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Solving the Einstein-Klein-Gordon-Maxwell system, we construct and analyze the properties of an
electrically charged wormhole, formed from a complex, massive scalar field, with self-interaction, and
endowed with an electric charge. The scalar field is minimally coupled to the gravitational and the Maxwell
field. Covering regions of the value of the different parameters of such wormhole, we present the
dependence of the form of the solution with respect to the value of those parameters, emphasizing the role
played by the charge in the configurations; we focus on the region for large values of the self-interaction
parameter and found a generic behavior of the scalar field, which in turn allows us to determine explicit
analytic expressions for the fields, the metric function, and the global quantities such as the Komar mass
and the particle number. The motion of charges in these spacetimes is also reported.
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I. INTRODUCTION

In Einstein’s paradigm of gravity, geometry, and matter
are interrelated; used in the case when the matter violates
the energy conditions, not only offers a deeper under-
standing of such paradigm but also actually describes a
physical scenario as the accelerated expansion of the
Universe [1,2]. Indeed, such dynamics demand the exist-
ence of matter that violates at least the strong energy
condition. The models that support the inflationary period
of the early Universe, also demand the presence of such
type of matter.
The wormhole solutions are bona fide as they are

actually solving the Einstein equations together with a
stress energy tensor describing the matter which violates
the null energy condition [3–6]. It seems likely that the
complex scalar field is a type of matter within hard core
general relativity, which might better describe the exotic
matter and has been analyzed in several works, as in
Refs. [7–12], for instance.
It is precisely in the context of the scalar field, where

50 years ago one of the first exact asymptotically flat and
everywhere regular wormhole solutions was found [13,14].
Subsequently, some other solutions have been found, such
as configurations with self-interacting scalar fields [15,16],
a self-interacting triplet [17] and solutions with multiple
scalar fields [18–20].
Several properties of the wormhole have been estab-

lished, even since Morris and Thorne’s pioneer work [3], in
the usual pseudo-Riemannian manifold and within the

general theory of relativity. In Ref. [19] was shown that
when the matter building up the wormhole is a massive
(complex in general) scalar field, it has to have a nonzero
self-coupling constant λ, to obtain mirror symmetry relative
to the throat solutions. Also, as is the case for the boson
stars [21], the asymptotic flatness requirement demands
that the pulsation frequency ω is bounded by the value of
the mass parameter μ of the scalar field in consideration:
jωj ≤ μ. On the other hand, it has been shown that both, the
simplest realizations of wormholes formed by a massless
scalar field (by means of linear perturbations and full
nonlinear numerical evolution analysis [22–24]) and
the complex massive scalar field wormhole with self-
interaction (using perturbation theory [15]) lead to the
same conclusion regarding the instability of the configu-
ration. No stable wormhole solution has been presented;
there is also not a clear idea of the formation process of a
wormhole. The authors in [16] demonstrate several facts:
that regular wormhole solutions supported by a complex
ghost scalar field with a quartic potential, the coefficient
being the self-interaction term, λ, exist for all values
0 ≤ ω ≤ μ; that the wormhole masses lie within a region
enclosed by the curves ω=μ ¼ 0 and ω=μ ¼ 1 being
positive for ω=μ ∼ 0 and negative for ω=μ → 1, and that
when λ → ∞ the mass increases without limit and the value
of the scalar field at the throat, ϕth tends to zero.
In order to continue with the understanding of such

spacetimes, a step forward is to continue exploring the
features of wormholes when other fields are present,
recently for example, particular wormholes that do not
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require matter out of the ordinary have been presented and
discussed in the framework of the Einstein-Dirac-Maxwell
theory [5,25–27], and possible ideas on the direction of
formation are presented in [28], within fðRÞ theories. In
this manuscript, a regular, spherically symmetric electric
wormhole solution is constructed following the procedure
to endow with an electric field a boson star [29] by coupling
the (complex) scalar field to the electromagnetic one by
means of a gauge covariant derivative. Some of the authors
of the present work used such formulation to construct a
magnetized boson star [30]. This procedure preserves
gauge invariance contrary to the models where the scalar
field interacts with the electromagnetic one through a
product eαϕF2 directly at the Lagrangian (see, e.g.,
[31,32]). Analogous wormhole solutions in the Einstein-
Klein-Gordon-Maxwell system have been obtained, to the
best of our knowledge only in Ref. [33] for the case of a
massless, real scalar field without coupling (other than that
of the gravitational interaction) with the electromag-
netic field.
In the present manuscript, we explore the electric worm-

hole properties as a function of the value of the parameters,
with emphasis on the role of the electric charge; we show
that the charge does affect the properties of the wormhole,
being the most notable that on the asymptotic mass of the
spacetime. Our analysis suggested a peculiar behavior of
the functions when the self-interaction parameter λ is large;
following the seminal work of Colpi and collaborators [34]
regarding boson stars, we were able to determine analytic
expressions for the scalar field and for the total mass for
large values of λ, a fact that we corroborate with the actual
numerical solutions of the system for such cases. Such
expressions allow for a better understanding of the param-
eters of the system, namely the scalar field mass and
frequency, μ, ω and the electric charge q, in determining the
total mass and the particle number of the solutions.
The work is organized as follows: In Sec. II, we

introduce the model, fix our spacetime time to be static
with spherical symmetry, introduce the ansätze for the
charged complex scalar field, and write down the field
equations for the metric coefficients, the scalar and the
Maxwell field with the scalar current being the source of
the Maxwell field, finally, we present expressions for some
global quantities, namely the Komar mass and the total
number of particles.
In Sec. III, we give boundary conditions to obtain

regular, asymptotically flat spacetimes together with an
important constraint among the values of the fields at the
wormhole’s throat, and describe our code for solving the
field equations with the needed conditions. Next, we sweep
several intervals of value for the parameters, stressing the
role of the electric charge in the configurations obtained.
We present the profile of the total mass of the spacetime and
the value of the throat radius, G, as a function of the value of
the scalar field at the throat. We also present the total mass

as a function of λ for several values of the field frequency ω
and the charge q, also present the profile of the electric field
and that of the energy density, τ, as a function of the radius.
We present also the plots of the total mass as a function of
the frequency. These results suggest a behavior of the scalar
field for large values of the interaction parameter, λ. In
Sec. III C, we develop such analysis and obtain analytical
expressions for the fields and the global quantities, proving
its validity with the actual solutions. In Sec. III D we
analyze the particle motion for spacetimes with positive,
negative or zero total mass, for neutral and charged masses.
Finally, in Sec. IV we give our conclusions. Throughout
this work, we use units with c ¼ G ¼ 1 and the
ð−;þ;þ;þÞ metric signature. We also consider the value
of the vacuum magnetic permeability μ0 to be equal to one.

