOs with negative covariant energy E < 0. The gray area shows the ergosphere. The dashed/dotted lines indicate prominent orbits/
orbits for which the latitudinal motion ranges are shown in Figs. 16 and 17. The intersections of the dotted horizontal lines with the gray
curve determine the latitudinal extent of the ergosphere at a given radius rSPO. Figure 19(a) shows spacetimes where unstable prograde
SPOs exist outside the ergosphere, while the Fig. 19(b) corresponds to spacetimes where the ergosphere extends into the region of
unstable retrograde SPOs. The region of stable retrograde orbits in Fig. 19(a) a is faint due to the small scale, and the radii rms, r

þ
dðSPOÞ are

not marked for clarity, since they almost merge with the radius rþdðSPOÞ.
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rCV. This radius is given by the condition gϕϕ ¼ 0, which
implies the equality A ¼ 0. Substituting θ ¼ π=2 into the
definitional relation (27) for the function A gives the
equation,

rðIr3 þ a2Irþ 2a2Þ ¼ 0; ð158Þ

which is obviously satisfied for r ¼ 0. The cubic poly-
nomial in Eq. (158) always has two complex conjugate
roots and one negative root,

rCV ¼ −2
ffiffiffi
3

p

3
a sinh

�
1

3
sinh−1

3
ffiffiffi
3

p

Ia

�
: ð159Þ

It can be shown that the following inequality holds

rð−Þerg < rð−ÞdðSPOÞ < rCV < r�SPO < rð−Þpol < 0: ð160Þ

The radial extent in the equatorial plane of the causality
violation region is then given by the interval rCV ≤ r ≤ 0.

3. Spacetime differentiation according to the relative
position of the ergosphere and the SPOs region

The KdS NS spacetimes represented by the spacetime
parameters a2 ¼ 0.001; y ¼ 10−5 and a2 ¼ 1.2; y ¼ 0.02,
for which we have constructed the figures above, differ in
the extension of the SPOs relative to the ergosphere. The
limiting values of the cosmological parameters that separate
spacetimes with ergosphere in the region of unstable
prograde orbits from spacetimes with ergosphere extending
into the region of unstable retrograde orbits are given by

rþerg ¼ r−pol; ð161Þ

whose solution can be written in the parametric form,

a2 ¼ a2erg−polðrÞ≡ 3r2 − r3

2r − 1
; ð162Þ

y ¼ yerg−polðrÞ≡ 2r2 − 5rþ 2

r3ðrþ 2Þ ; ð163Þ

with respect to the variables a2, y. It follows from the
Eqs. (162) and (163) that in the case of pure Kerr
spacetime (y ¼ 0) the ergosurface just meets the region

FIG. 20. (a) Distribution of the SPOs in the region of negative radii in the class IVa KdS NS spacetimes. The color distinction has the
same meaning as in Fig. 18. The dashed/dotted lines indicate prominent orbits/orbits for which the latitudinal motion ranges are shown
in Fig. 18. The radius rcv denotes the radial extent of the causality violation region. (b) Distribution of the SPOs in the region of negative
radii of the same KdS NS spacetime in comparison to the region of the SPOs at positive radii. The prominent radii and latitudes are
marked.
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of unstable retrograde SPOs at r ¼ 2 for a2 ¼ 4=3, which
corresponds to Kerr NS spacetime, while in the case of
SdS spacetime (a2 ¼ 0) this situation occurs at r ¼ 3 for
y ¼ 1=27 ¼ ycritðSdSÞ, which corresponds to the extreme
SdS BH spacetime.
For completeness, let us note that equality rþerg ¼ r−ph is

satisfied if and only if rþerg ¼ r−erg, i.e., the inner ergosphere
reaches the limit of the unstable retrograde SPOs at r−ph
simultaneously with the limit of the cosmological ergo-
sphere, which occurs at the static radius rs. Therefore, in
such situation, rþerg ¼ r−ph ¼ r−erg ¼ rs, and the spacetime

parameters a2; y corresponding to this limiting case are
described in the parameter plane ða2; yÞ by the a2erg−sðyÞ
curve defined by the relation (18).
Furthermore, in paper [110] we defined classes I, and II

of the KdS BH spacetimes, which differ in that in the
equatorial plane in class I the radius rþerg of the inner
ergosphere boundary lies above the outer BH horizon at ro
and below the unstable corotating equatorial circular
photon orbit ECPO at rþph, forming the inner boundary
of the SPOs region, ro < rþerg < rþph, while in class II
the ergosphere extends into the SPOs region, rþph < rþerg.

Here we denote the curve that separates the two classes of
spacetimes in the parameter plane ða2; yÞ by a2I−IIðyÞ. The
curve (a2erg−polðrÞ; yerg−polðrÞ), hereafter denoted by
a2erg−polðyÞ for short, parametrized by 2 < r < 3, and the
curves a2I−IIðyÞ, a2erg−sðyÞ are shown in comparison to the
curves a2minðhÞðyÞ, a2maxðhÞðyÞ, which determine the boun-

dary between the BH and NS spacetimes, in Fig. 23.

F. Classification of the KdS spacetimes
due to photon motion

The separation of the KdS BH and NS spacetimes in the
parameter space ða2 − yÞ by the relations of the horizons
and ergosurfaces is shown in Fig. 5. A more detailed
classification of the KdS spacetimes into individual classes,
first introduced in [110] and denoted by Roman numerals
I–VIII, is shown in Fig. 24—it also takes into account the
character of the SPOs, including their number, their stability
with respect to the radial perturbations, their orientation,
their relative position to the ergosphere and the existence of
polar SPOs, i.e., SPOs crossing the symmetry axis. All these
characteristics of the photon motion, together with the
special class of the photons moving along constant latitudes,

FIG. 21. Dependence of the motion constants lSPO, qSPO of the SPO photons on the radius rSPO of the corresponding orbit for the
spacetimes considered above. The different sections of the curves are color-coded according to the orbital type in the color style as in
Figs. 16–19. The colored dots highlight the radial coordinates of the characteristic SPOs considered in Figs. 16–19.
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are important for the appearance of astrophysical phenom-
ena in the vicinity of BHs and NSs, in particular for
determining the shape and extension of the shadow. We
give a complete classification of the KdS spacetime due to
the photon motion in the region of r > 0, but in the
following we concentrate on the KdS NS spacetimes with
parameters that do not contradict the astrophysical con-
straints. It must be emphasized that this is the first time that
we have presented a detailed discussion of the photons
reaching the region of r < 0.
In the KdS BH spacetimes, there are both corotating and

counterrotating ECPOs, located at radii rþph; r
−
ph respec-

tively, which in the equatorial plane delimit the range of
SPOs, which can be both prograde or retrograde, but
unstable. In all classes of the KdS NS spacetimes, only
one unstable counterrotating ECPO exists at r ¼ r−ph.
Furthermore, in contrast to the BH spacetimes, there exist
stable SPOs in all the NS spacetimes. In each class of the
KdS NS spacetimes there together retrograde SPOs, which
are completely immersed in the ergoregion. It was shown in
[110] that photons on such SPOs have positive locally
measured energy only if they have negative covariant
energy, E < 0. Such negative covariant energy SPOs also
exist in the Class III KdS BH spacetimes (see below), i.e.,
in BH spacetimes with RRB.
In all previous studies of KdS spacetimes, we considered

only the r > 0 region. Here we have for the first time
discussed the region of negative radii, although we have not
considered the region of causal disturbances, which we
intend to address in a future study. From our analysis, we
can conclude that the region of negative radii remains
qualitatively the same for all types of KdS spacetimes and
therefore does not affect the classification of the spacetimes
as proposed in [110]. The classification of the KdS
spacetimes according to the properties of their geodesic
structure at r > 0 can be summarized as follows [110]:

FIG. 23. Behavior of the curves a2I−IIðyÞ (black dotted),
a2erg−polðyÞ (black dot-dashed) and a2erg−sðyÞ in comparison to

the curves a2minðhÞðyÞ (full gray) and a2maxðhÞðyÞ (full black) that

separates the cosmological parameters corresponding to the KdS
BH spacetimes (gray region) from the cosmological parameters
corresponding to the KdS NS spacetimes (white region). The
purple curve is the function a2maxðpolÞðyÞ, determining the boun-

dary of spacetimes, where the polar SPOs exist (blue region).

FIG. 22. Dependence of the motion constants lSPO, qSPO of the SPO photons at the negative radii on the radius rSPO of the
corresponding orbit for the spacetime considered above. The different sections of the curves are color coded according to the orbital type
in the color style as in Figs. 18 and 20. The colored dots highlight the radial coordinates of the selected SPOs considered in Fig. 18.
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Class I: BH spacetimes with DRB of radial photon
motion; the region of the SPOs, all of which
are unstable, intersects the equatorial plane
between the radii r ¼ rþph of the inner ECPO,
which are corotating, and the radii r ¼ r−ph of
the outer ECPO, which are counter-rotating.
The prograde and retrograde SPOs are sepa-
rated by the polar SPOs at radii r ¼ rpol. The
characteristic radii are related by the inequal-
ities 0<ri <ro <rþerg<rþph<rpol<r−ph<rs <
r−erg<rc. The structure of the outer BH and
cosmological horizon, the inner and outer
ergosurface and the static radius are shown
in Fig. 5(a).

Class II: BH spacetimes with the same properties as in
the case of Class I, but now the region of the
SPOs partially extends into the BH ergoregion.
The corresponding inequalities together
0 < ri < ro < rþph < rþerg < rpol < r−ph < rs <
r−erg < rc.

Class III: BH spacetimes with RRB. The SPOs com-
pletely interfere with the ergoregion in the
equatorial plane, since it extends over the entire
stationary region in the range ro < r < rc, as
shown in Fig. 5(c). The characteristic radii are
related by the inequalities 0 < ri < ro < rþph <
rpol < r−ph < rc. The borderline case, corre-
sponding to the transition between classes II
and III, is shown in Fig. 5(b).

Class IVa: NS spacetimes with DRB, an unstable counter-
rotatimg ECPO at r ¼ r−ph and two polar SPOs,

the inner one at r ¼ rþpol being stable, the outer
one at r ¼ r−pol being unstable. The polar SPOs
separate regions of SPOs with different ori-
entations; the prograde SPOs are enclosed
between the two polar SPOs at r ¼ r�pol; for
rþpol < r < rms they are stable, for rms < r <
r−pol they are unstable, where rms stands for the
marginally stable SPO; the stable retrograde
SPOs are located in the region 0 < r < rþpol,
the unstable retrograde SPOs are located in the
region r−pol < r < r−ph. There are two separate
ergoregions, the inner toroidal one touching the
ring singularity, that partially overlaps the area
of the SPOs of both types of orientation and
stability, and the outer cosmological ergore-
gion touching the cosmological horizon;
the ergosurfaces are shown in Fig. 5(d).
The characteristic radii are related by the
inequalities 0<rþpol <rms<r−pol <rþerg<r−ph<
r−erg <rc.

Class IVb: NS spacetimes that differ from the Class IVa by
the absence of the polar SPOs. There are only
counter-rotating SPOs, the stable ones being in
the range 0 < r < rms, the unstable ones are in
the range rms < r−ph. The inner ergosphere
partially covers both stable and unstable SPOs.
The characteristic radii are related by the
inequalities 0 < rms < rþerg < r−ph < r−erg < rc.

Class V: NS spacetimes with the same properties as in
the case of Class IVb, but now the inner
ergosphere partially covers the stable SPOs

FIG. 24. Classification of the KdS BH and NS spacetimes in the parameter space ða2 − yÞ according to the properties of the horizons,
the ergospheres, and the properties of the null geodesics. Here detailed character of SPOs is reflected, including their number, stability,
orientation, relative position to the ergosphere, and existence of the polar SPOs. In order to clearly display distant regions of the
parameter plane, the vertical axis in the left figure is in logarithmic scale, so that the individual regions, according to the induced
classification first proposed in [110], are vertically compressed. The figure on the right shows in detail the blue region, where the black
dot corresponds to the selected KdS NS spacetime discussed in this article, with parameters a2 ¼ 1.2; y ¼ 0.02 belonging to
the astrophysically relevant region, but with values of the parameters large enough to enable a clear demonstration of all the relevant
effects—in this region the NS spacetimes allow existence of the polar SPOs. The significance of each of the individual classes is
described in the text of the Sec. III F.
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only. The relationships between the character-
istic radii are given by the inequalities 0 <
rþerg < rms < r−ph < r−erg < rc.