II. THEORETICAL SETUP

A. Field equations

We consider the model of a complex scalar field Φ,
minimally coupled to Einstein’s gravity and coupled to
Maxwell electrodynamics employing a generalization of
the derivative operator. In this way, the action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
R −

ϵ

2

�
gμνðDμΦÞðDνΦÞ� þ μ2jΦj2

−
λ

2
jΦj4

�
−
1

4
FμνFμν

�
; ð1Þ

where R is the Ricci scalar, μ is the scalar field particle
mass, λ is the coupling constant, Fμν ¼ ∂μAμ − ∂νAμ is the
Faraday tensor and, as mentioned above, the covariant
derivative operator, Dμ ¼ ∇μ þ iqAμ couples the scalar
field with the gauge field Aμ through the electromagnetic
constant q. Here ϵ is equal to one when the scalar field is
canonical and minus one when the scalar field describes
phantom matter, and in this work, we will consider this last
type of matter, so that ϵ ¼ −1. The scalar field defines the
source current for the electromagnetic one, and in turn, the
electromagnetic field also affects the geometry by means of
Einstein equations. The Einstein-Klein-Gordon-Maxwell
equations are obtained by taking a variation of Eq. (1), with
respect to the different fields leading to the Euler-Lagrange
equations of the model (see, e.g., [35]). The variation with
respect to gμν leads to Einstein equations:

Rμν −
1

2
Rgμν ¼ 8πTμν; ð2aÞ

Tμν ¼ TΦ
μν þ TEM

μν; ð2bÞ

where the stress energy tensors is given by
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TΦ
μν ≔−

1

2

�
ðDμΦÞðDνΦÞ� þðDνΦÞðDμΦÞ�

−gμν

�
gαβðDαΦÞðDβΦÞ� þμ2jΦj2þ λ

2
jΦj4

��
; ð3Þ

TEM
μν ≔

�
FμσFνλgσλ −

1

4
gμνFαβFαβ

�
: ð4Þ

The variation of the action with respect to the scalar field
Φ gives the Klein-Gordon equation,

gμνDνDμΦ ¼ μ2Φ − λjΦj2Φ: ð5Þ

Finally, the variation with respect to the electromagnetic
potential Aμ leads to the Maxwell equations with the
charged scalar field that defines the current four-vector
and acts as a source of the electromagnetic field,

∇νFμν ¼ Jμ ≔ qjμ; ð6Þ

where the current is given by

jμ ¼ −
igμν

2
½Φ�ðDνΦÞ −ΦðDνΦÞ��; ð7Þ

here jμ is the Noether current of the complex field Φ.

1. Static spherically symmetric spacetime and Ansätze
for the fields

We consider a line element with spherical symmetry in
isotropic coordinates

ds2 ¼ −N2dt2 þ Ψ4½dη2 þ ðη2 þ η0
2ÞdΩ2�; ð8Þ

where the metric elements N and Ψ depend only on the
radial coordinate η, dΩ2 is the solid angle element and we
have included a constant radius η0 to have the wormhole
feature of a nonzero minimal radius. Due to this fact, the
radial coordinate no longer describes the areal radius of the
two spheres and we choose not to label it as r (see,
e.g., [16,36]).
In order to have no time dependence in Einstein

equations, we assume for the complex scalar field the
harmonic ansatz

Φðη; tÞ ¼ ϕðηÞeiωt; ð9Þ

where ω is a real constant.
Finally, consistent with the spherical symmetry, we

consider that the gauge potential Aμ only has a temporal
component, which is given by

Aμdxμ ¼ VðηÞdt; ð10Þ

where VðηÞ defines the electric potential.

2. 3 + 1 decomposition of the stress energy tensor
and system of field equations

The Einstein equations can be written as a set of elliptic
equations such that the sources are expressed in terms of
quantities like the energy density τ, the momentum density
Pμ and the stress tensor Sμν explicitly. Let us start with the
3þ 1 decomposition of the energy-momentum tensor,
which consists of the following projections of the stress
energy tensor Tμν:

τ¼Tμνnμnν; Pμ¼−nσTσαγ
α
μ; Sμν¼Tαβγ

α
μγ

β
ν; ð11Þ

where γμν ¼ δμν þ nμnν is the projection operator and n ¼
ð1=N; 0; 0; 0Þ is the normal vector to the hypersurfaces.
Using the expressions for the tensors Tμν Eq. (3) and
Eq. (4), into Eq. (11) we write down the above projected
quantities explicitly:

τ ¼ 1

2Ψ4

�
1

N2
V 02 − ϕ02

�

−
ϕ2

2

�
μ2 −

λϕ2

2
þ ðVqþ ωÞ2

N2

�
; ð12Þ

Sηη ¼
1

2Ψ4

�
−

1

N2
V 02 − ϕ02

�

þ ϕ2

2

�
μ2 −

λϕ2

2
−
ðVqþ ωÞ2

N2

�
; ð13Þ

Sθθ ¼ Sϕϕ

¼ 1

2Ψ4

�
þ 1

N2
V 02 þ ϕ02

�

þ ϕ2

2

�
μ2 −

λϕ2

2
−
ðVqþ ωÞ2

N2

�
; ð14Þ

and Pα is identically equal to zero in this case. Here and
from now on we use the shorthand notation f0 ≔ df

dη.
The symmetry conditions of the space time, Eq. (8)

imply that the mixed Einstein’s tensor, and the stress-
energy one, are diagonal. A second order differential
equation for the lapse function N can be obtained from
the addition of the spatial components minus the temporal
one, and the equation for the conformal factorΨ is obtained
from the equation from the temporal component of the
Einstein equations.
The system has the explicit form:

Δ3Ψþ 1

4

η20
ðη2 þ η20Þ2

Ψ ¼ −2πΨ5τ; ð15Þ

Δ3N þ 2
Ψ0N0

Ψ
¼ 4πNΨ4ðτ þ SÞ; ð16Þ

ELECTRIC TRAVERSABLE WORMHOLE SUPPORTED BY A … PHYS. REV. D 109, 064007 (2024)

064007-3



Δ3ϕþ 2
Ψ0ϕ0

Ψ
þ N0ϕ0

N
¼ Ψ4

�
μ2 − λϕ2 −

�
qV þ ω

N

�
2
�
ϕ;

ð17Þ

Δ3V þ 2
Ψ0V 0

Ψ
−
N0V 0

N
¼ −qΨ4ðqV þ ωÞϕ2; ð18Þ

where we have used the operator definition Δ3 ≔
d2

dη2 þ 2η
η2þη2

0

d
dη.