Class VIa: NS spacetimes with RRB and the same
structure of the SPOs as in the Class IVa.
The presence of the RRB is related to the
modified structure of the ergoregion, depicted
in Fig. 5(f). The ergoregion partially covers
the area of the SPOs of both types of ori-
entation and stability. The characteristic radii
are ordered as follows: 0 < rþpol < rms <
r−pol < r−ph < rc. The borderline case, corre-
sponding to the transition between classes IV
and VI, is illustrated in Fig. 5(e).

Class VIb: NS spacetimes with RRB and the same struc-
ture of the SPOs as in the Class IVb. The
presence of the RRB is again related to the
modified structure of the ergoregion, as shown
in Fig. 5(f). The characteristic radii are ordered
as follows: 0 < rms < r−ph < rc.

Class VII: NS spacetimes with RRB and the same
structure of the SPOs as in the Class VIb,
but now the SPOs are completely immersed in
the ergosphere. As a consequence, there are
only SPOs with negative covariant energy
E < 0. The shape of the ergosurface is shown
in Fig. 5(f) and approaches the shape shown in
Fig. 5(g) as a2y → 1.

Class VIII: NS spacetimes with RRB and the same
structure of the SPOs as in the Class VII,
but with different behavior of the latitudinal
photon motion, allowing, unlike all previous
cases, the vortical motion of retrograde

photons with negative covariant energy,
E < 0. The ergosurface is ellipsoidal in shape
as shown in Fig. 5(h).

The study of the SPOs, polar SPOs and their stability
is extended to the region of negative radii, r < 0, in
Sec. III D 2. For the reasons of astrophysical relevance, we
will consider in the following the KdS NS spacetimes with
a2y < 1, similarly to the study realized for KdS BH
spacetimes in [97])—we restrict the following investiga-
tions to the KdS NS spacetimes of the Class IVa as they
correspond to the astrophysically relevant spacetimes
implied by the magnitude of the relic cosmological
constant (Λ ∼ 10−52 m−2) indicated by the recent cosmo-
logical tests [94], and the observed high masses of central
objects in the active galactic nuclei (M ∼ 1010M⊙), or
those assumed to be the largest gravitationally bounded
systems in the dark matter halos of large galaxies or their
clusters (M ∼ 1015M⊙), for details see e.g. [91,93,95].

IV. NS SHADOWS IN LOCALLY
NONROTATING FRAMES

We have analyzed special classes of null geodesics of the
KdS NS spacetimes relevant the for construction of their
shadow as seen by distant static observers, that could bewell
represented by observers located in the locally nonrotating
reference frames near the static radius of the KdS space-
times; such observers are similar to static observers at large
distances in asymptotically flat spacetimes [88,91,107]. The
special geodesic classes include null geodesics terminating
in the ring singularity, and null geodesics entering the region
of negative radii; namely, null geodesics remaining on fixed
latitude, and the null geodesics corresponding to the
spherical photon orbits (SPOs) at negative radii. Of standard
relevance are the photons that wind up onto the SPOs at
positive radii.
The shadow of a BH (compact object) was introduced in

[18] as an apparent shape of the dark region seen by a distant
observer in his celestial sphere, created by the BH located
between the observer and an illumination source with an
angular size exceeding that of the BH. This definition can
also be useful in more complex situations, such as the
appearance of a Keplerian disk or radiating torus orbiting
the BH (compact object); see [17,54]
The shadows (silhouettes) of a compact object on a

bright background, constructed in a local reference frame of
an axially symmetric stationary spacetime, are related to the
LECs and the complementary LCCs. If the reference frame
is considered as a source of radiation, the LECs (LCCs) are
defined as complementary parts of the celestial sphere of
isotropically radiating source located in the field of a
compact object (BH or NS), corresponding to photons
escaping to infinity (captured by the compact object) [54].
The method of determining the shadow by using the LECs
is especially useful when we are interested in determining

FIG. 25. Definition of the locally measured directional angles
α, β. The small circle represents the naked singularity, the dashed
vertical line is its spin axis. The observer’s radial and latitudinal
coordinates are ro, θo. The arrows labeled e⃗ðrÞ; e⃗ðθÞ; e⃗ðϕÞ illustrate
the local radial, latitudinal and azimuthal orthonormal basis
vectors, respectively; the red arrow marked k⃗ depicts a photon
3-momentum, the red dashed arrow represents its projection into
the local ðθ;ϕÞ plane.
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the BH or NS shadow for observers orbiting in their close
vicinity, where complex radiating structures such as accre-
tion disks can exist.
Here we concentrate on the construction of the shadow

with relation to distant observers—in such a case, the
shadow as seen on the observer’s sky can be constructed
directly by inverting the LCC of the photons emitted by the
source, located at the same position, about the celestial
projection of the symmetry axis of the spacetime. The
boundary between the LEC and LCC at a given source is
determined by the parameters of the photons corresponding
to the SPOs. This feature is explained in the comment to
Fig. 26, demonstrating the construction of the shadow.
The shadows in the observer’s sky are determined by the

system of the angular coordinates representing the photon’s
directional angles. The angular coordinates are related to
the components of the photon 3-momentum measured in
the observer’s frame that are generally governed by the
photon motion constants [97].
Herewe present the resulting shadows of the KdS NSs for

a representative spacetime with parameters a2 ¼ 1.2,
y ¼ 0.02, corresponding to the class IVa of the KdS NS
spacetimes with its structure expected in the realistic
universe models with relic cosmological constant implied
by cosmic observations of the accelerated expansion and
the observed magnitude of the mass of cosmic objects. The
parameter y is chosen high for the illustrative purposes; in
situations that are realistic from an astrophysical point of
view, the parameter y ≪ 1, but the qualitative features of the
shadow remain unchanged, only the scales are modified.
In construction of the shadows we apply the method of

establishing the boundary between the LEC and the LCC
using the observers related to the LNRFs located near the
static radius in the KdS spacetime, that are qualitatively
close to the static distant observers in asymptotically flat
spacetimes [107]. For more complex situations, see the
discussion in [54,97].