Furthermore, we write down explicitly the equation for
the radial-radial component of the Einstein equations as an
additional equation that will be necessary as a constraint to
solve numerically the set of equations

Ψ02

Ψ2
þ N0Ψ0

NΨ
þ η

η2 þ η20

�
Ψ0

Ψ
þ N0

2N

�
−

η20
4ðη2 þ η20Þ2

¼ 2πSηη:

ð19Þ

And we have defined S as the trace of the stress tensor,
given by S ≔ γijSij ¼ Sηη þ Sθθ þ Sφφ, with the following
explicit expression for S and for the term appearing as
sources in the equation for the lapse:

S ¼ 1

2Ψ4

�
1

N2
V 02 þ ϕ02

�
þ 3ϕ2

2

�
μ2 −

λϕ2

2
−
ðVqþωÞ2

N2

�
;

ð20Þ

τ þ S ¼ 1

Ψ4N2
V 02 þ ϕ2

�
μ2 −

λϕ2

2
−
2ðVqþ ωÞ2

N2

�
: ð21Þ

B. Global quantities

For a stationary and asymptotically flat spacetime,
Komar expressions allow us to calculate global quantities
]37 ]. In particular, the total mass of a given spacetime can

be computed using the following Komar expression:

MK ¼ 1

4π

Z
Σt

RμνnμξνdV; ð22Þ

where Σt denotes a spacelike hypersurface, nμ is the
timelike vector normal to Σt with nμnμ ¼ −1, so that

n ¼ ð1N ; 0⃗Þ, ξ ¼ ∂t ¼ ð1; 0⃗Þ is the timelike Killing vector,
dV ¼ ffiffiffi

γ
p

dηdθdφ is the volume element where γ is the
determinant of the spatial metric. In our case, ξμ ¼ Nnμ and
using the Einstein equations, this expression can be
rewritten as:

MK ¼
Z

ð2Tμν − Tα
αgμνÞnμξν ffiffiffi

γ
p

dηdθdφ; ð23Þ

further, we have that ð2Tμν−Tα
αgμνÞnμξν¼NðTμ

μ−2Tt
tÞ.

On the other hand, the total number of particlesN can be
obtained from the four-current jμ defined in Eq. (7). The
current jμ arises from the invariance of the action Eq. (1)
under the global Uð1Þ transformations Φ → Φeiα, this
implies that the current (7) is Noether density current
and satisfies the conservation law ∇μjμ ¼ 0. Integration of
the conserved law over a spacelike hypersurface Σt defines
the conserved Noether charge

N ¼
Z
Σt

jμnμdV; ð24Þ

which can be associated with the total number of particles
[38]. The charge of the configuration can thus be defined as
Q ¼ qN . On the other hand, using the Komar mass and the
particle number expressed in terms of the volume integral,
Eq. (22) and Eq. (24), it is possible to compute theMk from
the gradient of the lapse function N on a 2-sphere at spatial
infinity (see, e.g., [39]), while the charge Q can be
computed from the gradient of the gauge potential V.
Therefore, the global quantitiesMk and Q can be extracted
from the asymptotic behavior of the metric (8) and of the
gauge potential VðηÞ, as MK ¼ limη→∞ η2N0 and Q ¼
4π limη→∞ η2V 0.

III. SOLUTIONS

A. Boundary conditions

In order to construct the electrostatic solution that
describes a wormhole it is necessary to fix the parameters
fω; λ; qg, and solve the system of differential equations for
the functions fN;Ψ;ϕ; Vg by imposing appropriate boun-
dary conditions on the scalar field, the gauge potential and
the metric functions. We impose reflection symmetry on the
throat, at η ¼ 0, so that the functions must satisfy the
following:

N0jη¼0¼0; Ψ0jη¼0¼0; ϕ0jη¼0¼0; V0jη¼0¼0; ð25Þ

and demanding asymptotic flatness implies

Njη→∞¼1; Ψjη→∞¼1; ϕjη→∞¼0; Vjη→∞¼0; ð26Þ

the asymptotic vanishing of the scalar field implies the
condition ω2 < μ2.
Additionally, these boundary conditions imply a con-

straint among the functions evaluated at the throat and the
system parameters. To see this, we use the circumferential
radius R which is given by

R ¼ Ψ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η0

2

q
; ð27Þ

where the minimal circumference, i.e., the throat of the
wormhole is at η ¼ 0, so that the radius of the throat is
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given by G ¼ Ψ2
thη0. On the other hand, another expression

for such throat radius can be obtained from the η
η

component of the Einstein equations, Eq. (19). Indeed,
evaluating such expression at the throat, η ¼ 0, and using
the boundary conditions, we obtain another expression for
the throat radius and equating it with the previous one, we
derive a constraint equation that allows us to determine the
parameter η0 in terms of the other parameters and the values
of the functions at the throat:

G2 ¼ Ψ4
thη

2
0 ¼

1

4πϕ2
th

�
−μ2 þ λϕ2

th
2
þ ðV thqþωÞ2

N2
th

� ; ð28Þ

where Nth ≔ Nð0Þ > 0, Ψth ≔ Ψð0Þ, ϕth ≔ ϕð0Þ > 0, and
V th ≔ Vð0Þ are the values at the throat for the metric
coefficients N, Ψ, the scalar field ϕ and the electric
potential V, respectively. It is a constraint equation among
the parameters using the boundary conditions of the
system.

B. Numerical setup and particular solutions

The nonlinear system of PDEs (15–18) is solved numeri-
cally together with boundary conditions (25) and (26) using
a spectral collocation method with Chebyshev polynomials
as a spectral basis for the unknown functions fN;Ψ;ϕ; Vg
in a compactified domain. For details on the method, see for
instance Ref. [40]. The solutions presented in this work
have been found by means of a Newton-Raphson iteration.
We have constructed numerically several wormhole

solutions, varying the parameter λ in the interval
1
2
≤ λ=4π ≤ 100, the boson frequency ω is explored

in the interval 0 ≤ ω=μ ≤ 1, and we analyze cases for
a fixed value of q, increasing it gradually between
0 ≤ q=

ffiffiffiffiffiffi
8π

p
≤ 0.5. Such procedure continues the one given

at [15], and these intervals are chosen in order to obtain
regular physically acceptable solutions.
Now, let us start discussing the general behavior of the

electric wormhole. As mentioned above, we obtain numeri-
cal solutions for different values of the parameters ω, λ and
q. Using the invariance of the Eqs. (15)–(18) under the
scaling:

η→ μη; ω→ω=μ; λ→ λ=μ2; q→ q=μ; ð29Þ

we thus obtained solutions for arbitrary values of μ. All
the further reported quantities will be given in terms of the
mass of the scalar field μ. Additionally, we use the
following scaling for the charge and scalar field to facilitate
a comparison with the charge and scalar field scale reported
in the literature, e.g., [16]

q̃ ¼ qffiffiffiffiffiffi
8π

p ; ϕ̃ ¼ ϕffiffiffiffiffiffi
4π

p ; λ̃ ¼ λ

4π
: ð30Þ

In Fig. 1, we present solutions for the total mass M and
the throat radius, G of the electric wormhole as a function of
the value of the scalar field ϕth at the throat. Furthermore,
we have used the values of the boson frequency ω=μ ¼ 0