A. Directional angles of photons in the LNRFs

The directional angles (α, β) (see Fig. 25) of a photon are
related to the locally measured frame components kðaÞ of
the photon 4-momentum by the standard definitions ([54])

cos α ¼ kðrÞ=kðtÞ; ð164Þ

sin α cos β ¼ kðθÞ=kðtÞ; ð165Þ

sin α sin β ¼ kðϕÞ=kðtÞ: ð166Þ

In the relations (164)–(166) we can put kðtÞ ¼ 1 without
loss of generality.
Therefore, the Eqs. (54)–(57), (60), (61), and (164)–

(166) give the correspondence between the pair of direc-
tional angles (α, β) and the pair of motion constants (X, q).
To get an insight into the notion of the motion constants, we

present the corresponding (X − q) plane together with each
of the constructed shadows.
Note that there is a third directional angle γ used in the

literature (e.g. [138]), defined by the relation

cos γ ¼ kðϕÞ=kðtÞ ð167Þ

that can replace any of the angles α, β. For our purposes,
however, the pair ðα; βÞ is a more appropriate choice.

B. Construction of the KdS NS shadows
and relation to the LECs (LCCs)

the construction of the shadows of the KdS NS related to
local observers, by using the LECs (and related LCCs) of
these observers, requires a simple redefinition of the
directional angles that should be related to photons reach-
ing these observers, not to photons emitted by them. In
Fig. 26 the construction of the shadows is explained and
new coordinates α̃; β̃ characterizing the shadows are intro-
duced. The basic step is the construction of the shadow
boundary by finding the directional angles related to the
photons reaching the SPOs. Using Fig. 26 and its comment,
the directional angles of the shadow boundary can be
obtained by the following procedure:
(1) For given radial and latitudinal coordinates ro, θo of

the observer, we determine the motion constants
XSPO; qSPO which, in the (X − q) parameter plane,
represent the so-called critical locus, for which the
photon emitted from the observer’s position reaches
some unstable SPO with radius rSPO.

(2) From the relations Eqs. (32)–(35), (54)–(57),
(60), and (61) we determine the locally measured
4-momentum components kðaÞ of this photon escap-
ing towards the SPO. In the case of the radial
component kðrÞ we get

kðrÞ ¼ ωðrÞ½k� ¼ ωðrÞ
r kr; ð168Þ

where we must correctly choose the sign for the
radial component kr determined from the Eq. (54).
Apparently we have to take kr ¼ srjkrj, where
sr ¼ signðrSPO − roÞ.

(3) According to the relations (164)–(166) we compute
directional angles α̃, β̃ corresponding to virtual
photons with locally measured components
ð−kðrÞ;�kðθÞ;−kðϕÞÞ. These angles then correspond
to two points of the shadow, which are placed
symmetrically with respect to the axis perpendicular
to the projection of the spin axis, (see the points
L0;M0 in Fig. 26).

In the illustrations of the constructed shadows, the angle
α̃∈ h0; πi is used as a radial coordinate measured in radians
in the polar plots, while β̃∈ h0°; 360°Þ is operated as the
polar coordinate measured in degrees.
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FIG. 26. Construction of the shadow of a KdS NS on a local observer’s sky with the use of the concept of the LEC and the
complementary LCC of the observer; the boundary of these complementary cones is determined by the motion constants of the photons
related to the SPOs. The observer (black dot) located at radial distance ro from the center of the ring singularity (RS) represented by the

small black circle, at latitudinal coordinate θo, is endowed with a local tetrad of orthonormal basis vectors e⃗ðtÞ, e⃗ðrÞ, e⃗ðθÞ, e⃗ðϕÞ. Let k⃗ be a
3-momentum of a photon emitted from the observer location (red arrow) with locally measured radial, latitudinal and azimuthal
components ðkðrÞ; kðθÞ; kðϕÞÞ, respectively, defining the directional angles α, β on the observer’s sky according to the relations (164)–(166).
The photon 3-momentum components correspond to motion constants XSPO, qSPO tuned so that the photons eventually wind up on some

SPO (yellow sphere). The vector k0
!

is projection of the vector k⃗ into the local (θ;ϕ)-plane perpendicular to e⃗ðrÞ. The apparent pointK (red

point) on the observer’s celestial sphere (consisting of two half-spheres of different shades of blue) in the direction of the 3-vector k⃗
defines a point of the boundary of the local LEC (LCC). Two 3-vectors, ⃗l ¼ ð−kðrÞ; kðθÞ; kðϕÞÞ, m⃗ ¼ ð−kðrÞ;−kðθÞ; kðϕÞÞ, correspond to
virtual photons with the same motion constants XSPO; qSPO, that cannot reach the observer from a distant bright background since they
must be trapped on the photon sphere. Hence the directions of their arrival define two apparent points L, M on the observer’s celestial
sphere—the observer recognizes them as points constituting the boundary of the KdS NS shadow, appearing as a circlelike curve or an arc
(see figures below). Of course, this curve itself is not observable, but is lined with images of stars in the background whose photons, with
motion constants slightly different from XSPO; qSPO, had to orbit near the photon sphere many times before finally reaching the observer.
The points K,M are placed symmetrically with respect to the celestial projection a0 (black dotted curve) of the spin axis a (black dashed
line), the points L, M are placed symmetrically with respect to the local (r;ϕ)–plane perpendicular to e⃗ðθÞ. It is apparent from the
symmetry that the same construction would even apply to a photon radiated in the opposite latitudinal direction. Consequently, the LCCs
and the shadows (silhouettes) are symmetric with respect to the projection a0 of the spin axis. We represent the celestial sphere in a two-
dimensional plane defined by two mutually perpendicular axes; the vertical one corresponds to the spin axis a, the intersection of these
axes corresponds to the image of a point lying on the celestial sphere in the direction towards the center of the RS. The angular
displacement of a particular celestial point, e.g. L, from the direction to the center is used as the radial coordinate α̃ of its image L0 in this
plane. It can be calculated from the relation (164) for a photon with 3-momentum ⃗l (see the yellow dashed arc overlapping the red dashed
arc representing the angle α), hence α̃ ¼ π − α. The coordinate β̃ is introduced as the angular coordinate of a particular image. Here the
coordinate β̃ ofM0 can be calculated from the relations (165) and (166) for the 3-vector −m⃗. In summary, the coordinates α̃, β̃ of the point
L0=M0 correspond to the directional angles of a virtual photon with locally measured components ð−kðrÞ;∓kðθÞ;−kðϕÞÞ.
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The shape of the KdS NS shadow depends on the
latitudinal and radial coordinates of the observer’s position.
We present the construction of the shadows for some
appropriately chosen latitudinal positions, namely the
limiting cases on the spin axis θo ¼ 0°, and in the equatorial
plane θo ¼ 90°; as an intermediate position we chose the
latitude θo ¼ 60°. In order to clearly display a continuous
progression of the shape of the shadows as the latitude
increases, some specific latitudes are used in addition to
those given above. The radial coordinate of the observer is
chosen at the static radius rs ¼ 3.68. We used this radial
location as it is the most convenient local approximation to
the flat Kerr spacetime [107,108].
If we do not expect any source of radiation in the r < 0