(black lines) and ω=μ ¼ 1 (violet lines) varying λ̃∈ ½1; 30�.
We have also included orange dashed lines for represen-
tative values of the λ̃-parameter varying ω=μ∈ ½0; 1�.
The ω=μ ¼ 0 curve delimits the maximum mass of

wormholes regardless of the value of q, while the
ω=μ ¼ 1 curve does vary with q. When ω=μ ∼ 1, as q
increases, the total mass and radius of the throat also
increase in magnitude when q increases.
The solutions with q̃ ¼ 0 are consistent with the results

in [15] as can be seen by comparing their Figs. 2 and 3 with
our first row in Fig. 1. Solutions with q̃ > 0 follow the same
qualitative relations between the global quantities that the
noncharged wormholes. We also present how the wormhole
mass and throat radius depend on the value of the scalar
field at the throat. The difference with the neutral case is
that the charged wormholes with close to one boson
frequencies ω=μ reach bigger (negative) masses and larger
throat radii than the corresponding noncharged wormholes.
The common behavior for the values of the charged
analyzed is that for small ϕ̃th, the throat radius increases
almost exponentially whereas, for large values, the throat
radius tends to zero. For the neutral cases, the total mass for
ω=μ ¼ 0 is always positive, whereas for ω=μ ¼ 1 is always
negative, and this behavior changes with the charge, see
below. Also notice that the throat radius for a given value of
the scalar field at the throat is always larger for ω=μ ¼ 1
than the corresponding value for ω=μ ¼ 0, a feature that
remains in the charged cases. We have also included cases
for different values of the parameter λ̃, where the frequen-
cies vary from ω=μ ¼ 0 to ω=μ ¼ 1.
In order to highlight the behavior of the charge q on the

configurations, in the code, we fixed a value of the charge
q, analyzed cases for particular values of the parameter λ
and the frequency ω, and repeated the procedure for another
value of the charge. In [16], the authors analyzed the
properties of the noncharged wormhole solutions where
their solutions were focused on the behavior of λ.
Following this procedure, in Fig. 2, we plot the total mass
M as a function of λ̃ for several values of ω=μ, and in Fig. 3,
we show the number of particles N as a function of λ̃ for
several values of the charge, with a fixed value of ω=μ, to
emphasize the differences between the charged wormholes
with the noncharged ones, which were discussed in [16].
In Fig. 2, we see that the behavior of the total mass as a

function of λ̃ in the charged case, is similar to one of the
neutral case: for small values of λ̃, is negative and
essentially independent of the frequency ω=μ, and in this
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case, see Fig. 1, the throat radius tends to zero and the
wormhole is closing. As λ̃ increases, the ω=μ ¼ 0 worm-
hole acquires a positive total mass that increases lineally
with λ̃.
There is a frequency, near ω=μ ¼ 0.5 for which the total

mass is equal to zero for any value of λ̃ greater than ∼2; as
the frequency increases, the total mass reaches a maximum
value and then becomes more negative, with a linear
dependence on λ̃.
The presence of the charge maintains the general

behavior of the mass as a function of λ̃ but with noticeable

differences. The ω=μ ¼ 0 configuration is independent of
the charge, which is an expected result, as long as this case
corresponds to a real scalar field that has no possibility of
being charged. For ω=μ ≠ 0, the role of the charge is very
noticeable, changing the value of the frequency at which
the total mass acquires the zero value and becomes
essentially independent of λ̃, and making the slope of
the dependence of the total mass as a function of λ̃ much
more pronounced.
We have focused on the specific values of λ̃ at which the

total mass reaches a maximum, for the several values of the

FIG. 1. In the left panels, we plot the wormhole total massM and in the right one the wormhole radius as a function of the value of the
scalar field at the throat, ϕ̃th. Notice that λ̃ and ϕ̃th are monotonically related, for each value of ϕth corresponds to one of λ̃. The solid lines
are solutions for ω=μ ¼ 0 (black) and ω=μ ¼ 1 (violet). We have also included cases for different fixed values of the parameter λ̃
(orange) where the frequency takes values between 0 and 1, with λ̃∈ ½1; 30�.
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charge and the different frequencies. In Fig. 2, we present
plots of the total mass M for different values of the boson
frequency ω=μ given a value of the charge, and panels for
the different charge values, for which we choose, q̃ ¼ 0,
0.3, and 0.5. We have marked the points of maximum mass
on the different plots and written them in Table I. Also, we
have identified the frequency which yields the case
mentioned above of a total mass equal to zero, for each
value of the charge it is a particular frequency, and we label
it the zero mass frequency, ωzm.

For solutions with ω > ωzm, there aren’t local maximum
for the mass, the mass increase linearly with λ̃, whereas for
ω < ωzm, the total mass grows with λ, reaches a maximum
value, and then linearly decreases. In the case of q̃ ¼ 0, the
zero mass frequency is ωzm=μ ¼ 0.5, and the mass
increases (decreases) linearly for ω=μ > 0.5 (ω=μ < 0.5)
as was reported in [16].
The values of the frequency ωzm decrease for the charged

wormhole; those corresponding to configurations with
q̃ ¼ 0, 0.3, 0.4, and 0.5 are given in Table I, where ωzm

FIG. 2. The mass of wormhole solutions versus λ̃. We show the mass M as a function of λ̃ > 0 in the full interval of the boson
frequency ω=μ∈ ½0; 1� for different values of the electric charge of the scalar field q̃∈ ½0; 0.5�. The inverted triangles represent the
maximum of the mass Mmax of the electric wormhole for different frequencies. The values of the parameters are given in Table I.

FIG. 3. Number of particles of the charged wormhole as a function of the parameter λ̃ for some representative values of q̃. The solid
line represents the noncharged case and the dotted lines represent the charged solutions.
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corresponds to the value of the frequency such that the mass
becomes zero.
Regarding the total number of particles, Eq. (24), and the

effect of the charge of the scalar field, q, on that global
quantity, in Fig. 3 we describe, given a frequency, the
dependence of the number of particles of the configuration
on the parameter λ, for several values of the scalar field
charge q. As in the case of the total mass, for values of λ̃ not
small (greater than ∼1.5), the number of particles N
increases almost linearly with λ̃, for a fixed value of q.
The effect of the charge q is that the slope of the particle
number N as a function of λ̃ increases with q̃, reaching a
maximum slope for q̃ ¼ 0.5, and solving the system of
equations for values of the charge larger than this, becomes

computationally very demanding, possibly indicating the
fact that there is a maximal value for the charge q̃ beyond
which there are no static spherical configurations. We
present the case for two values of the frequency. Both
cases have similar behavior on the number of particles as a
function of λ̃, with increasing slope for larger values of the
charge q̃, but the number of particles, given λ̃ and q is much
larger than the corresponding value in the neutral case, for
the larger value of the boson frequency ω=μ.
We notice that with the expression that we are using,

Eq. (24), we cannot obtain the number of particles related to
the negative mass and the corresponding one related to the
positive one; it would be interesting to derive an expression
that differentiates such numbers. For this expression, it
would seem that the particles associated with the positive
mass and those associated with the negative mass, are
counted in the same way.
In Fig. 4, we present the throat radius G as a function of λ̃

and for several values of the scalar charge q̃ for two values
of the boson frequency ω=μ. It is remarkable that the throat
radius profile is very similar to the one of the number of
particles, possibly indicating a relation between this feature
of the wormhole and that global quantity. Another inter-
esting feature of the charged wormhole was that it pre-
sented the possibility of challenging the theorem valid for
noncharged wormholes [19], stating that the presence of the
self-interaction parameter, λ̃ is a necessary condition for
having a wormhole. We explore the possibility that the
charge, q̃, could play the role of the self-interaction
parameter and obtain charged wormholes without it. Our
numerical experiments showed that this is not the case and
that the presence of the self-interaction parameter remains a
necessary condition for the existence of a wormhole, even
in the charged case.
Finally, in Fig. 5, we present again the behavior of the

total mass, now as a function of the boson frequency ω for
several values of λ̃ and certain given values of the scalar
charge, q.