region of the KdS NS spacetime, the light rays escaping to
the secondary infinity r → −∞ will cause an observer at the
static radius to see a dark spot in the corresponding
direction. This dark region, representing the shadow, is
shown in Figs. 27–29 in purple color, as well as in the
accompanying figures of the corresponding (X − q) planes.
Accordingly, the light rays that wind around the SPOs at
both positive or negative radii are plotted as an orange
curve, as they correspond to the critical locus in the (X − q)-
plane depicted in the same color. The light rays with a radial
turning point in the region r < 0 and returning to r > 0, as
illustrated in Fig. 9, make the corresponding region visible.
This region is depicted in lighter purple. In addition, the
characteristic directions corresponding to the PNC and the
θ� ¼ const photons are indicated by dots. The meaning of
the other dots follows from the plots of the (X − q)-planes in
Figs. 27–29.

V. SHADOWS IN RADIALLY ESCAPING FRAMES

Of special interest is the appearance of the KdS NS
shadow for observers leaving the static Δr > 0 region of the
spacetime, located near (or at) the cosmological horizon of
the spacetime. Such observers (frames) are strongly influ-
enced by the cosmic repulsion of the spacetime; the LNRFs
(and the ZAMOs) must be kept on a fixed radius by forces
that increase without limit as the radius approaches the
cosmological horizon (or the BH horizon), and surely cannot
be considered as physically realistic observers in these
situations. In the vicinity of the cosmological horizon, the
natural choice of a physically realistic observer is an
observer moving freely under the influence of the cosmic
repulsion, in particular an observer following radially
escaping geodesic [97]. Since the frame dragging persists
even up to the cosmological horizon in the KdS spacetimes,
the observer moves purely radially with respect to the LNRF,
which currently orbits at radius of the observer’s position.
We can naturally assume that the radially escaping observer
starts its motion from the rest state at r ¼ 0 (near this radius
in the equatorial plane) or at the static radius, where the
effective potential of the radial motion demonstrates an

unstable equilibrium point [88]; for relations to the Einstein-
Straus vacuola model (see [89]).

A. Radially escaping geodesic observer

The locally measured 3-velocity components of a test
particle (observer) in a given LNRF are generally deter-
mined by the relations

vðjÞ ¼ uðjÞ

uðtÞ
¼ ωðjÞ

μ uμ

ωðtÞ
ν uν

; j ¼ r; θ;ϕ: ð169Þ

Here ωðjÞ
μ are the differential 1-forms given by the relations

(32)–(35) and uμ ¼ dxμ
dτ are the coordinate components

of particle’s four-velocity given by the Carter equa-
tions (40)–(43), where we have replaced the affine param-
eter λ by the particle proper time τ, i.e., we put λ ¼ τ=m.
In order to keep the component vðrÞ in the LNRFs as the

only nonzero 3-velocity component for geodesic motion
along any latitude θ0, the particle motion constantsΦ, E,Q
have to be restricted to special values [97]. The requirement
vðϕÞ ¼ 0 implies that

Φ ¼ 0: ð170Þ

The requirement vðθÞ ¼ 0 implies

Q ¼ −a4ym2 cos4 θ0: ð171Þ

The requirement of stable motion along the latitude θ0 ¼
const implies

E ¼ Δθ0

I
ffiffi
I

p m: ð172Þ

It is explicitly demonstrated in [97] that particles with this
particular choice of the motion constants follow purely
radial trajectories in the LNRFs at the fixed latitude θ0,
having no turning points in the region between r ¼ 0 and
the cosmological horizon rc.
The radial velocity vðrÞ for the outward directed motion

takes the form

vðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Iρ2Δr

AΔθ

s
; ð173Þ

while it takes the opposite sign for the inward motion.
During this purely radial motion relative to the LNRFs the
particle persists on the constant latitude θ0, being stable
against the perturbations in the latitudinal directions, as
shown in [97]. Such radially escaping (falling) particles thus
generalize the shell of radially escaping (falling) particles
that are falling freely from infinity onto a Kerr naked
singularity [117] (for the black hole case see [139]) in all the
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FIG. 27. Shadows for small observer inclination angles θo. The (X − q) parameter plane (left column) and the corresponding NS
shadows (middle column) and the detail of the dark spot (right column) for the observer latitude θo corresponding to the position on the
spin axis (a), and the marginal angle θmaxðcircÞ for which a circle-shaped curve (outer orange curve) appears corresponding to photons
winding up the unstable SPOs at r > 0 occurs (b). This circle exists in spacetimes with the polar SPOs for observer’s latitude less than
the critical value, θo ≤ θmaxðcircÞ. The dark spot (dark purple area) is delimited by photons winding up the unstable SPOs at r < 0 (inner
orange curve). The photons with turning points at r < 0 (light purple area) are delimited by photons that hit the ring singularity (purple
ellipse). Colored dots indicate the special photons; the PNC photon (red), the θ�-photon (green), and the photons delimiting the angular
diameter of the dark spot (yellow and white). The “polar” coordinate of the shadows is measured in radians and corresponds to the
celestial coordinate α̃, while the angular coordinate is measured in degrees and corresponds to the celestial coordinate β̃.
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cases the particles move purely radially relative to the
LNRFs.
According to Eq. (172), the covariant energy of the

radially escaping particles is in the range of

m

I
ffiffi
I

p ≤ E ≤
mffiffi
I

p ; ð174Þ

where the lower limit corresponds to the motion in the
equatorial plane, with the motion constantQ ¼ 0, while the
upper limit corresponds to the motion along the spin axis,
with the motion constant Q ¼ −a4ym2. It was also shown
in [97] that these energies do not allow radial turning point
at any radius 0 < r ≤ rc, i.e., the radial velocity is always
nonzero at any radial and latitudinal coordinate; the motion

FIG. 28. Shadows for mediate inclination angles of the observer. Continuation of the preceding figure for θo corresponding to the case
when the θ� photon winds up the lowest SPO of the given spacetime at negative radii, i.e., the unstable counter-rotating off-equatorial
circular orbit at r�SPO, thus defining the angular size of the dark spot (a), and when it is repelled in the region of r < 0 (b). In both cases
the latitude of the observer θo > θmaxðcircÞ, and thus an arc has appeared.
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is fixed in the outward (inward) direction. Here we will
focus on the outward directed motion, so we are consid-
ering positive values of the radial velocity.
The minimum radial velocity at any θo ≠ π=2 corre-

sponds to the location at r ¼ 0 and reads

vðrÞðr ¼ 0Þ ¼ cos2 θ0a2y
1þ cos2 θ0a2y

: ð175Þ

Of course, for θ0 ¼ π=2 the formula (175) gives zero, but at
r ¼ 0 and θ0 ¼ π=2 there is a ring singularity, and
analyzing Eq. (173) gives

lim
r→0þ

vðrÞ ¼ 1: ð176Þ

The behavior of the radial velocities depending on the
radial coordinate is shown in Fig. 30 for some selected
latitudes θ0.

B. Radially escaping reference frame

In the following we consider a local reference frame that
moves outwards purely radially with respect to the LNRF,
currently orbiting at the actual particle ðr; θÞ coordinates,
with the velocity given by the relation (173). We call the
system introduced in this way the radially escaping frame

FIG. 29. Shadows for very large inclination angles of the observer. Continuation of Fig. 28 corresponding to the case of θo → 90°
when the PNC photon and the θ�-photon delimit the angular size of the RS shadow (a). The case (b) is exceptional in the sense that it
corresponds to the observer’s position in the equatorial plane, when the limits of the parameter X are given by the effective potentials
X�ðrÞ (left figure). Since the radial position of the observer is on the static radius rs > r−ph, the limits are Xph− ≤ X ≤ 0, where
Xph− ¼ −18.0 is the impact parameter of the photon on the equatorial circular photon orbit (purple dot). The RS shadow is represented
by the purple abscissa.
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(REF). The 4-momentum k of a photon can be expressed in
this system as

k ¼ kðâÞeðâÞ; ð177Þ

where eðâÞ, â ¼ r̂; θ̂; ϕ̂; t̂, is the tetrad of the REF basis
4-vectors, related to the LNRF tetrad eb, b ¼ t; r; θ;ϕ, by
transformation equations

eðâÞ ¼ ΛðâÞðbÞeðbÞ; ð178Þ

where ΛðâÞðbÞ are the elements of the Lorentz transforma-
tion matrix

ΛðâÞðbÞ ¼

0
BBB@

γ γv 0 0

γv γ 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð179Þ

with

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð180Þ

being the Lorentz factor. Here and beyond, for brevity, we
use the notation v for the relative speed of the LNRF and
REF systems, instead of vðrÞ. to find the locally measured
4-momentum components kðâÞ of the photon in the REF, we
use the local tetrad of the REF differential 1-forms ωðâÞ
introduced by the relation

ωðâÞ½eðb̂Þ� ¼ δðâÞðb̂Þ; ð181Þ

that are related to the LNRF differential 1-forms by the
standard local Lorentz transformation

ωðâÞ ¼ ΛðâÞ
ðbÞω

ðbÞ; ð182Þ

where ΛðâÞ
ðbÞ are the elements of the transformation matrix

inverse to Λ ðbÞ
ðâÞ , i.e.,

ΛðâÞðbÞ ¼

0
BBB@

γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð183Þ

The locally measured photon’s 4-momentum components
are then given by

kðâÞ ¼ ωðâÞ½k� ¼ ωðâÞ
μ kμ ¼ ΛðâÞðbÞω

ðbÞ
μ kμ ¼ ΛðâÞðbÞkðbÞ:

ð184Þ

C. Directional angles of photon measured in REFs

We introduce the photon directional angles ðα̂; β̂Þ mea-
sured in the REF, by using the quantities kðâÞ in relations
analogous to the Eqs. (164)–(166). Using the transforma-
tion law given by (183) and (184), the directional angles
measured in LNRF and REF at a given point can be related
by the equations

cos α̂ ¼ kðr̂Þ=kðt̂Þ ¼ cos α − v
1 − v cos α

; ð185Þ

and

β̂ ¼ β: ð186Þ

Since we are concerned with reference frames under the
cosmic repulsion, we take v ¼ vðrÞ > 0 and Eq. (185) then
represents a standard formula for the aberration of light

FIG. 30. Velocity of a test particle performing a purely radial
motion with respect to the LNRFs currently orbiting at the
particle’s position with coordinates ðro; θoÞ. The KdS NS
spacetime parameters are again a2 ¼ 1.2, y ¼ 0.02, the cosmo-
logical radius is at rc ¼ 5.77. The motion is stably confined to
any constant latitude θo, and the velocity is nonzero at any radius
r > 0. Note that the curves are not drawn down to the inter-
sections with the vertical axis, in order to clearly display the
subtle differences between them at their higher values. The local
minimum about the radius r ¼ 0.4 exists for θ0 exceeding some
critical value, here θ0ðcrÞ ∼ 83°, that depends generally on the
spacetime parameters.
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from a receding source. Equation (186) follows immedi-
ately from the obvious transformation relations kðθ̂Þ ¼
kðθÞ, kðϕ̂Þ ¼ kðϕÞ.