TABLE I. The local maximum of the mass Mmax for a given
value of the charge q and frequency ω ≤ ωzm. Configurations
with Mmax ¼ 0 define the zero mass frequency ωzm; for cases
when the frequency is greater than this one, ω > ωzm, the mass
doesn’t have a local maximum and increases linearly with λ.

q̃ ω=μ μMmax λ̃

0 0.5� 0 ∞
0 0.7 −0.578 1.289
0 1 −1.132 0.919

0.3 0.4375� 0 ∞
0.3 0.5 −0.3678 1.636
0.3 0.7 −0.6978 1.091
0.3 1 −1.3305 0.814

0.4 0.3875� 0 ∞
0.4 0.5 −0.467 1.388
0.4 0.7 −0.809 0.992
0.4 1 −1.554 0.694

0.5 0.3125� 0 ∞
0.5 0.5 −0.604 1.091
0.5 0.7 −0.995 0.861
0.5 1 −1.877 0.636

FIG. 4. We present some numerical solutions for the throat G as a function of λ̃ for different values of the charge q and two values of
ω=μ. The size throat grows linearly with λ̃, when the parameter is not too small, and the slope increases with q. The actual size of the
throat increases with ω.
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With the factors given in Eq. (30), we are able to
compare with the results of previous works in the literature,
as in [15] for the neutral case. As mentioned above,
generically, one of the effects of the charge is to change
the value of the boson frequency that gives a zero Komar
mass; we have called such frequency zero mass frequency.
In the four panels of Fig. 5, we have drawn a vertical line

indicating the value ωzm=μ ¼ 0.5, the value corresponding
to the neutral case, and it is clearly seen how the effect of
the charge is to reduce the value of the boson frequency
which gives a zero Komar mass; furthermore, notice that it
is a value independent of λ̃ for a given charge. Noticing that
the system of field equations, Eqs. (15), is invariant under
the simultaneous change in signs of the charge q̃ and the
electric potential, V, we see that there is no change in the
total mass behavior due to a change of the sign of the scalar
charge q̃.
The sources of the gravitational field are also helpful to

clarify the structure of the wormhole as well as its global
properties. In Fig. 6, we plot the energy density τ for several
solutions with λ̃∈ ½0.5; 30�, frequency ω=μ∈ ½0; 1� and
charge q̃∈ ½0; 0.5�. The rows of panels increase the value
of the λ-parameter in the interval λ̃∈ ½0.5; 30� from left to
right and, from top to bottom the panel columns increase
the q-parameter. When λ̃ → 0, the energy distribution has

qualitatively the same profile for all ω=μ values, which
already indicates that the boson frequency becomes irrel-
evant for wormholes with λ̃ → 0, (recall that for λ̃ ¼ 0,
there are no wormhole solutions). Moreover, for small
values of λ̃ the role of the charge is also negligible, whereas
for larger values of λ̃ the role of the charge in the energy
density becomes important, flattening the value of the
energy density at the throat.
Also in Fig. 6, we see the remarkable generic behavior of

a maximum, the positive value of the energy density at the
throat, η ¼ 0, followed by a step decrease toward a
minimum value, negative, and then an asymptotic increase
toward zero as we get away from the throat. A conjecture
can be proposed such a peculiar profile of the energy
density is an essential component in the determination of
the nontrivial topology of the space time. Moreover, as can
be clearly seen in the first draw, up left, the energy density
profile for small values of λ̃ practically does not change,
even though they correspond to cases with negative total
Komar mass, ω=μ ¼ 1, zero Komar mass, ω=μ ¼ 0.5, is
ωzm in Table I, and the negative Komar mass case with
ω=μ ¼ 0, showing that the energy density does not play a
fundamental role in the determination of the total Komar
mass. As the value of λ̃ increases, the profiles for the three
cases become different, keeping the generic behavior, but

FIG. 5. The mass of a spherical electrical wormhole is shown for some values of the parameter λ̃ with different values of q̃. Although
the profiles are qualitatively similar, in the limit λ̃ → ∞ the mass becomes zero for a particular frequency defined as flat space frequency
ωzm=μ. The square symbol corresponds to such frequency for different charges q̃ and they are also reported in Table I.

ELECTRIC TRAVERSABLE WORMHOLE SUPPORTED BY A … PHYS. REV. D 109, 064007 (2024)

064007-9



now the cases for the three frequencies present differences
from each other. Notice that, as λ̃ grows, the energy density
is always negative for the cases of negative and zero Komar
mass. The presence of the charge does not change the
general behavior; as the value of ωzm changes for each case,
we plot the value of ω=μ ¼ 0.5 (which is the one for ωzm in
the uncharged case) for comparison.
In Fig. 7 some solutions for the scalar field ϕ are

presented, where ϕ is scaled by the factor
ffiffiffi
λ

p
. We can

see that for large values of λ the solutions present a similar
behavior, indicating a similarity in the behavior of such
solutions under the scaling ϕ →

ffiffiffi
λ

p
ϕ for λ → ∞.

In this way, we have seen that for large λ, the particle
numberN and the throat radius G, increase with λ, the mass
M depends linearly on λ and finally we see that the

ffiffiffi
λ

p
ϕ

solutions tend to have a very similar profile for large λ.
These results suggest us to define the scaled quantities
ϕ� ≔

ffiffiffi
λ

p
ϕ, η0� ≔ η0=λ, N � ≔ N =λ and M� ≔ M=λ in

order to study the common behavior of the solutions with a
fixed frequency ω and charge q when λ → ∞. This will be
done in the following section.
We conclude this section presenting, in Fig. 8, the

electric field profiles E ¼ −∇V for some values of the
parameters λ, ω and q. For our numerical implementation,
the repulsive effect of the parameter q allows us to obtain
solutions up to a value q̃ ∼ 0.5, beyond which solutions
become increasingly larger in size, this fact might also
point to the existence of a critical value of the charge of the
wormhole, already mentioned above. The ω parameter, in
addition, also affects the difficulty of obtaining solutions
even with modest values of q. In some of our results, we
will be able to plot solutions with a fixed value of q and
several values of the frequency up to a certain limit
ω=μ < 1, as can be seen in this figure. In the next section,
we will put together our findings and derive a possible
explanation for such behavior.