D. Shadows of the NS as seen by REF observer
near the cosmological horizon

Here we present the construction of the shadows of the
KdS NSs, as seen by the REF observer approaching the
cosmological horizon, for typical values of the latitude θo.
The construction is carried out using the procedure
described in Sec. IV B. If we denote the angles describing
the resulting boundary of shadows in the local projection
plane, which are analogous to the angles ðα̃; β̃Þ related to
the LNRF observer, as ðα; β̄Þ, then obviously the relations

cos ᾱ ¼ cos α̃ − v
1 − v cos α̃

; ð187Þ

and

β̄ ¼ β̃ ð188Þ

hold. In the figures below we demonstrate the effect of the
aberration of light, given by the formula (187), on the dark
spot determined by the photons arriving from the vicinity
of the polar SPO in the region of negative radii, as it is
probably the most conspicuous part of the NS image, when
observed on an bright background. We present its angular
diameter δax as seen from the position on the spin axis,
which gives the maximum of the observable dark area.
The angular diameter is defined as

δ̄ax ≡ 2ᾱ; ð189Þ

where the angle ᾱ is computed from Eq. (187) for photons
with the motion constants X ¼ −a (l ¼ 0) and q ¼
qSPOðrð−Þpol Þ, with rð−Þpol given by relation (129) [see the
corresponding yellow point in the (X − q) parameter plane
in the detail of Fig. 27(a), left below].
Figures 31 and 32 clearly demonstrate the decrease of the

angular diameter of the dark spot for an observer approach-
ing the cosmological horizon. Since, according to the
relations (164) and (173), cos α̃ → 1, v → 1 for r → r−c ,
the formula (187) has a finite limit

lim
r→r−c

cos ᾱ < 1; ð190Þ

corresponding to the marginal diameter δ̄ax at the endpoints
of the displayed curves, highlighted by dots. For compari-
son, we have attached curves that describe the angular
diameter as seen by the LNRF observer at the same radius,
defined as

δ̃ax ≡ 2α̃; ð191Þ

and the angular magnification

ζ≡ ᾱ

α̃
: ð192Þ

In Fig. 33 we present the angular diameter of the dark
spot as seen by the radially escaping observer near the
cosmological horizon in dependence on the cosmological
parameter y for several fixed values of the spin parameter a2.
In order to have dimensional estimates of the distances of

the sources corresponding to some astrophysically relevant
mass parameter M, we express the radii of the appropriate

FIG. 31. (a) Angular diameter δax, measured in radians, of the dark spot bordered by the bright circle constituted of photons coming

from the vicinity of the polar SPO at negative radii rð−Þpol , as seen by the REF observer escaping along the spin axis, as a function of his

radial distance r in the KdS spacetimes with fixed spin parameter a2 ¼ 1.2 and various cosmological parameters y (full curves),
compared to the diameter observed by the LNRF observer at the same radii (dashed curves). The curves are constructed up to the radii
corresponding to the loci of the individual cosmological horizons rc, highlighted by dots. (b) Magnification of the angular diameter due
to the radial motion, given by the ratio ζ ¼ ᾱ=α̃. The zooming effect grows with increasing cosmological parameter y.
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cosmological horizon in standard astronomical units. It can
be shown that for a sufficiently small parameter y, the
solution of the Eq. (8) for the cosmological horizon rc is
given with high accuracy in a simple form

rc ¼
1ffiffiffi
y

p : ð193Þ

To get an idea of the value of the parameter y for the
currently estimated value of the cosmological constant Λ ∼
1.1 × 10−52 m−2 and some selected mass parameterM, it is
convenient to express the mass parameter M in units of

the mass of the Sun,M⊙, that isM ¼ n⊙M⊙, and to do the
same for the parameter y. To do this, we need to express the
Sun’s geometric mass as

M⊙ ¼ G
c2
M⊙ðdimÞ ¼

�
0.743× 10−27

m
kg

�
ð1.989× 1030 kgÞ

∼ 1.5× 103 m; ð194Þ

whereM⊙ðdimÞ ¼ 1.989 × 1030 kg is the mass of the Sun in
standard dimensional units. Now we can write

y ¼ 1

3
ΛM2 ¼ 1

3
Λðn⊙M⊙Þ2

¼ 1

3
ð1.1 × 10−52 m−2Þð1.5 × 103 mÞ2n2⊙

∼ 8 × 10−47n2⊙: ð195Þ

It follows from Eq. (195) that the sufficient smallness of the
parameter y is safely satisfied for all astrophysically relevant
values of n⊙ ≤ 1012. Now it follows from (193) and (195)
that although the cosmological parameter y and the corre-
sponding value rc can have very different values for
different choices of n⊙, the dimensional value

FIG. 32. (a) Angular diameter δax, measured in radians, of the dark spot bordered by the bright circle constituted by photons coming

from the vicinity of the polar SPO at negative radii rð−Þpol as seen by the REF observer escaping along the spin axis, as a function of his

radial distance r in the KdS spacetimes with fixed cosmological parameter y ¼ 0.02 and various spin parameters a2 (full curves),
compared to the diameter observed by the LNRF observer at the same radii (dashed curves). The curves are constructed up to the radii
corresponding to the loci of the individual cosmological horizons rc, highlighted by dots. (b) Magnification of the angular diameter due
to the radial motion, given by the ratio ζ ¼ ᾱ=α̃. The zooming effect grows with decreasing spin parameter a2.

TABLE V. Angular diameter of the dark spot.

n⊙ δaxðμasÞ
4 × 106 3 × 10−5

6 × 109 4.6 × 10−2

7 × 1010 0.53
1012 7.6

FIG. 33. The angular diameter δax, measured in radians, of the
dark spot as seen by the REF observer radially approaching the
cosmological horizon [ro ¼ ð1 − 10−5Þrc] along the spin axis in
the KdS spacetimes with fixed spin parameter a2 ¼ 1.2 as a
function of the cosmological parameter y. The curves are
constructed up to radii corresponding to the loci of the individual
cosmological horizons rc, highlighted by dots.
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rcðdimÞ ¼ rcM ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3ΛM2

p ¼
ffiffiffiffi
3

Λ

r
ð196Þ

is independent of the mass and spin parameters. Its value
reads

rcðdimÞ ¼
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

1.1 × 10−52

r
m

1
A
0
@ 1

9.5 × 1015
ly
m

1
A

¼ 1.74 × 1010 ly: ð197Þ

In the following table we assume that the shadow is
defined by a bright background composed of light sources
at distances corresponding to the most distant galaxies
observed so far at a redshift of z≳ 10 [140]. We therefore
put the observer at a radial distance of roðdimÞ ¼ 1.45×
1010 ly ¼ 0.83rcðdimÞ.
The mass parameters M ¼ 4 × 106M⊙, 6 × 109M⊙, 7 ×

1010M⊙ and 1012M⊙ correspond, respectively, to the BH
mass at the center of our galaxy Sgr A*, the galaxy M87,
the most massive BHs observed so far TON 618, and a
theoretical limit for the BH mass expected in galaxy
clusters. It follows from the Table V that the angular
diameters are below the angular resolution of the EHT
telescope ∼10 μas. However, this result shows that in the
extreme cases such subtle details might be within the range
of the future space observatories performing the interfero-
metric measurements on long baselines.
We end this section by presenting the KdS NS shadows

as seen by the REF observer gradually approaching
the cosmological horizon at representative latitudes
θo ¼ 0°; 45°; 90° and radii ro ¼ 0.8rc; 0.9rc; 0.999rc,
(see Fig. 34).