FIG. 6. The energy density τ as a function of η for several wormhole solutions with λ̃∈ ½0.5; 30� and q̃∈ ½0; 0.5�. The density energy
decreases its amplitude slightly with λ̃ and the charge q̃ for λ̃ ≥ 0.5 decreases the density energy profile, turning it negative in all the
regions.
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FIG. 7. In the figure, we present some numerical solutions for the scalar field scaled by the factor
ffiffiffi
λ

p
and different values of q. The

solutions are similar for large
ffiffiffi
λ

p
whereas for small values of

ffiffiffi
λ

p
the solutions have very different profiles.

FIG. 8. Electric field E (−∇V) as a function of η for ω=μ ¼ 0.5 (left) and ω=μ ¼ 1 (right), with charges q̃ ¼ 0.3 (upp) and q̃ ¼ 0.5
(down). The Electric field increases with q̃. In the case of large λ it is difficult to obtain solutions near q̃ ¼ 0.5, therefore solutions for
very large λ̃ are possible only for small values of q̃.
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C. Behavior for large λ

Based on the results obtained with the code presented in
the above section, and following the scaling analysis for
boson stars given by Colpi et al. for large values of λ [34],
we now consider the electric wormhole solutions when
λ ≫ 1. An analysis of the behavior of the spacetime
geometry and the radial profile of the scalar field when
the self-interaction is very large makes evident the scaling
of the different functions and parameters of the solution.
For example, it has already been shown in Fig. 7 that the
solutions converge to a λ-independent profile ϕ� ¼

ffiffiffi
λ

p
ϕ as

λ increases. On the other hand, there is a clear linear scaling
for the throat parameter, η0� ¼ η0=λ, while the metric
coefficients Ψ, N and the electric potential converge to
constant functions, Ψth; Nth and Vth respectively, in a throat
region whose size (in η) increases also linearly with λ. In
this way, our results show that not only the scalar field
becomes independent of λ for large values of the self-
interaction but the entire solution. With this result in mind,
it is possible to find analytical solutions for an electric
wormhole in the case of λ ≫ 1, the neutral wormhole
included.
Let us start by scaling the constraint equation (28) for the

wormhole throat obtaining:

4πΨ4
thη

2
0�ϕ

2
th� ¼

1

λ
	
−μ2 þ ϕ2

th�
2
þ ðV thqþωÞ2

N2
th


 ; ð31Þ

where, since the quantities ϕth�, Nth and the product
Ψ4

thη
2
0�ϕ

2
th� are finite for λ → ∞, then the right hand side

of Eq. (31) must have the following dependence in order to
maintain consistency in the constraint equation:

μ2 −
ϕ2
th�
2

−
ðV thqþ ωÞ2

N2
th

∼
1

λ
þOðλ−2Þ: ð32Þ

Next, we take the pointwise limit λ → ∞, keeping η
fixed in Eq. (32), so that defining the following limit
quantities with subscript ∞,

Nλ∞ ¼ Njλ→∞; Ψλ∞ ¼ Ψjλ→∞;

ϕ�λ∞ ¼ ϕ�jλ→∞; Vλ∞ ¼ Vjλ→∞; ð33Þ

allows to express the value of the scalar field at the
wormhole throat in the limit λ → ∞ as,

ϕ0 ≔ ϕ�λ∞ðη ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
μ2 −

ðωþ qV0Þ2
N2

0

�s
; ð34Þ

where V0 ≔ Vλ∞ðη ¼ 0Þ and N0 ≔ Nλ∞ðη ¼ 0Þ. This
equation implies that whenever ωþ qVλ∞ ≫ 1, the value
of the lapse must take considerably larger values at the
origin to maintain Eq. (34) real, which explains why it is

more difficult to obtain the numerical solution for cases
with large q and ω. This can be corroborated by looking at
the first two columns of Tables II and III, which will be
properly presented below.
Now, inserting the scaled scalar field profile ϕ� and the

scaled η0� in the Einstein-Klein-Gordon-Maxwell system
and taking the limit λ → ∞ (with η held fixed and assuming
jη=η0j ≪ 1), the following set of differential equations is
obtained:

d2

dη2
Ψλ∞ ¼ 0; ð35Þ

d2

dη2
Nλ∞ ¼ 0; ð36Þ

d2

dη2
Vλ∞ ¼ 0; ð37Þ

d2

dη2
ϕ�λ∞ − Ψλ∞

4

�
μ2 − ϕ�λ∞

2 −
�
qVλ∞ þ ω

Nλ∞

�
2
�
ϕ�λ∞ ¼ 0:

ð38Þ

Whose solution is valid in the interval −λη0� ≪ η ≪ λη0�.
Imposing symmetric solutions at the throat [see Eq. (25)]

and using the definitions given in Eq. (33), the system (35)
has the solution,

Nλ∞ðηÞ¼N0; Ψλ∞ðηÞ¼Ψ0; Vλ∞ðηÞ¼V0; ð39Þ

ϕ�λ∞ðηÞ ¼ ϕ0 sech

�
Ψ0

2ϕ0ffiffiffi
2

p η

�
; ð40Þ

TABLE II. Limit quantities Nλ∞ , Ψλ∞ , ϕλ∞ , and Vλ∞ for ω=μ ¼
0.5 and different values of the charge q. These quantities are
related to the boundary conditions at the throat for λ → ∞
according to the relation Eq. (33) and Eq. (34).

q̃ N0 Ψ0 ϕ0 V0 ðωþ qV0Þ=N0

0 1 0.7099 1.225 0 0.5
0.2 1.0860 0.6897 1.193 0.0882 0.5418
0.3 1.2153 0.6617 1.1365 0.1515 0.5990
0.5 1.9767 0.5504 0.8926 0.4146 0.7787

TABLE III. Limit quantities N0, Ψ0, and ϕ0 for q ¼ 0 (V0 ¼ 0)
and different values of ω=μ.

ω=μ N0 Ψ0 ϕ0 ω=N0

0 0.5820 0.9001 1.4189 0
0.2 0.6895 0.8427 1.3551 0.2901
0.5 1 0.7099 1.2250 0.5
0.7 1.2401 0.6347 1.1707 0.5645
1 1.6153 0.5448 1.1131 0.6191
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with ϕ0 constrained by Eq. (34). Given q and ω, the
numbers N0, Ψ0, V0 and ϕ0 are estimated by interpolation
from solutions with high values of λ. In Table II we present
some of these numerical values for the ω=μ ¼ 0.5 case. In
Table III we report the same quantities but now restricting
to the q ¼ 0 case.
In order to compare our analytic results for λ → ∞ with

numerical solutions, in Fig. 9 we present the convergence
of the numerical profiles ϕ�λ∞ to the analytic one, given in
Eq. (40), therefore concluding that the analytic expression
gives a good approximation for these cases. We have also
verified on the explored solutions, that the range of validity
of the constant radial profiles (39) for the metric functions
and the electric potential grows in size linearly with λ.
Previously in the manuscript it has been described that

the mass (and the number of particles) also have a linear
scaling in the λ ≫ 1 case, and even more remarkable, the
total mass goes to zero for the configuration with exactly
ω ¼ 0.5μ as λ → ∞. The solutions obtained in Eq. (39) and
(40) provide an explanation of these properties. Using the
scaled ϕ�λ∞ and η0� it is possible to show that the Komar
mass in Eq. (23) scales as M� ¼ M=λ for λ ≫ 1.
Furthermore, an analytic expression forM� can be obtained
by noting that when λ ≫ 1 the square root of the deter-
minant can be approximated as

ffiffiffi
γ

p ≈ λ2Ψ6
λ∞
η20� sin θ, and

the integrand NðTμ
μ − 2Tt

tÞ can be simplified to leading
order in 1=λ as

NðTμ
μ − 2Tt

tÞ ≈
2Nλ∞ϕ

2
�λ∞

λ

�
μ2

2
−
ϕ2
�λ∞
4

−
ðqVλ∞ þ ωÞ2

N2
λ∞

�
:

ð41Þ

Thus, by inserting into the Komar mass expression (23), we
obtain

M� ¼ 8πN0Ψ6
0η

2
0�

�
−
1

4

Z
∞

0

ϕ4
�λ∞dη

þ
�
μ2

2
−
ðωþ qV0Þ2

N2
0

�Z
∞

0

ϕ2
�λ∞dη

�
;

¼ 8

3
πN0Ψ4

0η
2
0�

�
μ2 −

ðωþ qV0Þ2
N2

0

�
1=2

×

�
μ2 −

4ðωþ qV0Þ2
N2

0

�
: ð42Þ

Here we have used the expression of the scalar field
solution, Eq. (40), which also imply that

R
∞
0 ϕ2

�λ∞dη¼
2ϕ0ffiffi
2

p
Ψ2

0

,R∞
0 ϕ4

�λ∞dη ¼
4ϕ3

0

3
ffiffi
2

p
Ψ2

0

.

As we were looking for, the above equation allows us to
see that the mass of the system will be zero if and only if the
condition ω ¼ ωzm is satisfied, with

ωzm ¼ μN0

2
− qV0: ð43Þ

Substituting the values in Table II for the solution q ¼ 0
and ω ¼ 0.5μ we see that it satisfies this condition and the
same can be checked for configurations with q > 0, λ ≫ 1
and whose M is equal to zero. Moreover, it can be shown1

that in the neutral case, the value of N0 is exactly equal to 1,
thus explaining why it is precisely at ω ¼ 0.5μ that the
mass of the spacetime tends to zero as already noted in
[15,16]. In general, such value is modified by the presence
of the electromagnetic coupling q, a behavior that was
hinted at in the previous plots of the mass. We noticed from
Tables II and III that the quantities N0 and V0 are
monotonically increasing with the frequency and the
charge, while ϕ0 and Ψ0 decrease monotonically with
the frequency and charge, therefore for each value of the
frequency and charge, there corresponds a single value of
N0 such that the mass M� is equal to zero.
Finally, using the same procedure it is possible to see that

the number of particlesN given by Eq. (24) scale asN � ¼
N =λ for large λ. An analytic expression forN � can also be
derived and is given by

N � ¼ 4πη20�ðωþ qV0Þ
Ψ6

0

N0

Z
∞

0

ϕ2
�λ∞dη;

¼ 8πη20�ðωþ qV0Þ
Ψ4

0

N0

�
μ2 −

ðωþ qV0Þ2
N2

0

�
1=2

; ð45Þ

where we have used the current Eq. (7) and the ansatz

Eq. (9) to obtain j0 ¼ −
ϕ2
λ∞

N2
λ∞
ðVλ∞qþ ωÞ.

1Considering the full expansion of the lapse function, after
the constant term Nλ∞ , consistent with the system (15)–(18)
(and considering the possible contributions of the expansions
of the other fields) one must have N ¼ Nλ∞ þ λ−1N1ðηÞ þ
Oðλ−2Þ, with N1 satisfying the differential equation N00

1 ¼
4πNλ∞Ψ

4
λ∞
ϕ2�ðμ2 − ϕ2�=2 − 2ω2=N2

λ∞
Þ subject to the boundary

condition N0
1ðη ¼ 0Þ ¼ 0. Under this consideration, the solu-

tion is,

N1ðηÞ¼ 4πNλ∞ϕ
2
�λ∞

��
1

3
− κ

�
lnðcoshðbηÞÞþ1

6
sech2ðbηÞ

�
þk1;

ð44Þ

with κ ¼ 2ϕ−2
�λ∞ω

2=Nλ∞ and b ¼ Ψ2
λ∞
ϕ�λ∞=

ffiffiffi
2

p
. Recalling these

solutions are valid in the domain jηj < λη0�, the full lapse function
N ¼ Nλ∞ þ λ−1N1ðηÞ þOðλ−2Þ should match the exterior solu-
tion Nη→∞ ¼ 1þ κ1=η at a certain point 1 ≪ ηm < λ, but it is
precisely in the case of zero mass that κ ¼ 1=3, as obtained from
Eq. (40), so the term λ−1N1 contributes negligibly (not sowhenever
κ ≠ 1=3). Furthermore, it can be argued that the Oðλ−2Þ contri-
butions are equally negligible at the matching point so that Nλ∞
should meet the boundary condition at infinity, Nλ∞ ¼ 1, for the
q ¼ 0 family of solutions if and only if M� ¼ 0.
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D. Particle motion

The analysis of the motion of particles in the several
types of spacetimes generated by the charged wormhole
throws interesting facts that are useful in the understanding
of the properties of such geometries.
The full action of a charged particle with mass m and

charge e interacting with an electromagnetic field in
general relativity reads [41],

A ¼ −
Z

mdτ þ
Z

eAμuμdτ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
R −

1

4
FμνFμν

�
: ð46Þ

Where uμ is the four-velocity of the particle. Varying A
with respect to the trajectory of the particle leads to the
equations of motion of such particle (Lorentz force law),

muμ∇μuν ¼ eFν
αuα: ð47Þ

Now, let K be a Killing vector field of the spacetime, then it
can be shown that the Killing equation∇ðμKνÞ ¼ 0 does not
imply uμ∇μðKνuνÞ ¼ 0 as in the case of geodesics, but
rather uμ∇μ½Kνðmuν þ eAνÞ� ¼ 0 when Eq. (47) is used
and it is assumed that the electromagnetic field is consistent
with the symmetry associated with K [37] (as is the case
for the electric wormhole solution). This means that, the
quantities

Kνðmuν þ eAνÞ; ð48Þ

are constant along the world line of the charged particle.
Returning to the wormhole spacetime, the timelike Killing
field ξ and the axial Killing field ψ ¼ ∂φ imply the existence
of a conserved energyE ≔ −ξνðmuν þ eAνÞ and a conserved
(azimuthal) angular momentum L ≔ ψνðmuν þ eAνÞ,
which in the coordinates described in Eq. (8) we obtain E ¼
mN2ut − eV and L ¼ mΨ4ðη2 þ η20Þ sin2 θuφ. Since both
the gravitational and electromagnetic fields are spherical we
may restrict to the equatorial motion θ ¼ π=2without loss of
generality, so the normalization of the four-velocity allows us
to obtain a simple equation for the radial motion:

m2N2Ψ4

�
∂η

∂τ

�
2

þm2N2 − ðE þ eVÞ2 þ N2

Ψ4

L2

η2 þ η0
2
¼ 0;