VI. DISCUSSION AND CONCLUDING REMARKS

We have studied the geometric and geodesic properties
of the KdS NS spacetimes, including the region of negative
radii, and made a comparison with the properties of the
KdS BH spacetimes. We have performed the construction
of the shadows of the class IVa KdS NS spacetimes
admitted by the astrophysical and cosmological restrictions
on the mass and spin of the compact (or gravitationally
bound) objects, and the cosmological restrictions on the
dark energy or the cosmological constant.
For the construction of the shadow of the considered KdS

NSs, we have used two families of reference frames, the first
one accelerated, so called LNRFs, where the most conven-
ient choice of the observer’s position is on the static radius,
and the second one geodesic, so called REFs, where the
frame (observer) is pulled outwards by the cosmic repul-
sion, that can be astrophysically relevant for the construc-
tion of the shadows as seen near the cosmological horizon.
In all the constructions, the photons entering the region of

negative radii are fully taken into account. We summarize
some important results related to observations in these two
families of reference frames:
LNRF
(1) The apparent shape of the KdS NS shadow, as

appears on observer’s celestial sky, consists of two
parts; an arc or circle, related to the light rays
incoming from the bright background and winding
up the unstable spherical photon orbits at positive
radial coordinates r > 0, and a dark spot, determined
by the light entering the region of negative radii
r < 0 and escaping to r → −∞.

(2) In the region of negative radii r < 0, there exists a
potential barrier that repels the incoming photons
back to r > 0. The borderline in the plane (X − q),
which divides the motion constants corresponding to
repelled photons and photons escaping to r → −∞,
is given by the curve ðXSPOðrSPOÞ; qSPOðrSPOÞÞ, i.e.,
by “a critical locus” (Fig. 15), where the parameter
rSPO corresponds to unstable spherical photon orbits
in the region r < 0. Behavior of this curve is
qualitatively the same in all classes of the KdS
spacetimes with spacetime parameters satisfying
condition a2y < 1. Photons escaping to r → −∞
are regarded as being captured by the NS.

(3) The SPOs at negative radii determine the really
observed boundary of the NS shadow.

(4) The PNC photons and the θ� photons delimit the
angular size of the major axis of the ellipse, which is
the NS silhouette for an observer located near the
equatorial plane [see Fig. 29(a)].

(5) For the exact position in the equatorial plane, this
ellipse shrinks by a leap into the abscissa [Fig. 29(b)]
with the angular size delimited by the PNC photon
(cf. [133]) and the photon with the impact parameter
corresponding to the equatorial circular photon
orbit X ¼ Xph−.

(6) The dark purple area represents a dark spot on the
observer’s celestial sphere, since no photons from a
bright background can come from these directions,
while the light purple area represents a reflection of
the light radiated from the region r > 0 at negative
radii. the visibility of this region could be high-
lighted, if there were some sources of illumination,
e.g., radiating matter in the accretion disk orbiting
the NS. The outer edge of this visible region is
bounded by the NS.

REF
(1) The motion of the REF observer causes the aberra-

tion of light, resulting in an angular magnification of
the NS image compared to the LNRF observer’s
observation, without distortion.

(2) The angular magnification increases as the cosmo-
logical parameter y increases and as the spin
parameter a2 decreases.
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FIG. 34. NS shadows observed in the radially escaping reference frames of the KdS spacetime with spin parameter a2 ¼ 1.2 and
cosmological parameter y ¼ 0.02 at radii approaching the cosmological horizon at rc ¼ 5.77 and at appropriate observer’s latitudes θ0.
Dot-dashed, dashed and full curves correspond to observer’s radii ro ¼ 0.8rc; 0.9rc; 0.999rc, respectively; the color of the curves
corresponds to their significance as introduced in Figs. 27–29. The figures in pairs, if present, describe the whole ðᾱ; β̄Þ plane (left
column) and details of the central parts (right column). The shading corresponding to photons entering the region of negative radii is not
displayed for clarity.
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(3) The aberration formula (187) implies that the angular
diameter of the image of the spot has finite value even
at the cosmological horizon r ¼ rc, although it is zero
according to the LNRF observation.

We can conclude that KdS NSs, of the type correspond-
ing to the observational limits of their spacetime parameters,
exhibit shadows and associated structures that allow them to
be clearly distinguished from the BH shadows. Comparing
our results with those presented in the case of the KdS BHs
[97], we can stress the main differences in the character of
the shadow. The main, qualitative difference is given by the
existence of the arc, typical of the NS spacetimes; note that
for sufficiently small inclination angles of the observer with
respect to the rotation axis of the KdS spacetime, the arc is
extended to a full circle (see Fig. 27). Inside of the arc an
elongated shadow occurs, the elongation of which increases
with the angle of inclination of the observer. Both these
parts of the NSs shadow demonstrate clear differences from
the BHs shadow. We can say that the current observations
of the Event Horizon Telescope in the M87 galaxy [1–8],
and the Sgr A* in the Galaxy center [9–14], i.e., two sources

for which the shadows constructed relative to the LNRFs are
relevant, clearly demonstrate the existence of the BH
horizon, and give no signatures of the NS effects on the
observed shadows.
On the other hand, the hypothetical primordial rotating

NSs (superspinars), advocated by some stringy theorists as
possible remnants of the very early era of the Universe
expansion [62,63], are still in the play, because their
evolution by accretion processes suggests that the existence
of such NSs could be possible at the cosmological redshifts
z > 2, as they should later be transformed into BHs [65,66].
Such hypothetical objects, located at large distances and
high-cosmological redshifts could be observed by the
ATHENA satellite observatory, which is currently under
development.
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