ð49Þ

whose solutions allow to acquire a better understanding of
the properties of the wormholes determined by the para-
meters. Now, we can define an effective potentialUeff as the
minimum allowed value of E at a given η, i.e.,

UeffðηÞ ¼ −eVðηÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2NðηÞ2 þ NðηÞ2

ΨðηÞ4
L2

η2 þ η0
2

s
: ð50Þ

FIG. 9. Difference between the numerical ϕ̃� and the analytic scaled scalar field ϕ̃�λ∞ , given in Eq. (40) and the parameters given in the
Table II, as a function of the radial coordinate η for large values of λ̃, for the cases with ω=μ ¼ 0, 0.5 and 1 for the frequency, and q̃ ¼ 0,
q̃ ¼ 0.3 for the charge parameter.
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Given E and L, then, the allowed regions for the
movement of the particle are given by those values of η
such that UeffðηÞ ≤ E.
In order to illustrate the motion of particles around the

spacetime of an electrically charged wormhole, some
effective potentials are shown in Fig. 10. In the left panel,
we use three different spacetimes with M > 0, M < 0 and
M ¼ 0 such that a neutral particle with angular momentum
of L=m ¼ 0.1 will fall to the wormhole when the mass is
positive, be repelled when the mass is negative and
continuing in an almost straight line when M ¼ 0 and is
far away from the wormhole throat. In the right panel of
Fig. 10, we fix the spacetime to be one withM ¼ 0 and give
certain values for the charge of the particle, then we can see
that the repulsive and attractive interaction toward the
wormhole can be obtained through the electromagnetic
field.

IV. CONCLUSIONS

We have derived and solved the Einstein-Maxwell-Klein
Gordon system for the case of an exotic and massive scalar
field with a self-interaction term, minimally coupled to the
electromagnetic field. Imposing appropriate conditions in
the boundaries, we obtain an asymptotically flat charged
wormhole and analyze the solutions. We obtained solutions
with the already known regions of positive energy density
near the throat, followed by regions of negative density,
obtaining configurations where the total mass of the system
can be positive, negative or even zero, depending on the
values of the parameters of the system. We obtain that the
electric charge affects the morphology of the wormhole and
plays an important role in the determination of such total
mass and also in the total particle number of the system.
The motion of particles in the regions far from such
wormholes is different depending on the total mass of
the system and the charge.

Our analysis suggested that, for large values of the self-
interaction parameter, λ, the solution for the scalar field
tended to have similar behavior. We explored this fact and
were able to obtain an analytic expression for the scalar
field that reproduced its behavior in this case of the large
self-interaction term, a fact that we proved by comparing
the actual numerical solutions in this case with the analytic
expressions, obtaining excellent agreement. This allowed
also a better understanding of the role of the parameters in
the determination of the wormhole properties, namely the
total mass of the configuration and the particle number, as a
function of the system parameters, μ, ω, q, η0�, and the
electric potential and metric coefficients evaluated in the
case of large λ. It is interesting to notice that the charge and
electric field play an important role not only in determining
the value of the total mass but also in the fact that it is
modified the case when such total mass is zero.
Another fact that we want to underline is that our

numerical experiments allow us to present the conjecture
that the charge cannot play the role of the self-interaction
constant regarding the existence of (equilibrium) solutions
for the massive scalar field; that is, λ has to be nonzero in
order to have a wormhole, even for the case of an electric
wormhole.
Also, even though there is no equation which hints at the

existence of a critical charge, a maximum value for the
charge, the numerical experiments show that it is increas-
ingly difficult to find solutions for q̃ larger than 0.5, which
might indicate that there is a critical value for the charge
beyond which there are no equilibrium solutions.
Finally, we presented the motion of particles, charged or

neutral, obtaining an expected but interesting behavior in
terms of the total mass. Indeed, in the region where the total
enclosed mass is already constant, the particle is attracted
toward the wormhole when such mass is positive, repelled
away from it, when the total mass is negative, and moves as
if there were no wormhole at all when the total mass is zero.

FIG. 10. Effective potential Ueff for a particle with angular momentum L=m ¼ 0.1. Left panel: Neutral particle moving in an electric
wormhole with λ̃ ¼ 30 and q̃ ¼ 0.1 and different values of ω=μ such that the total mass of the spacetime is positive zero and negative
(ω=μ ¼ 0.475, 0.4875 and 0.5 respectively). Right panel: Charged particles with e=m ¼ 1, 0, −1 moving in the sameM ¼ 0 wormhole
as in the left panel.
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The Q ≠ 0 and M ¼ 0 situation is of importance because
although the electromagnetic field contributes to the
sources of the Einstein equations, the full system solution
(electromagnetic fieldþ scalar field) is such that a charged
particle, far from the throat, would be able to sense the
presence of the wormhole, whereas a neutral particle would
not. It has been possible to construct solutions in which
unlike the Kerr-Newman family hole one has Q > M
without implying the existence of a naked singularity.
Further investigation of the geodesic motion around the
electric wormhole and its possible distinction from other
compact objects (see for instance [42,43] for work in this
direction) will be carried out in future work.
The ideas and procedure described in this work can be

adapted to the case when the electromagnetic field has an
azimuthal component, instead of a temporal one, obtaining
a magnetic wormhole. Such work is currently under
development.
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APPENDIX: GEOMETRIC SCALARS

The following expressions for the geometric scalars
will be useful to characterize the solutions. The Ricci
scalar:
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FIG. 11. Ricci R, Weyl W, Kretschmann K scalars and density energy τ for wormholes with λ̃ ¼ 10, q̃ ¼ f0; 0.3g and
ω=μ ¼ f0;ωzm=μ; 1g, such that the total mass of the spacetime is positive, zero and negative, respectively. We also plot the energy
density τ for the same cases.
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and the Kretschmann scalar:
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In Fig. 11, we present some plots of these geometric
scalars which might also help to better understand the role of
the parameters in thewormhole configuration. Recall that the
scalar of curvatureR is proportional to the trace of the stress
energy tensor,R ¼ −8πðτ þ SÞ, and in the figurewe present
both to stress the importance of the trace S in determining the
proportional changes for the different cases of the total mass.
It is remarkable the change on the geometry depending

on the total mass of the system. Such influence is mainly

showed in the Weyl scalar in which maximum for the
zero mass case is almost half the one of the negative mass
case and for the positive mass case, the profile of the
Weyl scalar is more than four orders in magnitude
smaller than in the other cases. These solutions invite
for a deeper understanding on the properties of the
geometric scalars depending on the matter-energy pre-
sented in the space-time. Such work will be done
elsewhere.
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